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Abstract. In this paper we examine subalgebras on two generators in the univariate
polynomial ring. A set, S, of polynomials in a subalgebra of a polynomial ring is
called a canonical basis (also referred to as SAGBI basis) for the subalgebra if all
lead monomials in the subalgebra are products of lead monomials of polynomials in
S. In this paper we prove that a pair of polynomials {f, g} is a canonical basis for the
subalgebra they generate if and only if both f and g can be written as compositions
of polynomials with the same inner polynomial h for some h of degree equal to the
greatest common divisor of the degrees of f and g. Especially polynomials of relatively
prime degrees constitute a canonical basis. Another special case occurs when the
degree of g is a multiple of the degree of f . In this case {f, g} is a canonical basis if
and only if g is a polynomial in f .

1 Canonical bases for subalgebras

When studying subalgebras of the polynomial ring it is important to construct
convenient bases which can be used for example to determine whether a given
element is in the subalgebra. Given a finite set of generators for an ideal it is
algorithmic to construct a so called Gröbner basis for the ideal which has this
property.

The concept of SAGBI basis, where SAGBI is an abbreviation for Sub-
algebra Analog to Gröbner Bases for Ideals, was introduced by Kapur and
Madlener ([3]) and independently by Robbiano and Sweedler ([7]). They also
present a method for constructing such bases given a set of generators for a
subalgebra of a multivariate polynomial ring. In general this method is not
algorithmic but when dealing with subalgebras of k[x], the polynomial ring in
one variable, it can be shown to terminate after a finite number of steps.

Here we will take a closer look at how this construction algorithm works
in the case of two generators. The objective is to find a direct criterion for
determining if a pair of polynomials is a SAGBI basis.



2 Anna Torstensson

2 Basic definitions and notation

Let k[x] denote the polynomial ring in one variable with coefficients in the field
k. For convenience we will assume that k is of characteristic zero throughout
this paper, even though some of the results hold for arbitrary characteristic.
The terms in k[x] are the elements xj j ∈ N and a term multiplied by an
element of the field is called a monomial. The terms are naturally ordered by
the rule xj � xk if j > k. The lead term of a polynomial f is denoted lt(f)
and the lead monomial lm(f). For a set S ⊆ k[x] we let lt(S) = {lt(f)|f ∈ S}.
The subalgebra A of k[x] generated by S is denoted k[S], since it consists of
all polynomials in the elements of S. An S power product is a finite product
of elements in S. If P is an S power product we let exp(P ) denote the cor-
responding exponent function on S. In other words if P =

∏m

i=1(fi)
di , all fi

different elements of S, then exp(P )(fi) = di and exp(P ) is zero on all other
elements of S.

We can now define our main concept SAGBI basis.

Definition 1. Let A be a subalgebra of k[x], the polynomial ring in one vari-

able, and S ⊆ A. S is a SAGBI basis for A if the lead term of every element

in A is an lt(S) power product.

Remark: If S is a SAGBI basis for A then A must be the subalgebra
generated by S. This can be seen in the following way. It is clear that k[S] ⊆ A
since A is a subalgebra. Given an element a ∈ A we know that the lead term
is an lt(S) power product. After subtraction of the corresponding S power
product, p1, we get a new element a−p1 in A with lower lead term. Continuing
this process we will eventually end up with an element b = a−p1−p2−. . .−pn of
k ⊆ k[S] since the degree of the lead term decreases strictly in each subtraction.
Hence a = p1 + p2 + . . . + pn + b ∈ k[S]. This shows that A = k[S]. Henceforth
we will use the convention to say that S is a SAGBI basis, without specifying
a subalgebra, when S is a SAGBI basis for k[S].

Remark: Note that the truth of the condition in the definition of SAGBI
basis as well as k[S] is unaffected by multiplying the polynomials in S by
nonzero constants. When checking if a set is a SAGBI basis we may therefore
assume that all polynomials are monic. Whenever convenient we will use this
fact without any further comment. By the same kind of argument we find that
we may assume that the constant terms of the polynomials are zero.

What we need now is a procedure for testing if a set is a SAGBI basis.
Such a procedure can be found in the paper by Robbiano & Sweedler ([7]).
They deal with the more general case of subalgebras of k[x1, x2, . . . , xn] so even
though we will follow their approach closely some smaller simplifications we be
possible when working with the univariate case. For a convenient description
of the testing procedure we first have to introduce the concept of critical pairs.
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Definition 2. Let A be a subalgebra of k[x]. Then a pair (P1, P2) of A power

products is a critical pair of A if lt(P1) = lt(P2). If a ∈ k is such that lm(P1) =
a lm(P2) we define the T -polynomial of (P1, P2) as T (P1, P2) = P1 − aP2.

Remark: The T -polynomial is constructed in such a way that the lead
term of T (P1, P2) is smaller than the lead terms of P1 and P2.

Definition 3. If S is the set of critical pairs of A then T ⊆ S is said to gen-

erate S if for each (P1, P2) in S there exist (Qi, Ri) with either (Qi, Ri) ∈ T or

(Ri, Qi) ∈ T such that exp(P1) =
∑

i miexp(Qi) and exp(P2) =
∑

i miexp(Ri)
for some mi in k.

From [7] we have the following theorem.

Theorem 1. Let S be a subset of k[x] and let T be a set which generates the

critical pairs of S. Then S is a SAGBI basis if and only if for each critical pair

(P1, P2) in T there exist S power products Qi and λi in k satisfying

T (P1, P2) =
∑

i

λiQi ∀i lt(Qi) < lt(P1) = lt(P2) (1)

Let us now consider the case of two polynomials f, g in one variable. In
this case we can find a particularly simple set of generators for all critical
pairs. If deg(f) = n and deg(g) = m and n′ = n/(n, m), m′ = m/(n, m) then
it is easy to see that (f agb, f cgd) is a critical pair exactly when (a, b, c, d) =
(a, b, a − m′r, b + n′r) for some integer r. Thus a set of generators for the
critical pairs is given by {(fm′

, gn′

)}
⋃
{(f agb, fagb)|a, b ∈ N} since we can write

(a, b, a−m′r, b+n′r) as (a−rm′, b, a−rm′, b)+r(m′, 0, 0, n′). Observe that all
elements except (fm′

, gn′

) trivially satisfies the condition in the test theorem
so {f, g} is a SAGBI basis if and only if (fm′

, gn′

) satisfies the condition.
We conclude this section with a lemma which shows that the SAGBI basis

property is preserved by composition. Here we only prove the simplest case of
two polynomials in one variable which suffices for our needs. A more general
result can be found in Nordbeck ([5]).

Lemma 1. If {F, G} ⊆ k[x] is a SAGBI basis and h any polynomial in k[x]
then {f = F ◦ h, g = G ◦ h} is also a SAGBI basis.

Proof: Let the degrees of F and G be n and m, d = (n, m) and n′ = n/d,
m′ = m/d. According to theorem 1 and the comment thereafter we can find
cij such that

F m′

− Gn′

=
∑

cijF
iGj
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where the summation is over (i, j) with ideg(F ) + jdeg(G) < deg(F )m′ =
dn′m′. After the substitution x = h(x) we get the identity

fm′

− gn′

=
∑

cijf
igj

Here we see that ideg(f) + jdeg(g) < dn′m′deg(h) = deg(f)m′ by multiplying
the previous inequality by deg(h). This proves that {f, g} is a SAGBI basis

by theorem 1 using the observation deg(f)
(deg(f),deg(g))

= deg(h)deg(F )
deg(h)(deg(F ),deg(G))

= n′ and
similarly for g. �

3 A motivating example

Let us first, in order to understand some of the ideas used later on, look at the
case when f is a polynomial of degree two.

Proposition 1. If f, g ∈ k[x] with deg(f) = 2 and deg(g) odd then {f, g} is

a SAGBI basis.

Proof: Let deg(g) = 2k + 1,

f = x2 + a1x + a0

g = x2k+1 + b2kx
2k + · · ·+ b1x + b0

We may assume that a1 = 0 since {f, g} is a SAGBI-basis if {f ◦ Θ−1, g ◦
Θ−1} is, where Θ(x) = x + a1

2
, by lemma 1.

According to the definition {f, g} is a SAGBI-basis if the lead term of any
polynomial in f and g is a product of lead terms of f and g, i.e. is either of
degree greater than 2k or of even degree. Assume that {f, g} is not a SAGBI
basis. Then there must be a polynomial p(x, y) such that p(f(x), g(x)) is of
odd degree less than 2k. Since any polynomial in {f, g} is a polynomial in
{x2, g} it follows that {x2, g} is no SAGBI basis. Thus, it suffices to show that
{x2, g} is a SAGBI basis.

Using the algorithm for verification of SAGBI bases given in the previous
section we only have to check that g2 − x4k+2 can be written as a polynomial
in g and x2 where the degree of each term, regarded as polynomial in x, is less
than 4k + 2. Let g0 and g1 be the even and odd parts of g respectively. Note
that g0 is a polynomial in x2. Then we can write

g2 − x4k+2 = g2
0 + 2g0g1 + g2

1 − x4k+2 = 2g0g − g2
0 + g2

1 − x4k+2

which gives our desired representation since g2
1 is even and the lead monomials

of g2
1 and x4k+2 cancel so that the degree requirement is fulfilled. �

When g is of even degree the situation is slightly more complicated.
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Proposition 2. If f, g ∈ k[x] with f = x2 + a1x + a0 and deg(g) even then

{f, g} is a SAGBI-basis if and only if h(x) = g(x− a1

2
) is an even polynomial.

Remark: The condition that h(x) is even is equivalent to g being a poly-
nomial in f : If

g(x) =

s∑

i=0

αif(x)i =

s∑

i=0

αi((x +
a1

2
)2 −

a2
1

4
+ a0)

i

then

h(x) = g(x −
a1

2
) =

s∑

i=0

αi(x
2 −

a2
1

4
+ a0)

i

which is clearly even. If, on the other hand,

g(x −
a1

2
) =

s∑

i=0

α2ix
2i

then we can find βi such that

g(x −
a1

2
) =

s∑

i=0

β2i(x
2 −

a2
1

4
+ a0)

i

in other words

g(y) =

s∑

i=0

β2if(y)i

so g is a polynomial in f .

Proof: Let deg(g) = 2k

f(x) = x2 + a1x + a0

g(x) = x2k + b2k−1x
2k−1 + · · ·+ b1x + b0

and again let Θ(x) = x+ a1

2
. Using our lemma 1 for composition with both Θ

and Θ−1 we conclude that {f, g} is a SAGBI basis if and only if {f ◦ Θ−1, g ◦
Θ−1} is.

In this case the SAGBI basis verification consists of checking if g ◦ Θ−1 −
(f ◦ Θ−1)k or equivalently h = g ◦ Θ−1 is an even polynomial. �

In the next section we will generalize the first case here to the statement
that any pair of polynomials in k[x] with degrees that are relatively prime
constitute a SAGBI basis.
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4 Polynomials of relatively prime degrees

In the proof of theorem 1 we used the fact that we could write g = g0 + g1

where g0 is an even and g1 an odd polynomial. For the general case we use the
following generalization.

Proposition 3. Let f be a polynomial of degree n. Then

k[x] = k[f ] ⊕ xk[f ] ⊕ x2k[f ] ⊕ · · · ⊕ xn−1k[f ]

Proof: We first prove the existence of such a representation for every
polynomial. It is sufficient to prove it for xj since k[f ] + xk[f ] + x2k[f ] + · · ·+
xn−1k[f ] is closed under addition and multiplication by constants. We prove
the statement for xj by induction. Assume

xj−1 = p0(f) + xp1(f) + · · · + xn−1pn−1(f)

Then with f = xn + an−1x
n−1 + · · ·+ a1x + a0 we have

xj = (f−a0)pn−1(f)+x(p0(f)−a1pn−1(f))+· · ·+xn−1(pn−2(f)−an−1pn−1(f))

We now turn to the uniqueness. Assume some polynomial has two different
representations. Subtracting them we get

q0(f) + xq1(f) + · · ·+ xn−1qn−1(f) = 0

for some polynomials qi. By reducing the exponents of the leading terms in
each xiqi(f) modulo n we find that they cannot cancel and hence all qi(f) must
be zero. This is possible only if qi = 0 i.e. qi is the zero polynomial. Hence the
uniqueness is proven. �

The following lemma gives a convenient alternative to the condition on the
non-trivial T-polynomial given in the SAGBI test theorem.

Lemma 2. Let f, g ∈ k[x] be of relatively prime degrees n and m respectively.

If there are polynomials pi such that

gn = pn−1(f)gn−1 + pn−2(f)gn−2 + · · ·+ p1(f)g + p0(f) (2)

then {f, g} is a SAGBI basis.

Proof: By theorem 1 it suffices to show that the T -polynomial T (f, g) =
gn − fm has a representation of the form (1). We will see that the above
equality will give us such a representation after finding a term fm on the RHS
and moving it to the LHS. We first note that the greatest exponents of x in
the different terms on the RHS all are incongruent modulo n. The lead term in
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gn is xmn. Due to the incongruency, the only place on the RHS where we can
find such a term is p0(f). It follows that p0 is of degree m so p0(f) contains
the term fm that we are looking for. It only remains to check that the degree
requirement in (1) is satisfied, i. e. that all the {f, g}-power products on the
RHS are of degree less than mn. It is enough to check the lead terms in each
pi(f)gi. After removal of fm from p0(f) the lead term is of degree at most
(m−1)n. Since all the lead terms left on the RHS have incongruent exponents
they cannot cancel each other. On the other hand the lead term on the LHS
after subtracting fm is of degree less than mn. Hence the terms on the RHS
must also be of degree less than mn so we have a representation of T (f, g) of
the desired form.

�

We have now gathered all the tools we need to prove the main theorem of
this section.

Theorem 2. If f, g ∈ k[x] are of degrees that are relatively prime then {f, g}
is a SAGBI basis.

Proof: Let n and m be the degrees of f and g respectively. According to
lemma 2 it is enough to prove the existence of polynomials p0, p1, . . . , pn−1 such
that

gn = pn−1(f)gn−1 + pn−2(f)gn−2 + · · ·+ p1(f)g + p0(f) (3)

From proposition 3 we know that for each k there is a unique expression

gk = (gk)0 + x(gk)1 + x2(gk)2 + · · ·xn−1(gk)n−1

where the (gk)i:s are some polynomials in f . For simplicity we will use gi as
shorthand for (g1)i. Similarly we can express powers of x as

xk = (xk)0 + x(xk)1 + x2(xk)2 + · · ·xn−1(xk)n−1

for some polynomials (xk)i in f . Since we want to express gn in lower powers
of g we take a look at how consecutive powers of g are related to each other.
Consider the multiplication

gk+1 = ggk =

n−1∑

i,j=0

xi+jgi(g
k)j =

n−1∑

i,j,l=0

xl(xi+j)lgi(g
k)j (4)

which takes place in

k[x] = k[f ] ⊕ xk[f ] ⊕ x2k[f ] ⊕ · · · ⊕ xn−1k[f ]

Thus, thinking of k[x] as a k[f ]-module, multiplication by g is a module
homomorphism by the analogue of (4) that we get when replacing gk by an
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arbitrary element of k[x]. Let M be the matrix of this transformation in the
basis 1, x, x2, . . . , xn−1, in other words the matrix with

∑n−1
i=0 (xi+j)lgi in posi-

tion (l +1, j +1). Also let gk be the column vector containing the components
of gk. More precisely the i:th entry of gk is (gk)i−1. Then (4) can be written as
a recurrence relation of the form gk+1 = Mgk. From this we obtain gk = Mke1,
e1 being the vector of 1, the first element of the basis. This holds for k = 1
since the first column in M is (g0, g1, . . . , gn−1). It immediately follows for all
k ≥ 1 by induction.

Let C(λ) = λn + cn−1λ
n−1 + · · ·+ c1λ + c0 be the characteristic polynomial

of M . By Cayley-Hamilton’s theorem M satisfies C(M) = 0, especially

Mne1 + cn−1M
n−1e1 + · · · + c1Me1 + c0e1 =

= gn + cn−1gn−1 + · · · + c1g + c0e1 = 0 (5)

On the other hand, if we equate the parts of each direct sum component in (3)
the resulting linear system is

gn = [gn−1, gn−2, . . . , g, e1][pn−1, pn−2, . . . p1, p0]
t

so by (5) pi = −ci is a solution to this system. (Here we think of gi as column
vectors.) As a coefficient of the characteristic polynomial of a matrix with
entries in k[f ] ci is itself in k[f ]. Thus we have a found the polynomials pi

needed in (3). As mentioned in the beginning, recalling lemma 2 this completes
the proof of {f, g} being a SAGBI basis. �

One natural question to ask given a set of generators for a subalgebra is
whether they generate the whole of k[x] or not. In terms of SAGBI bases this
is the question whether a SAGBI basis contains an element of degree 1 or not.
The above theorem immediately gives us a partitial answer to this question in
the case of two generators.

Corollary 1. If f, g in k[x] are of degrees at least two that are relatively prime

then k[f, g] 6= k[x]

Proof: By theorem 2 {f, g} is a SAGBI basis of k[f, g]. Hence all elements
in k[f, g] has a lead term that is a product of lt(f) and lt(g) so x cannot be in
the subalgebra. �

It is clear that when deg(f)|deg(g) then we can find examples where the
subalgebra f and g generate coincide with k[x] and others where it does not.
For instance, k[xn, xnk] = k[xn] 6= k[x] but k[xn, xnk+x] = k[x]. More generally
k[xn, xm] 6= k[x] whenever n and m are at least two. It is not clear however if
there are f, g with k[f, g] = k[x] for degrees that are not relatively prime when
no degree is a multiple of the other degree.



Canonical Bases for Subalgebras on two Generators in the Univariate Polynomial Ring 9

Proposition 4. If f and g are polynomials of degree 6 and 4 then k[f, g] 6=
k[x]

Proof: Our approch to the problem will be to construct a SAGBI basis for
k[f, g]. We will find that we never have to add more than one polynomial to
get a SAGBI basis and that this polynomial always is of degree at least 3.

5 A general criterion

In this section we will prove a general criterion for pairs of polynomials to
form a SAGBI basis, but first we examine another special case. The general
criterion is a natural generalization of the discoveries we will make about this
special case.

In the previous section we considered pairs of polynomials such that the
degrees had no common factor. We will now turn to the case at the other
extreme, when one degree divides the other.

Theorem 3. Let f, g ∈ k[x] be such that deg(f)|deg(g). Then {f, g} is a

SAGBI-basis if and only if g is a polynomial in f .

Proof: Let deg(f) = n and deg(g) = m = nk. We once again use the
unique representation of g as g = g0(f)+xg1(f)+x2g2(f)+ · · ·+xn−1gn−1(f)
from lemma 3. By theorem 1 a criterion for being a SAGBI-basis is that the
T-polynomial

g − f k = (g0(f) − f k) + xg1(f) + x2g2(f) + · · · + xn−1gn−1(f)

has a representation of the form (1), i.e. is a polynomial in f of degree less
than k. By the uniqueness part of lemma 3 this is possible exactly when g is
a polynomial in f . �

Let d = (deg(f), deg(g)). Note that in both cases treated above, d = 1 and
d = deg(f), the condition for being a SAGBI basis is that there is a polynomial
h of degree d such that both f and g can be written as polynomials in h.
(When d = 1 this condition is trivially satisfied since we may choose h as
x.) Our main theorem is that this generalizes to arbitrary degrees. To prove
that a given SAGBI basis has this form we will use a result from [4] (lemma
1.33, p.136) saying that for any field between k and k[x] that contains some
polynomial of positive degree, one can find a polynomial that generates the
intermediate field. We will combine that result with the following:

Lemma 3. For any polynomial h ∈ k[x] we have k[h] = k(h) ∩ k[x].
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Proof: The inclusion k[h] ⊆ k(h)∩k[x] is clear. Let f ∈ k(h)∩k[x] so there
are polynomials a and b such that f = a◦h

b◦h
. Note that deg(f) = deg(a)deg(h)−

deg(b)deg(h) and hence deg(h)|deg(f). We will show that f ∈ k[h] by induction
on the degree of f . Assume that deg(f) < deg(h) Then deg(f) = 0 so the
statement f ∈ k[h] holds in this case. For f of higher degree there is a γ with

deg(f) = γdeg(h). Then we can find a c ∈ k such that f̃ = f − chγ has lower

degree than f . By the induction hypothesis it follows that f̃ = a◦h
b◦h

− chγ is in
k[h] and hence f is. �

Remark: Note that the above lemma cannot be generalized to several
generators. For instance k[x2, x3] 6= k(x2, x3) ∩ k[x] since x = x3

x2 ∈ k(x2, x3) ∩
k[x] but x 6∈ k[x2, x3] by corollary 1.

Theorem 4. Let f, g ∈ k[x] and d = (deg(f), deg(g)). Then {f, g} is a

SAGBI basis if and only if there is a polynomial h ∈ k[x] of degree d and

polynomials F, G such that f = F ◦ h and g = G ◦ h.

Proof: The sufficiency follows from our earlier results: The degree of F
and G are relatively prime so they form a SAGBI basis by theorem 2. Now we
only have to invoke lemma 1 to see that {f, g} is a SAGBI basis.

The proof of the necessity relies on a result from [4] that any field between
k and k(x) containing a nonconstant polynomial has a single generator lying
in k[x]. Applying this result to k(f, g) we find a polynomial h such that f, g ∈
k[x] ∩ k(h) so f, g ∈ k[h] by lemma 3. Hence there are polynomials F and
G such that f = F ◦ h and g = G ◦ h. It only remains to show that h is of
degree d. It is obvious that deg(h)|deg(f), deg(g) and hence deg(h)|d. On the
other hand h = P (f, g)/Q(f, g) for some polynomials P and Q. Now the fact
that {f, g} is a SAGBI basis ensures that the lead terms of P (f, g) and Q(f, g)
are {lt(f), lt(g)}-power products. But then their degrees in x must be linear
combinations of deg(f) and deg(g) and hence divisible by d. It follows that
d|deg(P (f, g)) − deg(Q(f, g)) = deg(h). We have seen above that deg(h)|d so
clearly we can draw our desired conclusion deg(h) = d. �

Note that the proof for the necessity holds for an arbitrary (finite) number
of polynomials. The sufficiency, on the contrary, does not hold even for three
polynomials as the following example shows.

Example: The set {x2 − x, x3, x5} is not a SAGBI basis even though the
degrees of the polynomials have no common factor. (Note that the degrees are
even pairwise relatively prime in this example.) For instance x5 − (x2 −x)x3 −
(x2 − x)2 − 2x3 + (x2 − x) = −x is a polynomial in x2 − x, x3 and x5 with
leading term −x which obviously cannot be written as a product of the leading
terms of the generators.

Next we will see that a simple representation of the T-polynomial of {f, g}
is related to F and G being polynomials of a simple type.
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Theorem 5. If the only non-trivial T-polynomial of {f, g} is zero then f and

g are both powers of a polynomial of degree (deg(f), deg(g)).

Proof: Let n = deg(f), m = deg(g), d = (n, m), n′ = n/d and m′ = m/d.
Then the condition in the theorem is that fm′

= gn′

. Let f =
∏n

i=1(x − αi)
and g =

∏m

j=1(x − βj). Then any root γ of f of multiplicity j is a root of

multiplicity m′j of fm′

= gn′

. Now any root of gn′

must have multiplicity n′k
for some k. It follows from m′j = n′k that m′|k and n′|j so γ has multiplicity
a multiple of n′m′. Since this holds for any root fm′

= gn′

=
∏t

i=1(x− γi)
m′n′ji

so we find that both f and g are powers of
∏t

i=1(x − γi)
ji. �

If we want to check if a given pair of polynomials is a SAGBI basis the fol-
lowing characterization of when a polynomial can be written as a composition
may be useful.

Proposition 5. Let h be a polynomial of degree d and f a polynomial of degree

n = dn′ with zeroes α1, α2, . . . , αn. Then f is of the form F ◦ h for some

polynomial F if and only if there are β1, β2, . . . , βn′ such that the zeroes of f
can be partitioned into n′ multisets Mi where Mi contains the zeroes of h(x)−βi.

Proof: Assume that f = F ◦ h where F (x) =
∏n′

i=1(x − βi). Then f(x) =∏n′

i=1(h(x)−βi) so h(αi) = βj for some j i.e. αi is a zero of h(x)−βj . Divide out
this factor and continue in the same way. It follows that [h(α1), h(α2), . . . , h(αn)] =
[(β1, d), (β2, d), . . . (βn′ , d)] as multisets.

For the other direction we assume that there are βi:s such that h(x) − βi

has d zeroes among the αi:s. Then
∏n′

i=1(h(x)−βi) =
∏n

i=1(x−αi) = f(x) and

hence f = F ◦ h where F =
∏n′

i=1(x − βi). �

Remark: This gives us another criterion for {f, g} of degrees 2 and 2k to
be a SAGBI basis. We know that it is equivalent to g being a polynomial in f .
According to the above proposition the latter is equivalent to the possibility
to partition the zeroes of g into pairs (β2j−1, β2j) such that f(x) − γj = (x −
β2j−1)(x − β2j) for some γj. That is to say that β2j−1 + β2j = α1 + α2 where
α1 and α2 are the zeroes of f .

For polynomials where the degrees has g.c.d. 2 some calculations for poly-
nomials of low degrees suggested a different description of all pairs of polyno-
mials that are SAGBI bases. Next we will describe this alternative condition
and show that it is equivalent to the condition given in theorem 5 above.

Theorem 6. If both f and g are of even degree then both of them are polyno-

mials in some polynomial of degree 2 if and only if there is a constant s such

that

f = f0 −

∞∑

k=1

αk+1s
kf

(k)
0 (x)

(k + 1)!
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and

g = g0 −

∞∑

k=1

αk+1s
kg

(k)
0 (x)

(k + 1)!

where f0 and g0 are the even parts of f and g respectively and αk the Genocchi

numbers.

Remark: The Genocchi numbers can be defined by αk = 2(1 − 2k)Bk

where Bk are the more well known Bernoulli numbers or by their exponential
generating function 2x

1+ex (See for example [2].)

Proof: From the definition 2x
1+ex =

∑
∞

k=1
αkxk

k!
using that α1 = 1 is follows

that
(

1+e−x

2

) (
1 −

∑
∞

k=1
αk+1xk

(k+1)!

)
= 1. If we substitute x by sD i.e. multipli-

cation by s and differentiation with respect to x we get an identity between
operators where the second factor applied to f0 is the RHS of the condition on
f stated in the theorem. Hence the condition is equivalent to the existence of an

s such that
(

1+e−sD

2

)
(f) = f0. (Here 1 denotes the identity operator.) The left

hand side evaluated in x is just f(x)+f(x−s)
2

so the condition in the theorem can

be formulated as follows. There exists an s such that f(x)+f(x−s)
2

= f(x)+f(−x)
2

and g(x)+g(x−s)
2

= g(x)+g(−x)
2

. By factorization of the identity f(−x) = f(x − s)
it is easy to realize that this is equivalent to the possibility to partition the
zeroes of f into pairs with sum −s. This concludes the proof by the remark
after proposition 5. �

We will make some general remarks on the nature of the condition in the
above theorem but let us first examine an example.

Example: We will describe all SAGBI bases {f, g} where f and g are of
degrees 4 and 6 respectively. Combining the above theorem with theorem 5 we
know that {f, g} is a SAGBI basis if and only if

f = f0 −
4∑

k=1

αk+1s
kf

(k)
0 (x)

(k + 1)!
= f0 +

sf ′

0

2
−

s3f
(3)
0

24

and

g = g0 −

6∑

k=1

αk+1s
kg

(k)
0 (x)

(k + 1)!
= g0 +

sg′

0

2
−

s3g
(3)
0

24
+

s5g
(5)
0

240

Letting f = x4 + a3x
3 + a2x

2 + a1x + a0 and g = x6 + b5x
5 + b4x

4 + b3x
3 +

b2x
2 + b1x + b0 the conditions are

f = x4 + 2sx3 + a2x
2 + (a2s − s3)x + a0

and

g = x6 + 3sx5 + b4x
4 + (2sb4 − 5s3)x3 + b2x

2 + (sb2 − s3b4 + 3s5)x + b0
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or equivalently there exists an s such that a3 = 2s, a1 = a2s− s3, b5 = 3s, b3 =
2sb4 − 5s3, b1 = sb2 − s3b4 + 3s5 As we can see the coefficients of the even
terms in f and g and s can be chosen freely but then all coefficients of the
odd terms are uniquely determined. Thus all SAGBI basis {f, g} with monic
polynomials of degrees 4 and 6 can be parameterized by 6 parameters. If we
do not require the polynomials to be monic we get 8 parameters since we
may multiply f and g by arbitrary constants. This example suggests that the
above theorem gives a convenient criterion both for generating SAGBI basis
with two elements of given (appropriate) degrees and for checking if two given
polynomials constitute a SAGBI basis.

Corollary 2. All SAGBI bases {f, g} where deg(f) = 2u and deg(g) = 2v,
(u, v) = 1 can be parameterized by u + v + 3 parameters.

Proof: By theorem 5 the condition in theorem 6 gives a SAGBI basis
criterion when deg(f) = 2u, deg(g) = 2v and (u, v) = 1. We just have to show
that the conditions on f and g are such that s and all coefficients of even terms
(there are u + v + 2 such terms) can be chosen freely but all odd coefficients
are uniquely determined after these choices have been made. Let us therefore
take a closer look at the condition on f :

f = f0 −

2u+1∑

k=1

αk+1s
kf

(k)
0 (x)

(k + 1)!
(6)

It is easy to see that all αk for odd k ≥ 3 is zero. (Just check that the generating
function of αk becomes even after removal of α0 + α1x = x i.e. that 2x

1+ex − x
is even.) This means that we only have to sum over odd k in (6). But then all
derivatives of f0 in the sum are of odd order and hence give odd polynomials.
It follows that all coefficients of even powers of x are equal on both sides for
any f . Let us compare coefficients of odd powers of x. Let f =

∑2u

i=0 aix
i and

t be an odd number between 1 and 2u− 1. The coefficient of xt on the LHS is
at. The RHS equals

f0 −

2u+1∑

k=1

αk+1s
k

(k + 1)!

u∑

l= k+1

2

a2l

(2l)!

(2l − k)!
x2l−k

so the coefficient of xt equals

−

2u−t∑

k=1

αk+1s
k

k + 1

(
t + k

t

)
at+k

Equating the coefficients on both sides we get an expression for at in s and ar

for even r > t. We may of course reformulate the condition on g in the same
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way so this proves that we may choose all u+ v +2 coefficients of even powers
and the parameter s arbitrarily and that this determines f and g. �

Corollary 3. The monic polynomials of degree 2k that can be written as F ◦h
for some h of degree 2 are those of the form

f0 −

∞∑

k=1

αk+1s
kf

(k)
0 (x)

(k + 1)!

where f0 is any even polynomial of degree 2k, s the coefficient of x in h
and αk the Genocchi numbers.

Proof: This follows from theorem 6 by letting g be of degree 2 since the
condition on g stated in the theorem is that the coefficient of x equals s. �

Theorem gives a simple criterion for when two polynomials constitute a
SAGBI basis. The proof, relaying on a property of intermediate fields, was quite
different from that for polynomials of relatively prime degrees in the previous
section. However, it is possible to find another general criterion by generalizing
those ideas. Remember that we regarded multiplication by g as a k[f ]-linear
mapping and then used Cayley-Hamiltons theorem to get a representaion of
the critical pair fm−gn. This stategy fails when the degrees of f and g are not
relatively prime since the critical pair to check is (fm′

, gn′

) so we would need
a polynomial of degree n′ in (k[f ])[x] that g satisfies. What we get is a SAGBI
basis criterion on the dgree of the minimal polynomial for multiplication by g

Proposition 6. Let f and g be polynomials of degrees n′d and m′d respectively

where (n′, m′) = 1. Then mulitplication by g is a k[f ]-linear mapping on

k[f ] ⊕ xk[f ] ⊕ x2k[f ] ⊕ · · · ⊕ xn−1k[f ]

and {f, g} is a SAGBI basis if and only if its minimal polynomial is of degree

at most n′

Proof: The linearity is clear. Assume that the minimal polynomial is of
degree at most n′. Then there are polynomials pi such that

gn′

+ pn′
−1(f)gn′

−1 + · · ·+ p1(f)g + p0(f) = 0

Using exactly the same argument as in the proof of lemma [?] we find that
{f, g} is a SAGBI basis. On the other hand, if {f, g} is a SAGBI basis the low
representation of (gn′

, fm′

) gives a polynomial of degree n′ satisfied by g. �
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6 An algorithm for compositions

Given a polynomial f we can develop an algorithm for finding all decomposi-
tions f = F ◦h from our characterization of SAGBI bases {f, g}. According to
theorem [?] we only have to check, for each d|n if we can construct a polyno-
mial g of degree d such that {f, g} is a SAGBI basis. We may, as usual, assume
that g is a monic polynomial without constant term. Then we just perform the
SAGBI test to determine g in terms of the coefficients of f . Let us look at an
example.

Let us examine if f = x12 + 4x11 + 10x10 − 5x4 + x can be written as a
composition. The possible degrees of the inner polynomial g is 2, 3, 4 and 6.
For example, letting g = x3 +b2x2 +b1∗x the SAGBI test for {f, g} is to check
if f − g4 has a low representation, i e can be written as a linear combination

f − g4 = α0 + α1g + α2g
2 + α3g

3. In our example the identity is

(4 − 4b2)x
11 + (10 − 6b2

2 − 4b1)x
10 + (−4b3

2 − 12b1b2)x
9+

+(−6b2
1 − 12b2

2b1 − b4
2)x

8 + (−12b2
1b2 − 4b1b

3
2)x

7 + (−6b2
1b

2
2 − 4b3

1)x
6−

−4b2b
3
1x

5 + (−5 − b4
1)x

4 + x = α0 + α1g + α2g
2 + α3g

3

. The question is if we can find b2, b1 and α0, α1, α2, α3 such that the identity
holds. The RHS is of degree 9 so from the coefficients of x11 and x10 on the
LHS we can deduce that b2 = 1 and b1 = 1. This simplifies our identity to

−16x9 − 19x8 − 16x7 − 10x6 − 4x5 − 6x4 + x = α0 + α1g + α2g
2 + α3g

3

. Comparison of the terms of degree 9 shows that α3 = −16. After subtracting
α3g

3 from both sides we find that alpha2 = 102 and continuing α1 = −188
and α0 = 0. Now we only have to check if the remaining polynomial f − g4 −
α3g

3 − α2g
2 − α1g − α0 is zero or not. If it is zero f can be written as a

composition with inner polynomial of degree 3, otherwise not. In our example
f −g4−α3g

3−α2g
2−α1g−α0 = 29x8 +80x7−112x5−264x4 +86x2 +189xso

f cannot be written as a composition with inner polynomial of degree 3. (We
could have drawn this conclusion already when we found that f − g4 − α3g

3

contains a term of degree 8.)
It is straightforward to generalize the method above to an algorithm that

determines a compositions for a given polynomial. We first show that the is
only one candidate for inner polynomial of a certain degree and provide a
method for determining that polynomial.

Lemma 4. Given a monic polynomial f of degree dm there is a unique poly-

nomial g of degree d without constant term, such that f − gm is of degree at

most n − d.
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Remark: We call g the approximate m:th root of f Proof: From the lead
coefficients we see that g is monic so let g = xd + bd−1x

d−1 + · · · + b2x
2 + b1x

and denote the coefficient of x(dm − j) in f − gm by cj. Then for j between 0
and d − 1

cj = adm−j − mbd−j + hj(bd, . . . , bd−j+1) (7)

for some polynomials hj. To see this it suffices to note that ck does not contain
any bj with j < d − k since such terms are of degree less than or equal to
d(m − 1) + j < dm − k. The only way to get a coefficient containing bd−k in
a term of degree dm − j in gm is to choose xd from m − 1 of the factors and
bd−kx

d−k from one factor. This factor can be chosen in m ways and hence the
coefficient of bd−k is m. This proves that ck are of the form 7. Given 7 it is
obvious that cdm = cdm−1 = . . . = cdm−d+1 = 0 has a unique solution for given
aj: Given bd, . . . , bd−k+1 the equation ck = 0 defines bd−k uniquely. �

Remark: The above proof does not only guarantee the existence of g but
also gives an algorithm for computing it.

Proposition 7. A polynomial f of degree md can be written as a composition

with inner polynomial of degree d if and only if {f, g} is a SAGBI basis, where

g is the approximate m:th root of f .

Proof: By theorem 3 that f can be written as a composition with inner
polynomial of degree d if and only if there is a polynomial h of degree d such
that {f, h} is a SAGBI basis. On the other hand this is equivalent to the
existence of a low representation of f − hm or in other words αi such that

f − hm = αm−1h
m−1 + αm−2h

m−2 + · · ·+ α1h + α0 (8)

As a consequence of the above lemma h must equal g - the approximate m:th
root of f . �

Summing up we have the following algorithm for finding all compositions
f = φ ◦ g for a given polynomial f of degree n.

For each divisor d of n, let m = n/d and do the following:
1) Construct gm the approximate m:th root of f by solving the triangular

system cn = cn−1 = . . . = cn−d+1 = 0 for the bi:s. (The ck:s given by 7.)
2) Solve for the αi:s in 8 with h replaced by gm. The αi:s are uniquely deter-

mined by the equations we get when identifying all terms of degrees divisible
by m in 8.

3) If 8 holds with the gm determined in (1) and the αi:s determined in (2),
then f = φm ◦ gm where φm(x) = αm−1x

m−1 + αm−2x
m−2 + · · · + α1x + α0.

Otherwise f cannot be written as a composition with inner polynomial of
degree d.
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7 A remark on the non-commutative case

SAGBI bases can also be defined for subalgebras of the non-commutative poly-
nomial ring in a similar fashion. In that setting we have to redefine the concepts
like critical pairs and T-polynomials in a suitable way. This is done in Nord-
beck ([6]). In connection with our discussion it is interesting to mention the
following result on subalgebras with two generators in the non-commutative
polynomial ring which is mentioned in [1].

Theorem 7. Let A be a subalgebra of k〈X〉, the non-commutative polynomial

ring in n variables, generated by two elements f and g. Then either A is a free

subalgebra or A is generated by one element.

In the language of SAGBI bases this can be interpreted in the following way.
If there exist no critical pairs then {f, g} is a SAGBI basis. Also A is free on the
generators {f, g} for if we have a relation that f and g satisfies r(f, g) = 0 then
we must have at least two equal lead monomials on the LHS that cancel. Hence
we have found a critical pair contradictory to our assumption. On the other
hand if we have a critical pair that can be represented in a way corresponding
to (1) then this gives us a relation. This shows that for a subalgebra generated
by a two element SAGBI basis freeness is equivalent to the non-existence of
product relations between the lead terms of the generators.

The above theorem combined with our earlier results gives a description of
two element SAGBI bases in k〈X〉:

Theorem 8. The set {f, g} ⊆ k〈X〉 is a SAGBI basis if and only if

– There are no critical pairs for {f, g}
– There is h ∈ k〈X〉 and a SAGBI basis {F, G} ⊆ k[x] with f = F ◦ h and

g = G ◦ h.

Proof: Assume that {f, g} is a SAGBI basis. By the discussion above either
there are no product relations between the lead words or the subalgebra 〈f, g〉
has one generator 〈h〉. In the latter case we can write f = F ◦ h, g = G ◦ h
for some polynomials F, G. If there is a T-polynomial T (F, G) then we get a
representation of type (1) of it by replacing h by x in the representation of
T (f, g) = T (F ◦ h, G ◦ h) and hence {F, G} is a SAGBI basis.

Conversely if {F, G} ⊆ k[x] is a SAGBI basis then it follows from Nordbeck
([5]) that {f = F ◦ h, g = G ◦ h} is a SAGBI basis. �
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