
Problem Set 1 Solutions

Sum of Squares Seminar

September 29, 2017

Problem 1 (10 points)
Recall that given equations s1(x1, · · · , xn) = 0, s2(x1, · · · , xn) = 0, etc., a degree d Positivstel-
lensatz proof of infeasibility is an expression of the form −1 =

∑
i fisi +

∑
j g

2
j where

1. ∀i, deg(fi) + deg(si) ≤ d

2. ∀j, deg(gj) ≤ d
2

Give a degree 2 Positivstellensatz proof that a square has no triangle, i.e. that the following equa-
tions are unsatisfiable over R:

1. ∀i ∈ [1, 4], x2
i − xi = 0

2. x1x3 = x2x4 = 0

3.
(∑4

i=1 xi
)
− 3 = 0

Solution
Observe that

(x1 + x3 − x2 − x4)2 = 2
4∑
i=1

x2
i − (x1 + x2 + x3 + x4)2 + 4x1x3 + 4x2x4

By the problem equations,

1. 2
∑4

i=1 x
2
i = 2

∑4
i=1 xi = 6

2. −(x1 + x2 + x3 + x4)2 = −9

3. 4x1x3 = 4x2x4 = 0



so (x1 + x3 − x2 − x4)2 = −3 which is a contradiction.
This argument can be put in the desired form as follows:

−1 = (x1 + x3 − x2 − x4)2 + 2− 2
4∑
i=1

(x2
i − xi)− 2

(
4∑
i=1

xi − 3

)

+

(
4∑
i=1

xi + 3

)(
4∑
i=1

xi − 3

)
− 4x1x3 − 4x2x4

Choose one of the following two problems:

Problem 2: Linear Programming for Vertex Cover (20 points)
The vertex cover problem is as follows. Given an input graph G, what is the smallest size of a
subset V of vertices of G such that every edge of G is incident with at least one vertex of V ?

(a) 10 points: Give a linear programming relaxation of the vertex cover problem.

(b) 10 points: How much smaller can the value of your linear programming relaxation be than
the true size of the minimal vertex cover? In other words, letting opt(G) be the true size
of the minimial vertex cover of G and letting LP (G) be the value the linear program gives,
what is the largest α such that for all input graphs G, α · opt(G) ≤ LP (G) ≤ opt(G)? Prove
that your answer is correct by giving examples showing that LP (G)

opt(G)
can be arbitrarily close to

α and proving that for all graphs G, opt(G) ≤ 1
α
LP (G). (Hint is available)

Solution
Part a: The actual problem can be reformulated as follows. Minimize

∑n
i=1 xi subject to

1. ∀i, xi ∈ {0, 1}

2. ∀(i, j) ∈ E(G), xi + xj ≥ 1

A natural linear programming relaxation is as follows. Minimize
∑n

i=1 xi subject to

1. ∀i, 0 ≤ xi ≤ 1

2. ∀(i, j) ∈ E(G), xi + xj ≥ 1

Part b: α = 1
2
. To see this, consider {Kn}, the family of complete graphs on n vertices. The linear

programming relaxation can take xi = 1
2

for all i, giving a value of n
2
. However, the minimal size

of a vertex cover of Kn is n− 1 and limn→∞
n
2

n−1
= 1

2

2



To see that there is always a vertex cover of size at most twice the value given by the linear pro-
gramming relaxation, consider the following rounding algorithm. Take V to be the set of vertices
which are given value at least 1

2
by the linear program. For all (i, j) ∈ E(G), xi ≥ 1

2
or xj ≥ 1

2
, so

V is a vertex cover of G. The rounding algorithm multiplies the weight on each vertex by at most
2, so |V | has size at most twice the value given by the linear programming relaxation, as needed.

Problem 3: Linear Programming for Maximum Matching (20
points)
Recall the maximum matching problem: Given an input graph G, what is the maximum k such
that there are k edges which are all disjoint (i.e. no two of the are incident with the same ver-
tex). Further recall the linear programming relaxation for this problem: We have a variable xij
for each edge (i, j) ∈ E(G) (where edges are always ordered so that i < j) and we maximize∑

i,j:i<j,(i,j)∈E(G) xij subject to

1. ∀i < j : (i, j) ∈ E(G), 0 ≤ xij ≤ 1

2. ∀i,
∑

j<i:(j,i)∈E(G) xji +
∑

j>i:(i,j)∈E(G) xij ≤ 1

(a) 10 points: Prove that if the input graph G is bipartite, this linear programming relaxation
gives the correct value of k (hint is available).

(b) 10 points: For general graphs, how much larger can the value for this linear programming
relaxation be than the true size of the maximum matching? In other words, letting LP (G)
be the value of the linear progam on G and letting opt(G) be the true size of the maximum
matching in G, what is the smallest α such that for all input graphs G, opt(G) ≤ LP (G) ≤
α · opt(G)? Give an example where LP (G) = α · opt(G).

Challenge question: Prove that for all input graphs G, LP (G) ≤ α · opt(G).

Solution
Part a: Since this linear program is a relaxation, any actual solution gives a solution to the linear
program. Thus, LP (G) ≥ opt(G). For the other direction, let k be the maximal number of edges
in a matching of G. By König’s Theorem, G has a vertex cover V of size k. Now observe that
since V is a vertex cover, for any solution to the linear program,

∑
i,j:i<j,(i,j)∈E(G)

xij ≤
∑
i∈V

 ∑
j<i:(j,i)∈E(G)

xji +
∑

j>i:(i,j)∈E(G)

xij

 ≤ |V | = k

Thus, LP (G) ≤ opt(G), as needed.
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Part b: α = 3
2
. For a tight examle, take G to be a disjoint union of triangles. The largest matching

in G has n
3

edges, one for each triangle. However, the linear program can set xij = 1
2

for all edges
(i, j) ∈ E(G) which gives a value of n

2
= 3

2
opt(G) for

∑
i,j:i<j,(i,j)∈E(G) xij .

Problem 4: Conditions of Von Neumann’s Minimax Theorem
(15 points)
Recall Von Neumann’s Minimax theorem

Theorem 0.1. If X and Y are convex, compact subsets of Rn and f : X ×Y → R is a continuous
function which is convex in x and concave in y then

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y)

(a) 5 points: Give an example showing that the theorem may fail if X and Y are closed and
convex but not bounded.

(b) 5 points: Give an example showing that the theorem may fail if X and Y are compact but
not convex.

(c) 5 points: Give an example showing that the theorem may fail if f is not convex in x.

(d) Challenge question: What happens if X and Y are bounded and convex but not closed?

Hints are available

Solution
(a) X = Y = R, f(x, y) = x + y is one such example. If x plays first then y can make f(x, y)

arbitrarily large. If y plays first then x can make f(x, y) arbitrarily negative.

(b) X = Y = {−1, 1}, f(x, y) = xy is one such example. If x plays first then y can match the
sign of x to obtain f(x, y) = 1. If y plays first then x can take the opposite sign to obtain
f(x, y) = −1

(c) X = Y = [−1, 1], f(x, y) = xy + 1 − x2 is one such example. If x plays first then y can
take y = ±1 with the same sign as x to obtain f(x, y) ≥ 1. If y plays first then x can take
±1 with the opposite sign as y to obtain f(x, y) = −|y|+ 1− 1 = −|y| ≤ 0
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Choose one of the following two problems:

Problem 5: Duality for max flow and min cut (25 points)
Recall the linear program for the max flow problem. Given non-negative capacities {cij} (where
we take cn1 =∞), maximize xn1 subject to

1. ∀i, j, 0 ≤ xij ≤ cij (no capacity is exceeded, no negative flow)

2. ∀i,
∑

j 6=i xji =
∑

j 6=i xij (flow in = flow out)

(a) 10 points: What is the dual linear program?

(b) 5 points: Show that any cut separating x1 and xn gives a feasible solution to the dual program.

(c) 10 points: Prove the max flow/min cut theorem (assuming strong duality) by showing that
for any feasible solution of the dual program, there is a cut which has equal or smaller value
(hint is available).

Solution
Part a: To find the dual, we can either put this linear program in canonical form or work directly
using Von Neumann’s minimax theorem as a guide. Here we work directly. Consider

f({xij : i 6= j}, {wij : i 6= j}, {yi}) = xn1 +
∑
i,j:i 6=j

wij(cij − xij) +
n∑
i=1

yi

(∑
j 6=i

xji −
∑
j 6=i

xij

)

where we restrict {xij : i 6= j} and {wij : i 6= j} to all be nonnegative. One player controls the x
variables and is trying to maximize f . The other player controls the y and w variables and is trying
to minimize f .

If we have the x player play first, this gives us the primal. If we have the w, y player play first,
this gives us the dual, which is as follows: Minimize

∑
i,j:i 6=j wijcij subject to:

1. ∀i 6= j, wij ≥ 0

2. ∀i 6= j : yj − yi − wij ≤ 0. Rearranging, this is equivalent to wij ≥ yj − yi

3. y1 − yn − wn1 + 1 ≤ 0. Since we have cn1 = ∞, we always want to take wn1 = 0.
Rearranging, this is equivalent to yn − y1 ≥ 1

Part b: Given a cut C = (S, S̄) where x1 ∈ S and xn ∈ S̄, take the following values for the dual
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1. yi = 0 whenever xi ∈ S and yi = 1 whenever xi ∈ S̄

2. wij = max {yj − yi, 0}. Equivalently, wij = 1 if xi ∈ S, xj ∈ S̄ and wij = 0 otherwise.

This gives a dual value of
∑

i,j:xi∈S,xj∈S̄ cij , as needed.
Part c: For any solution to the dual, it is clearly optimal to take wij = max {yj − yi, 0}, so we
will assume this is the case and focus on the values for {yi : i ∈ [1, n]}. Assume that we have a
solution to the dual with minimal value with values {yi}. Given this solution, take C to be the cut
where S = {xi : yi ≤ 0} and S̄ = {xi : yi > 0}. Letting c = min{min {yi : yi > 0}, 1

2
}, we have

the following two solutions to the dual:

1. y′i = 0 if xi ∈ S and y′i = 1 if y′ ∈ S̄

2. y′i = yi
1−c if xi ∈ S and y′i = yi−c

1−c

Note that the original solution is c times this first solution plus 1 − c times the second solution.
Since we assumed that our original solution had minimal value, both of these solutions must have
this value. Thus, the first solution to the dual has minimal value and is a cut solution, as needed.

To be added: nice alternative solutions for this part.

Problem 6: Linear Programming Strong Duality (25 points)
This problem gives a proof that strong duality holds for linear programming. Recall the slack
primal and dual forms for a linear program.
Primal: Maximize cTx subject to

1. Ax = b

2. x ≥ 0

where these inequalities are taken coordinatewise.
Dual: Minimize yT b subject to

1. ATy ≥ c

(a) 10 points: Assuming that the primal is feasible (i.e. there is an x ≥ 0 such that Ax = b),
prove that strong duality holds using Farka’s lemma, which says the following:

Lemma 0.2 (Farka’s Lemma). If A ∈ Rm×n and b ∈ Rn then exactly one of the following
holds:

(a) ∃x ∈ Rn : Ax = b, x ≥ 0

(b) ∃y ∈ Rm : ATy ≥ 0, bTy < 0

(hint is available)

Challenge question: What happens if the primal is infeasible?
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(b) 10 points: Prove Farka’s lemma using the following version of the separating hyperplane
theorem:

Theorem 0.3. If X, Y are convex sets such that

(a) X ∩ Y = ∅
(b) X is compact.

(c) Y is closed.

then there is a hyperplane H such that X is entirely on one side of H , Y is entirely on the
other side of H , and neither X nor Y intersect H .

(hint is available)

(c) 5 points: Show that if X and Y are convex sets and (x, y) ∈ X × Y has minimal distance
(i.e. there is no (x′, y′) ∈ X × Y with d(x′, y′) < d(x, y) then taking H to be hyperplane
perpendicular to y− x which passes through the midpoint between x and y, X is entirely on
one side of H , Y is entirely on the other side of H , and neither X nor Y intersect H .

If you are familiar with compactness, complete the proof of the separating hyperplane the-
orem by proving that if X is compact and Y is closed then there must be a pair of points
(x, y) ∈ X × Y of minimal distance.

Solution
Part a: First recall that any feasible value for the dual gives an upper bound on the value for the
primal as yT b = yTAx ≥ cTx

To show that we have equality, let z0 be the value of cTx0 for the given feasible point x0. For
each z > z0, we can do the following:

1. Let A′ be the matrix formed by appending cT to the matrix A as a final row.

2. Let b′ be the vector b formed by appending z to b.

3. Apply Farka’s lemma on A′ and b′.

By Farka’s lemma, either A′x = b′ in which case Ax = b and cTx = z or ∃y′ : A′Ty′ ≥ 0 and
b′Ty′ < 0. The first case corresponds precisely to a feasible solution of the primal with cTx = z.
In the second case, observe that the final entry of y′ must be negative because otherwise we would
still have A′Ty′ ≥ 0 and b′Ty′ < 0 even if we replaced z by z0, which is impossible by Farka’s
lemma as there is a solution of the primal with cTx = z0.

Scaling y′ so that the final entry of y′ is −1 and taking y to be the vector y′ with the final entry
removed, we have that ATy − c ≥ 0 and yT b− z < 0. Rearranging, ATy ≥ c and yT b < c. Thus,
there is a feasible solution of the dual with yT b < z.
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We have shown that for all z ≥ z0 either there is a feasible solution of the primal with value
z or there is a feasible solution of the dual with value less than z. In fact, precisely one of these
alternatives hold because any feasible value for the dual gives an upper bound on the value for the
primal. Now take zopt to be the infimum of the feasible values of the dual. If this infimum does
not exist becuase the dual program is infeasible, then for all z ≥ z0 there is a feasible solution of
the primal with value z so the value of the primal can be arbitrarily large. Otherwise, note that
zopt ≥ z0 as no solution of the dual can have value less than z0. By definition, there is no feasible
value of the dual with value less than zopt so there must be a solution to the primal with value zopt
and the duality gap is 0.

Part b: Both statements in Farka’s lemma cannot hold at the same time as otherwise we would have
that 0 > yT b = yTAx ≥ 0, which is a contradiction. Thus, we just need to show that if the first
statement in Farka’s lemma does not hold, then the second one does.

Let X = {0} (the origin) and let Y = {Ax − b : x ≥ 0}. X is compact and Y is closed. If
the first statement of Farka’s lemma does not hold then X ∩ Y = ∅. By the separating hyperplane
theorem, there is a hyperplane yT z = c > 0 such that for all z ∈ {Ax− b : x ≥ 0}, yT z > c > 0.
Thus, for all x ≥ 0, yTAx− yT b > 0, which impliles that yTA ≥ 0 and yT b < 0, as needed.

Part c: Let x ∈ X and y ∈ Y be a pair of points of minimal distance from each other. Take H
to be the hyperplane perpendicular to the line segment between x and y which passes through its
midpoints. If there was an x′ ∈ X on the opposite side of H from x, then for a sufficiently small
λ > 0, d(λx′ + (1− λ)x, y) < d(x, y), contradicting the choice of x, y.

To show that such a pair (x, y) exists, we can use the following argument. There must be a
sequence of points (xi, yi) such that d(xi, yi) monotonically decreases to the infimum dmin of the
distance between pairs of points x ∈ X and y ∈ Y . SinceX is compact, we can take a subsequence
{xj, yj} where the {xj} converge to some x ∈ X . Now d(x, yj) must converge to dmin. Now if
we consider the ball B of radius 2dmin + 1 around x, yj ∈ B ∩ Y for sufficiently large j. B ∩ Y
is compact so there is a subsequence of the yj which converges to some y ∈ Y and we must have
that d(x, y) = dmin . Thus, there must be some pair of points of minimal distance, as needed.

Problem 7: Finite two person one round simultaneous zero-sum
games (30 points)
Any finite two person zero-sum game which is played in one simultaneous round (i.e. both players
choose a strategy and then simultaneously reveal them) can be represented in the following way.
There is a payoff matrix M whose rows are labeled by strategies for player 1 and whose columns
are labeled by strategies for player 2. Mij is the amount that player 2 takes from player 1 if player
1 playes strategy i and player 2 plays strategy j. Thus, the row player is trying to minimize the
resulting entry of M and the column player is trying to maximize the resulting entry of M .

For example, consider the game where both players simulataneously call out 1 or 2, player 1
wins if the sum of the numbers is odd, and player 2 wins if the sum is even. This game can be

represented with the following payoff matrix: M =

[
1 −1
−1 1

]
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(a) 5 points: Give a payoff matrix for rock-paper-scissors.

(b) 10 points: Now consider the general game with an arbitrary payoff matrix and assume that
the rules are changed so that the row player must go first but can choose a probability distri-
bution over his/her strategies. Give a linear program which finds an optimal strategy for the
row player in this setting. What is the dual linear program? How does this relate to strong
duality and Nash equilibria?

(c) 15 points: Implement these linear programs to find a Nash equilibrium for the following
payoff matrix:

M =


2 5 11 9 12 7
20 3 9 5 7 8
8 10 6 13 7 12
18 12 5 8 6 3
16 17 1 13 4 6
4 8 15 4 14 6



Solution

Part a:

 0 1 −1
−1 0 1
1 −1 0

 where row and column one are rock, row and column two are paper, and

row and column three are scissors.

Part b: Let M ∈ Rm×n be the payoff matrix. To guarantee that the column player cannot win more
than z, the row player must find wieghts x1, · · · , xm such that

∑m
i=1 xi = 1 and each coordinate of

MTx (which gives the expected payoff for a column) is at most z. Thus, the row player is trying
to minimize z subject to

1. ∀i, xi ≥ 0

2.
∑m

i=1 xi = 1

3. MTx ≤ z (where z is z times the all ones vector here)

There are several ways to find the dual. One way is to express the primal as follows. Consider
function f(x, y) =

∑m
i=1

∑n
j=1Mijxiyj with the constraints that

1. ∀i, xi ≥ 0

2.
∑m

i=1 xi = 1

3. ∀j, yj ≥ 0

4.
∑n

j=1 yj = 1
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The x player wants to minimize f(x, y) and the y player wants to maximize f(x, y). For the
primal, the x player plays first. For the dual, the y player plays first, giving us the following linear
program: Maximize z subject to

1. ∀j, yj ≥ 0

2.
∑n

j=1 yj = 1

3. My ≥ z (where z is z times the all ones vector here)

A second way to find the dual is to express the primal program in canonical form and take the
canonical dual. This must be done carefully (which is partly why we are presenting this method as
well).

Primal program: Take cT = (0, · · · , 0,−1, 1) and xT = (x1, · · · , xm, z+, z−). Maximize cTx
subject to:

1.

MT −1 1
1 0 0
−1 0 0

x ≤
 0

1
−1

 where the −1, 1 in the first row and column are vectors rather

than single entries

2. x ≥ 0

Dual program: Minimize (0, · · · , 1,−1) · y′ subject to:

1.

M 1 −1
−1 0 0
1 0 0

 y′ ≥
 0
−1
1

 where the −1, 1 in the first row and column are vectors rather

than single entries

2. y′ ≥ 0

Writing y′ = (y, z−, z+), we can see that this gives an equivalent dual. The y player is trying to
minimize −z = z− − z+ subject to My ≥ z, y ≥ 0, and

∑n
j=1 yj = 1.

Strong duality tells us that the optimal valules for the primal and dual are the same. This
implies that together, an optimal solution for the primal and an optimal solution for the dual form
a Nash equilibrium. To see this, note that with these strategies, we have both a guarantee that the
expected value for each column is at most z and the expected value for each row is at least z, so
neither player can benefit by deviating from these strategies.

Part c: The optimal strategy for the row player is to take the second row with probability .1, the
third row with probability .5, the fourth for with probability .1, and the last row with probability
.3. This gives expected payoffs of 9, 8.9, 8.9, 9, 9, 8.9 for the columns. The optimal strategy for the
column player is to take the first column with probability .2, the fourth column with probability .3,
and the fifth column with probability .5. This gives expected payoffs −9.1,−9,−9,−9,−9.1,−9
for the row player. Thus, in the Nash equilibrium, the column player expects to take 9 from the
row player.
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Hints
2b. For the examples, note that the linear programming relaxation always has a value of at most n

2

as it can always assign value 1
2

to every vertex. For the proof, what happens if we take every vertex
which has value at least 1

2
in the output of the linear program?

3a. Use König’s Theorem: For a bipartite graph G, the size of the maximum matching is equal to
the size of the minimal vertex cover.

4a. There is an example where X = Y = R and f is linear in both x and y.

4b. Rock-paper-scissors can give such an example.

4c. Consider the function f(x, y) = xy. If the y player plays first then f(x) ≤ 0 so long x or y is
0 or x is chosen to have the opposite sign as y. On the other hand, if the x player plays first, he/she
had better play x = 0. However, if the x player is penalized for playing x = 0...

5c. Show that any feasible solution for the dual can be written as a positive linear combination of
a cut and another solution. For the cut, your dual linear program should involve weight variables
wij for the edges of the graph where the sum of the weight variables along any path from s = x1

to t = xn is 1. Take the cut (S, S̄) where S is the set of vertices reachable from s = x1 using edges
of 0 or negative weight.

6a. Let z be a potential value for cTx which is larger than value for the given feasible point. Add
the constraint cTx = z to the program by adding c as an extra row of A and z as an extra entry in
b. Now use Farka’s lemma to show that if the primal is not feasible with value z then the dual is
feasible with some value less than z.

6b: Apply the separating hyperplane theorem toX = {0} (the origin) and Y = {(b−Ax) : x ≥ 0}
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