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Abstract

Every finite group acts as the full isometry group of some compact hyperbolic
3-manifold. In this paper we study those finite groups which act maximally, that is
when the ratio

|Isom+(M)|/vol(M)

is maximal among all such manifolds. In two dimensions maximal symmetry groups
are called Hurwitz groups, and arise as quotients of the (2,3,7)–triangle group. Here
we study quotients of the minimal co-volume lattice Γ of hyperbolic isometries in
three dimensions, and its orientation-preserving subgroup Γ+, and we establish re-
sults analogous to those obtained for Hurwitz groups. In particular, we show that
for every prime p there is some q = pk such that either PSL(2, q) or PGL(2, q) is
quotient of Γ+, and that for all but finitely many n, the alternating group An and
the symmetric group Sn are quotients of Γ and also quotients of Γ+, by torsion-free
normal subgroups. We also describe all torsion-free subgroups of index up to 120 in
Γ+ (and index up to 240 in Γ), and explain how other infinite families of quotients
of Γ and Γ+ can be constructed.

1 Introduction

A well known theorem of Greenberg [13] states that every finite group acts on a Riemann

surface as the full group of conformal automorphisms, and a famous theorem of Hurwitz
[15] states that if S is a compact Riemann surface of genus g > 1, then the number of

conformal automorphisms of S is bounded above by |Aut+(S)| ≤ 84(g − 1), with equality

attained if and only if the conformal automorphism group Aut+(S) is a homomorphic
image of the (2, 3, 7) triangle group.

A reason for Hurwitz’s result (although not his original argument) is that S can be
identified with a quotient space U/Γ, where U is the hyperbolic upper half-plane and Γ is a

Fuchsian group. The conformal automorphism group of S is isomorphic to the factor group
∆/Γ where ∆ is the normalizer of Γ in PSL(2,R). The Riemann-Hurwitz formula gives
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|Aut+(S)| = |∆/Γ| = µ(Γ)/µ(∆) = 4π(g−1)/µ(∆), where µ(·) is the area of a fundamental
region. A theorem of Siegel [24] states that among all Fuchsian groups, the (2, 3, 7) triangle

group has a fundamental region of uniquely smallest hyperbolic area, viz. µ(∆) = π/21,
so the Riemann-Hurwitz formula gives |Aut+(S)| = 2π(2g − 2)/µ(∆) = 84(g − 1).

Studies of automorphisms of surfaces have since focussed on determining genera for
which this bound is sharp, finding sharp bounds for other genera, and finding the minimum

genus of a surface on which a given group acts faithfully, among other things; see [3, 4, 5]

and some of the references therein, for example. The smallest Hurwitz group is the simple
group PSL(2, 7) of order 168, and Macbeath [20] proved that PSL(2, q) is Hurwitz precisely

when q = 7, or q = p for some prime p ≡ ±1 modulo 7, or q = p3 for some prime p ≡ ±2 or
±3 modulo 7. Conder [2] proved that the alternating group An is a Hurwitz group for all

n ≥ 168 (and for all but 64 smaller values of n > 1), and later [3] determined all Hurwitz
groups of order less than 1,000,000. More recently, it has been shown that many more

of the classical simple groups of Lie type are Hurwitz (see [19] and other references listed
there), as are exactly 12 of the 26 sporadic simple groups, including the Monster (see [30]).

Other families of examples are described in two survey articles [4, 5].

In this paper we investigate the 3-dimensional analogues of some of these questions.
Kojima [17] has shown that every finite group acts as the full isometry group of a closed

hyperbolic 3-manifold; this does not appear to be known for higher dimensions. We may,
however, follow the above argument for all n ≥ 2. An orientable n-dimensional hyperbolic

manifold is the quotient space M = Hn/Γ, where Γ is some torsion-free discrete subgroup
of Isom+(Hn), the group of orientation-preserving isometries of n-dimensional hyperbolic

space Hn. The orientation-preserving isometry group Isom+(M) of M is then isomorphic
to ∆/Γ where ∆ is the normalizer of Γ in Isom+(Hn). Letting O be the orientable n-

dimensional orbifold Hn/∆, we have vol(O) = vol(M)/|Isom+(M)| and

O = Hn/∆ ∼= (Hn/Γ)/(∆/Γ) ∼= M/Isom+(M),

and so the ratio |Isom+(M)|
vol(M)

is largest precisely when O = Hn/∆ is of minimum possible

volume. Note that O depends only on the normaliser ∆ = NIsom+(Hn)(Γ) of Γ in Isom+(Hn)

and not on the subgroup Γ itself.

Now, in each dimension it is known that there are orientable n-dimensional orbifolds
of minimum volume; for n = 3 this is due to Jørgensen, see [12], and for n ≥ 4 this is due

to Wang, [27]. Only in two and three dimensions, however, have these minimal volume
orbifolds been identified and uniqueness established. The discrete subgroup Γ of Isom(H3)

of uniquely smallest co-volume vol(Hn/Γ) was found by Gehring and Martin [7, 8, 9, 10]
and Marshall and Martin [22] to be the normaliser of the [3, 5, 3]-Coxeter group (which

will be described in detail in the next section). Its orientation-preserving subgroup Γ+ is a
split extension by C2 of the orientation-preserving subgroup of the [3, 5, 3]-Coxeter group,

of index 2 in Γ.
Jones and Mednykh [16] proved that the smallest quotient of Γ+ by a torsion-free normal

subgroup is PGL(2, 9), of order 720, while that of the group Γ itself is PGL(2, 11)×C2, of
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order 2640, and investigated the 3-manifolds associated with these and a number of other
such quotients of small order.

In this paper we will investigate further properties of Γ and Γ+, describing all torsion-
free (but not normal) subgroups of small index, and proving the following:

Theorem A. For every prime p there is some q = pk (with k ≤ 8) such that either
PSL(2, q) or PGL(2, q) is a quotient of Γ+ by some torsion-free normal subgroup.

Theorem B. For all but finitely many n, both the alternating group An and the symmetric

group Sn are quotients of Γ, and also quotients of Γ+, by torsion-free normal subgroups.

The paper is structured as follows. In section 2 we describe the groups Γ and Γ+,

determine all conjugacy classes of their torsion elements of prime order, and describe all
conjugacy classes of torsion-free subgroups of index up to 120 in Γ+ (index up to 240 in

Γ). We give a quick proof of Theorem A in section 3; a more detailed proof was given in
the third author’s doctoral thesis [26]. In section 4 we prove Theorem B, and in the final

section we explain how other infinite families of quotients of Γ and Γ+ can be constructed.

2 The extended [3,5,3] Coxeter group Γ

Let C be the [3, 5, 3] Coxeter group generated by a, b, c and d with defining relations

a2 = b2 = c2 = d2 = (ab)3 = (bc)5 = (cd)3 = (ac)2 = (ad)2 = (bd)2 = 1.

This group can be realised as a group of hyperbolic isometries, generated by the reflections
in the faces of a hyperbolic tetrahedron, two of which intersect at an angle π

5
, with each

intersecting another face at an angle π
3
, and all other angles being π

2
.

This tetrahedron T has a rotational symmetry that is naturally exhibited as a reflec-

tion of the Dynkin diagram of the Coxeter group (and called the graph automorphism
of C), corresponding to an orientation-preserving hyperbolic isometry t of order 2 that

interchanges the faces reflected by a and d and also the faces reflected by b and c.
The group Γ is a split extension (semi-direct product) of the group C by the cyclic

group of order 2 generated by t, and has the finite presentation

Γ = 〈 a, b, c, d, t | a2, b2, c2, d2, t2, atdt, btct, (ab)3, (ac)2, (ad)2, (bc)5, (bd)2, (cd)3 〉.

This is the group now known to be the unique discrete subgroup of Isom(H3) of smallest
co-volume. Its torsion-free normal subgroups act fixed-point-freely on hyperbolic 3-space

H3 and give rise to hyperbolic 3-manifolds with maximal symmetry group.
The orientation-preserving subgroup Γ+ is the index 2 subgroup generated by ab, bc, cd

and t, and is a split extension of C+ = 〈ab, bc, cd〉 by 〈t〉. In fact by Reidemeister-Schreier
theory, it is not difficult to show that Γ+ is generated by the three elements x = ba, y = ac

and z = t, subject to defining relations x3 = y2 = z2 = (xyz)2 = (xzyz)2 = (xy)5 = 1.
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We need to determine the torsion elements of Γ. To do this, note that any finite group
in Isom(H3) fixes a point of H3 equivalent (under the group action) to a vertex or point on

some edge (in the case of cyclic groups) of the fundamental domain obtained by bisecting
the tetrahedron appropriately. Identifying the vertex stabilisers gives

Proposition 1 Every torsion element of Γ is conjugate to an element of one of the fol-

lowing six subgroups of Γ stabilizing a point of the hyperbolic tetrahedron T :
(1) 〈a, b, c〉, isomorphic to A5 × C2, of order 120,
(2) 〈a, b, d〉, isomorphic to D3 × C2, of order 12,
(3) 〈a, c, d〉, isomorphic to D3 × C2, of order 12,
(4) 〈b, c, d〉, isomorphic to A5 × C2, of order 120,
(5) 〈a, d, t〉, isomorphic to D4, of order 8,
(6) 〈b, c, t〉, isomorphic to D5 × C2, of order 20.

This leads to the following:

Proposition 2 A subgroup of Γ+ is torsion-free if and only if none of its elements is
conjugate in Γ to any of ab, ac, bc or t. A subgroup ∆ of Γ is torsion-free if and only if

none of its elements is conjugate to any of a, ab, ac, bc, (abc)5, t, adt or bcbcbt.

Proof . We need only find from among the elements of the six subgroups listed in Propo-

sition 1 a list of representatives of conjugacy classes of torsion elements of (prime) orders
2, 3 and 5, up to inversion. This is not difficult:

(1) In the subgroup 〈a, b, c〉 ∼= A5 ×C2, every element of order 2 is conjugate to either a or

ac or the central involution (abc)5, while every element of order 3 is conjugate to ab, and
every element of order 5 is conjugate to bc or its inverse.

(2) In the subgroup 〈a, b, d〉 ∼= D3 × C2, every element of order 2 is conjugate to a or d or
ad, while every element of order 3 is conjugate to ab, and there are no elements of order 5.

(3) In the subgroup 〈a, c, d〉 ∼= C2 ×D3, every element of order 2 is conjugate to a or c or

ac, while every element of order 3 is conjugate to cd, and there are no elements of order 5.

(4) In the subgroup 〈b, c, d〉 ∼= A5 × C2, every element of order 2 is conjugate to b or bc or
the central involution (bcd)5, while every element of order 3 is conjugate to cd, and every

element of order 5 is conjugate to bc or its inverse.

(5) In the subgroup 〈a, d, t〉 ∼= D4, every element of order 2 is conjugate to a or ad or t,

and there are no elements of order 3 or 5.

(6) In the subgroup 〈b, c, t〉 ∼= D5 × C2, every element of order 2 is conjugate to b or t or
the central involution bcbcbt, while every element of order 5 is conjugate to bc, and there

are no elements of order 3.

Finally note that each of b, c and d is conjugate to a in at least one of these six
subgroups, that cd is conjugate in Γ to (cd)t = ba = (ab)−1, that ad is conjugate in 〈a, c, d〉
to ac, and that (bcd)5 is conjugate in Γ to (cba)5 = (abc)5. The result follows. 2
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In order to work purely within Γ+, without any reference to Γ, the following corollary
of the above proposition can be more useful:

Corollary 3 A subgroup of Γ+ is torsion-free if and only if none of its elements is conju-

gate to any of ab, ac, bc, t or adt.

Proof . Every torsion element of prime order in Γ+ lies in the Γ-conjugacy class of one of

ab, ac, bc or t, and each Γ-conjugacy class gΓ is the union of one or two conjugacy classes

in Γ+, namely gΓ+

and (gu)Γ+

for any u ∈ Γ \ Γ+. Since (ab)a = ba = (ab)−1, and
(ac)a = ca = ac, and (bc)b = cb = (bc)−1, while ta = ata = adt, the result follows. 2

Proposition 2 also feeds into a useful test for torsion in subgroups of finite index in

Γ, derivable from the standard permutation representation of Γ on the right cosets of the

subgroup by right multiplication.

Proposition 4 A subgroup Σ of finite index in Γ is torsion-free if and only if none of the

elements a, ab, ac, bc, (abc)5, t, adt or bcbcbt has a fixed point in the natural action of Γ on
the right coset space (Γ : Σ) = {Σg : g ∈ Γ} by right multiplication. Similarly, a subgroup

Σ of finite index in Γ+ is torsion-free if and only if none of the elements ab, ac, bc, t or adt
has a fixed point in the natural action of Γ+ on the coset space (Γ+ : Σ).

Proof . If g is any of the given torsion elements and g has a fixed point Σu, then ugu−1 is

a torsion element of finite order in Σ. Conversely, by Proposition 2 any torsion element in
Σ must be of the form ugu−1, where g is one of the given elements, and then g fixes the

coset Σu. 2

Corollary 5 Any torsion-free subgroup of finite index in Γ+ must have index in Γ+ divis-
ible by 60, and index in Γ divisible by 120.

Proof . Any torsion-free subgroup Σ of finite index in Γ must intersect trivially the torsion

subgroup 〈a, b, c〉 of order 120, and hence in the natural action of Γ on the coset space
(Γ : Σ), all orbits of 〈a, b, c〉 must have length 120, and in the corresponding action of Γ+

on (Γ+ : Σ), all orbits of 〈ab, bc〉 must have length 60. 2

Using these facts one can seek all torsion-free subgroups of small index in Γ, with the

help of the LowIndexSubgroups command in the computational algebra system Magma [1].
There are exactly two Γ-conjugacy classes of torsion-free subgroups of index 60 in Γ+

(and index 120 in Γ). A representative of one such class is the subgroup Σ60a generated by
x = abt and y = bcbacdbcbcdb. The Rewrite command in Magma (using Reidemeister-

Schreier theory) gives 〈 x, y | x3yx3yx3y−1xy−1, x4y−1xy−2xy−1xy−2xy−1 〉 as a defining
presentation for this subgroup, and forcing the generators to commute reveals that the

abelianisation (first homology group) Σ60a/[Σ60a,Σ60a] is isomorphic to Z70, the cyclic
group of order 70. The quotient Γ+/coreΓ+(Σ60a) by the core of Σ60a in Γ+ (the kernel of

the action of Γ+ on the coset space (Γ+ : Σ)) is isomorphic to PSL(2, 29), of order 12180,
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and the quotient Γ/coreΓ(Σ60a) is isomorphic to a split extension of PSL(2, 29)×PSL(2, 29)
by C2.

We can give a description of this manifold as follows. It is obtained from the cusped
manifold m017 of volume 2.828122 . . . and homology Z7 + Z of Weeks’ census [28] by per-

forming (−4, 3) Dehn surgery [25] on the cusp. These and subsequent data can be checked
by comparing the fundamental groups and/or identifying and comparing the arithmetic

data using Goodman’s Snap program and arithmetic census data [11].

The covolume of Σ60a is 2.3430 . . . and its symmetry group is Z2 with Chern-Simons
invariant 29/120. A representation in PSL(2,C) is given by two matrices A and B with

tr(A) = i
√

(1 +
√

5)/2, tr(B) = z, where z4 − 2z3 + z − 1 = 0 is complex, and

tr[A,B] = −4.5450849718747 . . .+ i1.58825139255011 . . .

in the (trace) field of degree 8, Q(z,
√

5).

Also we have the following data on finite-sheeted covers, with CS denoting the Chern-
Simons invariant:

• 2 sheets: 1 cyclic cover, homology Z35, CS=−1/60;

• 5 sheets: 1 cyclic cover, homology Z14, CS=5/24;
• 7 sheets: 2 covers, homology Z2 + Z20 + Z and Z29 + Z290 (cyclic cover), CS =23/120;

• 8 sheets: 3 covers, homology (Z2)
3 + Z210, (Z2)

3 + Z70 and Z1260, CS = −1/15;
• 9 sheets: 1 cover, homology Z210, CS=7/40;

• 10 sheets: 5 covers, homology Z112 + Z + Z, Z42 + Z (two), Z5 + Z560, Z11 + Z77 (cyclic
cover), CS=−1/12.

Note that one of the two covers of 7 sheets and three of the five covers of 10 sheets have
infinite homology. There are no other covers of fewer than 11 sheets.

A representative of the other class is the subgroup Σ60b generated by x = abt and y =

bacbacbcdbcb, with presentation 〈 x, y | x3yx3yx−1y2x−1y, x4y−2xy−3xy−2 〉, and abeliani-
sation Z58. The quotient Γ+/coreΓ+(Σ60b) is isomorphic to PSL(2, 59), of order 102660,

and the quotient Γ/coreΓ(Σ60b) is a split extension of PSL(2, 59) × PSL(2, 59) by C2.

This manifold is obtained from the cusped manifold m016 of volume 2.828122 . . . and
homology Z of Weeks’ census [28] by performing (−4, 3) Dehn surgery [25] on the cusp. Its

volume is again 2.3430 . . . (of course) and its symmetry group is again Z2 but this time the
Chern-Simons invariant is −11/120. A representation in PSL(2,C) is given by matrices A

and B with tr(A) = i
√

(
√

5 − 1)/2, tr(B) = 0.77168095921341 . . .+ i0.63600982475703 . . .,

and
tr[A,B] = −3.73606797749979 . . .+ i2.56984473582543 . . . ,

again in the field Q(z,
√

5). Also we have the following data on finite-sheeted covers, none
of which has infinite homology:

• 2 sheets: 1 cyclic cover, homology Z29, CS=−11/60;
• 8 sheets: 1 cover, homology Z2 + Z870, CS = −7/30;
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• 9 sheets: 1 cover, homology Z522, CS=7/40;
• 10 sheets: 2 covers, homology Z2 + Z2 + Z464, Z1392, CS=−1/12.

Only the two-sheeted cover is cyclic, and there are no other covers of fewer than 11 sheets.

Next, there are exactly seven Γ-conjugacy classes of torsion-free subgroups of index 120

in Γ+ (index 240 in Γ). Details of representatives of these classes are summarised below.

Subgroup Σ120a

Generators: x = abcd, y = acbacbdcab
Defining relations: xy−1x2yx2yx2y−1x2yx2yx2y−1xy−2

= yx2yx2y−1xy−1x2yx2y−1xy−1x2yx2yx = 1
Abelianisation: Z29

Quotient by core in Γ+: PGL(2, 59), of order 205320
Quotient by core in Γ: a C2 extension of a subdirect product of two copies

of PGL(2, 59), of order 42156302400
Manifold: (−3, 2) Dehn surgery on s897
Chern-Simons: 11/60
Covers of ≤ 10 sheets: 8 of 6 sheets, 2 of 7 sheets, 1 of 8 sheets, 1 of 9 sheets,

8 of 10 sheets (two with infinite homology: Z2 + Z58 + Z).

Subgroup Σ120b

Generators: x = abcd, y = acbacdcbcb
Defining relations: x2yxyx2yx−1yx2yx−1y2x−1yx2yx−1y

= xy−1x−2y−1xy−1x−2y−1xyx−1yx2yx−1y3x−1yx2yx−1y = 1
Abelianisation: Z35

Quotient by core in Γ+: PSL(2, 29) × C2, of order 24360
Quotient by core in Γ: (C2 × PSL(2, 29) × PSL(2, 29)) :C2, of order 593409600
Manifold: (−3, 2) Dehn surgery on s900
Chern-Simons: 1/60
Covers of ≤ 10 sheets: 5 of 5 sheets (four with infinite homology: Z42 + Z),

8 of 6 sheets (two with infinite homology: Z140 + Z),
10 of 7 sheets: (seven with infinite homology: Z65 + Z + Z in
four cases, Z2 + Z10 + Z + Z in two cases, Z120 + Z in one),
15 of 8 sheets (none with infinite homology),
5 of 9 sheets (none with infinite homology),
24 of 10 sheets (nineteen with infinite homology:
Z4 + Z4 + Z168 + Z + Z in one case, Z7 + Z224 + Z in two
cases, Z14 + Z42 + Z in four, Z3 + Z84 + Z in eight, and
Z2 + Z84 + Z in four).

There is another interesting way to see this group. If we take the knot 52 in Rolfsen’s

tables and take the two-sheeted cyclic cover we get s900. Then (−3, 2) Dehn surgery will
produce the hyperbolic manifold with fundamental group Σ120b.
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Subgroup Σ120c

Generators: x = abcd, y = acbacbacdbcb, z = acbacdcbcdbcab
Defining relations: xy−1xz−1y2z−1 = x2y−1xy−1x2zy−1z

= x2yz−1x−1z−1yx2z = 1
Abelianisation: Z29

Quotient by core in Γ+: PSL(2, 59) × C2, of order 205320
Quotient by core in Γ: (C2 × PSL(2, 59) × PSL(2, 59)) :C2, of order 42156302400
Manifold: (3, 2) Dehn surgery on v2051
Chern-Simons: −1/15
Covers of ≤ 10 sheets: 4 of 6 sheets, 8 of 7 sheets, 12 of 8 sheets, 6 of 9 sheets,

and 6 of 10 sheets (none with infinite homology).

Subgroup Σ120d

Generators: x = abcd, y = acbacbcdcbcb, z = acbadcbacdbcab
Defining relations: xy−1zx2zy−1 = x2y−1z−1yx−1zx2z−1yx−1z

= x2y−1zy−1x3y−1zy−1x2z = 1
Abelianisation: Z9

Quotient by core in Γ+: (Z3)
19 :PGL(2, 19), of order 7949868434280

Quotient by core in Γ: a C2 extension of a subdirect product of two copies of
(Z3)

19 :PGL(2, 19), of order 63200408122361538679118400
Manifold: (3, 2) Dehn surgery on s890
Chern-Simons: 1/30
Covers of ≤ 10 sheets: 1 of 3 sheets, 5 of 4 sheets, 9 of 6 sheets (two with infinite

homology Z3 + Z + Z), 35 of 8 sheets (18 with infinite
homology: Z2 + Z2 + Z36 + Z in 12 cases, Z36 + Z in six),
9 of 9 sheets (two with infinite homology Z3 + Z9 + Z),
and 2 of 10 sheets.

Subgroup Σ120e

Generators: x = abcbt, y = adcbacbadct
Defining relations: xyx−2yx−2yxyxyx−2yx−2yxy2xy2

= x2yxyx−2yx−2yxyx2y−1x2y−1xy−1x2y−1 = 1
Abelianisation: Z80

Quotient by core in Γ+: a subdirect product of PGL(2, 9) and PGL(2, 11),
of order 475200

Quotient by core in Γ: a C2 extension of a subdirect product of two copies of
each of PGL(2, 9) and PGL(2, 11), of order 342144000

Manifold: (−3, 2) Dehn surgery on v2413,
Chern-Simons: −1/5
Covers of ≤ 10 sheets: 1 of 2 sheets, 1 of 3 sheets, 4 of 4 sheets, (one with

infinite homology Z2 + Z20 + Z), 1 of 5 sheets,
7 of 6 sheets (one with infinite homology Z4 + Z40 + Z),
2 of 7 sheets, 25 of 8 sheets (15 with infinite homology:
one Z2 + Z2 + Z40 + Z + Z, two Z2 + Z20 + Z + Z,
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one Z2 + Z2 + Z10 + Z + Z, one Z2 + Z2 + Z2 + Z240 + Z,
one Z2 + Z2 + Z4 + Z60 + Z, one Z2 + Z2 + Z2 + Z30 + Z,
six Z2 + Z2 + Z160 + Z, and two Z4 + Z4 + Z20 + Z), 3 of
9 sheets, 10 of 10 sheets, (four with infinite homology:
one Z40 + Z40 + Z, one Z12 + Z24 + Z, two Z96 + Z).

Subgroup Σ120f

Generators: x = acdbcb, y = cbdcabcd
Defining relations: yxyxy2xy2x−1yx−2yx−1y2xy

= xyx2y−1x2y−1xy−1x2y−1x2yxy2 = 1
Abelianisation: Z11 ⊕ Z11

Quotient by core in Γ+: PGL(2, 11), of order 1320
Quotient by core in Γ: PGL(2, 11) × C2, of order 2640.

This group is particularly interesting. If we perform (5, 0) orbifold Dehn surgery on the

figure of eight knot complement — so the underling space is the 3-sphere branched along
the figure eight knot — and then take the cyclic cover of 5 sheets, we obtain a manifold

whose fundamental group is the group Σ120f . This manifold, which does not appear on
the census, has an exceptionally large symmetry group, being amphichiral of order 40 and

having presentation

〈 a, b : a10, b4, (ba)2, (ba2ba−3)2, (ba−1)2, b2a3b2a−3 〉.

In the census, only v3215(1, 2) with volume 4.7494 . . . has a larger symmetry group (non-

abelian of order 72). The order of the symmetry group could be at most 120 here. The
Chern-Simons invariant of this manifold is 0.

There are also the following non-cyclic covers of up to 10 sheets:
• 6 sheets: 14 covers, with homology Z11 + Z66 in ten cases and Z11 + Z33 in four;

• 7 sheets: 10 covers, all with homology Z44 + Z88;
• 8 sheets: 5 covers, all with infinite homology Z33 + Z33 + Z;

• 9 sheets: 10 covers, all with infinite homology Z11 + Z11 + Z + Z;
• 10 sheets: 17 covers, with 15 having infinite homology (Z66 + Z66 + Z in ten cases and

Z55 + Z55 + Z in five), and two with finite homology Z11 + Z11 + Z11 + Z264.

In fact there is another way to see this manifold. If one performs (2, 0) and (5, 0) orbifold

Dehn surgery on the two-bridge link 62
2 of Rolfsen’s tables, one obtains the orbifold O2,5

whose fundamental group is a lattice with presentation

π2,5 = 〈 a, b : a2 = b5 = (abab−1ab−1)2ababab−1ab 〉.

Geometrically the underlying orbifold O2,5 is the sphere with branching of degree 2 along
one link and degree 5 along the other, and has homology Z10. The group π2,5 has index

12 in Γ+. The 10-fold cyclic cover (obtained by unwrapping both branching links) is the
manifold corresponding to Σ120f .
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Subgroup Σ120g

Generators: x = acdbcb, y = abacbdcabcdc, z = abacbcbabcbcda
Defining relations: x−1yxzyz−1y = x2zyxzx−1zy−1z = x2yz−1xy−1zxzy−1z = 1
Abelianisation: Z2 ⊕ Z18

Quotient by core in Γ+: (Z3)
19 :PGL(2, 19), of order 7949868434280

Quotient by core in Γ: a C2 extension of a subdirect product of two copies of
(Z3)

19 :PGL(2, 19), of order 63200408122361538679118400
Manifold: (−1, 2) Dehn surgery on v3318
Chern-Simons: −1/30
Covers of ≤ 10 sheets: 3 of 2 sheets, 1 of 3 sheets, 2 of 4 sheets,

11 of 6 sheets (one with infinite homology Z3 + Z + Z),
23 of 8 sheets (one with infinite homology Z6 + Z18 + Z + Z),
12 of 9 sheets (two with infinite homology: Z18 + Z54 + Z

and Z2 + Z2 + Z6 + Z18 + Z), and
14 of 10 sheets (one with infinite homology Z72 + Z + Z).

Note that the core of the subgroup Σ120f in Γ+ is also the core of Σ120f in Γ, and hence
normal in Γ, while for each of the other eight representative subgroups above, the core of

the subgroup in Γ is the intersection of two normal subgroups of Γ (one being the core in
Γ+ and the other its conjugate under an element of Γ \ Γ+).

Corollary 5 tells us that any torsion-free subgroup of Γ+ must have index a multiple of
60. The data on low index covers with infinite homology show that for k ∈ {7, 8, 10, 12, 18},
there are torsion-free subgroups of Γ+ of index 60kn for every positive integer n. The
complete spectrum of possible indices (of torsion-free subgroups of Γ+) will be investigated

in a subsequent paper.

3 Projective linear groups as quotients of Γ+

The following is a partial generalisation of Macbeath’s theorem [20]:

Theorem 6 For any prime p there exists a positive integer k such that either PSL(2, pk)

or PGL(2, pk) is a quotient of the orientation-preserving subgroup Γ+ by a torsion-free
normal subgroup.

A complete proof of this theorem appears in the third author’s doctoral thesis [26]. We
give a sketch of the proof only.

First, as observed in the previous section, Γ+ has an alternative defining presentation

Γ+ = 〈 x, y, z | x3 = y2 = z2 = (xyz)2 = (xzyz)2 = (xy)5 = 1 〉,

with x = ba, y = ac and z = t.
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When p = 2 we find PSL(2, 16) ∼= SL(2, 16) is a quotient of Γ+, obtainable from the
homomorphism θ : Γ+ → SL(2, 16) such that

θ(x) =

[

λ λ9

λ λ4

]

, θ(y) =

[

1 λ4

0 1

]

and θ(z) =

[

λ6 λ7

λ4 λ6

]

,

where λ is a zero of the polynomial s4 + s+1 over GF(2). Similarly when p = 3, the group

PGL(2, 9) is a quotient of Γ+, obtainable from the homomorphism θ : Γ+ → SL(2, 9) with

θ(x) =

[

1 1
0 1

]

, θ(y) =

[

1 0
λ −1

]

and θ(z) =

[

0 1
λ 0

]

,

where λ is a zero of the polynomial s2 + s + 2 over GF(3). In both cases, the kernel

of the homomorphism is torsion-free by Proposition 2, since the images of the elements
x−1 (= ab), y (= ac), xy (= bc) and z (= t) are all nontrivial.

When p ≥ 5, let λ be a zero of the polynomial f(u) = u16+12u12−122u8+972u4+6561

in a finite extension field K over GF(p), and define matrices X, Y and Z in GL(2, K) by

X =

[

1 1
−3 1

]

, Y =

[

1 3/λ2

λ2 −1

]

and Z =

[

0 1
λ2 0

]

.

One can verify the map (x, y, z) 7→ (X, Y, Z) induces a homomorphism θ : Γ+ → PGL(2, K),

with torsion-free kernel. Dickson’s classification of subgroups of the groups PSL(2, q) [14],
and the fact that the images of x and y generate an insoluble subgroup isomorphic to A5,

then imply that the image of θ is PGL(2, pk) for some k.

Note that in this construction, X, Y and Z are matrices over F (λ2) where F = GF(p),
and hence k is at most 8. This bound is larger than necessary, however. In the case p = 3,

for example, the polynomial f(u) = u16 + 12u12 − 122u8 + 972u4 + 6561 factorises over
GF(3) as s4(s2 +s+2)(s2 +2s+2) where s = u2, so choosing λ as a zero of the polynomial

s2 + s+ 2 we obtain the homomorphism from Γ+ onto PGL(2, 9) given above.

A more precise version of Theorem 6 can be obtained using ideas from [18], [20] and
[21], and will be given in a sequel to this paper, stating explicit values of q for which

PSL(2, q) or PGL(2, q) is a quotient of Γ+, and showing that q = p, p2 or p4 in all cases.
The case q ≡ 1 mod 10 was also dealt with by Paoluzzi in [23]. We are grateful to Colin

Maclachlan, Alan Reid and Bruno Zimmerman for pointing out these references.

4 Maximal alternating and symmetric groups

The main result of this paper is the following analogue of the main theorem from [2]:

Theorem 7 For all sufficiently large n, the alternating group An and the symmetric
group Sn are quotients of the extended [3,5,3] Coxeter group Γ, and also quotients of its

orientation-preserving subgroup Γ+, by torsion-free normal subgroups. In particular, this
holds whenever n and n−159 are expressible in the form 52r + 365s for integers r and s

satisfying 1 ≤ r ≤ s, and hence for all n ≥ 152000 (as well as many smaller values of n).
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We prove this theorem using permutation representations of the group Γ on 52, 365 and
159 points, and linking these together to construct transitive permutation representations

of Γ of arbitrarily large degree. Specifically, we will link together r copies of the first
representation with s copies of the second one, and show that the resulting transitive

permutation representation on n = 52r + 365s points gives a homomorphism from Γ onto
An if n is even, and Sn if n is odd. Adjoining one extra copy of the third representation

will provide a representation on 52r + 365s+ 159 points, giving a homomorphism from Γ

onto Sn if n is even, and An if n is odd.
The representations we use as building blocks (on 52, 365 and 159 points) were found

with the help of Magma [1], and can be defined as follows:

(A) Representation A is the transitive permutation representation of Γ of degree 52 corre-

sponding to the action of Γ by (right) multiplication on right cosets of the subgroup ΣA gen-
erated by a, b, cbcbtabc, bctatatatcb, dcbacbcdbcbcabcd, bctabctabatcbatcb, bctabctacatcbatcb,

dcbacbcdbcbcabcd and dcbacbacbtabcabcabcd, of index 52 in Γ.

The permutations induced by each of a, b, c, d and t may be written as follows:

a 7→ (4, 9)(5, 10)(7, 15)(11, 18)(12, 19)(13, 21)(16, 24)(17, 23)(20, 27)(22, 28)(25, 30)(26, 29)
(31, 34)(32, 37)(35, 39)(40, 43)(45, 48)(46, 50)(47, 51)(49, 52),

b 7→ (2, 5)(4, 7)(6, 12)(8, 16)(9, 17)(11, 20)(13, 18)(14, 22)(15, 23)(21, 27)(25, 32)(26, 33)
(30, 35)(31, 36)(37, 39)(40, 45)(41, 46)(43, 47)(44, 49)(48, 51),

c 7→ (1, 2)(3, 8)(5, 11)(6, 14)(7, 13)(10, 18)(12, 19)(15, 21)(16, 25)(17, 26)(23, 29)(24, 30)
(33, 38)(35, 40)(36, 41)(39, 43)(42, 44)(46, 50)(47, 52)(49, 51),

d 7→ (1, 3)(2, 6)(5, 12)(8, 14)(10, 19)(11, 18)(13, 20)(16, 22)(21, 27)(24, 28)(26, 31)(29, 34)
(33, 36)(38, 42)(40, 45)(41, 44)(43, 48)(46, 49)(47, 51)(50, 52),

t 7→ (1, 4)(2, 7)(3, 9)(5, 13)(6, 15)(8, 17)(10, 20)(11, 18)(12, 21)(14, 23)(16, 26)(19, 27)
(22, 29)(24, 31)(25, 33)(28, 34)(30, 36)(32, 38)(35, 41)(37, 42)(39, 44)(40, 46)(43, 49)
(45, 50)(47, 51)(48, 52).

For later use, we observe that the permutations induced by a, b, c and d all have cycle
structure 112220 (where knk indicates nk cycles of length k), while the one induced by t has
cycle structure 226. In particular, all of these permutations are even. Also we note that
the element bcabat induces the following permutation of cycle structure 2268:

(1, 20, 13, 7, 14, 29)(2, 12, 34, 30, 47, 33)(3, 31, 45, 38, 22, 27)(4, 10, 19, 21, 11, 5)(6, 15, 25,

41, 35, 17)(8, 44, 46, 28, 23, 18)(9, 16)(24, 42, 48, 43, 39, 36)(26, 32)(37, 52, 50, 40, 51, 49).

(B) Representation B is the transitive permutation representation of Γ of degree 365

corresponding to the action of Γ by (right) multiplication on right cosets of the sub-
group ΣB generated by a, b, cbcbtabc, bctatatatcb, bctabctabatcbatcb, bctabctacatcbatcb,

dcbacbacbadcbcdabcabcabcd, dcbacbacbacbcdcbatbcdbcabcabcabcd, dcbacbcbdcbacbdcbcabcdb
cabcdbcbcabcd, dcbacbcbdcbacbcdcbcbtabcdcbcabcdbcbcabcd, dcbacbacbcdcbcbadcbacbacbcdcb

cabcabcdabcbcdcbcabcabcd, dcbacbacbcdcbcbadcbcbadcbacbcabcdabcabcdabcbcdcbcabcabcd,
dcbacbacbcdcbcbadcbacbcdcbacbcabcdcbcabcdabcbcdcbcabcabcd and dcbacbacbcdcbcbadcbcbdc

bacbdcbacbctcabcdbcabcdbcbcdabcbcdcbcabcabcd, of index 365 in Γ.
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The permutations induced by a, b and t may be written as follows:

a 7→ (4, 9)(5, 10)(7, 15)(11, 18)(12, 19)(13, 21)(16, 24)(17, 23)(20, 27)(22, 28)(25, 30)(26, 29)(31, 34)
(32, 37)(35, 39)(40, 43)(45, 51)(46, 49)(47, 54)(48, 55)(50, 59)(52, 60)(53, 63)(56, 64)(57, 65)
(58, 70)(61, 72)(62, 71)(66, 79)(67, 76)(68, 81)(69, 78)(73, 86)(77, 93)(80, 92)(83, 96)(84, 99)
(87, 101)(91, 108)(94, 109)(98, 111)(103, 116)(104, 118)(106, 120)(113, 126)(117, 130)(121, 133)
(122, 132)(123, 135)(125, 138)(129, 142)(131, 134)(136, 143)(137, 146)(140, 148)(144, 152)
(145, 151)(149, 157)(150, 156)(153, 161)(155, 163)(158, 165)(159, 167)(164, 171)(166, 172)
(168, 173)(175, 181)(176, 179)(177, 184)(178, 185)(180, 189)(182, 190)(183, 193)(186, 194)
(187, 195)(188, 200)(191, 202)(192, 201)(196, 209)(197, 206)(198, 211)(199, 208)(203, 216)
(207, 223)(210, 222)(212, 228)(213, 227)(214, 231)(217, 234)(221, 239)(224, 242)(225, 241)
(226, 245)(229, 248)(230, 247)(232, 252)(236, 258)(237, 260)(240, 261)(243, 264)(244, 263)
(246, 269)(249, 270)(250, 275)(251, 277)(254, 266)(255, 278)(256, 282)(259, 285)(262, 286)
(265, 287)(267, 290)(268, 294)(272, 295)(273, 299)(276, 302)(279, 303)(280, 292)(281, 305)
(284, 307)(288, 309)(289, 311)(291, 312)(293, 314)(296, 315)(298, 317)(301, 319)(304, 313)
(310, 326)(320, 333)(321, 328)(322, 336)(323, 332)(325, 340)(327, 341)(329, 343)(331, 345)
(334, 347)(335, 342)(337, 350)(338, 346)(348, 354)(351, 356)(364, 365),

b 7→ (2, 5)(4, 7)(6, 12)(8, 16)(9, 17)(11, 20)(13, 18)(14, 22)(15, 23)(21, 27)(25, 32)(26, 33)(30, 35)
(31, 36)(37, 39)(40, 45)(41, 47)(43, 48)(44, 50)(46, 52)(49, 57)(51, 55)(58, 68)(60, 65)
(62, 73)(63, 74)(64, 75)(66, 77)(69, 82)(70, 83)(71, 84)(72, 85)(76, 90)(79, 94)(80, 95)
(81, 96)(86, 99)(88, 104)(91, 106)(93, 109)(98, 113)(101, 115)(102, 117)(107, 121)(108, 122)
(110, 123)(111, 125)(116, 128)(119, 131)(120, 132)(124, 136)(126, 138)(129, 140)(141, 149)
(142, 150)(145, 153)(146, 154)(147, 155)(148, 156)(151, 159)(152, 160)(158, 166)(161, 167)
(164, 172)(165, 171)(168, 175)(169, 177)(173, 178)(174, 180)(176, 182)(179, 187)(181, 185)
(188, 198)(190, 195)(192, 203)(193, 204)(194, 205)(196, 207)(199, 212)(200, 213)(201, 214)
(202, 215)(206, 220)(208, 224)(209, 225)(210, 226)(211, 227)(216, 231)(218, 237)(221, 238)
(222, 240)(223, 241)(228, 242)(230, 251)(232, 254)(233, 256)(234, 257)(235, 259)(243, 266)
(244, 268)(245, 261)(246, 271)(247, 273)(248, 274)(249, 276)(252, 264)(253, 279)(255, 280)
(258, 283)(263, 289)(265, 291)(267, 292)(270, 296)(272, 297)(275, 300)(277, 299)(278, 290)
(281, 293)(284, 301)(286, 308)(287, 310)(294, 311)(302, 315)(304, 320)(305, 321)(306, 322)
(307, 323)(309, 324)(312, 326)(313, 327)(314, 328)(316, 329)(317, 330)(318, 331)(319, 332)
(333, 341)(335, 349)(338, 352)(340, 353)(347, 357)(348, 358)(350, 359)(351, 360)(362, 364),

t 7→ (1, 4)(2, 7)(3, 9)(5, 13)(6, 15)(8, 17)(10, 20)(11, 18)(12, 21)(14, 23)(16, 26)(19, 27)(22, 29)(24, 31)
(25, 33)(28, 34)(30, 36)(32, 38)(35, 41)(37, 42)(39, 44)(40, 47)(43, 50)(45, 53)(46, 54)(48, 58)
(49, 59)(51, 61)(52, 63)(55, 66)(56, 68)(57, 70)(60, 72)(62, 74)(64, 77)(65, 79)(67, 81)(69, 83)
(71, 85)(73, 88)(75, 91)(76, 93)(78, 94)(80, 96)(82, 98)(84, 100)(86, 102)(87, 104)(89, 106)(90, 108)
(92, 109)(95, 111)(97, 113)(99, 114)(101, 117)(103, 118)(105, 120)(107, 122)(110, 125)(112, 126)
(115, 129)(116, 130)(119, 132)(121, 134)(123, 137)(124, 138)(127, 140)(128, 142)(135, 144)
(136, 146)(139, 148)(141, 150)(143, 152)(145, 154)(147, 156)(149, 158)(151, 160)(153, 162)
(155, 165)(157, 166)(159, 169)(161, 170)(163, 172)(164, 171)(167, 174)(168, 177)(173, 180)
(175, 183)(176, 184)(178, 188)(179, 189)(181, 191)(182, 193)(185, 196)(186, 198)(187, 200)
(190, 202)(192, 204)(194, 207)(195, 209)(197, 211)(199, 213)(201, 215)(203, 218)(205, 221)
(206, 223)(208, 225)(210, 227)(212, 230)(214, 233)(216, 235)(217, 237)(219, 238)(220, 239)
(222, 241)(224, 244)(226, 247)(228, 249)(229, 251)(231, 253)(232, 256)(234, 259)(236, 260)
(240, 263)(242, 265)(243, 268)(245, 270)(246, 273)(248, 276)(250, 277)(252, 279)(254, 281)
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(255, 282)(257, 284)(258, 285)(261, 287)(262, 289)(264, 291)(266, 293)(267, 294)(269, 296)
(271, 298)(272, 299)(274, 301)(275, 302)(278, 303)(280, 305)(283, 307)(286, 310)(288, 311)
(290, 312)(292, 314)(295, 315)(297, 317)(300, 319)(304, 321)(306, 323)(308, 325)(309, 326)
(313, 328)(316, 330)(318, 332)(320, 335)(322, 338)(324, 340)(327, 342)(329, 344)(331, 346)
(333, 348)(334, 349)(336, 351)(337, 352)(339, 353)(341, 354)(343, 355)(345, 356)(347, 358)
(350, 360)(357, 362)(361, 364)(363, 365).

The permutations induced by c and d can be obtained using the relations atdt = 1 and

btct = 1. The permutations induced by a, b, c and d all have cycle structure 1772144,
and are therefore even, while the one induced by t has cycle structure 132181 and is

odd. Also we note that the element bcabat induces a permutation with cycle structure
28446147184125141232242421.

(C) Representation C is the transitive permutation representation of Γ of degree 159

corresponding to the action of Γ by (right) multiplication on right cosets of the sub-
group ΣC generated by a, b, cbcbtabc, bctatatatcb, bctabctabatcbatcb, bctabctacatcbatcb,

dcbacbacbdcbtdbcabcabcd and dcbacbacbacbcdcbacbacbtabcabcdcbcabcabcabcd, of index 159.

The permutations induced by a, b and t may be written as follows:

a 7→ (4, 9)(5, 10)(7, 15)(11, 18)(12, 19)(13, 21)(16, 24)(17, 23)(20, 27)(22, 28)
(25, 30)(26, 29)(31, 34)(32, 37)(35, 39)(40, 43)(45, 51)(46, 49)(47, 54)(48, 55)
(50, 59)(52, 60)(53, 63)(56, 64)(57, 65)(58, 70)(61, 72)(62, 71)(66, 79)(67, 76)
(68, 81)(69, 78)(77, 89)(80, 88)(87, 95)(91, 96)(93, 98)(99, 103)(100, 102)(101, 106)
(104, 109)(105, 108)(107, 112)(110, 113)(111, 118)(114, 122)(115, 120)(116, 117)
(119, 127)(121, 126)(123, 131)(124, 125)(128, 137)(129, 138)(130, 136)(132, 135)
(133, 144)(139, 146)(140, 149)(141, 142)(143, 148)(147, 150)(151, 152)(156, 157),

b 7→ (2, 5)(4, 7)(6, 12)(8, 16)(9, 17)(11, 20)(13, 18)(14, 22)(15, 23)(21, 27)(25, 32)
(26, 33)(30, 35)(31, 36)(37, 39)(40, 45)(41, 47)(43, 48)(44, 50)(46, 52)(49, 57)
(51, 55)(58, 68)(60, 65)(62, 73)(63, 74)(64, 75)(66, 77)(69, 70)(72, 82)(76, 86)
(78, 81)(79, 80)(84, 91)(87, 93)(88, 89)(94, 99)(95, 100)(97, 101)(98, 102)
(104, 105)(107, 114)(108, 116)(109, 117)(110, 111)(112, 119)(113, 121)(115, 123)
(118, 126)(120, 129)(122, 127)(125, 134)(128, 140)(130, 142)(131, 138)(135, 145)
(136, 147)(137, 139)(141, 150)(143, 153)(144, 154)(146, 149)(152, 158)(156, 159),

t 7→ (1, 4)(2, 7)(3, 9)(5, 13)(6, 15)(8, 17)(10, 20)(11, 18)(12, 21)(14, 23)(16, 26)
(19, 27)(22, 29)(24, 31)(25, 33)(28, 34)(30, 36)(32, 38)(35, 41)(37, 42)(39, 44)
(40, 47)(43, 50)(45, 53)(46, 54)(48, 58)(49, 59)(51, 61)(52, 63)(55, 66)(56, 68)
(57, 70)(60, 72)(62, 74)(64, 77)(65, 79)(67, 81)(71, 82)(73, 84)(75, 87)(76, 89)
(78, 80)(83, 91)(85, 93)(86, 95)(90, 96)(92, 98)(94, 100)(97, 102)(99, 105)
(101, 108)(103, 110)(106, 113)(107, 116)(109, 111)(112, 121)(114, 124)(115, 117)
(119, 130)(120, 126)(122, 132)(123, 125)(127, 139)(128, 142)(129, 136)(131, 135)
(133, 134)(138, 146)(140, 151)(143, 147)(144, 145)(148, 149)(150, 152)(153, 156)
(154, 155)(157, 158).

Again the permutations induced by c and d can be obtained using the relations atdt = 1

and btct = 1. Those induced by a, b, c and d all have cycle structure 131264, while the one
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induced by t has cycle structure 17276, and so all are even. Also we note that the element
bcabat induces a permutation with cycle structure 1322325167102161191222.

In each of these three permutation representations, it is helpful to consider the orbits
of two subgroups, S = 〈b, c〉 and T = 〈a, b, c〉. From the relations a2 = b2 = c2 = (ab)3 =

(ac)2 = (bc)5 = 1, we know that S is dihedral of order 10, while T is isomorphic to A5×C2

(the Coxeter group [3, 5], of order 120). Every orbit of the subgroup T (in any permutation

representation of Γ) can be decomposed into orbits of the subgroup S, which are linked
together by 2-cycles of the permutation induced by a. Similarly, as d = tat we know that Γ

is generated by a, b, c and t, and it follows that every transitive permutation representation
of Γ can be decomposed into orbits of the subgroup T , which are linked together by 2-cycles

of the permutation induced by t to form a single orbit of Γ.

For example, the representation A above decomposes into four orbits of T , namely

{1, 2, 4, 5, 7, 9, 10, 11, 13, 15, 17, 18, 20, 21, 23, 26, 27, 29, 33, 38}, {3, 8, 16, 24, 25, 30, 32, 35, 37,
39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52}, {6, 12, 14, 19, 22, 28} and {31, 34, 36, 41, 46, 50}. This

is illustrated in Figure 1.
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Figure 1: Representation A as a t-linkage of orbits of T = 〈a, b, c〉

Here each circle represents an orbit of T , with the number inside being its length, and
each edge represents a linkage of a pair of orbits of S using the permutation induced by

t. For example, the two orbits {6, 12, 14, 19, 22, 28} and {31, 34, 36, 41, 46, 50} of length 6
are linked by the transposition (28, 34), while the first of these is also linked to the orbit

of length 20 containing the point 1 by the transpositions (6, 15), (12, 21), (14, 23), (19, 27)
and (22, 29).

More detail is given in Figure 2. Each of the two orbits of length 20 decomposes further
into four orbits of S of length 5, while each of the two orbits of length 6 contains an orbit of

S of length 5 and a fixed point of S (the fixed points being 28 and 34), with the permutation
induced by a interchanging the fixed point of S with one of the points of the orbit of length

5 (and also interchanging two of the other points of the latter orbit).
In Figure 2 the thin lines represent transpositions of the permutation induced by a while

each thick line between two orbits of S indicate that they are linked by t. (For example, t
interchanges the two orbits {28} and {34} of length 1, shown by the thick line between the

bottom two small squares.) Relations can be verified by chasing points around the figure.
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Figure 2: Representation A as a t-linkage of orbits of S = 〈b, c〉

The linkage here between two of the orbits of S of length 5 inside an orbit of T of

length 20 is important, as we will later undo such linkages in order to join together copies
of representations of A, B and C. We will call any orbit of T that has this property

(namely an internal t-linkage between two of its sub-orbits of S) a handle. From Figure
2 we see that the representation A has two handles; these are the T -orbits containing the

points 1 and 42.

The building block B on 365 points can viewed similarly, as in Figure 3.
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Figure 3: Representation B as a t-linkage of orbits of T = 〈a, b, c〉

16



Note that B has two handles: the T -orbits of length 20 containing the points 1 and
139, both at the top right of Figure 3. (Also B has another T -orbit of length 20 with a

sub-orbit of S linked to itself, but we will not use this.)

Finally representation C can viewed as in Figure 4. In this case there is just one handle:
the T -orbit containing the point 1, the left-most orbit of length 20 in Figure 4. This will

be used to join a single copy of C to chains of copies of A and B, to alter the parity of the

number of points (without affecting the parity of the permutations induced by any of the
generators).
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Figure 4: Representation C as a t-linkage of orbits of T = 〈a, b, c〉

We now consider the process of t-linkage of handles in more detail.

Suppose we have two permutation representations P and Q of Γ such that each contains

a handle. Let (p1, p2, p3, p4, p5) and (p6, p7, p8, p9, p10) be the cycles induced by bc on the
two orbits of S which are linked by t in the given handle of P , and let (q1, q2, q3, q4, q5) and

(q6, q7, q8, q9, q10) be those induced by bc on the analogous orbits of S in the given handle
of Q, such that before linkage the action of t on these points is given by

(p1, p10)(p2, p9)(p3, p8)(p4, p7)(p5, p6) and (q1, q10)(q2, q9)(q3, q8)(q4, q7)(q5, q6).

Note that this will always happen if p4 and p10 are chosen to be points like the left-most
points in the first two S-orbits of the 20-point representation of T = 〈a, b, c〉 at the top left

of Figure 2, and likewise for q4 and q10.
The t-links between orbits of S in the same handles can be removed and replaced by

new t-links from the given handle of P to the given handle of Q, by defining a new action

of t on the set X = {p1, ..., p10, q1, ..., q10} by

(p1, q10)(p2, q9)(p3, q8)(p4, q7)(p5, q6) and (p6, q5)(p7, q4)(p8, q3)(p9, q2)(p10, q1).
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or equivalently, by multiplying the permutation induced by t by the permutation which
swaps each pi with the corresponding qi. In particular, we note that the parity of the

permutation induced by t is unchanged.
In order to show that this still gives a permutation representation of Γ, we need only

show that the relations t2 = btct = (at)4 = 1 are still satisfied, because d can be defined
by atdt = 1, and all other relations involving d follow from these: (ad)2 = (atat)2 = (at)4,

(bd)2 = (btat)2 = t(tbta)2t = t(ca)2t = 1, and (cd)3 = (ctat)3 = t(tcta)3t = t(ba)3t = 1.

By defining the action of t in the way that we have, linking pairs of S-orbits of equal
length, the relations t2 = 1 and c = tbt will always hold; in fact t normalises the dihedral

subgroup S = 〈b, c〉 (by interchanging its generators). Hence only the relation (at)4 has
to be checked. Now it is clear that cycles of the element at containing none of the points

of the set X = {p1, ..., p10, q1, ..., q10} are unaffected by the linkage, and so we can ignore
them. On the other hand, before linkage each cycle of at containing a point of X is either

a 1-cycle fixing one of the points p3, p8, q3 or q8, or a 4-cycle of the form (pi, pj, x, y) or
(qi, qj, u, v) where x and y are points of P not in X and u and v are points of Q not in

X. In the above process of t-linkage, the fixed points of at on X are replaced by 2-cycles
(p3, q3) and (p8, q8), while the 4-cycles are replaced by cycles of the form (pi, qj, u, v) and

(qi, pj, x, y). With all its cycle lengths dividing 4, the permutation induced by at still has
order 4, and thus all the relations of Γ are satisfied.

This same sort of analysis can be used to find the cycle structure of any element of
the form wt where w lies in the subgroup T = 〈a, b, c〉. In particular, let us consider

the permutation induced by the element bcabat. Recall that the cycle structures of the
permutations induced by this element in each of the representations A, B and C are

2268, 28446147184125141232242421 and 1322325167102161191222

respectively. As in the argument above, we can see the effect of making new t-linkages on
the permutation induced by bcabat on the n points of our chain, by considering just the

cycles that contain handle points. In each case, before t-linkage we have the following:

Representation A: The cycles induced by bc on the two orbits of S linked by t in the han-

dle containing the point 1 are (p1, p2, p3, p4, p5) = (1, 2, 11, 20, 5) and (p6, p7, p8, p9, p10) =
(13, 10, 18, 7, 4), while those for the two orbits in the handle containing the point 42 are

(p′1, p
′
2, p

′
3, p

′
4, p

′
5) = (42, 44, 51, 48, 49) and (p′6, p

′
7, p

′
8, p

′
9, p

′
10) = (43, 52, 47, 39, 37), such that

the element t interchanges pi with p11−i and p′i with p′11−i for 1 ≤ i ≤ 10. There are six
cycles of bcabat that affect the relevant points from the two handles, all having length 6,

and these can be written in the form

(p1, p4, p6, p9, x1, x2), (p2, x3, x4, x5, p
′
8, x6), (p3, p5, p10, p7, x7, x8),

(p′1, p
′
4, p

′
6, p

′
9, x

′
1, x

′
2), (p′2, x

′
3, x

′
4, x

′
5, p8, x

′
6), and (p′3, p

′
5, p

′
10, p

′
7, x

′
7, x

′
8).

Representation B: The cycles induced by bc on the two orbits of S linked by t in the

handle containing the point 1 are (q1, q2, q3, q4, q5) = (1, 2, 11, 20, 5) and (q6, q7, q8, q9, q10) =
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(13, 10, 18, 7, 4), while those for the orbits in the handle for the point 139 are (q ′1, q
′
2, q

′
3, q

′
4, q

′
5)

= (139, 147, 164, 172, 155) and (q′6, q
′
7, q

′
8, q

′
9, q

′
10) = (165, 163, 171, 156, 148), again such that

the element t interchanges qi with q11−i and q′i with q′11−i for 1≤ i≤10. There are six cycles
of bcabat that affect the relevant points from the two handles — four of length 6 and two

of length 23 — and these can be written in the form

(q1, q4, q6, q9, y1, y2), (q3, q5, q10, q7, y24, y25),

(q2, y3, y4, y5, y6, y7, y8, y9, y10, y11, q8, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23),

(q′1, q
′
4, q

′
6, q

′
9, y

′
1, y

′
2), (q′3, q

′
5, q

′
10, q

′
7, y

′
24, y

′
25), and

(q′2, y
′
3, y

′
4, y

′
5, y

′
6, y

′
7, y

′
8, y

′
9, y

′
10, y

′
11, y

′
12, y

′
13, y

′
14, y

′
15, y

′
16, q

′
8, y

′
17, y

′
18, y

′
19, y

′
20, y

′
21, y

′
22, y

′
23).

Representation C: The cycles induced by bc on the two orbits of S linked by t in the
handle containing the point 1 are (r1, r2, r3, r4, r5) = (1, 2, 11, 20, 5) and (r6, r7, r8, r9, r10) =

(13, 10, 18, 7, 4), such that the element t interchanges ri with r11−i for 1≤ i≤10. There are
three cycles of bcabat that affect the relevant points, of lengths 6, 19 and 6, and these can

be written in the form

(r1, r4, r6, r9, z1, z2), (r3, r5, r10, r7, z20, z21), and

(r2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, r8, z14, z15, z16, z17, z18, z19).

Now suppose that a copy of A is linked to a copy of B by joining the handle of A

containing the point p′1 = 42 to the handle of B containing the point q1 = 1. We will
denote this by A42 − 1B. Then in the process of t-linkage, the seven cycles of bcabat

containing the points p′i and qj will be replaced by

(p2, x3, x4, x5, q8, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23,

p′2, x
′
3, x

′
4, x

′
5, p8, x

′
6, q2, y3, y4, y5, y6, y7, y8, y9, y10, y11, p

′
8, x6),

(p′1, q4, p
′
6, q9, y1, y2), (p′3, q5, p

′
10, q7, y24, y25), (p′4, q6, p

′
9, x

′
1, x

′
2, q1),

and (p′5, q10, p
′
7, x

′
7, x

′
8, q3).

In summary, six cycles of length 6 and one of length 23 are replaced by four of length 6

and one of length 35.

Similarly, if instead the handle of A containing the point p1 = 1 is joined by t-linkage to

the handle of B containing the point q′1 = 139, giving a representation denoted by B139−1A,
then the seven cycles of bcabat containing the points pi and q′j will be replaced by

(p1, q
′
4, p6, q

′
9, y

′
1, y

′
2), (p3, q

′
5, p10, q

′
7, y

′
24, y

′
25),

(p2, x3, x4, x5, p
′
8, x6, q

′
2, y

′
3, y

′
4, y

′
5, y

′
6, y

′
7, y

′
8, y

′
9, y

′
10, y

′
11, y

′
12, y

′
13, y

′
14, y

′
15, y

′
16, p8, x

′
6,

p′2, x
′
3, x

′
4, x

′
5, q

′
8, y

′
17, y

′
18, y

′
19, y

′
20, y

′
21, y

′
22, y

′
23),

(p4, q
′
6, p9, x1, x2, q

′
1) and (p5, q

′
10, p7, x7, x8, q

′
3);

so again six cycles of length 6 and one of length 23 are replaced by four of length 6 and

one of length 35.
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Next suppose two copies of B and one copy of A are linked together into a chain
B−A−B by joining the handle of A containing the point p1 = 1 to the handle of one copy

of B containing the point q′1 = 139, and the handle of A containing the point p′1 = 42 to
the handle of the other copy of B containing the point q1 = 1. This can be denoted by

B139−1A42−1B. Then in the process of t-linkage, ten cycles of length 6 and two of length
23 are replaced by eight of length 6 and two of length 29 (with one of the latter containing

the points p2 = 2 and p′2 = 44 and the other containing the points p8 = 18 and p′8 = 47),

and no new cycles of length 35 are introduced.
If two copies of B are joined by t-linkage using the handle containing the point q1 = 1

from one and the handle containing the point q′1 = 139 from the other, then the four cycles
of length 6 and the two cycles of length 23 for the element bcabat containing the relevant

points of the two handles will be replaced by another four cycles of length 6, plus one of
length 18 and one of length 28 (with the last one being formed out of 15 points of one

23-cycle and 13 of the other).
Finally if a copy of A is linked to a copy of C by joining their handles containing the

points p1 = 1 and r1 = 1, then the six cycles of length 6 and single cycle of length 19 for
the element bcabat containing the relevant points of the two handles will be replaced by

(p1, r4, p6, r9, z1, z2), (p3, r5, p10, r7, z7, z8),

(p2, x3, x4, x5, p
′
8, x6, r2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, p8, x

′
6,

p′2, x
′
3, x

′
4, x

′
5, r8, z14, z15, z16, z17, z18, z19),

(r1, p4, r6, p9, x1, x2), and (r3, p5, r10, p7, x20, x21);

that is, four cycles of length 6 and a single cycle of length 31 (containing the points p′2
and p′8 from the other handle of A, with (bcabat)15 taking p′2 to p′8). It follows that if we
extend this to a chain C1−1A42−1B by joining the other handle of A (containing the point

p′1 = 42) to the first handle of a copy of B (containing the point q1 = 1), then the latter
cycle of length 31 (from the C−A join) and the cycle of length 23 from the copy of B are

replaced by cycles of lengths 26 and 28, namely

(p2, x3, x4, x5, q8, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23,

p′2, x
′
3, x

′
4, x

′
5, r8, z14, z15, z16, z17, z18, z19), and

(p′8, x6, r2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13,

p8, x
′
6, q2, y3, y4, y5, y6, y7, y8, y9, y10, y11),

while all other cycles containing points affected by this join have length 6.

We are now (at last) in a position to prove the theorem.

Proof of Theorem 7. First observe that as 52 and 365 are relatively prime, every
sufficiently large positive integer n can be written in the form n = 52r + 365s for integers

r and s satisfying 1 ≤ r ≤ s. For any such n, we may construct a transitive permutation
representation of the extended [3, 5, 3] group Γ on n points by taking r copies of the

representation A (on 52 points) and s copies of the representation B (on 365 points), and
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linking them together into a chain of the form

A− B − A− B − · · · − A−B − A−B −B − B − · · · − B − B

using the process of t-linkage described above. Note that this chain consists of r copies of

the sub-chain A−B followed by s− r copies of B, and that such a construction is possible
since each of A and B has two handles.

In fact there are many ways to form the chain, but we will do it in such a way that
t-linkage occurs as follows: reading the chain from left to right, in each sub-chain A − B

the permutation t will interchange the point 42 in the copy of representation A with the
point 1 in the copy of representation B, while in each sub-chain B − A the permutation

t will interchange the point 139 in the copy B with the point 1 in the copy of A, and in
each subchain B −B the permutation t will interchange the point 139 in the first copy of

B with the point 1 in the second copy of B. The handle containing the point 1 of the first
copy of A will be unaffected (and therefore left free for subsequent t-linkage with a copy

of C), as will the handle containing the point 139 in the final copy of B. In summary, the

chain will have the form

1A42 − 1B139 − 1A42 − 1B139 − · · · − 1A42 − 1B139 − 1B139 − · · · − 1B139.

The group generated by the resulting permutations (induced by a, b, c, d and t) is a
transitive subgroup of Sn, because the orbits of the subgroup T = 〈a, b, c〉 are linked

together by the action of the (new) permutation induced by t. The elements a, b, c and
d all induce even permutations (as they do on each of the building blocks A, B and C),

while t induces an even permutation if and only if s is even, and hence if and only if

n = 52r + 365s is even, because each copy of B adds an odd number of 2-cycles to the
permutation induced by t.

We will show that this group contains a single cycle of prime length 23 (fixing the other
n−23 points), and then use this element to prove that the group is primitive. We can then

apply Jordan’s theorem ([29]), which says that any primitive permutation group of degree
n containing a single p-cycle for some prime p < n−2 has to be An or Sn.

To do this, consider the cycle structure of the permutation π induced by the element
bcabat on these n points.

Before the building blocks are linked together by altering the definition of t, the cycle
structure of this permutation is 22r+8s44s68r+14s7s84s125s14s232s242s42s, as each copy of A

provides 2268 and each copy of B provides 28446147184125141232242421.
In the process of t-linkage, each sub-chain of the form B139−1A42−1B reduces the number

of 6-cycles by two and the number of 23-cycles by two, and introduces two new 29-cycles,
while the first linkage A42−1B reduces the number of 6-cycles by two and the number of

23-cycles by one, and introduces one new 35-cycle. Similarly each link of the form B139−1B
reduces the number of 23-cycles by two, and introduces one new 18-cycle and one new 28-

cycle. As the number of sub-chains of the form B139−1A42−1B is r−1 and the number
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of links of the form B139−1B is s − r, the resulting cycle structure of the permutation π
induced by bcabat is 22r+8s44s66r+14s7s84s125s14s18s−r231242s28s−r292r−235142s.

In particular, the number of 23-cycles is 2s − 2(r−1) − 1 − 2(s−r) = 1. Moreover,
none of the other cycle-lengths of π is divisible by 23; in fact their least common multiple

is 73080 = 8 · 9 · 5 · 7 · 29, and so it follows that π73080 is a single cycle of length 23. The
points of this 23-cycle come from the very last copy of B that is added to the chain (so

this 23-cycle is not killed by any new t-linkage). In fact it is a cycle of the form

(q′2, y
′
3, y

′
4, y

′
5, y

′
6, y

′
7, y

′
8, y

′
9, y

′
10, y

′
11, y

′
12, y

′
13, y

′
14, y

′
15, y

′
16, q

′
8, y

′
17, y

′
18, y

′
19, y

′
20, y

′
21, y

′
22, y

′
23),

where q′2 is the point numbered 147 in the original description of the representation B.

This cycle contains eight fixed points of a (including the point q ′2 = 147 itself), three
fixed points of S = 〈b, c〉 (namely the points y′4 = 118, y′15 = 103 and y′20 = 133), and one

fixed point of t (namely y′20 = 133).
We can now prove the group generated by our permutations is primitive. For assume

the contrary. Then since 23 is prime, all the points of the 23-cycle π must lie in the same

block of imprimitivity, say X, as otherwise the blocks moved by π would contain only one
point each. This block X contains all those points of π which are fixed by a, 〈b, c〉 or t,

and hence X is preserved by each of a, b, c and t. But these elements generate Γ, and so
X is preserved by Γ, which implies it cannot be a proper block, contradiction.

Jordan’s theorem [29] now applies, so we have either the alternating group An or the
symmetric group Sn. In fact since the permutation induced by t is even if and only if r is

even, we have An if n is even and Sn if n is odd.

To obtain An for all large odd n and Sn for all large even n, we suppose that n =

159+52r+ 365s, and repeat the above construction and argument, but with a single copy

of the representation C joined to the copy of A the end of the chain, thus:

C1−1A42 − 1B139 − 1A42 − 1B139 −· · ·− 1A42 − 1B139−1B139−· · ·−1B139.

This changes the parity of n, but not the parity of any of the permutations induced by
the generators. The cycle structure of the permutation induced by bcabat is again eas-

ily determined: before linkage the cycle structure of this element in the representation

C is 1322325167102161191222, and in the process of linkage, the cycle of length 19 from
this representation and the single cycle of length 35 on the other n−159 points are re-

placed by two cycles of length 26 and 28, while again all other cycle lengths are unaf-
fected. Hence the resulting cycle structure of the permutation π induced by bcabat is

1322r+8s+23244s5166r+14s+77s84s102125s14s16118s−r222231242s26128s−r+1292r−242s.
Again there is a single 23-cycle, involving the same points as previously, but other cycle

lengths are introduced, so the 23-cycle we need is π16·9·5·7·11·13·19·29 = π20900880. This can
be used in an application of Jordan’s theorem to show that the permutations induced by

a, b, c and t generate the alternating group or symmetric group on the n points of the
chain, and as the permutation induced by t is even if and only if r is even, we have An if

n = 159 + 52r + 365s is odd, and Sn if n is even.
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Hence for every such large n there exists a homomorphism φ from the extended [3, 5, 3]
Coxeter group Γ onto the alternating group An, and another homomorphism ψ from Γ

onto the symmetric group Sn.
By our construction, both φ and ψ map the Coxeter group C = 〈a, b, c, d〉 of index 2

in Γ to a subgroup of An (since the generators all induce even permutations), and as An

has no subgroup of index 2 (for n ≥ 5), it follows that these both map C onto An. The

very same argument now also shows that both map the subgroup C+ = 〈ab, ac, ad〉 onto

An, and therefore φ and ψ map Γ+ = 〈ab, ac, ad, t〉 onto An and Sn respectively.
Finally we observe that the permutations induced by the elements ab, ac, bc, t and adt

are all non-trivial, and so by Proposition 3 we find the kernels of the restrictions φ�Γ+ and
ψ�Γ+ are torsion-free normal subgroups of Γ+, completing the proof. 2

5 Other families of quotients

The two main theorems from the preceding sections give us three infinite families of quo-

tients of Γ+ by torsion-free normal subgroups: 2-dimensional projective linear groups (one
in each prime characteristic p), alternating groups (of large degree), and symmetric groups

(of large degree). We will now show how an infinite family of quotient groups of Γ+ can
be obtained using just one given quotient, under certain circumstances.

Let Σ be any torsion-free subgroup of index n in Γ+, with core K (the intersection of all
conjugates of Σ by elements of Γ+) of index N in Γ+. Then of course K itself is torsion-free,

and the quotient Γ+/K (which is isomorphic to the permutation group induced by Γ+ on
right cosets of Σ by right multiplication) has order N .

Now suppose that the abelianisation Σ/Σ′ = Σ/[Σ,Σ] of the subgroup Σ is infinite.
Then Σ/Σ′ must have at least one infinite cyclic factor, and therefore Σ contains a normal

subgroup Λ such that Σ/Λ ∼= Z. It then follows that for every positive integer m the
subgroup Σ has a normal subgroup Λm of index m such that Σ/Λm

∼= Zm (namely the

pre-image of mZ under the resulting homomorphism from Σ to Z). In particular, Λm is a
torsion-free subgroup of index |Γ+ :Λm| = |Γ+ :Σ||Σ:Λm| = nm in Γ+.

The core Km of Λm in Γ+ will be a torsion-free normal subgroup of Γ+, with quotient

Γ+/Km isomorphic to the permutation group of degree nm induced by Γ+ by multiplica-
tion on cosets of Λm. Moreover, K/Km is a normal subgroup of Γ+/Km, with quotient

(Γ+/Km)/(K/Km) ∼= Γ+/K. Since Σ/Λm is abelian (indeed cyclic) and of order m, we
know that Λm contains Σ′Σm and therefore also contains K ′Km, which is a characteristic

subgroup of K and is therefore normal in Γ. It follows that Km contains K ′Km, and hence
K/Km is abelian and of exponent m.

Thus we obtain an infinite sequence of quotients of Γ+ by torsion-free normal subgroups
of Γ+, all being extensions of an abelian group K/Km of exponent m (for increasing m) by

the initial quotient group Γ+/K. In particular, the orders of the groups in this sequence ex-
hibit polynomial growth. The corresponding 3-manifolds (with maximal symmetry group)

will be covers of the 3-manifold associated with the initial subgroup Σ.
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For small n it is easy to determine computationally whether a given torsion-free sub-
group Σ of index n has infinite abelianisation, using the Reidemeister-Schreier process (or

the AQInvariants command in Magma).
The torsion-free subgroups of index 60 in Γ+ all have abelianisations that are cyclic of

order 58 or 70 (see section 2). Similarly the abelianisations of the kernels of the homo-
morphisms from Γ+ onto PSL(2, 16) and PGL(2, 9) are isomorphic to the direct products

(Z2)
9 × (Z4)

10 and (Z3)
6 respectively.

On the other hand, the kernels of homomorphisms from Γ+ onto PSL(2, 25) and
PGL(2, 11) have abelianisations isomorphic to Z26 and Z10 respectively. It follows that

there are torsion-free normal subgroups of Γ+ with quotients isomorphic to extensions of
Z26

m by PSL(2, 25), of order 7800m26, and extensions of Z10
m by PGL(2, 11), of order 1320m10,

for every positive integer m. There are numerous other such examples.
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