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Abstract

A resultant-type identity for ukariate polynomials is proved angsed to characterise SAGBI
bases of subalgebras generated by two polynomfaiew equivalent condition, expressed in terms
of the degree of a field extension, for a pair of univariate polynomials to form a SAGBI basis is
derived.
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1. Introduction
Let
fx)=x3+ax?+ax+ap,  gx) = x2+ bix + bo.

Is it possible to find a polynomial of degree 1 in the subalgebra generatédxXyyand
g(x)? It seems to be easy to find such a polynomial. Consider

hi(x) = £2(x) — g3(x) = c5x° + cax* + cax® + X2 + X + Co
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and reduce it to degree four:

ha(x) = h1(x) — ¢5 f (X)g(x) = dax? + dax3 + daxz + d1x + do.
Continuing the reduction in the same manner we get a polynomial

h(x) = ha(x) — dag?(x) — af (x) — B(X),

which has degree at most 1 and we can exjyettfor some boice of the coefficients;, bj
it should have degree exactly 1.

Nevertheless thfanmous epimorphism theorem Bbhyankar and Mok1973ab, 1975
shows thathis is not the case in characteristic zefée will see later that the same is true
in any characteristic and frofforstenrsson(2002 we know that the reason is th&ix) and
g(x) form a SAGBI basis if their degrees are relatively prime. But what is the reason for
this? There should be some kind of identity that explains Wwtg) becomes a constant.
The aim of this article is to find an identity which explains wiiyx) andg(x) form a
SAGBI basis if their degrees are relatively prime. As we will see this identity is closely
related to the resultant. The essential advantage of this approach is that the identity gives
same information on the structure of the subalgebra generated by two polynomials even in
the case whetheirdegrees have a common factor.

Besides that, we discuss how a general SAGBI theory looks in the univariate polynomial
ring and describe two different necessary and sufficient conditions for polynofig)s
andg(x) to form a SAGBIbass.

The present article is an extended version Tdrstersson et al. (2003. Only
minor differences exist inSectons 24. In Section 5there is a major difference:
in Torstersson et al(2003 Theorem 24s stated without proof; in the present article a full
proof includingLemmas 22and23is added. This is the opimajordifference inSection 5
Sectbns 6and7 do not appear in the shorter version.

2. Basic definitions and notation

Let K[x] denote the polynomial ring in one variable with coefficients in the field
K. If f = ax" + ap_1x" 1 + ... + ayx + ag, wherea, # 0, is a polynomial of
degreen = deq f), then theleading termof f is ayx". Let R be a subset oK [x]
then degR) = {dedr) | r € R\ {0}}. If A'is a subalgeta, then de@A) is an additive
subsemigroup oN. Note hat we dsume that & N.

Our goal is to study subalgebras &f[x] generated by a subs& of K[x]. Denote
this subalgebra aK[R]. This notation is natural sinc& [R] consists precisely of the
“polynomials” in the “variables'R. In line with this analogy we will call a finite product of
elements fronR an R-monomial theidentity of K[x] is by convention an empty product
and thus always aR-monomial.

The main tool for investigating and representing subalgebras is calé€B| bases
where SAGBI is an acronym for Subalgebra Analogue to Grobner Bases for Ideals.
The theory of SAGBI bases was originally developed for multivariate polynomial rings
by Robbiano and Sweedlgf1990 and ndependently byKapur and Madlenei(1989;
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another source for material on SAGBI basesStarmfels(1996. The definition can in
ouronevariable setting be somewhat simplified:

Definition 1 (SAGBI Basis Let A be a subalgebra df[x] andR € A. Ris aSAGBI
basisfor A if deg(R) generates d€@\) as an additive semigroup, that is if every element
in deg A) can be written as a finite (or empty) sum of elements in Beg

Remark 2. Note that the defining pperty of a SAGBI basisR depends only on the
degrees of the polynomials, thus Hiplication of the elements iR by non-zero elements
of K is always permitted. This allows us to assume that all polynomiak® &me monic.
Whenever convenient we will use this fact without further comment.

Remark 3. Perhaps the biggest difference between SAGBI bases in the one-variable set-
ting and the multi-variable setting is that all subalgebras in the former have a finite SAGBI
basis while this does not hold in the latter. This was notedRblkbiano and Sweedler
(1990 and fdlows from the fact that any semigup consisting of natural numbers is
finitely generated.

If Ris a SAGBIbasis forA then it is known Robbiano and Sweedlet990 that A is
the subalgebrgenerated byR. Therdore we say thaR is aSAGBI basigwithout reference
to a subalgebra) iR is a SAGBI basisdr the subalgebra it generates.

One o the cornerstones of SAGBI theory is the concept of subducBalalgebra
reduction

Definition 4 (Subductioh Let Rbe a subset df [x] and f apolynomial. If there exisR-
monomialspy, ..., px and constantay, ..., a suchthata; p; has the same leading term
asf — Z'j_:llaj pj, fori =1,...,k, then we ay thatf subducesor = f — Z'J-‘:laj P
overR. Wecallr aremanderof f if it cannot be subduced further.

Remark 5. Note that we daot requireR to be a SAGBI basis for subduction ovBrto
be defined and that remainders are not unique in general.

In our definition of subduction we allow subttan of constants; this differs from
Robbiano and Sweedler’s definition, cf. Remark 1.8Rafbbiano and Sweedldd990.
This difference is only minor and we can easilgrislate results; in particular, Proposition
2.3 (a—b) ofRobbiano and Sweed|ét990 becomes:

Theorem 6. Let R be asbset of Kx], then he following conditions are equivalent:

() Risa SAGBbasis.
(ii) All elements of KR] subduce to zero over R.

2.1. Construction and verification of SAGBI bases

The results in this article will give some alternative ways of checking if a set consisting
of two, and in certain cases three, polynomials is a SAGBI basis. Before we go into
this we will give a brief exposition of the standard SAGBI testing and construction
algorithms.
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LetR={fq,..., fi} be a finite subset df [x].

The key to the SAGBI test lies in the definition of a SAGBI basis. Since the elements
in K[R] are sums over K of R-monomials, and eacR-monomial clearly has a degree
which is the sum of degrees of elementsRnone might think that the condition in the
definition should always be satisfied. This is however wrong since the terms of the highest
degree might cancel and then the degree of the sum need not be the degree of any of the
R-monomials in the sum. The simplest form of cancellation is when we take the difference
of two polynomials with the same leading term.

Definition 7. A difference
£ f2 - flbl... flb' (1)

of two polynomials such thaffll e fla‘ and flbl e flb' have the same leading term is
called aT -polynomial

The T-polynomial (1) has alow representationover R if it can be written as a
K -linear comlination of R-monomials of degree strictly less than déff --- f?) =

deg f2 ... £7).

Note that if aT-polynomial subduces to zero ovBx then it has a lowepresetation
over R. The “T” in “ T-polynomial” is chosen since a pair &-monomials( flal e fla‘,
flbl e flb') as in the definition is called aé&te-a-téte” byRobbiano and Sweed|€t990.

Now let us se in more deatil what theT -polynomials look like. LetR = {f1, ..., f|}
be a finite subset df [x], whereded fi) = n;, and asume for simplicity that all elements
of R are monic. TwoR-monomiaIs,]_[!:1 £ and]‘[!:1 fibi, have the samkeading term
if and only if

[(a,....a), (1, ....b)] e N x N

is a olution of the linear Diophantine equation:

! !
> ani — bin =0. (@)
i—1 i—1

The T-polynomial corresponding to this solution is then:
[ [
T((@,....a). (br.....b) =[] £ -] "
i=1 i=1

If a= (a1,...,a) € N', then br convenience we defint? to be the producﬂ!=1 fia‘.
Of course Eq. 2) hasan infinite number of solutions, so it is not possible to chaltd -
polynomials. We also note that the set of all solutions?pfdenoted byM = M (deqg R)),

is a semigroup under componentwise additiThe following proposition is the key to
reducing the number oF -polynomials we need to check:

Proposition 8. Suppose that a solutida, b] € N' x N! of the linear Diophantine Eq(2)
can be written as a sum of two non-zero solutipasb’] and[a”, b”] of (2). Then the
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T -polynomial T(a, b) has a low representation over R if the T -polynomial&@Tbh’) and
T(@", b”) both have low representations over R.
Proof. Rewrite theT -polynomial:
T@b)= fa— fb _ ga+a’ _ fb/4b” _ ga'+a’ _ pa+b”
+ fa’—i-b” _ fb/+b” — fa’(fa” _ fb”) + fb”(fa’ _ fb/)
= f¥T@" b))+ f"T@.p). O

The consequence of the proposition above is that we need only cheEktblynomials
corresponding to elements ® which cannot be written as non-trivial sums of other
elements. Such an element is callednimat the set of nmimal elements ofM is
finite.

An element of the kinde, e ], whereg is the vector inN' with 1 on thei-th place
and zeroes elsewhere, is clearly minimal, but corresponds to a tiliviadlynomial:
T(g,q)=0,fori =1,...,I. Thus, usind’roposition 8ve see that it suffices to check the
minimal elements of the for(ay, ..., &), (b1, ..., b)] where, foreach € {1, ...,1}, at
leastone ofa; andby; is zero; such an element is calledrétical pair. The set of A critical
pairs corresponding to a givdrtuple (n1, np, ..., n;) of positive integer coefficients
for (2) is denoted byC(n1, np, ..., ny). If Ris a sibset ofK[x] \ K then we déne (by
abuse of notationC (R) = C(deqg R)).

Lemma9. Let
degf(x) =n, degg(x)=m, d=gcdn,m), n' =n/d, m =m/d.
Then
C(f,9) = {[(m’, 0), (0,n")], [(0, n), (M, O)]}.
Proof. Suppose that
[(i,0), (0, )] € C(f, 9.
Then
in=jm=in"=jm =i=km = j=kn.
So
[(,0), (0, )] = k[(m', 0), (O, n)]

andk = 1 because we have assumed th@t0), (O, j)] is minimal. By a symmetric
argument any element o€(f,g) which has the form[(0, j), (i,0)] has to be
[O,n), (M, 0)]. O

Now we can state the main theorem about the SAGBI test:
Theorem 10. Let R be a sbset of Kx], then he following are equivalent:

(i) Risa SAGBbasis
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(iiy All T-polynomials corresponding to(@) have a low representation over R.
(iii) All T-polynomials corresponding to @) subduce to zero over R.

Proof. The interested reader may find the full prooRabbiano and Sweedl¢t990. O

Note that if[a, b] € C(R) then thetransposef [a, b], [b, a], alsolies in C(R). Since
T (a, b) is a scalar multiple off (b, a) it suffices to checlone of theseT-polynomials.
Combining this fact with.emma 9andTheorem 1Qve get he followingcorollary.

Corollary 11. Let f and g as inLemma9, then({ f, g} is a SAGBI basis if ' — g" has a
low representation ovelrf, g}.

Suppose we wish to find a SAGBI basis for the subalgebra generated byRa then
we can start by usingiheorem 1@&nd check if thel -polynomials subduce to zero over
If they do we can conclude th& is a SAGBI basis. If they do not subduce to zero, then
we have performed the first step bt SAGBI construction algorithm.

Algorithm 1. SAGBI basis construction algorithm
INPUT: R={f1,..., fi} C K[X]
OUTPUT: S={s1,...,%} a SAGBI bais forK[R]
INITIALISATION: Rp=¢, R = Randi =1
WHILE R # R_1 DO
Let R 11 = R, conpute the remainders ov&; of all T-
polynomials corresponding ©(R;)
| F same remainders are non-zeF&lEN
add all of them taR; ;1

ELSE
putS= R
Fl
puti =i+1
oD

Theorem 12. Given finite input R= {f1, ..., fi} € K[x] the SAGBI basis construction
algorithm terminates and the output is a finite SAGBI basis for the subalgebra
K[R].

Proof. Note that the degree of every elemenBn 1\ R does not belong to the semigroup
generated by de&&r ). So if the afjorithm would not terminate we would have an infinite
increasing chain of subsemigroupsinbut ths is impossible. That is why the algorithm
terminates and fronTheorem 10it follows that the output,S, is a SAGBI basis for
KIR]. O

3. Two equivalent conditionsfor SAGBI

In this section we will give a completelyew characterisation of a SAGBI basis
consisting of two polynomials. The new characterisation is formulated in the language
of field extensiondK c L C K(x), whereK(x) stands for the field of all rational
functions in thefree variablex. The simplest non-trivial case is whénhas the fornK (h)
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for some non-constant polynomial Let us look at the degree of the extensi€ith) C
K (x).

Lemma 13. If h € K[x] has degree & 1then[K (x) : K(h)] =d.
Proof. Consider the polynomial
p(t) =ht) —h e K(h)[t],

whereh(t) denotes the polynomial obtained by replacing all occurrencesinfh by t.
The idea of the proof is to show that this polynomial is, up to a constant factor, the minimal
polynomial ofx over K (h). Then the lemma will follow from a well known result in the
theory of field extensions. It is obvious from our definitionmthat it hasx as a zero, so
X is algébraic over K (h) and its minimal polynomial has degree less than or equdl to
Since degh) # 0, K[h] = K[x], thusK[h] is a UFD andK (h) is its field of quotients.
Hence, by Gauss’ lemma,suffices to prove thap is irreducible oveK [h] to deduce that
it is irreducible overK (h).

Suppose for contradiction that there exists a non-zero polynomilK [h, t] of degree
k < d havingx as a zero. Theq has the form:

q = gt + g1t T+ -+ qo,

where eacly; belongs toK [h]. Our assumption can be written:

k—1

0=qx) = X+ q-1x* T+ - + qo. 3

For this equdity to hold, all terms containing the same powenwoimust cancel, but if we
consider the degree of each term above modutben we get:

degqkx¥) = k  modd,
dega_1x“H=k—1 modd,

deggo) =0 modd.

The reason for this is thaij € K[h] so ded@gi) = 0 mod d, sinced is the degree of

h. Sincek < d all these residue classes are different. Hence the highest terms iB)Eq. (
cannot cancel, contdéction. Thus a constant multiple gf is the minimal polynomial of
xin K(). O

To proceed we will have to use the following extension of Luroth’s theorem:

Theorem 14. An intermediate field K& F ¢ K (x) containing non-constant elements of
K[x] has the form F= K (y) for some ye K[x].

Proof. This extension is stated as exercise 12 (a) (with a hint making it trivi@@pinrbaki
(199Q p. 148-149). O

The result above allows us to prove the main theorem of this section independently of
characteristic.
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Theorem 15. Let f and g be polynomials of degree n and m respectively, letd
gcd(n, m) and let K be any field. Then the following conditions are equivalent:

(i) f,gisaSAGBDbasis.

(i) There exists a pohyomial h of degree d and polynomials F and G such that Foh
andg= Goh.

(i) [K) : K(f,g)] = d.

Proof. The equivalencdi) <« (i) was aleady proved byTorstersson (2002 for
characteristic zero. To make this proof work iryarhacteristic it is sufficient to replace
the reference to the zewraracteristic version ofheorem 14in Lausch and Nobauer
(1973 by Theorem 14t remains to prove thatiii) < (ii).

e (ii) = (iii) Sincef andgare polynomials it we haveK (f, g) € K (h); herce we have
[KX) : K(f,9)] > [K(X) : K(h)] = d, where the equality follows fronLemma 13
On the other hand we can combine the tower law laentima 13

n=[K) : KO =K KK DIK(f, 9) : K(H],
m=[K(x) : K(@] = [KX) : K(f, 9I[K(f, g) : K(Q)].

Hence[K (x) : K(f, g)] | gcdm, n) = d; conbining this with the result above yields
[Kx): K(f,g)]=d.

o (iii) = (ii) Assume thafK (x) : K(f, g)] = d. SinceK(f, g) contains non-constant
elements ofK [x] we can dduce fromTheorem 14that K(f, g) = K(h) for some
h € K[x]. Herce{f, g} € K(h) (" K[x] = K[h], wherethe last equality follows from
Lemma 3 inTorstensson(2002); thus f andg are polynomials ih. FromLemma 13t
follows that degh) =d. O

UnfortunatelyTheorem 15cannot be generalised to more than two polynomials. The
implication (i) = (i) does not hold even for three polynomials, which was noted
in Torstexsson(20032), but can also be seen from the exampl&emark 25n Section 5
Since he proof of (i) < (iii) above can easily be extended to any finite number of
polynomials it follows that the new characterisation of SAGBI bg#gsonly works for
two polynomials. As was pointed out iforstersson (2002, the imgication (i) = (ii)
holds for any finite number of polynomials, so for three or more polynomials the analogue
of Theorem 15vould be:(i) = (ii) < (iii).

4, Resaultants

In this section we introduce a particular resultant which has some very interesting
properties allowing uso prove theorems isection 5 We begn by recalling the usual
definition of the resultant:

Definition 16 (Resultank Let f (x) = apx" +...a1x +ap andg = byx™+. .. bix + bg
be two polynomials, of degreeandm respectively, over a fielt. Theresdtantof f and
0, Reg f, g), is thedeterninant of the(m + n) x (m + n)-matrix:
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ah an_1 a2 a a 0 O 0
0 a a1 an2 . a a 0 0
0 0 an ap1 a2 a a 0
0 O 0 a ap_1 a2 ... a ap
bm bm71 bm72 b]_ bo O 0 O
O bm bm7]_ bm72 b]_ bo O O
O O bm bm7]_ bm72 b]_ bo O
O O O bm bm71 bm72 - b]_ bo

The motivation for introducing the resultant can be found in the following standard
theorem:

Theorem 17. The resulant of two polynomials f and g is zero if and only if they have a
common non-trivial factor.

Proof. A proof can be found for example @ox et al.(1997. O

Now consider the polynomialB (t) = f(t) — f(x) andG(t) = g(t) — g(x) in K(x)[t];
they hae a common zerg, in the fieldK (x), thus byTheorem 17RegF, G) = 0. In
matiix terms ths means that:

an an—1 a; ag— f(x) 0 0

0 a5 ap-1 ... a a— f(x) ... 0

6 0 aj an_1 a1 ao—.f(x) _
detf b s b1 bo—goy O ... o |=©

0 bm bm71 e b]_ bo — g(X) - 0

0 e 0 bm bm7]_ b]_ bo — g(X)

The identity above appears iReron (1927 Sedion 43), together with parts of
Lemma 1%elow. We wil be interested in the determinant above wheandg are treated
as formal variables, thus we define:

Definition 18.
an an_1 a; ag— f 0 0
0 an a1 ... a a-—f ... 0
_ 0 ... 0 an a1 ap ap— f
D(f.g)=det] ) bt bo—g O ... 0 )
0 bm bm_1 b1 bo—g 0
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The expressio® ( f, g) will allow us to study the equality RéE, G) = 0. To dothis
we start with a technical lemma.

Lemma19. D(f, g) has the form:
> gl (5)

(i,jeA
whereA = {(i,j) e NxN |in+ jm < mn} andag j) € K forall G, j) € A.
Furthermore,am.o) = (—1)™™Dpl anda oy = (—1)"aM.

Proof. The determinant of & x k matix C = (cjj ) can be calculated using the following
formula:

k

>0 [ Tasn (6)

UESK =1

where & is the symmetric group. Equating formulag) for the deerminant 4) and
collecting terms with the saméf, g}-monomials we get a formula with the same
appearance a$), wherea j, € K. Sincethere ae onlym f's andn g's in (4) we
can conclude that\ is a sibset of{0, ..., m} x {0, ..., n}.

Let Sbe the subset ofl,...,m+ n} x {1,..., m+ n} containing all pairgl, o (l))
in one non-zero term of6] and leti and j denote the number aip — f andbg — g
respectively in this product. Since the determinant is a sum of such products it suffices to
prove thatin + jm < mnto conclude thatA has the claimed form. With these notations
we have:

Z | = Z r=1+2+---+(m+n).
(,r)es (,res
Hence
Z (=r)y=0.
(,res
Thus we can group the terms:

Z(r—l):Z(l—r):s. (7)

(,res (,res
I<m I>m

Since we are not interested in zero terms in the s@mnthe appearance of matrix)(
implies that we can assume:

o If| <mthenO<r —I <n.
o If| > mthenO<!| —r <m.

Since any term in@) such tha any of the above inequalities is not satisfied will contain at
least one zero as a factor. Thus all terms in the first surid)iarg larger than or equal to
zero, and preciselyof the terms ar@, herce:

in< Z(r—l):s.

(,res
I<m
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Considerimg the seond sum in {) we see tht exactlyn — j terms are non-zero, and the
value of thee is at mosin; herce:

s= Y (-ry=mmn-j).
(Il,r)eS

Combining these inequalities yields:
in<s<mh-j)=in+jm=<mn

To prove thatem,g = (—1)M™DpY we will use formula {) again. To gean element
of f-degreem we must haver(i) = n+i forl <i < m. From here w get a &ctor
(— )™ ands = mnin the left-hand side of {). Then the ight-hand side of%) and the
inequalityl —r =1 —o() < mshowthats(I) =1 —mform+ 1 <| < m+ n. Herce
the corresponding term ing) is:

(—D7bR(— )™ = (=17 (~)™bfy ™.

To calculate(—1)° we can permute the rows of the identity matrix of order n as
dictated byo and call the obtained matriA; then (—1)° = detA). The deterninant
of A can easily be calculated for example by expansion over the first row, the result is:
det A) = (=)™ = (~1)™". Thusamo) = (—=1)™(~1)Mof, = (—=1)M™+Dpn.

The fact thatxg.n) = (—1)"a]" can be proved in a similar manner]

5. Resultantsasatool for verifying SAGBI bases

The following result was originally published iforstensson(2002 for characteristic
zero (though, as we have noted above, that proof can be modified to work in arbitrary
characteristic). The resultants introduced in the previous section in addition to giving us a
new proof of the theorem below also give more insight in the form of an identity as claimed
in the introduction.

Theorem 20. Let f and g be polynomials of degree n and m respectively, thenisf a
SAGBI basis ifjcdn, m) = 1.

Proof. Assume for simplicity thatf and g are monic. ByCorollary 11 the only T-
polynomial that we need to check it —g". Thus it suffices to prove that this polynomial
has a low representation in terms bfandg. Now tale a look at tle form of D( f, g) as
presented ihemma 19 Sincem andn are relatively prime, the only possibility for equality
in the inequalityin + jm < mnisi =m, j = 0ori = 0, j = n. Thus the only{ f, g}-
monomials of the maximal degresn, are f™ and g"; hence the corresponding terms
must cancel, s®( f, g) has the form:

£(FM— g + > e fgl
((9D)
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wherew i j) € K andin 4+ jm < mn. Using the &ct that Re§, G) = 0 wecan deduce
that f™ — g" can be written as a sum:
FY agjflgl
(%))
wherein 4+ jm < mn; this is the sought low representatior]

Remark 21. That the terms of degre®n cancel in the proof above can also be seen by
studying the signs om0 = (—1)™™Y andagn = (~1)". If nis odd therm(n + 1)

is even, so thaigns are different. Ifi is even therm has to be odd since g@d, n) = 1,
som(n + 1) is odd and the signs are different also in this case.

Fortunately this resultant method not only gives us this new proof of an old theorem,
but it also yields some completely new results.

Suppose we want to determine a SAGBI basis for the algebra generatéchhy g,
whenn = deq f) andm = degg) are not relatively prime. Let

d = gcdm, n)
be their greatest common divisor and
n" =n/d, m = m/d.

In this case we get nmformation fromTheorem 20so we would have to check whether
the T-polynomial f ™ — g subduces to zero ovéif, g}. If it does, then we may conclude
that { f, g} is SAGBI. If, on the other hand, it does not, we get a non-zero subduced
remaindeih after some subduction steps:

—g" =) auj flg’ +h,
(%))

/

fm

whereqgj j) € K and degh) < in 4+ jm < m'n'd. Letl denote the degree &f We will
see that ifd and! are relatively prime, theff, g, h} is a SAGBI basis. To verify this with
the usual SAGBI algorithm we would need to calculate at least two higwelynomials
and check if they subduce to zero or not.

To prove the tated result we begin with two technical lemmata:

Lemma 22. Let m, n be postive integers, d= gcdm, n) and mi = m/d. Suppose that |
is a positive integer andcd(l, d) = 1. Then thecondition

1N+ jim+ kil =i2n+ jom+ kol
whereO <k; <ks<d,0<ii<mand0<ir <m

implies:

e eitherk = ko, i1 =iz2and j = jo.
eorky=dandlk =0.

Proof. From our condition we have

(k2 — k)l = (j1— jam+ (i1 —i2)n
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sod|(k2 — ki1); herce eithelkko = d andky = 0, ork; = ks. In the first case we are done;
in the second case we carvidie the equation above lo to get

(ji— joym’' = (i2—ipn’.
This implies that'|(i1 — i2) so wecan deduce thai = i> and hence als¢; = j. O
Note that it can be shown that the implicatiorliamma 22s not valid if gcdd, |) # 1.

Lemma 23. Let m n and| be postive integers, such that & gcdm, n) andgcd(, d) =
1. Let = n/d and mi = m/d. Suppose that the linear Diophantine equation:

N+ jim+ kil =izn+ jom+ kol (8)

has a non-trivial solutior{(ig, jo, 0), (0, 0, d)], where0 < ip < m and0 < jo < n'.
Then all T-polynomials have low representations if the T-polynomials corresponding to
[Go, jo, 0), (0,0,d)] and[(0, n’, 0), (m’, 0, 0)] have low representations.

Proof. First we note (the “triangle lemma”) that &, b] and[b, c] are solutions of &)
suchthat T (a, b) andT (b, ¢) have low representations, then so dd@€s, c). In order to
prove this, recall our convention thatdf= (az,...,a) € N thenf2 = ]—[!:1 fia‘. Now
the statement follows from:

T@c) = fa— fS=(f2— O 4 (fP— ¢ =T(a,b) + T(b, c).

Assume that the T-polynomials corresponding to[(io, jo,0), (0,0,d)] and
[(0,n',0), (M, 0,0)] have low representations. L&ti1, j1, k1), (i2, j2, k2)] be an arbi-
trary fixed solution of g). If both k; > 0 andk, > 0, then we can subtract a suitable
multiple of [(0, 0, 1), (0, 0, 1)] to obtain at least one & = 0 orks = 0. In the case that
both are zero we can usemma 9to reduce to the case of thE-polynomial correspond-
ing to [(0, n’, 0), (M’, 0, 0)]. In the case that one of thig’s is non-zero we may assume,
after transposing if necessary, tikat> 0 andk; = 0, so the equation reduces to:

kol = (i1 —i2)n+ (j1 — j2ym.

This impliesd | kg, so there exis an integek with ko = kd. Leta = (i1, j1,0),
b = (i2 + Kio, j2 + Kjo, 0) andc = (i2, j2, kd). Then

[a,b] =[(1, j1, 0), (i2 + Kio, j2 + Kjo, 0)]

and fromLemma 9the T -polynomial corresponding to this has a low representation. The
other pair:

[b,c] = [(i2+ Kio, j2 +Kjo, 0), (i2, j2, kd)]
= [(i2, j2,0), (i2, j2, 0)] +K[(io, jo, 0), (0,0, d)]
also has a low representation as can be seen by applying the triangle lemma repeatedly
and using the ssumption thaf(io, jo, 0), (0, 0,d)] has a low represgaion and that

[(2, j2,0), (i2, j2, 0)] obviously does. A final application of the triangle lemma implies
that[a, c] = [(i1, j1, 0), (i2, j2, kd)] has a low represeation as claimed. [

Now we are ready to prove the main result of this section:
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Theorem 24. Suppose the polynomial h is the remainder after subduction of the
polynomial ™ — g", i.e,

f"—g" = aj flgl +h, (9)
(%))
where in+ jm < mn/d for all terms inthe sum. Ifdegh) = | andgcd(, d) = 1then
{f, g, h} is a SAGBI basis.

Remark 25. If we remove the condition thédt is the remainder after subduction of the
polynomial f™ — g, then the theorem would no longer be valid. This can be seen from
the following example:

Let f = x84 3x3, g = x* 4+ 2x andh = x3 + x?, then the T-polynomial 2 — g®
subduces te-x2, which cannot be subduced further; tHifs g, h} isnot a SAGBI basis.

Proof of Theorem 24. For simpicity assume thatf and g are monic. Regard the
commutative algebra on three generatfirg, h and one relation:

fm —gn/z Z Ol(i,j)figj—i-h.

in+jm<m’n=n'm
Define an order on the monomials as follows:
filgjlhkl - fizgjzhkz

if andonly if i1n + jim + kil > i2n + jom + kol or in the case of equality if the left
monomial is larger than the right in terms of lex usihg- g > h.
Since the algebra is commutative the single polynomial:

fm_g" — > aij flgd —h (10)

in+jm<m'n=n'm

constitutes a Grébner basis. Consi@¥rf, g) as a polynomial inf, g (andh) and Grobner
reduce it w.r.t. our only relation. The resuR(f, g,h) = > v jk figlhk will be a
polynomial which contains only monomiafd gl hX wherei < m', k < d. Theinequality

i < m' follows from the fact that the leading term of the polynomitd)is f™, so any
factor fS wheres > m' can be reduced. To prove that< d we simplynote that every
time a factoth appears during the reduction, a facfé¥ disappears. Because the maximal
power of f was f™ = ™9 thenumberd is the highest pssible pwer ofh that can
appear during the reduction process. Also note that sfiités the only term inD( f, g)
containingd factorsf™ the only monomial oth-degreed will be he.

If we replace f, g, h by f(x),gx),hx) in R(f,g,h) we getzero, so we have
an identity betweenf (x), g(x) and h(x). In particular the terms of highest degree in
R(f (x), g(x), h(x)) must cancel; thus twgf, g, h}-monomials f (x)' g(x) h(x)k must
have the same maximal degree. According_tanma 22the only two such{f, g, h}-
monomials that can have the same degreefasa’1g(x)!1 and f (x)'2g(x)izh(x)d for
someiq,i> < m', j1, j2. As wenoted before, the onlyf, g, h}-monomial ofh-degreed
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is h(x)d; therdoreis = j2 = 0. Since all other terms d®( f (x), g(x), h(x)) have stictly
lower degree, we can rewrite the equaRyf (x), g(x), h(x)) = 0 as

af (x)'1g(x) 11 — h(x)? = > Yi.jdo f'glh
(i,j.00¢{(01,]1.0),(0,0,d)}
for somea, 8 # 0. This is the sought low representation.
Since here exist low representations for the pairs

[(m,0,0), (0,1, 0], [(i1, j1,0), (0,0, d)]

and this, according tbemma 23 implies that all critical pairs have low representations,
we may @ply Theorem 1Qo conclude that f, g, h} is a SAGBI basis. [

There is a partial converse to the main theorem:

Theorem 26. Let h be the (non-zero) subduced remainder of the T -polynonifai-g"
and{f, g, h} be a SAGBI basis. If p= gcdm, n) is a prime, hen p and I= degh) are
relatively prime.

Proof. To prove this theorem, assume thit, g, h} is SAGBI and thatp = gcd(m, n) is a
prime diMdingl. As in theproof of Theorem 15ve combine the tower law arildemma 13

n=[KX) : K(H]=[K) : KL PIK(F, g): K],
m=[K(X) : K(@)] = [KX) : K(f, 9IK(f, 9): K(@].

Thus[K (x) : K(f, g)] divides gcdm, n) = p, and shce we hag assumed thap is prime:
[KX): K(f,g)] = por[K(x): K(f,g)] =1.

In the first cas@ heorem 15ells us thaf f, g} is a SAGBI basis, sb = 0 contrary to
our assumption.

In the second case we hatex) = K(f, g), and ths implies thatx can be written
as a quotient of two polynomials froid[ f, g]. Since{f, g, h} is SAGBI, all elements
of K[f, g] = K[f, g, h] have degree divisible bp, so in paticular the quotient of two
elements has degree divisible pycontradiction. [

This converse does not hold if gegd, n) is not prime, as the follwing example shows:

Example27. Let f = x8 + 2x?, g = x1? 4 3x°, theng? — {2 subduces tdh = x®. Then
{f, g, h} is a SAGBI basis despite the fact tltht= gcd(12, 8) = 4 anddegh) = 6 have

a canmon factor. Note thaftf, g, h} in this example is a SAGBI basis, but not a minimal
one.

6. An example

In this section we shall take a closer look at subalgeBrgg g], wheref is of degree
6 andg is of degree 4. FronTheorem 20we know that if the degrees of andg are
relaively prime then{f, g} form a SAGBI basis. To get a better understanding of what
is going on in the case where the degrees of the polynomials have a common factor we
examine the “smallest” such instance in detail. The characteristic of the underlying field
plays an essential role here as the following example shows:
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Example 28. Let K be a field of characteristic 2 and l1ét= x 4+ x andg = x*. Then
f2 — g% = 2x” + x?2 = x2 and hence? € K[ f, g]. Moreover,x = f — (x?)3, so in this
caseK[f, g] = K[x].

As mentioned in the introduction, it follows from the important epimorphism theorem
by Abhyankar and Mol{1973ab, 1975 that his can never happen when the characteristic
of the field does not dividd = gcd(n, m), that is when the characteristic is different from
2 inour case.

Let us first concentrate on the situation when the field has characteristic different from
2. FromTheorem 24wve know that ifh is of odd degree theff, g, h} is a SAGBI basis.
Sinceh is the remainder after subduction df?> — g2 it must haveone of the following
degrees: 119, 7,5, 3, 2, 1. It turns out thah never has degree 1 or 2, but let us return to
that question later. The following list of examples shows the&n have any of the degrees
11, 9,7, 5 and3:

Example 29. If f =x8andg = x*+ x3thenh = 2 — g% = —3x11 — 3x10 — x°,
Example 30. If f =x8andg = x*+ xthenh = f2 — g3 = —3x° — 3x% — x5,
Example31. If f = x5+ x andg = x*thenh = 2 — g3 = 2x” 4+ x2.

Example 32. If f =x84+3x3+x%andg = x*+2xthenh = f2—g3—-2¢2+3f —g=
—2x5 4 x3 — 5x2 — 2x.

Example 33. If f = x84 3x*+ 3x3andg = x* + 4x? + 2x thenh = 2 — g3+ 6fg —
39° + 19f + 3g = x® + 6x.

Let us nowprove thath cannot be of degree 1 or 2. One way to do so is to calctlate
when f and g are polynomials of degrees 6 and 4 with arbitrary coefficients and then
show that eery choice of coefficients forf and g that satisfy the equations we get
from setting the coefficients ok1, x°, x’, x5 andx® to zero also makes the coefficients
of x2 and x vanish. The computation is quite short and straightforward, but provides
little understading of what is going on. Instead we will give a proof inspired by an
algorithm presented iRichman(1989. This algorithm takes two univarite polynomials
f and g as input and from them constructs polynomialg hy, hy ...hy—1, where
N = [K(f,g) : K(g)] is the degree of the field extensidq(f, g)/K(g), such hat
hi € f' + K[glf'"1+ ...+ K[g]lf + K[g]. In Richman(198§ it is also daimed that
all h; have incongruent degrees modulo ¢g However, theproof of this property seems
to be incompletgeaspointed out byKang (1997. (For a hint of the significance of this
property, see the proof of the proposition below.) Therefore we will not assume that the
degrees of thé;’s are incongruent modulo dém), but rather verify this explicitly for the
specific polynomials under consideration.

Proposition 34. Let f and g be monic polynomials of degréend 4 respectvely over

a field of chaacteristic different from two and let h be the unique polynomial of the
form 2 — g% + afg 4+ Bg® + yf + 8g + € that has no terms of degrek9, 8, 6, 4 or

0 (a, B, v, 8, € € K). Then h cannot be of degrdeor 2.
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Proof. Let us frst show thah cannot be of degree 1 using Richman'’s algorithm to produce
elementshg, h1, h, andhz and then verifying that they all have incongruent degrees
modulo 4.

Assume thah is of degree 1. Lehg = 1,h; = f andh, = h = 2 — g3+ afg +
Bg%+yf +8g+e.Thenhg =hf = f3— fg® +af?g+ g2+ yf2 4+ 8fg+ef isof
degree 7. Now it is easy to show tH&f f, g] = K[g] + K[g]f + K[g] 2+ K[g]f3 =
K[glho + K[g]h1 + K[g]h2 + K[g]hs. In other wordshg, h1, ha, h is a K[g]-basis for
K[f, g]. The advantage of choosing a basis with elements of incongruent degrees modulo
the degree of is that for any elemenp = po(g)ho + p1(g)h1 + p2(g9)h2 + p3(g)hs the
degrees of the leading terms of the summands must all be different, so that the leading term
of p equals the leading term of the summapdg)h; with deghj) = deg p) modulo
degg). In our case we immediately get a coadiction from the fact thap = h? is an
elementinK [ f, g] of degree 2, but then its leading term must equal that;¢f5)h1 which
is of degree at least 6.

To prove thath cannot be of degree 2 we use an argument similar to the one above,
but now the degrees of andh are congruent modulo dég) so using hem both in our
basis would prevent it from having the desirmcongruence property. To overcome this
difficulty we modify the basis elemenks somewhat.

Assume thah is of degree 2. Ih = sx?+tx we perform the substitutiop = x—t/2sto
get rid of the coefficient ok in h. (Notethat we are using that the afaateristic is different
from 2 here.) Such a substitution does not affect the degrees occurring in the subalgebra
K [f, g], while simplifying our analysis. Hence we may assume from now ontthats x?
for some non-zere.

Without loss of generality we may also assume thaindg have the forms:

f = x5+ asx® + asx® + ax? + ax,
g = x* + bax® + box? + by x.

To see ths wenote that if for examples # 0 then we mayeplace our generatoffsandg
by the generator$ — a;g andg of K[ f, g] and hence we may assume tHahas no term
of degree 4. Note that this procedure does not change

h=f2—g®+afg+pg°+yf +8g+e
= (f —au9)? — g% + (@ + 2a0)(f — auQ)g + (B + au(x + au))g?
+y(f —a40) + (6 + yagyg +e.

Thusif f' = f —aygtheunique polynomial of the fornf 2 — g3 +o’ f'g+ /g% +y' ' +
8'g + €’ that has no tens of degree 1@, 6, 4 or O s still h. Similarly if ag # 0 orbg #£ 0
we can replacd by f — ag or g by g — bg without alteringh or K[ f, g].

For future use we note that sinteis of degree less than 11 the coefficieas2- 3bs
of x1in f2 — g® must be equal to zero. Let us now construct Kuyg]-basis. frst we
look at the case whelpz # 0. Lethg = 1 andhy = h as before and ldiz = hf — s¢? €
3+ K[g1f2 + K[glf + K[g]. The cefficient ofx” in h3 is s(as — 2bz) which is non-
zero. Moreoverh; = sf — hgis of degree 5, since the coefficientxt is s(as — bg). It
is straightforward to check théb, h1, h, hs generateX [ f, g] as aK[g]-module, and as
abhove theh; have the convenient property of having incongruent degrees modulg)deg
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We obtain a contradiction by noting thgt— h?/s? is an element of degree 3 K[ f, g]
while the only basis element of degree congruent to 3 modiisf degree 7.

Let us now return to the cad® = 0. The conditions forf2 — g3 + 3b, fg being of
degree at most 8 ar@g@ = 0 and—3b; — a53,+ 2a3+ 3bpas = 0 or equivalently as = 0 and
az = 3—51. The cefficients ofx3 in hNg, = hy + shpg andx® in hy = hs + 2shkp f become
% and—%, resgectively. Ifb; # 0 this gives a ontradiction in the same way as above:

{ho, h1, ho, ng} is aK[g]-basis ofK[ f, g] with elements of degrees that are incongruent
modulo degg), but the kading term ofg — :—j - bish = bix € K[f, g] is of degree 1.
Otherwiseb; = 0, in which casen = sx? cannot hold since if the coefficienag of x’

in h equals zero this also makes the coeﬁicia%bf x2 in h (and hence the whole &)

vanish. O

When the characteristic of the field is B, can have any of the possible degrees
11,9,7,5,3 and 2, but not 1. That the degree cannot be 1 can be seen in the same way as
for other characteristics, and that thb@tdegrees are possible is clear fremamples 28
29, 30 and33together with the following ones:

Example 35. If f = x84 x®andg = x*+ x are polynomials over a field of characteristic
2thenh = f2— g3 — fg=x"+x3.

Example 36. If f = x®+x5andg = x*+x? are polynomials over a field of characteristic
2thenh = f2— g3 — g2 — f =x®+x%

In this section we have seen that, when the characteristi€ @ different from 2,
K[f, g], wheredeq f) = 6 anddeqg) = 4, always has a SAGBI basfd, g, h}, whereh
is the subduced remainder of tHe-polynomial f 2 — g2. This follows from Proposition 34
and Theorem 24 In the case when ch&) = 2 anddegh) = 2 we cannot apply
Theorem 24so { f, g, h} is not necessarily a SAGBI basis, &xample 28 This points
to the importance of the characteristic of the underlying field in the construction of SAGBI
base.

7. ldeasfor further development

The calculations in the next natural example, wineg 8, m = 6, exhibit behaviour

similar to hat whenn = 6, m = 4. In zero characteristic the polynomia{x) which
we get in the subduction process never has degree 10, although degree 9 is possible. In
characteristic two the situation is differehi(x) can have degree 10 as can be seen from
the example:

f(x) = x84+ x4 gx) = x® + x,
where the SAGBI basis also contains the polynomials

x20 4+ x4 + x? + x, x4 x4+ x+ x4+ x3+x, x13 4+ %3 + %% + x.

Hence the characteristic ofdtfield influence the vanishing of coefficients both here and
whenn = 6, m = 4. On the other hand, the identity derived from the resultant, that we
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used in the proof of heorem 20shows thatertain coefficients vanish when the generating
polynomials are of relatively pme degrees, and this identityvalid in all characteristics.
We therefore suspect that a different type of identity is needed to explain what happens in
the case when the degrees of the generators have a common factor.

The absence of polynomials of degree 10 could be explained using the algorithm
in Richman(1986 Sedion 3), but as mentioned earlier tigeare unfortunately some gaps
in the proof of the coectness of this algorithm, as was pointed outkang (19917). It
would be interesting to see if Richm'a algorithm carbe jugified.
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