
Projective Linear Groups as Maximal Symmetry

Groups

Anna Torstensson
Centre for Mathematical Sciences

Box 118, SE-221 00 Lund, Sweden

Email: annat@maths.lth.se

Abstract

A maximal symmetry group is a group of isomorphisms of a three-dimensional

hyperbolic manifold of maximal order in relation to the volume of the manifold. In

this paper we determine all maximal symmetry groups of the types PSL(2, q) and

PGL(2, q). Depending on the prime p there are one or two such groups with q = pk

and k always equals 1, 2 or 4.

AMS 2000 classification numbers: 20B25, 20G40.

1 Maximal symmetry groups of hyperbolic three-manifolds

An orientable n-dimensional hyperbolic manifold is a quotient space M = H
n/K, where

K is some torsion-free discrete subgroup of Iso+(Hn), the group of orientation-preserving

isometries of n-dimensional hyperbolic space. For each n there is an upper bound on

the quotient |Iso+(M)|
vol(M)

taken over all hyperbolic n-manifolds and this bound is attained for

certain manifolds M . For dimension n higher than 3 this is a consequence of the fact that

the set of volumes is discrete ([12]).
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For n = 2 there is a well known theorem by Hurwitz which states that any compact

Riemann surface of genus g ≥ 2 has at most 84(g−1) automorphisms. The automorphism

groups of maximal order 84(g − 1) are called Hurwitz groups. There has been a lot of

research on finding out if certain groups are Hurwitz. The result that is most interesting

in this context is the following theorem which can be found in [7]:

Theorem 1 The simple group PSL(2, q) is Hurwitz precisely when q equals 7, or some

prime p congruent to ±1 modulo 7, or p3 for some prime p congruent to ±2 or ±3 modulo

7.

In this paper we will study the 3-dimensional analogue of Hurwitz groups, that is, groups

that are automorphism groups of hyperbolic 3-manifolds for which the quotient |Iso+(M)|
vol(M)

is

maximal among all such manifolds. We will call such groups maximal symmetry groups of

hyperbolic 3-manifolds, and prove a result analogous to the one mentioned above.

Let us first examine the quotient |Iso+(M)|
vol(M)

for a manifold M = H
n/K. Now the isometry

group Iso+(M) is isomorphic to N/K where N is the normaliser of K in Iso+(Hn), and

with O defined by

O = H
n/N ∼= (Hn/K)/(N/K) ∼= M/Iso+(M),

it is clear that vol(O) = vol(M)/|Iso+(M)|, and hence that |Iso+(M)|
vol(M)

is maximal precisely

when O = H
n/N is of minimal volume. Note that O depends only on the normaliser N(K)

of K in Iso+(Hn) and not on the subgroup K itself.

Now assume that we have among all orientable n-dimensional orbifolds found one of

minimal volume, say O1 = H
n/N1. Then the manifolds with maximal symmetry group

are those of the form H
n/K with N(K) = N1. Note that if N1 ⊆ N(K) then we must

have N1 = N(K), because otherwise O′ = H
n/N(K) would have smaller volume than O1,

contrary to our assumption. Consequently, N1 = N(K) if and only if N1 ⊆ N(K), that is,
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if K is a normal subgroup of N1. This leads us to study normal torsion-free subgroups K

of N1 and the corresponding quotients N1/K ∼= Iso+(Hn/K) = Aut(Hn/K).

In the case n = 2 the smallest orientable orbifold is the Hurwitz orbifold O1 =

H
2/4(2, 3, 7), where 4(2, 3, 7) is the orientation-preserving subgroup of the group of re-

flections in the sides of a triangle in the hyperbolic plane with angles π/2, π/3 and π/7.

Since the area of the hyperbolic triangle is π(1− 1/2− 1/3− 1/7) = π/42, the area of the

fundamental domain of O1 is π/21. Now the area of a Riemann surface S of genus g ≥ 2

is 4π(g − 1), and so it follows that

|Aut(S)| = |Iso+(S)| ≤ vol(S)/vol(01) = 84(g − 1),

with equality if and only if S = H
2/K where K is a normal torsion-free subgroup of

4(2, 3, 7).

From the presentation

4(2, 3, 7) = 〈x, y|x2 = y3 = (xy)7 = 1〉

of the triangle group it is clear that its abelianisation is trivial, or in other words the group is

perfect. It follows that all Hurwitz groups, being quotients of 4(2, 3, 7), also are perfect. In

particular, since [PGL(2, q), PGL(2, q)] = PSL(2, q), we do not have any Hurwitz groups of

the type PGL(2, q) unless q is a power of two so that PGL(2, q) = PSL(2, q) and PSL(2, q)

is Hurwitz. Thus all projective linear groups that are Hurwitz are those mentioned in

theorem 1

Recently it has been shown that the discrete subgroup of Iso(H3) of smallest co-volume

is the normaliser Γ̃ of the [3, 5, 3]-Coxeter group (as described in detail in the next section).

This was achieved in a series of papers by Martin and Gehring ([3], [4], [2] and [5]) together

with analyses of some special cases most of which can be found in [9] and [10]. We will
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therefore study quotients of Γ, the orientation-preserving subgroup of Γ̃, by normal torsion-

free subgroups since these quotients will correspond to maximal symmetry groups in the

3-dimensional case. In [1] we proved the existence of infinitely many maximal symmetry

groups of certain types. Concerning projective linear groups we obtained the following

result:

Theorem 2 For each prime p there is some power q = pk such that either PSL(2, q) or

PGL(2, q) is a maximal symmetry group.

It should be noted that the existence of infinitely many maximal symmetry groups of type

PSL(2, q) also is a special case of an earlier result in [6] stating that for any hyperbolic

three-manifold H
3/K, the fundamental group K has an infinite number of quotients of the

type PSL(2, Fp), Fp a field of prime cardinality.

In this paper we will make a more detailed study of which groups of the types PSL(2, q)

and PGL(2, q) are maximal symmetry groups. The full answer to this question is given by

theorem 10.

This problem has been studied before in [11] were a partial answer was obtained stating

exactly for which q ≡ 1 modulo 10 at least one of the groups PSL(2, q) or PGL(2, q) is a

maximal symmetry group. In this special case our results agree with those of Paoluzzi.

(For a detailed comparison see the remark after theorem 10.)
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2 The extended [3,5,3] Coxeter group

In the following let C be the [3, 5, 3] Coxeter group, that is the group generated by four

elements a, b, c and d subject to the defining relations

a2 = b2 = c2 = d2 = (ab)3 = (bc)5 =

= (cd)3 = (ac)2 = (ad)2 = (bd)2 = 1.

This group C can be interpreted as a group of hyperbolic isometries, generated by

reflections in the faces of a hyperbolic tetrahedron in which the angle between two faces

equals π/m where m is the order of the product of the reflections in the corresponding

faces. Thus C is generated by the reflections in the faces of a tetrahedron having two faces

intersecting at an angle π
5
, each intersecting another face at an angle π

3
, and all other angles

being π
2
.

The symmetry of the tetrahedron (which is naturally exhibited also in the Dynkin

diagram of the Coxeter group) indicates that we can find some hyperbolic isometry that

preserves the tetrahedron. It is not hard to see that such an isometry is given by a rotation

interchanging the faces a and d and the faces b and c. (By abuse of notation we denote

a face by the same letter as the reflection in that face - although it should always be

clear from the context what we mean - and in the same way we use the letter denoting

a hyperbolic rotation also to denote the axis of that rotation.) Extending our group by

adding that rotation as a fifth generator, which we denote by t, gives us the following

finitely-presented group:

Γ̃ = 〈 a, b, c, d, t | a2 = b2 = c2 = d2 = t2 = atdt = btct

= (ab)3 = (ac)2 = (ad)2 = (bc)5 = (bd)2 = (cd)3 = 1 〉.
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From this presentation it is not difficult to derive a presentation for the orientation

preserving subgroup Γ generated by x = ac, y = ad, z = ab and t:

Γ = 〈 x, y, z, t | x2 = y2 = z3 = t2 = (yz)2 = (xz)5

= (xy)3 = tyty = txtz2t = tztxy = 1 〉.

We will also use an alternative presentation of this group which has the advantage of

containing only two generators. Expressed in u = ty, v = z and w = (uv)2(uv2)2 we get

the following presentation of Γ (see [8]):

Γ = 〈u, v|u2 = v3 = w5 = (v2w2)2 = 1〉 (1)

This group is now known to be the discrete subgroup of Iso+(H) of smallest co-volume

[2]. Its torsion-free subgroups act fixed-point-freely on hyperbolic 3-space, and therefore

give rise to 3-manifolds with maximal symmetry group. We will therefore examine which

projective linear groups can be obtained as quotients of Γ by torsion-free subgroups.

3 Torsion subgroups

As we have seen the problem of finding maximal symmetry groups boils down to finding

quotients of the finitely presented group Γ by normal, torsion-free subgroups. Next we will

demonstrate that the subgroup we divide out always is torsion-free unless the quotient is

trivial or cyclic of order two. To do this we will use a description of the torsion elements

of Γ derived in [1], which says that a subgroup H of Γ is torsion-free if and only if none of

its elements are conjugate to any element of the set
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S = {ab, ac, ad, bc, abac, bd, abad, cd, t, adt}

If g ∈ Γ and H = 〈g〉 this result says that g is a torsion element if and only if some

power of g is conjugate to some element of S. We use this fact in the proof of the following

lemma:

Lemma 3 Let Γ be the group with presentation (1). Then all normal subgroups of Γ of

index more than two are torsion-free.

Proof: Assume that N is a normal subgroup of Γ containing a torsion element n. We

have that Γ = F/R, where F is the free group on two generators and R the normal closure

of the relators in the presentation (1) of Γ. Then N = F1/R for some subgroup F1 of F .

Some power of n = f1R is conjugate to some element sR of S and N being normal we must

have that sr ∈ F1 for some r ∈ R. Expressing each element of S in x, y, z and t we obtain

the set {x, y, z, t, z2x, zx, z2y, zy, xy, yt}. In each case it is easy to see that including sr in

F1 ⊆ F we get a subgroup of F of index one or two. Such a subgroup must be normal so

Γ/N ∼= F/F1 and consequently |Γ : N | = |F : F1| ≤ 2. This shows that dividing out a

normal subgroup with torsion elements the quotient can only have order one or two. �

4 Homomorphisms from Γ into projective linear groups

Lemma 4 There exists a homomorphism from Γ into PSL(2, q) if and only if the polyno-

mial g(s) = s8 − 6s6 + 12s4 − 9s2 + 1 has a zero in Fq. If s1, s2, . . . , sk are the zeroes of g

in Fq then all such homomorphisms up to conjugacy in PSL(2, q) are given by

u 7→







x y

si + y − x −x






v 7→







1 1

−1 0






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where for each si we can choose y as any element with −3y2 − 4siy − 4 a square α2 and

then x as one of the two values y±α

2
. For each si there is at least one y satisfying this

condition.

Note: The necessity part of this proof can be found in [8]. We repeat it here for the

sake of completeness and because some of the arguments are used also in the sufficiency

part of the proof.

Proof: We first prove that g must have a root in Fq for a homomorphism from Γ

into PSL(2, q) to exist. Assume that φ is such a homomorphism and let U and V be

representatives of φ(u) and φ(v) in SL(2, q) chosen such that U 2 = −I and V 3 = −I. This

is always possible since V 3 = ±I and we may replace V by −V in case V 3 = I and U2 = −I

always holds for matrices of determinant one and projective order two. Having defined U

and V we can define W as we defined w in the presentation (1). We will repeatedly use

the identity tr(XY ) = tr(X)tr(Y )− tr(XY −1) which holds in SL(2, K) for any field K in

order to express the traces of the images of the relators of Γ in terms of s = trace(UV ). We

have that t = trace([U, V ]) = s2 − 1 and trace(W ) = (s2 − 1)(s2 − 2) = t(t− 1). Moreover

tr(V −1W 2) = trace(W )(trace(W ) − 1) − 1 = t4 − 2t3 + t − 1

(For details see section 4.7.2 in [8]). Now φ is a homomorphism so φ(v−1w2) = V −1W 2

must have projective order two or equivalently h(t) = t4 − 2t3 + t − 1 must be zero. We

have that h(t) = h(s2 − 1) = s8 − 6s6 + 12s4 − 9s2 + 1 = g(s) so it follows that s, the trace

of φ(uv) (up to sign) must be a root of g(s) lying in Fq. Letting s1, s2, . . . , sk be the roots

of g in Fq we can now proceed to construct all possible homomorphisms into PSL(2, q).

Fix a root s = sj and assume that φ(uv) has trace s. Now all elements of order three in
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PSL(2, q) are conjugate so we may assume that

v 7→ V =







1 1

−1 0







The matrix φ(u) is of projective order two and hence of the form

U =







x y

z −x







Using s = trace(UV ) = x − y + z to substitute for z the condition det(U) = 1 becomes

x2−yx+sy+y2 +1 = 0 which has the solutions x = y±α

2
if −3y2−4sy−4 is a square with

square root α and no solutions otherwise. Hence the existence of solutions depends on the

choice of y, but for any expression ay2 + by + c, a ∈ F ∗
q b, c ∈ Fq there is some y ∈ Fq that

makes it a square. This can be seen simply by noting that there are q−1
2

non-squares in Fq

and ay2 + by + c assumes q+1
2

different values. It now remains to check that the image of

φ satisfies the relations of Γ. By the above computations we know that trace(V −1W ) =

s8−6s6+12s4−9s2+1 = 0 so that (V −1W )2 = 1. Moreover trace(W ) = (s2−2)(s2−1) and a

simple computation shows that trace(W )4−3trace(W )2+1 = g(s)2+(2s4−6s2+4)g(s) = 0.

Now a matrix with determinant one is of projective order five if and only if its trace t

satisfies t4−3t2 +1 = 0. This shows that W is of order five and hence completes the proof.

�

5 The images of the homomorphisms

Since finding the PSL(2, q) and PGL(2, q) that are maximal symmetry groups is equivalent

to finding all surjective homomorphisms Γ → PSL(2, q) and Γ → PGL(2, q) ⊂ PSL(2, q2)
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we need a way to find the images of the homomorphisms constructed in the above lemma.

A very straightforward description of the subgroup generated by two given elements of

PSL(2, q) is given in the article [7] by Macbeath. Using his results we get the following

theorem:

Theorem 5 Let p be a prime and assume that g(s) = s8−6s6+12s4−9s2+1 factorises into

g1g2 · · · gk in Fp(s). Then PGL(2, pm) is a maximal symmetry group if and only if there

is a factor gi that is an even polynomial in s of order 2m and PSL(2, pm) is a maximal

symmetry group if and only if g has a factor of degree m which is not an even polynomial.

Proof: By MacBeath’s results a subgroup of PSL(2, K) generated by two elements U

and V is determined by the triple

(α, β, γ) = (trace(U), trace(V ), trace(UV ))

of elements in K. He classifies the triples into four different types: singular, exceptional,

irregular and normal, according to the kind of group U and V generate. If U and V

are images of a homomorphism from Γ into some PSL(2, q) we know by Lemma 4 that

(α, β, γ) = (0, 1, s) where s is a zero of g. A triple is singular if the quadratic form

x2 + y2 + z2 + αyz + βzx + γxy splits into linear factors in the algebraic closure of Fq.

Now x2 + y2 + z2 + zx + sxy cannot be factorised as (x + ay + bz)(x + cy + dz) over any

field since eliminating c and d from the equations obtained by equating the coefficients

gives the system a(s − a) = 1, b(1 − b) = 1, b(s − a) + a(1 − b) = 0 which implies that

s2 = 3 contradicting the fact that s is a zero of g. All exceptional triples are listed in

Macbeath’s article and the only ones starting with 0, 1 are (0, 1, 1), (0, 1, t) where t2 = 2

(which is equivalent to t being the trace of a matrix of projective order four), and (0, 1, t)

where t4 − 3t2 + 1 = 0 (which is equivalent to t being the trace of a matrix of projective

order five). Now s cannot satisfy s2 = 2 or s4 −3s2 +1 = 0 so our triple is not exceptional.
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Triples that are neither singular nor exceptional are either irregular or normal. They are

called irregular if the subfield K of Fq generated by the elements of the triple is a quadratic

extention of a field K0 and K0 contains one element of the triple while the other two either

are zero or elements r ∈ K\K0 with r2 ∈ K0. Clearly our triple (0, 1, s) is irregular exactly

when K = Fp(s) is a quadratic extension of K0 = Fp(s
2) which in turn is equivalent to the

minimal polynomial of s over Fp being even. The main conclusion in Macbeath’s article

is that the subgroup generated by U and V is PSL(2, K) if the corresponding triple of

traces is normal and PGL(2, K0) if the triple is irregular. The statement in our theorem

now follows from this fact. �

By the above theorem the powers m that make PSL(2, pm) or PGL(2, pm) a maximal

symmetry group are determined by the factorisation of g modulo p. Let us look at the

factorisation for some small primes p to see which symmetry groups we get.

We will now try to describe the degrees occurring in the factorisation of g(s) in terms

of the prime we factorise modulo. One fact that is striking looking at the table is that g

always factorises into two polynomials of degree four, which in some cases can be factorised

further into factors of degree one or two. Let us first deal with the simplest case which is

primes congruent to ±1 modulo 10.

Proposition 6 If p is a prime congruent to ±1 modulo 10 then g(s) = s8 − 6s6 + 12s4 −

9s2+1 has a factorisation (s4−3s2+α1)(s
4−3s2+α2) where α1 = 3+

√
5

2
and α2 = α1 = 3−

√
5

2
.

If βk = 9 − 4αk is a square then the factor containing αk factorises into a product of two

even polynomials. In case 6 + 2
√

βk is not a square these polynomials are irreducible and

otherwise they can be further decomposed into four linear factors. If βk is not a square the

factor containing αk is a product of two irreducible polynomials of degree two that are not

even.
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Table 1: Maximal symmetry groups PSL(2, pm) and PGL(2, pm) for small primes p.
Prime Factorisation of g(s) Maximal symmetry groups

2 (s4 + s + 1)2 PSL(2, 24)
3 (s4 + s2 + 2)(s4 + 2s2 + 2) PGL(2, 32)
5 (s2 + 2s + 3)2(s2 + 3s + 3)2 PSL(2, 52)
7 (s4 + 2s3 + 6s2 + 2s + 6)(s4 + 5s3 + 6s2 + 5s + 6) PSL(2, 74)

11 (s2 + 4)2(s2 + 3s + 3)(s2 + 8s + 3) PSL(2, 112), PGL(2, 11)
13 (s4 + s3 + 4s2 + s + 12)(s4 + 12s3 + 4s2 + 12s + 12) PSL(2, 134)
17 (s4 + 8s3 + 12s2 + 6s + 16)(s4 + 9s3 + 12s2 + 11s + 16) PSL(2, 174)
19 (s2 + 7)(s2 + 9)(s2 + 7s + 4)(s2 + 12s + 4) PSL(2, 192), PGL(2, 19)
23 (s4 + 8s2 + 11)(s4 + 9s2 + 21) PGL(2, 232)
29 (s + 2)(s + 12)(s + 17)(s + 27)(s2 + 7s + 23)(s2 + 22s + 23) PSL(2, 29), PSL(2, 292)
31 (s2 + 14s + 19)(s2 + 15s + 18)(s2 + 16s + 18)(s2 + 17s + 19) PSL(2, 312)
37 (s2 + s + 15)(s2 + 5s + 32)(s2 + 32s + 32)(s2 + 36s + 15) PSL(2, 372)
41 (s2 + 14)(s2 + 24)(s2 + 14s + 35)(s2 + 27s + 35) PSL(2, 412), PGL(2, 41)
43 (s4 + 3s3 + 23s2 + 7s + 42)(s4 + 40s3 + 23s2 + 36s + 42) PSL(2, 434)
47 (s4 + 10s2 + 43)(s4 + 31s2 + 35) PGL(2, 472)
53 (s2 + 14s + 31)(s2 + 22s + 41)(s2 + 31s + 41)(s2 + 39s + 31) PSL(2, 532)
59 (s + 10)(s + 27)(s + 32)(s + 49)(s2 + 21)(s2 + 35) PSL(2, 59), PGL(2, 59)
61 (s2 + 21)(s2 + 37)(s2 + 10s + 18)(s2 + 51s + 18) PSL(2, 612), PGL(2, 61)
67 (s4 + 16s2 + 53)(s4 + 45s2 + 43) PGL(2, 672)
71 (s + 11)(s + 33)(s + 38)(s + 60)(s2 + 25)(s2 + 43) PSL(2, 71), PGL(2, 71)
73 (s4 + 13s3 + 45s2 + 24s + 72)(s4 + 60s3 + 45s2 + 49s + 72) PSL(2, 734)
79 (s2 + 4)(s2 + 72)(s2 + 38s + 49)(s2 + 41s + 49) PSL(2, 792), PGL(2, 79)
83 (s4 + 38s3 + 55s2 + 56s + 82)(s4 + 45s3 + 55s2 + 27s + 82) PSL(2, 834)
89 (s2 + 28s + 79)(s2 + 33s + 9)(s2 + 56s + 9)(s2 + 61s + 79) PSL(2, 892)
97 (s2 + 21s + 66)(s2 + 36s + 72)(s2 + 61s + 72)(s2 + 76s + 66) PSL(2, 972)
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Proof: In this proof we will use the Legendre symbol so first of all we recall that for

any odd prime p the Legendre symbol,
(

a
p

)

, which is defined for any a not divisible by p,

equals 1 when a is a quadratic residue modulo p and −1 otherwise. We also recall that three

basic properties of the Legendre symbol are multiplicativity,
(

ab
p

)

=
(

a
p

)(

b
p

)

, quadratic

reciprocity,
(

p

q

)(

q

p

)

= (−1)
1

4
(p−1)(q−1), and Eulers criterion,

(

a
p

)

≡ a
1

2
(p−1)(mod p). Now

assume that p is congruent to ±1 modulo 10. Then

(

5

p

)

=
(p

5

)

≡ p2 ≡ 1(mod 5) (2)

so 5 is a quadratic residue modulo p. This shows that α1 and α2 are elements of Fp and

hence gives the factorisation into two factors of degree four. Let us now examine such a

factor gk(s) = s4 − 3s2 + αk. A factorisation into two even polynomials (s2 + a)(s2 + b)

is possible if and only if the system a + b = −3, ab = αk has a solution or equivalently

βk = 9−4αk is a square. Moreover it is easy to verify that the roots of gk are ±
√

6±2
√

βk

2
and

hence the possibility of further factorisation depends on whether 6 + 2
√

βk and 6 − 2
√

βk

are squares or not. These two numbers are squares simultaneously because

(

6 + 2
√

βk

p

)(

6 − 2
√

βk

p

)

=

(

36 − 4βk

p

)

=

(

16αk

p

)

=

(

αk

p

)

= 1

The last equality holds because whenever p is congruent to ±1 modulo 10 PSL(2, p) is of

order divisible by five and hence has an element of order five. The trace condition for an

element of PSL(2, p) to be of order five is that t4 − 3t2 + 1 = 0. Let γ be such a trace.

Then γ2 equals either α1 or α2 showing that at least one of them is a square. However their

product is one so again we can conclude from their Legendre symbols that they are squares

simultaneously, which in this case means that they both are squares. This concludes the

case where βk is a quadratic residue modulo p. Let us now assume that it is not. Then it

is clear that gk has no roots in Fp so all we can hope for is to write gk as a product of two
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factors of degree two. On the other hand this is always possible because we will see that

all we need is that one of the numbers 5 − 2αk and 1 + 2αk is a square. That this is the

case is clear from the computation:

(

5 − 2αk

p

)(

1 + 2αk

p

)

=

(

9 − 4αk

p

)

=

(

βk

p

)

= −1

If 5−2αk is a square δ2 we get the factorisation gk = (s2 + δs+1−αk)(s
2− δs+1−αk)

and if 1 + 2αk equals δ2 we can factorise gk as (s2 + δs − 1 + αk)(s
2 − δs − 1 + αk). It

is straightforward to verify that δ never equals zero in either of these two factorisations

which shows that the factors are not even polynomials. This concludes the proof of the

lemma. �

Corollary 7 Let p be a prime congruent to ±1 modulo 10 and let βk be defined as in

Proposition 6. Further let γk = 6 + 2
√

βk in case βk is a square. Then all maximal

symmetry groups of type PSL(2, pk) or PGL(2, pk) are given by:

• PSL(2, p2) if no βk is a square

• PSL(2, p2) and PSL(2, p) if exactly one βk is a square and the corresponding γk is

a square.

• PSL(2, p2) and PGL(2, p) if exactly one βk is a square and the corresponding γk is

not a square.

• PSL(2, p) if both βk and both γk are squares.

• PSL(2, p) and PGL(2, p) if both βk and exactly one γk are squares.

• PGL(2, p) if both βk but no γk are squares.

Proof: This is a immediate consequence of Theorem 5 and Proposition 6. �
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Remark: All the six cases in the corollary occur. Instances of primes exemplifying

each case are given by 31, 29, 11, 229, 59 and 269 in that order.

Let us now move on to the case where p is not congruent to ±1 modulo 10.

Proposition 8 Let p be a prime not congruent to ±1 modulo 10. Then g(s) is a product

of two irreducible polynomials of degree four unless both the conditions

1. p ≡ 1 modulo 4

2. p ≡ 1, 3, 4, 5, 9 modulo 11

are satisfied in which case we have a factorisation into four non-even irreducible polyno-

mials of degree two. When we have irreducible factors of degree four they are even when

only the second condition is satisfied and otherwise non-even.

Remark: For odd primes the conditions (1) and (2) can be expressed in terms of the

Legendre symbols
(−1

p

)

,

(−11

p

)

,

(

11

p

)

and as we will see the value of these Legendre symbols determine the existence of different

types of factorisations of g. Computing the Legendre symbols above we find that

(−1

p

)

= (−1)
p−1

2

equals one if and only if (1) holds. Also, we have that

(−11

p

)

=

(−1

p

)(

11

p

)

=
( p

11

)

≡ p5 modulo 11 (3)

15



and the latter expression is one exactly when condition (2) is satisfied. The last of our

Legendre symbols can be computed from the ones already examined, because

(

11

p

)

=

(−11

p

)

if (1) holds and
(

11

p

)

= −
(−11

p

)

if (1) does not hold. Consequently 11 is a quadratic residue if either both or none of the

conditions (1) and (2) hold.

Proof: Throughout this proof we will assume that p is a prime 6≡ ±1 modulo 10. For

p = 2, 5 the result is clear from the factorisations given in table 1. For the rest of the proof

we will assume that p 6= 2, 5. Let us first note that g(s) = s8 − 6s6 + 12s4 − 9s2 + 1 has

no zeroes in Fp because if t is a zero then (2t4 − 6t2 + 3)2 = 5. Now this is a contradiction

because it follows from the computation (2) that 5 is a square in Fp for an odd prime p 6= 5

if and only if p ≡ ±1 modulo 10.

Now for each prime p we will find a factorisation as a product of two polynomials of

order four and then analyse which of these can be broken down further into factors of order

two. We will look at three different cases depending on the residue of p modulo 4 and 11.

First assume that p ≡ 1 modulo 4. In this case −1 is a square in Fp so we may use the

field elements 4 + 2
√
−1 and 4 − 2

√
−1 in our factorisation. Noting that

(

4 + 2
√
−1

p

)(

4 − 2
√
−1

p

)

=

(

20

p

)

=

(

5

p

)

= −1

16



it is clear that exactly one of these two elements is a square. Denoting that element by α

we obtain the factorisation

g(s) = (s4+
√

αs3+(
α

2
−3)s2+

√
α

2
(
α

2
−5)s−1)(s4−

√
αs3+(

α

2
−3)s2−

√
α

2
(
α

2
−5)s−1) (4)

Next we look at the case when −11 is a quadratic residue modulo p. Then

(

6 + 2
√
−11

p

)(

6 − 2
√
−11

p

)

=

(

80

p

)

=

(

5

p

)

= −1

and similarly to in the above case we denote the element among 6+2
√
−11 and 6−2

√
−11

which is a square by β and then obtain the factorisation:

g(s) = (s4 + (−3 −
√

β

2
)s2 +

β

8
+

3
√

β

4
+

3

2
)(s4 + (−3 +

√
β

2
)s2 +

β

8
− 3

√
β

4
+

3

2
) (5)

Finally we consider the case when 11 is a square. Then we have that

(

8 + 2
√

11

p

)(

8 − 2
√

11

p

)

=

(

20

p

)

=

(

5

p

)

= −1

and letting γ be the element of 8 + 2
√

11 and 8 − 2
√

11 that is a square we can again

factorise g:

(s4 +
√

γs3 + (
γ

2
− 3)s2 +

√
γ

2
(
γ

2
− 7)s− 1)(s4 −√

γs3 + (
γ

2
− 3)s2 −

√
γ

2
(
γ

2
− 7)s− 1) (6)

We have now found three factorisations of g, one that is possible when p is congruent

to 1 modulo 4, one that is possible when −11 is a square in Fp and one that is occurs when

17



11 is a square in Fp. Noting that

(−11

p

)

=

(−1

p

)(

11

p

)

= (−1)
p−1

2

(

11

p

)

is is clear that at least one of these factorisations always is possible because if p is not

congruent to 1 modulo 4, then exactly one of the numbers 11 and −11 is a quadratic

residue modulo p.

Since we have no roots, and hence no linear factors, this leaves us with the following

possibilities: either g is a product of two irreducible polynomials of degree four or g is

the product of two polynomials of order four, at least one of which can be decomposed

into two irreducible factors of degree two. In the first case let g(s) = f(s)h(s). Then

g(s) = g(−s) = f(−s)h(−s) is another factorisation and from uniqueness either f and h

are even or f(s) = h(−s). In the second case it follows from the fact that g(s) = g(−s)

that the order two factors can be paired together to form even polynomials of order four

so that g is a product of two even polynomials of order four. Altogether we have shown

that any decomposition of g in factors of degree four is either a product f(s)f(−s) or a

product f(s)h(s) of even polynomials.

From this fact we will show that there are no other decompositions of g into two factors

of degree four than the ones of the three types given above. Let us start with the case of

even factors. Having a factorisation g(s) = (s4 + as2 + b)(s4 + cs2 + d) is equivalent to the

system of equations:


































a + c = −6

b + d + ac = 12

ad + bc = −9

bd = 1

(7)
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being satisfied. Substituting for c and d using the first and last equation we get two

equations in a and b. After the substitution we subtract a times the second equation from

the third equation which results in

−9 + 6b + 2ab − 12a − 6a2 − a3 = 0

Now if a = −3 we must have a = c = −3 and b + d = 3, bd = 1, which implies that

(b− d)2 = (b + d)2 − 4bd = 5 contradicting that 5 is not a square in Fp. If a 6= −3 we must

have that b = a2+3a+3
2

and substituting into one of the two equations in a and b we find

that a(a4 + 12a3 + 51a2 + 90a + 59) = 0. There is no solution of 7 with a = 0. Hence we

must have

(4(a + 3)2 − 6)2

4
= 4(a4 + 12a3 + 51a2 + 90a + 59) − 11 = −11

so −11 is a square and (a + 3)2 = 3±
√
−11

2
if we let

√
−11 denote one of the square roots.

It follows that a is as in the factorisation 5 given above.

Now for the factorisations of type g(s) = f(s)f(−s). Similarity to the above case we

consider the system of equations:



































2b − a2 = −6

2d − 2ac + b2 = 12

2bd − c2 = −9

d2 = 1
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arising from the identity g(s) = (s4 + as3 + bs2 + cs + d)(s4 − as3 + bs2 − cs + d). The

possible values of d are ±1 but for d = 1 we obtain the system of equations:























2b − a2 = −6

−2ac + b2 = 10

2b − c2 = −9

(8)

Squaring the second equation we get 4a2c2 = b4 − 20b2 + 100 and solving for a2 and c2 in

the first and third equation respectively 4a2c2 = 4(2b + 6)(2b + 9) = 16b2 + 120b + 216. It

is easily verified that no solution of 8has b = −3, so it follows that

(b2 − 8)2

(2b + 6)2
=

b4 − 16b2 + 64

4b2 + 24b + 36
=

20b2 + 120b + 180

4b2 + 24b + 36
= 5

so contradictory to our assumption about p we find that 5 is a square in Fp. Hence we

only need to consider solutions with d = −1, or equivalently solutions to the system:























2b − a2 = −6

−2ac + b2 = 14

2b + c2 = 9

Equating 4a2c2 obtained from the second and from the first and third equation respectively

in the same fashion as before now results in the equation

0 = (14 − b2)2 − 4(2b + 6)(9 − 2b) = ((b − 1)2 − 11)((b + 1)2 + 1))

Substituting the four possible values of b into the equations we obtain exactly the factori-

sations (4) and (6).

This shows that (4), (5) and (6) are all factorisations into two factors of degree four.
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Next we will argue that essentially two situations are at hand here. Either exactly one

of the threes types of factorisations into factors of degree four occur, and in that case the

factors are irreducible, or more than one of them occur and then the factorisation of g into

irreducibles is a product of four polynomials of degree two. The argument is the following:

Assume that g has a factorisation of non-even type, that is of the form (4) or (6) given

above. Then either g(s) = f(s)f(−s) is a product of irreducible polynomials or they both

factorise further since if f(s) = h(s)k(s) then f(−s) = h(−s)k(−s). (As before we know

that all factors are either degree four or two from the non-existence of zeroes.) Now the

second case occurs if and only if there also is a factorisation of g of even type because

h(s)h(−s) and k(s)k(−s) are even and the other direction is clear from the uniqueness of

factorisation and the above comment that all irreducible factors are of the same degree.

The remaining case to deal with is when there is only an even factorisation of g. We want

to show that the factors are irreducible. From the form of (5) the factors only differ by the

choice of square root of β so if one factor can be decomposed we obtain a decomposition of

the other factor by applying the field automorphism
√

β 7→ −
√

β. However, if we have such

a decomposition g(s) = f(s)f(−s)h(s)h(−s) then k1 = f(s)h(s), k2 = f(−s)h(−s) gives

a factorisation g(s) = h1(s)hs(2) of non-even type, contradicting our assumption. We can

now conclude that the decomposition of g into irreducible polynomials is a product of two

factors of degree four if only one of the factorisations (4), (5) and (6) occur and the factors

are even or not according to which one it is. Otherwise g is a product of four irreducibles of

degree two. This occurs exactly when more than one of the three factorisations is possible

and the degree two factors are always non-even since at least one of the factorisations

of degree four is non-even. From the remark after the proposition it is clear that the

conditions for existence of the different types of factorisations can be reformulated as in

the proposition: If both (1) and (2) are satisfied all three factorisations are possible, if (1)

but not (2) holds only 4 occurs, if (1) does not hold but (2) does only 5 applies and if none
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of the conditions hold true we only have a factorisation of type 6. This concludes the proof

of our proposition. �

Corollary 9 Let p be a prime with p 6≡ ±1 modulo 10. Then all maximal symmetry groups

of type PSL(2, pk) or PGL(2, pk) are given by:

• PSL(2, p2) if p ≡ 1 modulo 4 and p ≡ 1, 3, 4, 5 or 9 modulo 11.

• PGL(2, p2) if p ≡ 3 modulo 4 and p ≡ 1, 3, 4, 5 or 9 modulo 11.

• PSL(2, p4) otherwise.

Proof: This is an immediate result of combining the above proposition with theorem 5.

�

This completes the investigation of maximal symmetry groups of the types PSL(2, pk)

and PGL(2, pk). For easy reference we collect our results in the following theorem:

Theorem 10 Let p be a prime. In case p ≡ ±1 modulo 10 we consider the element of

Fp given by β1 = 3 − 2
√

5, β2 = 3 + 2
√

5 and γk = 6 + 2
√

βk whenever βk is a square

in Fp. Then the following is a list of all maximal symmetry groups of type PSL(2, pk) or

PGL(2, pk):

• PSL(2, p) if p ≡ ±1 modulo 10 and some γk exists and is a square.

• PSL(2, p2) if p ≡ ±1 modulo 10 and some βk is not a square or























p 6≡ ±1 modulo 10

p ≡ 1 modulo 4

p ≡ 1, 3, 4, 5, 9 modulo 11
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• PSL(2, p4) if










p 6≡ ±1 modulo 10

p ≡ 2, 6, 7, 8, 10 modulo 11

• PGL(2, p) if p ≡ ±1 modulo 10 and for some k βk is a square but γk is not.

• PGL(2, p2) if






















p 6≡ ±1 modulo 10

p ≡ 3 modulo 4

p ≡ 1, 3, 4, 5, 9 modulo 11

Remark: In [11] the author proves that for prime powers q ≡ 1 modulo 10 every

homomorphism with torsion-free kernel from the orientation preserving subgroup C0 of C

onto PSL(2, q) extends to a homomorphism with torsion-free kernel from Γ onto either

PSL(2, q) or PGL(2, q). Conversely the restriction to C0 of such a homomorphism φ has

an image of index one or two in Im(φ) and since PSL(2, q) has no subgroups of index

two and it is shown in [11] that there are no surjections from C0 onto PGL(2, q) every

projective quotient of Γ must arise from a projective quotient of C0 in this way. Paoluzzi

then classifies all surjections from C0 onto groups PSL(2, q) and in the case with q ≡ 1

modulo 10 the result is as follows:

• PSL(2, p) if p ≡ 1 modulo 10 and 3 + 2
√

5 or 3 − 2
√

5 is a square in Fp

• PSL(2, p2) if p ≡ ±1 modulo 10 and 3 + 2
√

5 or 3 − 2
√

5 is not a square in Fp2

• PSL(2, p4) if p ≡ ±3 modulo 10 and 3 + 2
√

5 or 3 − 2
√

5 is not a square in Fp2

It is clear that the first two results agree with those given in theorem 10. To see that

the results concerning fourth powers of p agree we need to show that for primes p with

p4 ≡ 1 modulo 10 the two conditions agree. First note that for such primes p ≡ ±3 is

equivalent to p 6≡ ±1 modulo 10 so it remains to show that when this is the case then
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3 + 2
√

5 or 3− 2
√

5 is not a square in Fp2 exactly when p ≡ 2, 6, 7, 8, 10 modulo 11. From

(3) the latter condition is equivalent to −11 not being a quadratic residue modulo p. If

both 3+2
√

5 and 3− 2
√

5 are squares then so is their product −11. On the other hand, if

−11 is a square then 3 + 2
√

5 is the square of a + b
√

5 where b = 1/a and b2 equals one of

the numbers 3±
√
−11

10
. (The product of the Legendre symbols equals the Legendre symbol

of 5 which is −1 for the primes considered so there is such a b.)
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