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Abstract. Orthogonal decompositions (OD:s) that are monomial have
been constructed for most simple Lie algebras but in some cases the
existence of an OD is still an open question. One of them is Lie al-
gebras of type Cn where n is not a power of 2. In this paper we use
computational methods to prove that C3 has no monomial OD.

1 Orthogonal decompositions of simple Lie algebras

The basic question, of which we will study a special case, is whether
all classical simple Lie algebras can be decomposed into a direct sum
of Cartan subalgebras which are orthogonal to each other in the
sense that the Killing form B(X, Y ) = 0 if X and Y are elements
from different Cartan subalgebras occurring in the decomposition.
Such a direct sum is called an orthogonal decomposition (OD). This
problem has been studied for all simple Lie algebras over C, and
OD:s have been constructed in all cases except for An when n + 1
is not a prime power and Cn when n is not a power of 2 [3]. In the
latter cases the existence of an OD is an open question. One result
pointing to a negative answer is that A5 has no OD of monomial
type [4]. The main result of this paper is that C3 has no monomial
orthogonal decomposition either.
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2 Description of the problem in the C3 situation

Let L be the Lie algebra of type Cn over C. It can be realized as
the 2n × 2n matrices of the form

(

A B
C −At

)

(1)

where A, B and C are n× n matrices and B and C are symmetric.
The multiplication in L is the usual bracket multiplication [X, Y ] =
XY − Y X.

In a semisimple Lie algebra a Cartan subalgebra can be char-
acterized as a maximal toral subalgebra. Taking into consideration
that a toral algebra is always abelian we can also think of Cartan
subalgebras as the maximal ones among the abelian subalgebras
generated by semisimple elements. [1].

According to the well known Cartan-Chevalley theorem [2] any
two Cartan subalgebras in a finite dimensional Lie algebra over an
algebraically closed field of characteristic zero are conjugate under
some automorphism of the Lie algebra. Two consequences of this
is that all Cartan subalgebras have the same dimension and that
the existence of an OD implies the existence of an OD containing
the standard Cartan subalgebra, H, consisting of all the diagonal
matrices in C3.

We now turn to the notion of orthogonality. The Killing form
B given by B(X, Y ) = trace(adXadY ) is a symmetric, invariant
bilinear form on any Lie algebra. Another important property of
the Killing form (in characteristic zero) is that it is nondegenerate
if and only if the Lie algebra is semisimple [1].

In a simple Lie algebra, L, over an algebraically closed field there
is only one symmetric, invariant bilinear form up to multiplication
with a constant from the underlying field. This can be seen in the
following way. Let f and g be two nondegenerate, invariant, bilinear
forms on L. For fixed X ∈ L let S(Y ) = g(X, Y ). Then since f is
nondegenerate there is a unique Z ∈ L such that S(Y ) = f(Z, Y )
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hold for all Y ∈ L. We define the mapping θ by θ(X) = Z. Then θ
is a linear mapping from L to L and it follows from the invariance
of f and g that it commutes with adL. Hence, by Schur´s lemma,
θ is some multiple of the identity.

Especially we have B(X, Y ) = c · trace(XY ) on C3 where c is a
nonzero complex number. This means that X and Y are orthogonal
if and only if trace(XY ) = 0.

Also note that from the fact that the Killing form is nondegen-
erate on any Cartan subalgebra (see for example [1]) it follows that
a sum of orthogonal Cartan subalgebras always is direct.

Thus, in concrete terms, the problem of finding an orthogo-
nal decomposition of C3 is to find out if there exists 7 sets each
containing 3 commuting, linearly independent, diagonalizable ma-
trices in C3 such that any matrices X, Y from different sets satisfy
trace(XY ) = 0. The simplest possible type of OD would be a
partition of the basis matrices obtained from the root space decom-
position with respect to the standard Cartan subalgebra H. This
turned out to be a successful idea for the Lie algebras of types Bn

and Dn [3]. In our case, however, we need a partition into 7 sets
with commuting elements such that basis matrices from different
sets are orthogonal. This is clearly impossible, since there are nine
pairs of non-orthogonal basis matrices and from dimensional con-
siderations we can see that matrices from two different pairs can
never be in the same set. This forces us into having at least nine
sets.

We can assume that one of these sets is a basis for H, for
example E1 = diag(1, 0, 0,−1, 0, 0), E2 = diag(0, 1, 0, 0,−1, 0),
E3 = diag(0, 0, 1, 0, 0,−1). A matrix in C3 is orthogonal to all three
basis matrices, that is orthogonal to H, if and only if it has zeroes
on the diagonal. This is immediate since the trace of the product of
a matrix of type (1) and Ei is two times the i:th diagonal element
of the submatrix A.
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3 Monomial decompositions

A nonsingular matrix is called monomial if it can be written as a
product of a diagonal matrix and a permutation matrix. Conse-
quently the diagonal matrix has no zeroes on the diagonal. An or-
thogonal decomposition containing the standard Cartan subalgebra
H is called monomial if there exists a basis consisting of monomial
matrices for each Cartan subalgebra that occurs.

The known constructions of OD:s for Lie algebras of type An

and Cn produce monomial decompositions so we will concentrate on
the existence of such an OD of C3. This means that we can choose
basis matrices in H1, H2, ..., H6 that are monomial, diagonalizable
and have no zeroes on the diagonal. The diagonalizability actually
follows from the fact that the matrix is monomial:

Proposition 1 A monomial matrix DP is diagonalizable. If D is
given by diag(d1, d2, ..., dn) and (i P (i) · · · P m(i)) occurs in the
decomposition of P into disjoint cycles then all m + 1 roots of
λm+1 = didP (i) · · ·dP m are eigenvalues of DP .

Proof. We show that DP is diagonalizable explicitly by construct-
ing n linearly independent eigenvectors. We look at each cycle
(i P (i) · · · P m(i)) (where we regard P as a permutation) sep-
arately. Let λ satisfy λm+1 = didP (i)...dP m(i). Since all the di:s
are nonzero we get an eigenvector, v = (v1, v2, . . . , vn) by putting
vi = 1, vP (i) = λ

di

, ..., vP m(i) = λm

didP (i)...dPm−1(i)
and all other vk:s equal

to zero. It is easy to see that all these vectors, arising from dif-
ferent cycles and values of λ, are linearly independent and hence
constitute a basis of eigenvectors. �

4 Possible monomial basis matrices

Our first goal is to find all permutations P such that DP may be
one of the matrices of a monomial basis for some Cartan subalgebra
orthogonal to H. It follows from orthogonality that the permutation
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has no fixed point because all diagonal elements must be zero. Also,

since every Hi consists of the matrices of the form A

(

D 0
0 −D

)

A−1

for some automorphism X 7→ AXA−1 of C3 Hi must be closed un-
der taking third powers, which excludes those matrices containing
a three cycle.

It remains to consider all permutation matrices, P , of the form
(

A B
C At

)

with B and C symmetric and trace(P ) = trace(P 3) = 0. Let us
calculate the number of such matrices. We divide the problem into
different cases on basis of the total number of ones in the submatrix
A, which we denote by |A|.

If |A| = 0 we can choose B and C as any symmetric permutation
matrices of size three. Because of the symmetry we must have one
or three elements on the diagonal, that is one or three fixed points.
This gives four different permutations resulting in 4·4 = 16 possible
P . (Both trace conditions are automatically satisfied here.)

The next case is |A| = 1. There are 6 such matrices A with no
diagonal entries. For each fixed A there are four ways of choosing
B and C and exactly one of them contains a three cycle: Let (i, j)
be the nonzero entry of A. Then (j + 3, i + 3) is nonzero as well
but all other entries in the right lower block of P are zero. Now
P is a permutation matrix if and only if P with rows i and j + 3
and columns j and i+3 removed is a permutation matrix. The new
matrix, let us call it P ′, has the structure

(

0 B′

C ′ 0

)

where B′ is B with row i and column i removed and C ′ is C with
row j and column j removed. In this situation the symmetry of B
and C is equivalent to that of B ′ and C ′. This gives us exactly two
possibilities for each of them, that is 4 possible combinations. When
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do we get a three cycle? If this happens P must be the product of
two three cycles since we have no fixed points. One of them (ijk)
contains i. In how many ways can we choose k? The conditions are
that k = 4, 5, 6 and k 6= i + 3 and k 6= j + 3. Since i 6= j there is
exactly one such k. Thus, we have 6 cases with |A| = 1 each giving
3 matrices satisfying all conditions.

There are 9 ways to arrange two ones in A and each case de-
termines P uniquely since the matrices B ′ and C ′ that we get after
removing the already determined rows and columns are of size one.
It is easy to see that B ′ and C ′ are originally diagonal elements of
B and C so that P is of the right form. We only have to check that
we cannot have any three cycle. If the nonzero entries of A are (i, j)
and (k, l) two situations can arise. If j = k then the only possible
three cycle containing i is (ijl) but since both l and i are between 1
and 3 (l, i) must be equal to (i, j) or (k, l). In either case the three
cycle degenerates into a transposition. If j 6= k the third element
in (ijs) must be between 4 and 6. Since there is only one element
in the submatrix B it must be diagonal, that is s = j + 3. By the
same symmetry argument for C we find that i = j contradicting
the existence of a three cycle. Thus, all our 9 permutations are of
the desired form.

If |A| = 3 there is no way to avoid a three cycle, since A must
give a permutation of {1, 2, 3} without any fixed point.

Altogether we have 43 matrices satisfying the three conditions
we have stated and they can easily be constructed from the discus-
sion above. A list of the permutations is given in the appendix.

5 Possible monomial Cartan subalgebras

In this section we investigate in which ways we can combine the
permutations from the previous section so that they are the permu-
tation factors of the basis matrices for a monomial Cartan subalge-
bra orthogonal to H. In other words we are looking for all maximal
abelian subalgebras containing three linearly independent mono-
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mial matrices. One method is to start with some monomial matrix
and find all monomial matrices it commutes with. The simplest case
is when all eigenvalues are different.

Proposition 2 Let M be an element in C3 with only simple eigen-
values. Then there is only one Cartan subalgebra containing M and
it consists of all odd polynomials in M .

Proof. Let P denote the subalgebra of C3 consisting of matrices
that are polynomials in M , and C some Cartan subalgebra con-
taining M .

C ⊆ P : Let B be an element in the Cartan subalgebra. Since M
and B commute we can choose a basis in which they are both di-
agonal. It follows from the simplicity of M :s eigenvalues that I,M ,
M2, M3, ... M5 are linearly independent (Vandermonde’s determi-
nant). Especially M , M 3 and M5 are linearly independent diagonal
elements of C3 and hence any diagonal matrix in C3, especially B,
is a linear combination of them.

P ⊆ C: Let D be an element in P . Then all elements in C must
commute with D, which makes C

⊕

λD an abelian subalgebra of
C3. It follows from the maximality of C as abelian subalgebra of C3

that D ∈ C.
The polynomials in M that are in C3 are exactly those contain-

ing only odd powers which can be seen in the following way. M ,
being diagonalizable, is inside some Cartan subalgebra since it can
be extended to a maximal abelian subalgebra consisting of diago-
nalizable elements. There is some C3-automorphism A 7→ X−1AX
diagonalizing M since all Cartan subalgebras are conjugate. Then
it follows that X−1MX = diag(λ1, λ2, λ3,−λ1,−λ2,−λ3). Now, if
p is any polynomial,

p(M) = Xp(X−1MX)X−1 =

= Xdiag(p(λ1), p(λ2), p(λ3), p(−λ1), p(−λ2), p(−λ3))X
−1

which is in C3 if and only if

diag(p(λ1), p(λ2), p(λ3), p(−λ1), p(−λ2), p(−λ3))
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is in C3. It is clear that the last matrix is in C3 exactly when p only
contains odd powers. �

It follows from proposition 1 that the theorem above is applica-
ble whenever P is a six cycle. This gives all the subalgebras of the
kind we are looking for containing a six cycle in some monomial
basis. For the rest of the section we will assume that none of the
basis matrices is a six cycle.

Let us look at the product of two monomial matrices DP and
D′P ′. The entry (i, j) in the product is 0 if P ′(P (i)) 6= j and did

′

P (i)

otherwise. The two matrices commute if and only if the equality
did

′

P (i)δP ′(P (i)),j = d′

idP ′(i)δP (P ′(i)),j holds for all i, j. Now, since all
diagonal elements are nonzero, this implies that the two permuta-
tions P and P ′ commute. A first step is therefore to find out when
two permutations of the kind we are interested in commute.

Proposition 3 a) The permutations commuting with a six cycle, P ,
are the powers of P .

b) The permutations commuting with (a1a2)(a3a4a5a6) are all
products ST where S ∈ {id, (a1a2)} and T is a power of (a3a4a5a6).

c) The permutations commuting with (a1a2)(a3a4)(a5a6) are all
products ST where S ∈ {id, (a1a2), (a3a4), (a5a6), (a1a2)(a3a4),
(a1a2)(a5a6), (a3a4)(a5a6), (a1a2)(a3a4)(a5a6)} and T ∈ {id,
(a1a3)(a2a4), (a1a5)(a2a6), (a3a5)(a4a6), (a1a5a3)(a2a6a4),
(a1a3a5)(a2a4a6)}.

Proof. If we let S6 act on a given permutation with conjugation the
stabilizer consists of the permutations commuting with the given
one and the orbit consist of all permutations which have the same
cycle structure (that is if we write the two permutations P and P ′

as products of disjoint cycles there is a one-to-one correspondence
between the cycles in P and P ′ such that corresponding cycles
have equal length). We know that |stabilizer| = |group|/|orbit|.
Hence, to find the number of commuting permutations we only
need to calculate the length of the corresponding orbit. There are
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5! six cycles in S6 so a cycle has 6!/5! = 6 commuting elements.

The length of the orbit in case (b) is

(

6
2

)

3! since after choosing

the transposition the remaining elements can form 3! different four
cycles. A similar argument in case (c) shows that the orbit has
length 15. From this it follows that the number of permutations
stated in the theorem is correct. It is obvious that they do commute
and straightforward to check that they are all different. �

Let us now return to the problem of finding bases of monomial
Cartan subalgebras. The previous proposition gives complete infor-
mation on the necessary condition of commutativity of the permu-
tations but we still do not know when the corresponding monomial
matrices can be made both commuting and linearly independent.
We first exhibit the special case when the same permutation occurs
more than once in the same basis.

Before we can state the next proposition we will need the con-
cept of related cycles. Two cycles are related if, for some i between
1 and 3, one of them contains i and the other i + 3 . This may
not seem like a natural relation, but the proof below will clarify its
importance.

Proposition 4 The maximum number of linearly independent com-
muting monomial matrices in C3 with the same permutation P is
equal to the number of unrelated cycles in P .

Proof. Let the diagonal factors be given by D = diag(d1, d2, d3, d4, d5, d6)
and D′ = diag(d′

1, d
′

2, d
′

3, d
′

4, d
′

5, d
′

6). The matrices DP and D′P com-
mute if and only if the quotients di/d

′

i are equal for all i in the same
cycle of P . When DP is in C3 we also have some additional condi-
tions on the di, namely
A. (DP )i+3,j+3 = −(DP )j,i, 1 ≤ i, j ≤ 3
B. (DP )i,j+3 = (DP )j,i+3, 1 ≤ i, j ≤ 3
C. (DP )i+3,j = (DP )j+3,i, 1 ≤ i, j ≤ 3
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Let us take a closer look at condition A. Assume that we can
find i and j such that P (j) = i. (Otherwise A is an empty condi-
tion.) Then A says that di+3 = −dj and d′

i+3 = −d′

j. If i + 3 and
j (or equivalently i and i + 3) are in the same cycle the conditions
of commutativity are not affected but if they are in different cycles
the quotients di/d

′

i must be equal for the two cycles. Considering
B and C in the same way we can formulate the conditions A-C in
terms of cycles which must have equal quotients as follows:
A. P (i) = j with j and j + 3 in different cycles
B. P (i) = j + 3 with j and j + 3 in different cycles
C. P (i + 3) = j with j and j + 3 in different cycles

It is easy to see that if we fix j between 1 and 3 we either have
j and j + 3 in the same cycle, in which case none of the conditions
apply or we have j and j + 3 in different cycles and then exactly
one of the conditions A and C are satisfied. This means that the
cycles must have equal quotient if and only if they are related in
the sense defined above.

Given a number of matrices DP , D′P , D′′P , ... that commute
with each other we want to find the maximal number of linearly in-
dependent such matrices. This is equivalent to the vectors (d1, d2, ..., d6)
being linearly independent and by permuting indices we may as-
sume that all indices belonging to related cycles are consecutive.
Let m be the number of unrelated cycles and d(1), d(2), ... ,d(m) the
subvectors of (d1, d2, ..., d6) corresponding to the different classes of
unrelated cycles. Then d′

(i) = α′

id(i), d′′

(i) = α′′

i d(i) and so on. Look

at the matrix having the vectors (d1, d2, ..., d6) as rows. The num-
ber of linearly independent columns is obviously m. The statement
follows since the row rank and column rank of a matrix coincide. �

To complete our investigation we must find all commuting pairs
of monomial matrices with different permutations. The six cycle
case is already covered so we may look only at pairs of other permu-
tations. Seven of the permutations corresponding to the 43 matrices
from the previous section are products of three transpositions. They
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are given by

(12)(36)(45), (13)(25)(46), (14)(23)(56), (14)(25)(36), (14)(26)(35),

(15)(24)(36), (16)(25)(34).

There are 12 permutations that are products of a four cycle and a
transposition:

(1254)(36), (1364)(25), (2365)(14), (2536)(14), (1425)(36), (1436)(25)

and third powers of these.
Using proposition 3 we can find the commuting pairs of permu-

tations. In each case we create the corresponding monomial ma-
trices and solve for the diagonal elements under the condition of
commutativity. One finds that Q = (14)(25)(36) plays a special
role. It commutes with all monomial matrices of the first type. Any
other monomial matrix of the first type commutes only with Q
and itself. A monomial matrix DP where P is of the second kind
commutes only with monomial matrices with permutation P or P 3.

We can now describe all the possible choices of permutations
P1, P2, P3 such that D1P1, D2P2, D3P3 is a Cartan subalgebra for
some suitable choice of diagonal matrices.

Proposition 5 There are at most 37 ways to choose the three per-
mutations P1, P2, P3 such that there exists nondegenerate diagonal
matrices D1, D2, D3 that makes < D1P1, D2P2, D3P3 > a Cartan
subalgebra.

Proof. If one of the permutations, P , is a six cycle it follows from
proposition 2 that there is a unique way to choose the permutations
in the basis. It also follows that P and P 5 give the same choice
of permutations so our 24 six cycles gives us 12 types of Cartan
subalgebras.

The remaining case is triples of permutations where none is a
six cycle. Using proposition 4 one can see by inspection that we



20 Anna Torstensson

can have at most two occurrences of the same permutation in a
basis except for (14)(25)(36) of which we can have three. From our
investigation of commutativity above it follows that the possibilities
are the following: Each of the permutations

(12)(36)(45), (13)(25)(46), (14)(23)(56)

(14)(26)(35), (15)(24)(36), (16)(25)(34)

can occur either once or twice in the basis and can only be com-
bined with (14)(25)(36). This gives us 13 subalgebras. For each P
of the four cycle type we have two possible triples: (P, P, P 3) and
(P, P 3, P 3) resulting in 12 additional subalgebras. Altogether this
gives 37 sets of permutations. �

Even though we will not use this result it is interesting to note
that computer calculations show that for each triple it is possible
to construct D1, D2, D3 such that D1P1, D2P2, D3P3 commutes. In
other words we can replace "at most" with "exactly" in the propo-
sition. Let us look at an example of such a calculation.

Example 1 Let us look at the subalgebra where P = (12)(36)(45)
occurs twice and Q = (14)(25)(36) once. Let the basis matri-
ces with permutation P be given by diag(d1, d2, d3, d4, d5, d6)P ,
diag(e1, e2, e3, e4, e5, e6)P and that with permutation Q by diag(f1, f2, f3, f4, f5, f6)Q.
The conditions for being in C3 are d4 = −d2, d5 = −d1, e4 =
−e2, e5 = −e1 and those for commutativity are d1e2 = d2e1, d3e6 =
d6e3, d4e5 = d5e4, d1f2 = f1d4, d2f1 = f2d5, d3f6 = d6f3, d4f5 =
f4d1, d5f4 = f5d2, e1f2 = f1e4, e2f1 = f2e5, e3f6 = e6f3, e4f5 =
f4e1, e5f4 = f5e2. This system has the solutions d1 = −d5, d4 =
−d5f4

f5
, e1 = −e5, d3 = d6f3

f6
, e3 = e6f3

f6
, e4 = − e5f4

f5
, f1 = f2f5

f4
, e2 =

e5f4

f5
, d2 = d5f4

f5

A list of the 37 triples of permutations is included in the ap-
pendix.
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6 The impossibility of orthogonality

For these 37 kinds of monomial Cartan subalgebras we would like to
find out which can be made orthogonal to each other. If we have two
such subalgebras < D1P1, D2P2, D3P3 > and < D′

1P
′

1, D
′

2P
′

2, D
′

3P
′

3 >
they cannot be orthogonal if some of the permutations PiP

′

j has ex-
actly one fixed point. It turns out that otherwise the two subalge-
bras are orthogonal if we choose the Di and the D′

i in a suitable way
except for 12 exceptional pairs stated in the appendix. It is inter-
esting to note that each six cycle subalgebra appears in exactly two
exceptional pairs. The adjacency matrix representing orthogonality
of subalgebras can also be found in the appendix. Unfortunately the
graph contains complete subgraphs of order 12 and 13 which shows
that we have more than 2640 six tuples of subalgebras which are
pairwise orthogonal. The time it takes to check if six subalgebras
with given permutations can give an orthogonal decomposition is
approximately 20 minutes (using Maple V). The total time with
this approach would be more than 5 weeks. To reduce the amount
of calculations required to examine all potential decompositions we
look instead at triples of orthogonal subalgebras. Solving such a sys-
tem takes only about one minute and there are 2091 triples which
are pairwise orthogonal. In the appendix is a complete list of all
orthogonal triples.

Using this data we can exclude some subalgebras. Assume that
H1 is in the decomposition. Then some of the seven triples con-
taining H1 must be in the decomposition. Look at the first case:
(H1, H15, H28) is in the decomposition. If H is another subalgebra
in the decomposition then (H1, H15, H) is a triple so H = H28
or H = H29. On the other hand (H1, H28, H) is a triple which
gives that H is H15, H16 or H19, a contradiction. This kind of
argument excludes all decompositions with a six cycle subalgebra
except those containing 4 copies of H19, but since H19 contains
only one permutation this contradicts the linear independence of
all basis matrices.
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Using a computer we were able to find all sets of six subalgebras
such that any three of them is one of the orthogonal triples above.
Since the subalgebra H19 occurred much more frequently than the
other subalgebras it was useful to add the condition that no more
than two such subalgebras can be in the same decomposition. This
resulted in only 27 six tuples listed in the appendix.

For each of them we solved the system of equations that comes
from the conditions of commutativity and orthogonality and in no
case this system had any solutions. This completes the proof of our
main theorem.

Theorem 61 C3 has no monomial orthogonal decomposition.
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A Data and Maple scripts

A.1 The possible basis permutations

P1 = (123654) P2 = (125463) P3 = (125436)
P4 = (126354) P5 = (136452) P6 = (132564)
P7 = (136425) P8 = (135264) P9 = (145632)
P10 = (145362) P11 = (146523) P12 = (142365)
P13 = (146253) P14 = (143256) P15 = (142635)
P16 = (143526) P17 = (152463) P18 = (156324)
P19 = (153624) P20 = (152436) P21 = (163452)
P22 = (165234) P23 = (162534) P24 = (163425)
P25 = (12)(36)(45) P26 = (13)(25)(46) P27 = (14)(23)(56)
P28 = (14)(25)(36) P29 = (14)(26)(35) P30 = (15)(24)(36)
P31 = (16)(25)(34) P32 = (1254)(36) P33 = (1364)(25)
P34 = (1452)(36) P35 = (14)(2365) P36 = (1463)(25)
P37 = (14)(2563) P38 = (14)(2536) P39 = (1425)(36)
P40 = (1436)(25) P41 = (14)(2635) P42 = (1524)(36)
P43 = (1634)(25)

A.2 The possible Cartan subalgebras

In this list (i,j,k) refers to the triple (Pi,Pj,Pk) of permutations from
the above list.

Six cycle type:

H1 = (1, 31, 9) H2 = (2, 29, 5) H3 = (3, 27, 21)
H4 = (4, 26, 10) H5 = (6, 30, 11) H6 = (7, 27, 17)
H7 = (8, 25, 13) H8 = (12, 26, 18) H9 = (14, 25, 22)
H10 = (15, 31, 19) H11 = (16, 30, 23) H12 = (20, 29, 24)

Three transposition type:

H13 = (25, 25, 28) H14 = (25, 28, 28) H15 = (26, 26, 28)
H16 = (26, 28, 28) H17 = (27, 27, 28) H18 = (27, 28, 28)
H19 = (28, 28, 28) H20 = (29, 29, 28) H21 = (29, 28, 28)
H22 = (30, 30, 28) H23 = (30, 28, 28) H24 = (31, 31, 28)
H25 = (31, 28, 28)
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One transposition type:

H26 = (32, 32, 34) H27 = (32, 34, 34) H28 = (33, 33, 36)
H29 = (33, 36, 36) H30 = (35, 35, 37) H31 = (35, 37, 37)
H32 = (38, 38, 41) H33 = (38, 41, 41) H34 = (39, 39, 42)
H35 = (39, 42, 42) H36 = (40, 40, 43) H37 = (40, 43, 43)

The following Maple script was used for checking that a Cartan
subalgebra can be constructed for each triple above:

cartantest := proc(k, l, m)
localQ, eqs, j, L, L1 , L2 , L3 , L4 , S1 , S2 , S3 , r, s, H1 , H2 , H3 ;

Q1 := P.k ;
Q2 := P.l ;
Q3 := P.m ;
eqs := {} ;
for j to 3 do

Lj := evalm(diag(d1 .j, d2 .j, d3 .j, d4 .j, d5 .j, d6 .j) ‘& ∗ ‘ Qj) ;

print(Lj) ;

L1 j := submatrix(Lj, 1..3, 1..3) ;

L2 j := submatrix(Lj, 1..3, 4..6) ;

L3 j := submatrix(Lj, 4..6, 1..3) ;

L4 j := submatrix(Lj, 4..6, 4..6) ;

S1 j := evalm(L1 j + transpose(L4 j)) ;

S2 j := evalm(L2 j − transpose(L2 j)) ;

S3 j := evalm(L3 j − transpose(L3 j)) ;
eqs := eqs union

{d5 .j 6= 0, d6 .j 6= 0, d1 .j 6= 0, d2 .j 6= 0, d3 .j 6= 0, d4 .j 6= 0};
for r to 3 dofor s to 3 do

eqs := eqs union {S2 jr, s
= 0, S3 jr, s

= 0, S1 jr, s
= 0}

od
od

od;
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H1 := evalm((L1 ‘& ∗ ‘L2) − (L2 ‘& ∗ ‘ L1)) ;

H2 := evalm((L1 ‘& ∗ ‘L3) − (L3 ‘& ∗ ‘ L1)) ;

H3 := evalm((L2 ‘& ∗ ‘L3) − (L3 ‘& ∗ ‘ L2)) ;
for r to 6 dofor s to 6 do

eqs := eqs union {H3 r, s = 0, H2 r, s = 0, H1 r, s = 0}

od
od;
print(eqs) ;

RETURN(solve(eqs))
end
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A.3 The orthogonal pairs

There exist orthogonal subalgebras of types Hi and Hj if and only
if the entry (i, j) in the matrix below is one.
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1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
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1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0
1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0
1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1
1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1
1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0
1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1
1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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The following pairs cannot be made orthogonal even though
there is no product of permutation matrices with exactly one fixed
point.

(1, 3), (1, 9), (2, 4), (2, 7), (3, 9), (4, 7),

(5, 6), (5, 8), (6, 8), (10, 11), (10, 12), (11, 12)

The data above were obtained using
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nofixedpoint := proc(indlist1 , indlist2 )
local i, j, k, l, m, n;

i := indlist1 1 ;
j := indlist1 2 ;
k := indlist1 3 ;
l := indlist2 1 ;
m := indlist2 2 ;
n := indlist2 3 ;
if not (

trace(evalm(P.i ‘& ∗ ‘P.l)) = 1 or trace(evalm(P.i ‘& ∗ ‘ P.m)) = 1

or trace(evalm(P.i ‘& ∗ ‘ P.n)) = 1 or

trace(evalm(P.j ‘& ∗ ‘ P.l)) = 1 or trace(evalm(P.j ‘& ∗ ‘P.m)) = 1

or trace(evalm(P.j ‘& ∗ ‘ P.n)) = 1 or

trace(evalm(P.k ‘& ∗ ‘P.l)) = 1 or trace(evalm(P.k ‘& ∗ ‘ P.m)) = 1

or trace(evalm(P.k ‘& ∗ ‘ P.n)) = 1)thenRETURN(true)

elseRETURN(false)
fi

end

and

two_ort_cartantest := proc(x1 , x2 )
local eqs, U1 , U2 , p, i1 , i2 , k, q, p1 , q1 ;

eqs := {} ;
U1 := cartanlist x1 ;
U2 := cartanlist x2 ;
for p to 3 do

i1 := op(p, U1 ) ;

i2 := op(p, U2 ) ;

A1 .p := evalm(diag(a1 .p, b1 .p, c1 .p, d1 .p, e1 .p, f1 .p) ‘& ∗ ‘P.i1 ) ;

A2 .p := evalm(diag(a2 .p, b2 .p, c2 .p, d2 .p, e2 .p, f2 .p) ‘& ∗ ‘P.i2 )
od;
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for k to 2 do
for p to 3 do

eqs := eqs union{a.k.p 6= 0, b.k.p 6= 0,

c.k.p 6= 0, d.k.p 6= 0, e.k.p 6= 0, f.k.p 6= 0};

A.k.1.p := submatrix(A.k.p, 1..3, 1..3) ;

A.k.2.p := submatrix(A.k.p, 1..3, 4..6) ;

A.k.3.p := submatrix(A.k.p, 4..6, 1..3) ;

A.k.4.p := submatrix(A.k.p, 4..6, 4..6) ;

T.k.1.p := evalm(A.k.1.p + transpose(A.k.4.p)) ;

T.k.2.p := evalm(A.k.2.p − transpose(A.k.2.p)) ;

T.k.3.p := evalm(A.k.3.p − transpose(A.k.3.p))
od;
for p to 3 dofor q to 3 do

eqs := eqs union {trace(evalm(A1 .p ‘& ∗ ‘A2 .q))} ;
com.k.p.q :=
evalm((A.k.p ‘& ∗ ‘ A.k.q) − (A.k.q ‘& ∗ ‘ A.k.p)) ;
for p1 to 6 dofor q1 to 6 do

eqs := eqs union {com.k.p.qp1 , q1 = 0} ;

if p1 < 4 and q1 < 4 then
eqs := eqs union {T.k.p.qp1 , q1 = 0} fi

od
od

od
od

od;
RETURN(solve(eqs))

end

A.4 The orthogonal triples

In this list (i,j,k) refers to the triple (Hi,Hj,Hk) of subalgebras from
the above list.
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(1, 15, 28) (1, 15, 29) (1, 16, 28) (1, 16, 29) (1, 19, 19) (1, 19, 28)

(1, 19, 29)

(2, 17, 30) (2, 17, 31) (2, 18, 30) (2, 18, 31) (2, 19, 19) (2, 19, 30)

(2, 19, 31)

(3, 19, 19) (3, 19, 32) (3, 19, 33) (3, 20, 32) (3, 20, 33) (3, 21, 32)

(3, 21, 33)

(4, 19, 19) (4, 19, 36) (4, 19, 37) (4, 24, 36) (4, 24, 37) (4, 25, 36)

(4, 25, 37)

(5, 13, 26) (5, 13, 27) (5, 14, 26) (5, 14, 27) (5, 19, 19) (5, 19, 26)

(5, 19, 27)

(6, 19, 19) (6, 19, 32) (6, 19, 33) (6, 20, 32) (6, 20, 33) (6, 21, 32)

(6, 21, 33)

(7, 19, 19) (7, 19, 34) (7, 19, 35) (7, 22, 34) (7, 22, 35) (7, 23, 34)

(7, 23, 35)

(8, 19, 19) (8, 19, 36) (8, 19, 37) (8, 24, 36) (8, 24, 37) (8, 25, 36)

(8, 25, 37)

(9, 19, 19) (9, 19, 34) (9, 19, 35) (9, 22, 34) (9, 22, 35) (9, 23, 34)

(9, 23, 35)

(10, 15, 28) (10, 15, 29) (10, 16, 28) (10, 16, 29) (10, 19, 19) (10, 19, 28)

(10, 19, 29)

(11, 13, 26) (11, 13, 27) (11, 14, 26) (11, 14, 27) (11, 19, 19) (11, 19, 26)

(11, 19, 27)



30 Anna Torstensson

(12, 17, 30) (12, 17, 31) (12, 18, 30) (12, 18, 31) (12, 19, 19) (12, 19, 31)

(12, 19, 30)

(13, 15, 19) (13, 16, 19) (13, 17, 19) (13, 18, 19) (13, 19, 19) (13, 19, 20)

(13, 19, 21) (13, 19, 24) (13, 19, 25) (13, 19, 26) (13, 19, 27) (13, 19, 34)

(13, 19, 35) (13, 22, 26) (13, 22, 27) (13, 22, 34) (13, 22, 35) (13, 23, 26)

(13, 23, 27) (13, 23, 34) (13, 23, 35)

(14, 15, 19) (14, 16, 19) (14, 17, 19) (14, 18, 19) (14, 19, 19) (14, 19, 20)

(14, 19, 21) (14, 19, 24) (14, 19, 25) (14, 19, 26) (14, 19, 27) (14, 19, 34)

(14, 19, 35) (14, 22, 26) (14, 22, 27) (14, 22, 34) (14, 22, 35) (14, 23, 26)

(14, 23, 27) (14, 23, 34) (14, 23, 35)

(15, 17, 19) (15, 18, 19) (15, 19, 19) (15, 19, 20) (15, 19, 21) (15, 19, 22)

(15, 19, 23) (15, 19, 28) (15, 19, 29) (15, 19, 36) (15, 19, 37) (15, 24, 28)

(15, 24, 29) (15, 24, 36) (15, 24, 37) (15, 25, 28) (15, 25, 29) (15, 25, 36)

(15, 25, 37)

(16, 17, 19) (16, 18, 19) (16, 19, 19) (16, 19, 20) (16, 19, 21) (16, 19, 22)

(16, 19, 23) (16, 19, 28) (16, 19, 29) (16, 19, 36) (16, 19, 37) (16, 24, 28)

(16, 24, 29) (16, 24, 36) (16, 24, 37) (16, 25, 28) (16, 25, 29) (16, 25, 36)

(16, 25, 37)

(17, 19, 19) (17, 19, 22) (17, 19, 23) (17, 19, 24) (17, 19, 25) (17, 19, 30)

(17, 19, 31) (17, 19, 32) (17, 19, 33) (17, 20, 30) (17, 20, 31) (17, 20, 32)

(17, 20, 33) (17, 21, 30) (17, 21, 31) (17, 21, 32) (17, 21, 33)

(18, 19, 19) (18, 19, 22) (18, 19, 23) (18, 19, 24) (18, 19, 25) (18, 19, 30)

(18, 19, 31) (18, 19, 32) (18, 19, 33) (18, 20, 30) (18, 20, 31) (18, 20, 32)

(18, 20, 33) (18, 21, 30) (18, 21, 31) (18, 21, 32) (18, 21, 33)
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(19, 19, 19) (19, 19, 20) (19, 19, 21) (19, 19, 22) (19, 19, 23) (19, 19, 24)

(19, 19, 25) (19, 19, 26) (19, 19, 27) (19, 19, 28) (19, 19, 29) (19, 19, 30)

(19, 19, 31) (19, 19, 32) (19, 19, 33) (19, 19, 34) (19, 19, 35) (19, 19, 36)

(19, 19, 37) (19, 20, 22) (19, 20, 23) (19, 20, 24) (19, 20, 25) (19, 20, 30)

(19, 20, 31) (19, 20, 32) (19, 20, 33) (19, 21, 22) (19, 21, 23) (19, 21, 24)

(19, 21, 25) (19, 21, 30) (19, 21, 31) (19, 21, 32) (19, 21, 33) (19, 22, 24)

(19, 22, 25) (19, 22, 26) (19, 22, 27) (19, 22, 34) (19, 22, 35) (19, 23, 24)

(19, 23, 25) (19, 23, 26) (19, 23, 27) (19, 23, 34) (19, 23, 35) (19, 24, 28)

(19, 24, 29) (19, 24, 36) (19, 24, 37) (19, 25, 28) (19, 25, 29) (19, 25, 36)

(19, 25, 37) (19, 26, 28) (19, 26, 29) (19, 26, 30) (19, 26, 31) (19, 26, 32)

(19, 26, 33) (19, 26, 34) (19, 26, 35) (19, 26, 36) (19, 26, 37) (19, 27, 28)

(19, 27, 29) (19, 27, 30) (19, 27, 31) (19, 27, 32) (19, 27, 33) (19, 27, 34)

(19, 27, 35) (19, 27, 36) (19, 27, 37) (19, 28, 28) (19, 28, 29) (19, 28, 30)

(19, 28, 31) (19, 28, 32) (19, 28, 33) (19, 28, 34) (19, 28, 35) (19, 28, 36)

(19, 28, 37) (19, 29, 29) (19, 29, 30) (19, 29, 31) (19, 29, 32) (19, 29, 33)

(19, 29, 34) (19, 29, 35) (19, 29, 36) (19, 29, 37) (19, 30, 30) (19, 30, 31)

(19, 30, 32) (19, 30, 33) (19, 30, 34) (19, 30, 35) (19, 30, 36) (19, 30, 37)

(19, 31, 31) (19, 31, 32) (19, 31, 33) (19, 31, 34) (19, 31, 35) (19, 31, 36)

(19, 31, 37) (19, 32, 32) (19, 32, 33) (19, 32, 34) (19, 32, 35) (19, 32, 36)

(19, 32, 37) (19, 33, 33) (19, 33, 34) (19, 33, 35) (19, 33, 36) (19, 33, 37)

(19, 34, 34) (19, 34, 35) (19, 34, 36) (19, 34, 37) (19, 35, 35) (19, 35, 36)

(19, 35, 37) (19, 36, 36) (19, 36, 37) (19, 37, 37)

(26, 34, 34) (26, 34, 35) (26, 35, 35)

(27, 34, 34) (27, 34, 35) (27, 35, 35)

(28, 28, 36) (28, 28, 37) (28, 29, 36) (28, 29, 37) (28, 36, 36) (28, 36, 37)

(28, 37, 37)

(29, 29, 36) (29, 29, 37) (29, 36, 36) (29, 36, 37) (29, 37, 37)

(30, 30, 32) (30, 30, 33) (30, 31, 32) (30, 31, 33) (30, 32, 32) (30, 32, 33)

(30, 33, 33)

(31, 31, 32) (31, 31, 33) (31, 32, 32) (31, 32, 33) (31, 33, 33)
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The triples were calculated with the following procedure:

three_ort_cartantest := proc(x1 , x2 , x3 )
localU1 , U2 , U3 , eqs, p, i1 , i2 , i3 , k, q, y, z, p1 , q1 ;

U1 := cartanlist x1 ;
U2 := cartanlist x2 ;
U3 := cartanlist x3 ;
eqs := {} ;
for p to 3 do

i1 := op(p, U1 ) ;

i2 := op(p, U2 ) ;

i3 := op(p, U3 ) ;

A1 .p := evalm(diag(a1 .p, b1 .p, c1 .p, d1 .p, e1 .p, f1 .p) ‘& ∗ ‘ P.i1 ) ;

A2 .p := evalm(diag(a2 .p, b2 .p, c2 .p, d2 .p, e2 .p, f2 .p) ‘& ∗ ‘ P.i2 ) ;

A3 .p := evalm(diag(a3 .p, b3 .p, c3 .p, d3 .p, e3 .p, f3 .p) ‘& ∗ ‘ P.i3 )
od;
for k to 3 do

for p to 3 do
eqs := eqs union{c.k.p 6= 0, b.k.p 6= 0,

a.k.p 6= 0, d.k.p 6= 0, e.k.p 6= 0, f.k.p 6= 0};

A.k.1.p := submatrix(A.k.p, 1..3, 1..3) ;

A.k.2.p := submatrix(A.k.p, 1..3, 4..6) ;

A.k.3.p := submatrix(A.k.p, 4..6, 1..3) ;

A.k.4.p := submatrix(A.k.p, 4..6, 4..6) ;

T.k.1.p := evalm(A.k.1.p + transpose(A.k.4.p)) ;

T.k.2.p := evalm(A.k.2.p − transpose(A.k.2.p)) ;

T.k.3.p := evalm(A.k.3.p − transpose(A.k.3.p))
od;
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for p to 3 dofor q to 3 do
for y to 3 dofor z to 3 do

if not (y = z) then

eqs := eqs union {trace(evalm(A.y.p ‘& ∗ ‘A.z.q))}
fi

od
od;
com.k.p.q := evalm((A.k.p ‘& ∗ ‘ A.k.q) − (A.k.q ‘& ∗ ‘A.k.p)) ;
for p1 to 6 dofor q1 to 6 do

eqs := eqs union {com.k.p.qp1 , q1 = 0} ;

if p1 < 4 and q1 < 4 then
eqs := eqs union {T.k.p.qp1 , q1 = 0} fi

od
od

od
od

od;
RETURN(solve(eqs))

end

A.5 Possible six tuples of subalgebras

This is a list of all six tuples of subalgebras such that any three of
them can be made orthogonal.

(19, 19, 26, 26, 34, 34) (19, 19, 26, 26, 34, 35) (19, 19, 26, 26, 35, 35)

(19, 19, 26, 27, 34, 34) (19, 19, 26, 27, 34, 35) (19, 19, 26, 27, 35, 35)

(19, 19, 27, 27, 34, 34) (19, 19, 27, 27, 34, 35) (19, 19, 27, 27, 35, 35)

(19, 19, 28, 28, 36, 36) (19, 19, 28, 28, 36, 37) (19, 19, 28, 28, 37, 37)

(19, 19, 28, 29, 36, 36) (19, 19, 28, 29, 36, 37) (19, 19, 28, 29, 37, 37)

(19, 19, 29, 29, 36, 36) (19, 19, 29, 29, 36, 37) (19, 19, 29, 29, 37, 37)

(19, 19, 30, 30, 32, 32) (19, 19, 30, 30, 32, 33) (19, 19, 30, 30, 33, 33)

(19, 19, 30, 31, 32, 32) (19, 19, 30, 31, 32, 33) (19, 19, 30, 31, 33, 33)

(19, 19, 31, 31, 32, 32) (19, 19, 31, 31, 32, 33) (19, 19, 31, 31, 33, 33)
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In order to minimize the total amount of calculations all five
tuples of orthogonal subalgebras were calculated first:

fivelist := proc(triplelist)
localfivelist , triple, i, j, fivetuple, fivetuple_od , perm;

fivelist := [] ;
for triple in triplelist dofor i to 37 dofor j to 37 do

fivetuple := sort([op(triple), i, j]) ;
fivetuple_od := true ;
for perm in choose([1, 2, 3, 4, 5], 3) do

if not member(

[fivetupleperm1
, fivetupleperm2

, fivetupleperm3
],

triplelist)then fivetuple_od := false

fi
od;
if fivetuple_od and not member(fivetuple, fivelist) then

print(triple, fivetuple) ; fivelist := [op(fivelist), fivetuple]
fi

od
od

od;
RETURN(fivelist)

end

and then all completions to six tuples
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sixlist := proc(fivelist , triplelist)
local sixlist , fivetuple, i, sixtuple, sixtuple_od , perm;

sixlist := [] ;
forfivetuple in fivelist dofor i to 37 do

sixtuple := sort([op(fivetuple), i]) ;
sixtuple_od := true ;
for perm in choose([op(fivetuple)], 2) do

if not member(sort([op(perm), i]), triplelist) then
sixtuple_od := false

fi
od;
if sixtuple_od and not member(sixtuple, sixlist) then

print(fivetuple, sixtuple) ; sixlist := [op(sixlist), sixtuple]
fi

od
od;
RETURN(sixlist)

end

Finally those with more than 2 occurrences of H19 were removed
resulting in the 27 six tuples above which were all examined by
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six_ort_cartantest := proc(x1 , x2 , x3 , x4 , x5 , x6 )
localU1 , U2 , U3 , U4 , U5 , U6 , eqs, p, i1 , i2 , i3 , i4 , i5 , i6 , k, q, y, z,
p1 , q1 ;

U1 := cartanlist x1 ;
U2 := cartanlist x2 ;
U3 := cartanlist x3 ;
U4 := cartanlist x4 ;

U5 := cartanlist x5 ;
U6 := cartanlist x6 ;
eqs := {} ;
for p to 3 do

i1 := op(p, U1 ) ;

i2 := op(p, U2 ) ;

i3 := op(p, U3 ) ;

i4 := op(p, U4 ) ;

i5 := op(p, U5 ) ;

i6 := op(p, U6 ) ;

A1 .p := evalm(diag(a1 .p, b1 .p, c1 .p, d1 .p, e1 .p, f1 .p) ‘& ∗ ‘ P.i1 ) ;

print(A1 .p) ;

A2 .p := evalm(diag(a2 .p, b2 .p, c2 .p, d2 .p, e2 .p, f2 .p) ‘& ∗ ‘ P.i2 ) ;

print(A2 .p) ;

A3 .p := evalm(diag(a3 .p, b3 .p, c3 .p, d3 .p, e3 .p, f3 .p) ‘& ∗ ‘ P.i3 ) ;

print(A3 .p) ;

A4 .p := evalm(diag(a4 .p, b4 .p, c4 .p, d4 .p, e4 .p, f4 .p) ‘& ∗ ‘ P.i4 ) ;

print(A4 .p) ;

A5 .p := evalm(diag(a5 .p, b5 .p, c5 .p, d5 .p, e5 .p, f5 .p) ‘& ∗ ‘ P.i5 ) ;

print(A5 .p) ;

A6 .p := evalm(diag(a6 .p, b6 .p, c6 .p, d6 .p, e6 .p, f6 .p) ‘& ∗ ‘ P.i6 ) ;

print(A6 .p)
od;
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for k to 6 do
for p to 3 do

eqs := eqs union{d.k.p 6= 0, e.k.p 6= 0,

f.k.p 6= 0, c.k.p 6= 0, a.k.p 6= 0, b.k.p 6= 0};

A.k.1.p := submatrix(A.k.p, 1..3, 1..3) ;

A.k.2.p := submatrix(A.k.p, 1..3, 4..6) ;

A.k.3.p := submatrix(A.k.p, 4..6, 1..3) ;

A.k.4.p := submatrix(A.k.p, 4..6, 4..6) ;

T.k.1.p := evalm(A.k.1.p + transpose(A.k.4.p)) ;

T.k.2.p := evalm(A.k.2.p − transpose(A.k.2.p)) ;

T.k.3.p := evalm(A.k.3.p − transpose(A.k.3.p))
od;
for p to 3 dofor q to 3 do

for y to 6 dofor z to 6 do
if not (y = z) then

eqs := eqs union {trace(evalm(A.y.p ‘& ∗ ‘A.z.q))}
fi

od
od;
com.k.p.q := evalm((A.k.p ‘& ∗ ‘ A.k.q) − (A.k.q ‘& ∗ ‘A.k.p)) ;
for p1 to 6 dofor q1 to 6 do

eqs := eqs union {com.k.p.qp1 , q1 = 0} ;

if p1 < 4 and q1 < 4 then
eqs := eqs union {T.k.p.qp1 , q1 = 0} fi

od
od

od
od

od;
RETURN(solve(eqs))

end


