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CHAPTER 1. INTRODUCTION

1. Introduction

1.1 Overview and Objectives

This report, written at the Institute of Autonomous Systems at the Swedish Defence
Research Agency (FOI), is a Master’s thesis, spanning over six months and finalizing
a M.Sc. degree in Engineering Physics. Supervisor at FOI has been Johan Hamberg,
while Xiaoming Hu has been the counterpart at the Royal Institute of Technology
(KTH), from where the master of science degree is earned.

The main objective is to investigate how the Pontryagin Maximum Principle, a
tool from the area of Optimal Control, can be used in order to find appropriate control
laws for steering a mobile platform between two prescribed points in the state space.
Any possible ambition to design an autonomous system, consisting of one single or
a group of cooperating vehicles, boils down to being able to plan the motion of the
system. Thus, path planning is a most fundamental issue for designing an Unmanned
Ground Vehicle (UGV). This work is hence a brick in a modularized project at FOI,
aiming at designing a control system, consisting of multiple UGVs.

This report presents results on how to generate time-optimal as well as feasible
paths interconnecting two given states - feasible in the sense that it has to obey both
the kinematic- and numerical limitations - since in autonomous robot applications,
because of the partially unknown environment and unexpected events, the ability to
perform path re-planning on-line is of key importance. In addition, the problem of
generating nearly time-optimal, but nevertheless smoother, more flexible and pliable
paths for a ground vehicle is considered. As will be illustrated, such paths raise the
robustness with respect to any possible uncertainties in the environment.

1.2 Report Outline

The following is a structural outline of this report:
Chapter 2 (Robot Motion Planning) and chapter 3 (Optimal Control), present
the mathematical hull and introduce the notions used in the rest of the report.

Chapters 4 and 5 are devoted to the study of Dubins’ and Reed-Shepp’s car
models respectively. The time-optimal paths for these two car models will turn out
to be the concatenation of circular arcs of maximum curvature and straight line seg­
ments, all tangentially connected (i.e. essentially bang-bang solutions). Next, the
problem of generating nearly time-optimal but nevertheless smoother, more flexible
and pliable paths for these systems is considered. Finding these nearly time-optimal
paths , which is the scope of chapter 6 , is carried out by making an appropriate and
cunning choice for the integral cost function and, as a byproduct, provides us with a
subtle and implicit way of handling input saturation.

Despite some rewarding simulation results, it turns out that the presented concept
suffers from severe numerical instability properties. The origin of this undesirable
behavior is located and a course of treatment is presented. Nevertheless, due to the
singular property of the problem, the ambition to construct arbitrary flexible paths
by means of the Pontryagin Maximum Principle must be dismissed.

Finally, in an effort to reduce the numerical difficulties that the shooting methods
brings, an alternative approach, viz. the Method of Perturbation , is adopted.

3



1.3. READER’S GUIDE

Taking the synthesized time-optimal paths as the starting point, the idea is to study
how a small change in the design parameter ε (and hence in the Hamiltonian function)
influences the optimal solution.

In Appendix A , the idea behind the shooting method as well as an algorithm for
using this technique is presented. In Appendix B the transformation of an optimal
control problem with a free terminal time, into a equivalent one but defined on a fixed
end-time interval, is considered.

1.3 Reader’s Guide

In this section, for each and every of the chapters to come, a more detailed and
descriptive disposition is provided.

Robot Motion Planning
Initially, the basic concepts used in the robotics community are introduced
(section 2.1). Everything ranging from state variables and admissible control,
to the Lie bracket and Control Lie Algebra... The notion of reachability, ac­
cessibility and controllability are also defined herewithin. This part sets the
foundation for the rest of this report and should serve as a section of reference.

Next, we consider constrained systems and introduce the concept of non­
holonomy (section 2.2). We establish integrability criteria for a single Pfaffian
constraint and present theoretical results on how the presence of nonholonomic
constraints affect the controllability properties of a control system.

Following that, the kinematic models for various mobile platforms are in­
vestigated (section 2.3). The so called uni-cycle, car-like and front-wheeled car
models will be considered. Two conditions that restrict the kinematic abilities
of these mobile platforms, namely the “rolling without slipping” and “bounded
turning radius” assumptions, are imposed. We show how these two assumptions
translate into a nonholonomic Pfaffian equality and an inequality constraint. In
addition, the effect of them on a platform’s controllability properties are invest­
igated. In the subsection 2.3.1 , we carry out the controllability analysis for
all three car models.

Optimal Control

We start this chapter by formulating the notion of an optimal control prob­
lem that is general enough to correspond to the problems that will be considered
in chapters 4 through 6. Next, in section 3.1 , the Pontryagin Maximum prin­
ciple (PMP) is presented for this stated optimal control problem where we also
present a stepwise algorithm for applying PMP to an optimal control problem.
Finally, we discuss some possible generalizations to the aforementioned prob­
lem and the implications they bring (section 3.2). The following generalizations
are to be made:

• non-autonomous systems

• initial and/or final configurations are not specified, but are instead required
to belong to smooth manifolds.

• the cost function includes, in addition to the integral term, an initial and/or
final cost term.

Dubins’ car
This chapter is devoted to Dubins’ problem which can be described as finding
the shortest continuously differentiable path between two given points taken by
a car, for which the starting and ending directions are specified. In addition,
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CHAPTER 1. INTRODUCTION

we assume that the car is moving with unit speed and subject to a minimum
turning radius constraint.

First, we formulate Dubins’ problem as a minimum-time problem and char­
acterize the optimal control by applying PMP to it (section 4.1). Every
time-optimal path will be shown to consist of circular arcs of maximum curvature
and straight line segments, all tangentially connected. These basic path seg­
ments’ duration and mutual order however, is a much more delicate matter. In
order to restrict the candidates for optimality, a set of sufficient family of
paths , FD , is presented (section 4.2). Then finally an algorithm for synthes­
izing the optimal path , i.e. to pinpoint the global optimum inside FD , is
presented (section 4.3). The nature of the presented algorithm is geometrical,
which makes it highly suitable for numerical computations. Then, by adopting
preferred path following technique, the platform is to follow this synthesized
path.

Reeds-Shepp’s car
Reed-Shepp’s problem is almost identical to that of Dubins’, with one exception;
Reed-Shepp’s car is able to perform backwards motion as well, i.e. now the
velocity υ ∈ {−1, 1}. Consequently, the outline of this chapter is similar to
the previous one. Firstly we characterize the optimal control (essentially
bang-bang solutions), then present the sufficient family of paths, FRS , and
finally discuss some results regarding optimal path synthesis.

Nearly Time-Optimal Paths
Initially, we make a remark that in those cases where we are entitled to dictate
an arbitrary integral cost function, this choice should clearly be made with the
some practical, control-motivated reasons in mind (section 6.1). Our objectives
when making that choice, are three-fold:

• generate nearly time-optimal solutions

• obtain smoother, more flexible and pliable paths

• handle input saturation in a convenient manner.

Then, a handful of more or less fruitful trials and some rewarding simulation
results are presented in section 6.2. But at the final hour, the unstable numer­
ical properties of the problem at hand, become to tangible. Once the origin
of this behavior is located (section 6.3), we may conclude that the presented
concept has to be disregarded. The generated paths are too “non-optimal” to
be classified as “nearly time-optimal” solutions.
Finally, in an effort to reduce the numerical difficulties that the shooting meth­
ods brings, an alternative approach, viz. the Method of Perturbation, is
adopted (section 6.4). By making a Taylor expansion about the synthesized
time-optimal paths, we are able to study the first order contribution from a
change in the design parameter, ε , to the change in the appearance of the
generated paths.

Appendix A
The idea behind the shooting method, which is the most well-tried and depend­
able technique for solving two point boundary values problems, is discussed in
appendix A. In addition, an algorithm for adopting this technique is presented.

Appendix B
When employing numerical DE solvers in e.g. MATLAB, the duration of the
time interval in which the numerical integration should dure, have to be pre­
scribed. This naturally contradicts the fact that we have an optimal control
problem with free terminal time at hand. To set this right, we utilize a time

5



1.3. READER’S GUIDE

transformation, which equalizes the free terminal time problem with a fixed
end-time problem, defined on the interval [0, 1].

6



CHAPTER 2. ROBOT MOTION PLANNING

2. Robot Motion Planning

Robot motion planning arises as a natural and vital subproblem of the noble ambition
to design an autonomous system. Once implemented, it lifts the question of robot
control to a higher level, where the input descriptions will specify the nature of the
task to be carried out, rather than how to do it. From a control perspective, if
our objective is to get hold of a cold bottle of beer, we find it more desirable and
convenient to simply tell the robot to ’Duff, please!’ rather than passing explicit
and highly detailed maneuver schemes to it. This involves generating an optimal, as
well as feasible path interconnecting two given points in the state space - feasible in
the sense that it has to obey both the kinematic and numerical limitations - since in
autonomous robot applications, the ability to perform path re-planning on-line is of
key importance.

The outline of this chapter is as follows: In section 2.1 we introduce some basic
notions used in the robotics community, which also serve as foundation and source of
reference, for the chapters to come. In section 2.2 we consider systems, on which a
set of kinematic constraints are imposed and introduce the concept of nonholonomic
systems. We will see that the main consequence of a nonholonomic constraint, is that
an arbitrary path in the admissible state space does not necessarily correspond to a
feasible trajectory for the robot. This is due to the restriction that the nonholonomic
constraint imposes on the set of accessible velocities at each time instant, a fact that
will have consequences for our efforts to plan the motion of the robot.
Next, in section 2.3 , we present and discuss some models describing the kinematic
properties of mobile platforms. The unicycle, car-like and the front-wheeled car mod­
els, are going to be investigated. In addition, the controllability properties of these
three models will be examined.

2.1 Basic Concepts

Consider a system, fully characterized by a finite number of real variables x1, x2, . . . , xn ,
satisfying a given set of equality or inequality constraints 1. If our system is to rep­
resent a vehicle or a rocket, these real variables might specify its position and orient­
ation in space, but also more delicate matters, such as the amount of remaining fuel
or covered distance, might occasionally be suitable to consider. These real numbers
are called state variables or generalized coordinates. It is convenient to think about
the state of the system as a point x = (x1, x2, . . . , xn) in an n-dimensional space.
A point that fulfills all the constraints on the state variables is called an admissible
state. The set of all admissible states is called state space and denoted X .

Next, we shall introduce the state dynamics and the control. The state dynamics ,
is a prescribed set of rules that governs the time evolution of the state variables. It
indicates how the state variables will change over time, given a current state and
current input. It is mathematically appealing and physically motivated, to focus our
attention on systems whose behavior are governed by nonlinear ordinary differential

1The classification of any possible constraint and their effect on the system are to be explicitly
considered in section 2.2

7



2.1. BASIC CONCEPTS

equations (ODEs)
ẋ(t) = f(x(t), u(t)) (2.1)

where f(x, u) ∈ C∞ is the system dynamics and u = (u1, u2, . . . , um) is the control
vector that can be thought of as a point in an m-dimensional space, the control space.
More generally, we shall assume that the control u , belongs to a prescribed subset U ⊆
Rm and that the control manifold , U , is constant, i.e. independent of current state
x and time t. In most control problems, the constraints on the control u , commonly
arise from technological limitations. For instance, a rocket’s thrust magnitude as well
as a car’s turning radius, are bounded. This type of limitations typically restrict the
control space to polyhedra or polyhedral cones in Rm. One (often overlooked) way of
handling such control constraints, is replacing U by a non-constrained control space.
Not seldom, one encounters the following type of control constraint

|ui| ≤ 1, i ∈ {1, 2, . . . ,m}
Then by defining ui = cos ũi , we have moved the control into a space in which ũi ∈ R ,
thus unconstrained. The price that one has to pay for using this transformation trick,
is that, apart from the obvious redundancy, any possible intuitive or physical inter­
pretation of the control input might be lost. However, in chapter 6 , we will provide
a more refined and implicit way of handling control constraints.
Another restriction imposed on the control is that u(t) has to be a piecewise continu­
ous function. A control that fulfills both of the criteria mentioned, i.e. belongs to the
control manifold U , and is piecewise continuous, is called an admissible control. As­
suming that the system dynamics is a smooth function, i.e. belongs to C∞ , specifying
an admissible control on a time interval [ti, tf ] , corresponds to fully determining the
time history of the state vector in that time interval. The time evolution of x(t) is
called the path or state trajectory, along which the system moves. The state trajectory
is denoted x(·) while the corresponding control function u(t), t ∈ [ti, tf ] , is denoted
as u(·). If the path stays within the system’s state space X , we call it an admissible
path.
Concerning the system dynamics particularized by equation (2.1), we shall pay extra
attention to systems, governed by control affine system dynamics of form

ẋ(t) = f(x(t), u(t)) = ϒ(x(t)) · u(t) + ϒ0(x(t)) (2.2)

where ϒ0(x(t)) ∈ Rn is called the drift2 and ϒ(x(t)) ∈ Rn×m is a matrix with vector
fields ϒi , i = 1 . . .m , as its columns. A vector field ϒ , is a function that, with each
point x in the state space X , associates a vector belonging to that point’s tangent
space, TxX .

Definition 1 (Tangent Space and Tangent Bundle) The tangent space at a
point x , TxX , is defined as the space of all possible velocities of trajectories, passing
through the point x. Throughout this report, the tangent space is identical with the
space Rn of column vectors.
Originating from this, we define the tangent bundle as

TX = ∪
x

TxX .

Definition 2 (Vector Field) A vector field ϒ , on a manifold X , is defined as a
map ϒ : X 3 x 7→ ϒ(x) ∈ TxX .

Notice that f(x, u) ∈ TxX , is a special vector that for a fixed u , represents the
possible infinitesimal change in the state variables with respect to time. It will be
convenient to define the set f(x, U) of all vectors f(x, u) , u ∈ U . This set spans a
subspace of TxX .

2The mobile platforms considered in chapters 5 and 6 are examples of drift-less linear systems ,
while Dubins’ car (chapter 4) is an example of an affine system with drift.
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CHAPTER 2. ROBOT MOTION PLANNING

Definition 3 (Distribution) A distribution is an assignment Ñ(x) of a subspace of
TxX for each x ∈ X . Given the set of vector fields ϒ1, ϒ2, . . . , ϒm , the distribution
Ñ ⊆ Tx(X ) is defined by

Ñ = span{ϒ1, ϒ2, . . . , ϒm}.

The rank of a distribution at a point, equals the maximum number of linearly inde­
pendent vectors among ϒi , i ∈ {1, 2, . . . ,m} at this point.

A distribution Ñ , can thus be considered to assign a vector space to each point x ,
namely the space of all accessible velocities at the configuration represented by x.
From definition 3 , it follows that any vector field in Ñ , can be expressed as a linear
combination of the ϒis, which, when independent, serve as a basis for Ñ.

The subspaces Ñ(x) , typically3 do not join or fit together in a coherent manner
to form the tangent bundle of a smooth submanifold of X . Figuratively spoken, if
Ñ(x) is represented by a plate or a clinker (this metaphor will turn out to be a quite
striking one, cf. page 22), these clinkers will sometimes be joined to form a neat and
smooth wall. Other times, they will appear as an unsorted and thorny pile of bricks.
The distribution is then not the tangent bundle of a state submanifold. In such cases,
if the task is to transfer the system between two prescribed configurations Xi and Xf ,
it is possible to reach final points Xf in a set of higher dimension than dim Ñ(Xi).
To study this more formally, one of the most fundamental operations than can be
performed on vector fields, namely the Lie bracket , has to be introduced.

Definition 4 (Lie Bracket) Given two vector fields X and Y , another vector field,
called the Lie bracket and denoted by [X, Y ] , can be defined. The Lie bracket is
computed by

[X, Y ] = D Y · X − D X · Y (2.3)

where D X and D Y are the Jacobian matrices of X and Y respectively, i.e.

D X =


∂X1
∂x1

∂X1
∂x2

. . . ∂X1
∂xn

∂X2
∂x1

∂X2
∂x2

. . . ∂X2
∂xn

...
...

...
∂Xn

∂x1

∂Xn

∂x2
. . . ∂Xn

∂xn

 and D Y =


∂Y1
∂x1

∂Y1
∂x2

. . . ∂Y1
∂xn

∂Y2
∂x1

∂Y2
∂x2

. . . ∂Y2
∂xn

...
...

...
∂Yn

∂x1

∂Yn

∂x2
. . . ∂Yn

∂xn


Lie brackets have the following two basic properties

1. [X, Y ] = −[Y,X] (skew-symmetric)

2. [[X, Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (the Jacobi identity)

Remark 1 It is sometimes desirable to evaluate the Lie bracket component-wise. In
such cases, the ith component is conveniently evaluated as

[X, Y ]i =
n∑

p=1

(
Xp

∂Yi

∂xp
− Yp

∂Xi

∂xp

)
Example 1 (Lie Bracket) As a basic example, which however is of interest in sec­
tion 2.3.1 , we calculate the Lie bracket between

ϒ1 =

cos ϕ
sin ϕ

0

 and ϒ2 =

0
0
1


3In the presence of nonholonomic constraints to be more specific (cf. section 2.2)
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2.1. BASIC CONCEPTS

Using definition 4 we get

[ϒ1, ϒ2]=Dϒ2 ·ϒ1−Dϒ1 ·ϒ2 =

 0 0 0
0 0 0
0 0 0

cos ϕ
sin ϕ

0

−

 0 0 − sin ϕ
0 0 cosϕ
0 0 0

0
0
1

=

 sin ϕ
− cos ϕ

0


Taking iteratively Lie brackets of all the vector fields of a system, motion vectors

are generated which lie outside of Ñ. A legitimate question in such cases, is to ask how
to determine all the final points, that are reachable from a given initial point. This
involves determining the systems reachability and controllability properties, which will
be discussed in more detail in section 2.2. We shall now give a more precise definition
of these notions. But before then, let us introduce a most fundamental concept in
controllability theory, viz. the so-called Control Lie Algebra.
To make the idea of a Control Lie Algebra concrete, consider the set of all vector
fields, that can be generated by taking Lie brackets [ϒi, ϒj ] of a systems all vector
fields ϒi and ϒj , where i, j ∈ {1, 2, . . . ,m}(i 6= j). Next, consider taking Lie brackets
of the newly created vector fields with each other as well as with the original vector
fields, ϒis. This process is to be repeated indefinitely, by iteratively applying the
Lie bracket operation to the new vector fields, until a vector space is obtained that
is closed under the Lie bracket operation. A set is said to be closed under the Lie
bracket operation if, whenever X and Y belongs the set, it follows that [X, Y ] also
belongs to it. We then define the Control Lie Algebra to be the set of all vector fields,
obtained by this iterative process. Stated more concisely, the Control Lie Algebra
is the distribution generated by ϒ1, . . . , ϒm , and all their Lie brackets recursively
computed.

Definition 5 (Control Lie Algebra) The Control Lie Algebra associated with a
distribution Ñ , is denoted CLA(Ñ) and is the smallest distribution containing Ñ that
is closed under the Lie bracket operation.

Finding a basis of the CLA, is generally a tedious process. There exist however
several systematic approaches for generating such a basis, one of which is called the
Phillip-Hall basis (see [21]).

We may now proceed to define the concepts of reachability, accessibility and con­
trollability. In each case, three different types will be considered, viz. exact-time,
small-time and finite-time. In addition, each of these concepts will appear in a more
restricted version (termed local), where we, not only pay attention to what points
are reachable, accessible or controllable, but also restrict the corresponding state
trajectory x(·) to stay in a prescribed neighborhood of the point.

Definition 6 (Reachability) The set of exact-time reachable points from x , is
defined as

R∗(x, T ) = {x̂ ∈ X | there exists an admissible u(·) such that x(0) = x and x(T ) = x̂}

Originating from this definition, we have:

set of small-time reachable points from x R(x, T ) = ∪
t≤T

R∗(x, t)

set of finite-time reachable points from x R(x) = ∪
t∈R+

R∗(x, t)

Definition 7 (Local Reachability) The set of locally exact-time reachable points
from x , is defined as

R∗(x, T,N) = {x̂ ∈ N | there exists an admissible u(·) such that x(0) = x, x(T ) = x̂

and the corresponding trajectory x(·) ∈ N},

where N is a prescribed neighborhood of x.

10
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Originating from this definition, we have:

set of locally small-time reachable points from x R(x, T,N) = ∪
t≤T

R∗(x, t,N)

set of locally finite-time reachable points from x R(x, N) = ∪
t∈R+

R∗(x, t,N)

An alternative presentation of the definition of reachability can be found in table 2.1

Exact-time Small-time Finite-time
Reachability R∗(x, T ) = {x̂ ∈ X | there exists R(x, T )= R(x) =

an admissible u(·) such that
x(0) = x and x(T ) = x̂}.

∪
t≤T

R∗(x, t) ∪
t∈R+

R∗(x, t)

Local R∗(x, T,N) = {x̂ ∈ N | there R(x, T,N)= R(x,N)=
Reachability exists an admissible u(·) such

that x(0) = x, x(T ) = x̂ and
the corresponding state traject­
ory x(·) ∈ N}.

∪
t≤T

R∗(x, t,N) ∪
t∈R+

R∗(x, t,N)

Table 2.1: Definition of reachability.

We shall proceed by defining accessibility and controllability. Because of the similar­
ities in the formulation of these definitions, they will be presented by means of table
2.2. As an illustrative example of how the table should be interpreted, we consider
the definition of locally exact-time controllable systems. Then, from the first column
of the last row of table 2.2 , it follows that a system is called locally exact-time con­
trollable, if for all x ∈ X , R∗(x, T,N) contains a full neighborhood of x , for all T > 0
and any prescribed neighborhood N .

Exact-time Small-time Finite-time
Accessible for all x ∈ X , R∗(x, T )

contains a non-empty
open set for all T > 0.

for all x ∈ X , R(x, T )
contains a non-empty
open set for all T > 0.

for all x ∈ X , R(x)
contains a non-empty
open set.

Locally
Accessible

for all x ∈ X ,
R∗(x, T,N) con­
tains a non-empty
open set for all T > 0
and any prescribed
neighborhood N .

for all x ∈ X ,
R(x, T,N) contains a
non-empty open set
for all T > 0 and
any prescribed neigh­
borhood N .

for all x ∈ X , R(x, N)
contains a non-empty
open set for any pre­
scribed neighborhood
N .

Controllable for all x ∈ X , R∗(x, T )
contains a full neigh­
borhood of x for all
T > 0.

for all x ∈ X , R(x, T )
contains a full neigh­
borhood of x for all
T > 0.

for all x ∈ X , R(x)
contains a full neigh­
borhood of x.

Locally Con­
trollable

for all x ∈ X ,
R∗(x, T,N) contains
a full neighborhood
of x for all T > 0
and any prescribed
neighborhood N .

for all x ∈ X ,
R(x, T,N) contains a
full neighborhood of x
for all T > 0 and
any prescribed neigh­
borhood N .

for all x ∈ X ,
R(x, N) contains a
full neighborhood of
x for any prescribed
neighborhood N .

Table 2.2: Definition of accessibility and controllability.

Remark 2 What we call exact-time accessibility/ controllability, is sometimes re­
ferred to as strong accessibility/ controllability.
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Next we shall present some results regarding determining a system’s accessibility and
controllability properties. Proposition 1 gives us a powerful tool for determining a
systems accessibility properties. Notice that since locally exact-time accessibility is
the most stringent type of accessibility considered, it implies the other five types of
accessibilities, presented in table 2.2.

Proposition 1 (Locally Exact-time Accessibility) (cf. [8] page 68, or [16] page
86)
If an affine control system satisfies CLA(Ñ) = TX , then the system is locally ex­
act-time accessible.

The simplest approach to show small-time controllability for the special import­
ant case of affine systems is by studying the linearized system. It should be noted
that small-time controllability naturally implies controllability and even (small-time)
accessibility.

Proposition 2 (Small-time Controllability) (cf. [16] page 75 or [21] page 511)
If an affine system of form (2.2), is drift-free at x̂ (i.e. ϒ0(x̂) = 0) and the lineariza­
tion at x̂ and u = 0

ż =
∂ϒ0

∂x
(x̂)z + ϒ(x̂)u

is controllable (i.e. satisfies the Kalman rank condition), then the system is small-time
controllable from x̂.

However, no conclusion can be drawn about the controllability properties of the non­
linear system, if the linearized counterpart fails to be controllable. In such cases, one
of the propositions presented in the very end of section 2.2 might be applicable.

2.2 Constrained Systems

In the sequel, we shall re-express the controllability properties of control affine systems
in the dual language of constraints. We do not, however, introduce the formalism of
differential forms and exterior calculus. Hence, we are to discuss two distinctly dif­
ferent types of constraints that might be imposed on a system, namely holonomic
and nonholonomic constraints. The former are characterized by algebraic equality
or inequality equations in terms of the state variables and are used to restrict the
motion of the system to a smooth submanifold of the state space, X . Obstacles
and certain technical limitations, are suitably expressed by means of these config­
uration-level constraints. Nonholonomic constraints on the contrary, correlates the
state variables and their time-derivatives, i.e. the generalized velocities, in a funda­
mentally non-integrable manner and are a kinematic-level type of limitations. These
constraints, do not reduce the dimension of X , but restrict the distribution of ac­
cessible velocities at a configuration to a submanifold of TxX , the tangent space at
configuration x. Let us now discuss both of these types of constraints in greater
detail.

Initially, suppose that a scalar constraint of the form

F (x, t) = 0 (2.4)

applies to the motion of a system. Then, assuming that F (x, t) is continuously dif­
ferentiable, the Implicit Function Theorem theoretically ensures that equation (2.4)
can be used to express one of the generalized coordinates in terms of the others and
thereby be eliminated. Nevertheless, in practice, it may be difficult to solve implicit
constraint equations for a certain state variable. This elimination however, restricts
the set of admissible state variables to a smooth submanifold of X . This submanifold
is then the system’s actual state space. Once one of the state variables is eliminated,
the (n − 1) remaining state variables define the system’s reduced state vector, xred.

12



CHAPTER 2. ROBOT MOTION PLANNING

The system’s reduced state space Xred , is hence a (n − 1)-dimensional submanifold
of X . This abolishes the system’s redundancy properties. Any constraint, having the
form of equation (2.4), is called a holonomic equality constraint. Generalizing this, if
there are k independent configurational equality constraints imposed on the system,
the reduced state space Xred , will be a submanifold of X with dimension (n − k) (see
[1]).
A constraint of the form F (x, t) ≤ 0 , is termed a holonomic inequality constraint.
These type of constraints, merely restrict a system’s admissible state space to a lim­
ited submanifold of X , without reducing its dimension. They are typically used for
putting bounds on certain state variables or describing any possible obstacles present
in X .
Summarizing what has been said thus far, we state the following definition of a holo­
nomic constraint (see [7])

Definition 8 (Holonomic Constraint) A constraint that restricts the motion of a
system to a smooth submanifold in the state space, is called a holonomic constraint.

When the generalized velocity of a system satisfies an equality- or inequality con­
dition that cannot be integrated or written as an equivalent condition on the con­
figuration-level, the system is called a nonholonomic system. Hence, nonholonomic
constraints can be expressed in terms of non-integrable relations between several state
variable and their time-derivatives. A scalar constraint of form

G(x, ẋ, t) = 0 (2.5)

where we assume that G is a smooth function, is said to be holonomic if it is integrable,
i.e. equation (2.5) can be rewritten as a family of constraints in the form of equation
(2.4). Otherwise the constraint is called a nonholonomic equality constraint. A scalar
nonholonomic equality constraint, restricts the distribution of accessible velocities at
a configuration Ñ(x) , to a (n − 1) - dimensional subspace of TxX , the tangent space
at x , this, without affecting the dimension of the accessibility set. More generally,
if there are l independent nonholonomic equality constraints imposed on the system,
Ñ(x) will be a subspace of TxX , with dimension (n − l).
As a special important case (see section 2.3), we consider the case when G expresses
a Pfaffian constraint, that is

G(x, ẋ, t) = g(x)ẋ = 0 (2.6)

where g(x) ∈ Rm×n. If we are able to find the potential of g(x) , that is find a
f(x) such that ∇f(x) = g(x) , then we might equivalently write equation (2.6) as
f(x) = constant , which is a constraint on the configuration-level. In such case, we
have translated the kinematic-level constraint specified in equation (2.6), into a family
of holonomic constraints. Notice that all configuration-level constraints of the form
f(x) = constant , can be written as an equivalent Pfaffian constraint f ′(x) ẋ = 0,
by a differentiation with respect to time. The converse is however not true, which
is exactly the point that distinguishes, holonomic- and nonholonomic constraints.
Stated otherwise, a Pfaffian constraint that is not equivalent to a family of constraints
on the configuration-level, is called a nonholonomic constraint.
Finally, a non-integrable constraint of the form

G(x, ẋ, t) ≤ 0 (2.7)

is called a nonholonomic inequality constraint. It has the effect of restricting Ñ(x) ,
to a submanifold of TxX . Notice though that, usually, the rank of the distribution of
accessible velocities, is unchanged, so that rankÑ(x) = dim TxX = n.
We may now define the notion of nonholonomic constraints.
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Definition 9 (Nonholonomic Constraint) A non-integrable scalar constraint of
the form

G(x, ẋ, t) =
(≤) 0 (2.8)

where G(x, ẋ, t) is a smooth function, is called a nonholonomic equality (inequality)
constraint.

The reduction of the set of accessible velocities for nonholonomic systems, severely
complicates the task of motion planning. In fact, motion planning in the presence of
nonholonomic constraints, is fundamentally different from motion planning for holo­
nomic systems. For the latter, a set of independent generalized coordinates can be
found, and thus an arbitrary motion in the system’s reduced state space, Xred , is
feasible. This is since xred , serves as a basis that spans Xred and thus enables control
of all the state variables. In contrast, for a nonholonomic system, a set of independent
generalized coordinates attracts attention by its absence. By virtue of this, not every
motion is feasible, but only those which satisfy the instantaneous nonholonomic con­
straint (2.8). This implies that the main consequence of a nonholonomic constraint, is
that an arbitrary path in the admissible state space does not necessarily correspond
to a feasible trajectory for the system. With this in mind, it is easy to see why this
fact plays a leading role in our struggle to plan the motion of a nonholonomic robot.

The presence of kinematic constraints raises two main questions. First, how do we
determine whether a given kinematic constraint is nonholonomic or not? The second
issue is to determine whether the imposed nonholonomic constraints, in addition to
restricting the distribution of accessible velocities, also reduce the set of configurations
reachable from the initial configuration. At this point, we only know that they do
not reduce the dimension of this set, since otherwise it would be integrable. So the
second question at hand is; does the presence of nonholonomic constraints, affect the
controllability properties of the system?
Concerning the characterization of a constraint’s integrability properties, we consult
[11] and establish the fact that for a set of kinematic constraints that are linear in
ẋ , the Frobenius Integrability Theorem gives a necessary and sufficient condition for
their integrability (see e.g. [11] , page 415). As a corollary, in the case of a single
Pfaffian constraint4 , the following is presented:

Proposition 3 (Determination of Integrability of Pfaffian Constraints) A
scalar linear kinematic constraint

g(x)ẋ =
m∑

p=1

gp(x)ẋp = 0

is holonomic iff the following relation holds for any i, j, k ∈ [1,m] such that 1 ≤ i <
j < k ≤ m:

Aijk = gi

(∂gk

∂xj
− ∂gj

∂xk

)
+ gj

( ∂gi

∂xk
− ∂gk

∂xi

)
+ gk

(∂gj

∂xi
− ∂gi

∂xj

)
= 0

Remark 3 In the tree dimensional case (i.e. m = 3), this necessary and sufficient
condition, reads A123 = g · [∇ × g] = 0.

Proposition 4 is used to determine whether the g(x) is proportional to the gradient
of some function f(x) , i.e. whether there exist a function f(x) such that g(x) =
h(x)∇f(x). This is to be compared with Poincaré’s lemma, which instead lays in­
formation about the existence of a potential function to g(x) , i.e. the existence of a
function f(x) such that g(x) = ∇f(x).

4This case is of particular interest for us, since as will be shown in section 2.3 , there is a linear
scalar nonholonomic constraint imposed on the mobile platforms considered.
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Proposition 4 (Poincaré’s Lemma) The coefficients, g(x) , of a scalar linear kin­
ematic constraint

g(x)ẋ =
m∑

p=1

gp(x)ẋp = 0

can be written as a gradient g(x) = ∇f(x) , of some function f(x) , iff the following
relation holds for any i, j ∈ [1,m]:( ∂gi

∂xj
− ∂gj

∂xi

)
= 0

These results provide an effective characterization of holonomy (and hence nonholonomy)
for a single Pfaffian constraint.

One way to understand and discuss the effect of nonholonomy on the controllab­
ility of a robot, is to regard the robot’s velocity vector ẋ , as the control vector. As
illuminated earlier, the distribution of accessible velocities at a configuration Ñ(x) ,
which represents the set of possible motions that can be executed from each con­
figuration, is reduced by virtue of nonholonomy. Hence, for nonholonomic systems,
the accessible control space does not coincide with the system’s tangent space at x.
As an example, we know that a car can not perform crab-like motions, i.e. move
sideways5. A limitation that causes major problems for many drives trying to paral­
lel-park their car. Nevertheless, from our everyday life experiences, we might attest
that this implication does not influence the set of reachable destinations. Hence, there
exist examples where the set of reachable configurations are unaffected, although the
system is unable to reach all the neighboring configurations directly. Can this empir­
ical observation be generalized?
The following propositions, give powerful results on the controllability properties of
affine systems.

Proposition 5 (Small-time Controllability) (cf. [10], page 106)
An affine system with no restriction on the size of the control is small-time controllable
if the rank of the control Lie algebra CLA(Ñ) equals n (the dimension of X ), for all
x ∈ X .

Proposition 6 (Controllability) (cf. [10], page 106)
A drift-less affine system remains controllable (but not necessarily small-time control­
lable) if

a) CLA(Ñ) = TX and

b) the convex hull of the control set U contains the origin in Rm

By virtue of the foregoing two propositions, checking the controllability properties of
a system requires the analysis of the Control Lie Algebra associated with it. Checking
the Lie Algebra Rank Condition (LARC), on a control system, is a very fundamental
and useful tool for determining a systems controllability properties. In section 2.3.1 ,
the controllability analysis of a number of kinematic models for mobile platforms, will
be carried out by means of LARC.
When considering the Reeds-Shepp’s car in chapter 5 , we will need results on con­
trollability properties of drift-less symmetric systems that fulfill LARC. This will be
introduced next. If we define a system to be symmetric if every trajectory run back­
wards in time is also a trajectory for the system, it follows that a necessary condition
for possessing symmetry properties, is that the control set U is symmetric, so that

5More specifically, we require the linear velocity to be orthogonal to the axis connecting the rear
wheels, and as will be shown in section 2.3 , this restriction translates into a linear scalar nonholonomic
equality constraint.
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both u and −u are admissible inputs6. In addition, the system have to be drift-less.
With this terminology, the following is valid:

Proposition 7 (Controllability of Affine Drift-less Symmetric Systems) (cf.
[16], page 82) If the vector fields of a drift-less symmetric control system of form

ẋ = ϒ(x)u

have LARC at all x ∈ X , then it is locally controllable.

2.3 Mobile Platforms

Several interesting sets of differential equations, specifying the system dynamics for
objects that move by rolling wheels, can be defined. The kinematic models that we
are going to consider are the so-called unicycle , car-like and front-wheeled car models.

Unicycle Robot Model

Referring to figure 2.1 , the two control inputs for the unicycle robot model, are the
linear- and the lateral velocities. The former, which is also referred to as the longit­
udinal velocity, is denoted by υ , while the latter, which represents the robot’s angular
velocity, is denoted by ω. To fully characterize the state of the robot, we need a min­
imum of three state variables. Two of them are required to specify the position of the
robot in R2 and one to specify its orientation. The point (x, y) , is a reference point
on the platform (throughout this report, the rear axle’s midpoint), while ϕ is used to
denote the robot’s orientation.7 The position vector (x, y) ∈ R2 , while the orientation
angle is a real number modulo 2π , or equivalently, a member of S1 , the unit circle in
the plane. Consequently, the state space of the robot becomes X = R2 × S1.

υ

ϕ

ω

y

x

Figure 2.1: The unicycle robot model.

The task now is to represent the motion of the mobile platform as a set of differential
equation such that

6Notice that this requirement is stronger than and therefore implies condition b) in proposition
6.

7Be careful of notation collision. So far, x has denoted a general state vector, but might henceforth
occasionally refer to a robot’s x-position in R2.
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ẋ = f1(x, y, ϕ, υ, ω)
ẏ = f2(x, y, ϕ, υ, ω) (2.9)
ϕ̇ = f3(x, y, ϕ, υ, ω).

The platform’s angular velocity specifies the time-evolution of the orientation angle
ϕ , so that ϕ̇ = ω. Imposing the “rolling without slipping assumption” on the robot
wheels (see assumption 1 , page 20 for more details), means that in an infinitely-small
time interval, the point (x, y) , must move in the direction of the orientation angle,
ϕ. Simple vector algebra then, yields that ẋ = υ cos ϕ and ẏ = υ sin ϕ. Summarizing
this, we get

ẋ = υ cos ϕ

ẏ = υ sin ϕ (2.10)
ϕ̇ = ω.

In order to make the notations more consistent with what has been presented previ­
ously (cf. equation (2.2)), we set the vector of the state variables x = (x, y, ϕ) and
re-write equation (2.10) as

ẋ =

 cos ϕ
sin ϕ

0

 υ +

 0
0
1

 ω = ϒ1 υ + ϒ2 ω = ϒ · u, (2.11)

where u = [υ ω]T and ϒ has ϒi as its ith column.

Figure 2.2: Most robots of unicycle-type have two actively controlled steering wheels
and a castor wheel. The picture illustrates Nomadic Technologies Scout.

Among the kinematic models to be presented in this section, the unicycle robot
model, is the most simplified, this is so because it gives direct control over the orient­
ation of the vehicle. If υ = 0 is an admissible control, then a unicycle robot is free
to rotate unrestricted, while standing still in (x, y). Consequently a unicycle robot is
able to follow any continuous path. However, in the case of the unicycle car models
considered in chapter 4 and 5 (Dubins’- and Reed-Shepp’s car models), the control
domain in the linear direction does not include the origin, so that υ = 0 is not a
member of the admissible control set, U . This excludes the possibility to rotate the
car while standing still. As a matter of fact, solutions where you rotate around freely
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in one spot, turn out to be non-optimal and does not occur even in the case when such
motions are admissible to be executed. This is concluded from studying time-optimal
paths for the convexified Reeds-Shepp’s car (see chapter 5 and 6), for which υ = 0
indeed belongs to U .

Car-like Robot Model

From a driver’s point of view, a vehicle has two control possibilities: the acceler­
ator/brake pedal and the steering wheel. The accelerating factor is the linear velocity
υ , while the steering wheel specifies the angle between the front wheels and the main
direction of the vehicle. We define this as the steering angle δ , which is our second
control variable (see figure 2.3). In practise, the two front wheels are seldom exactly
parallel, why we might set δ to be the average of these two angles. Augmenting the
steering angle, obviously captures the characteristics of a car even better and results
in a refined model compared with the unicycle model.

δ

r

(x,y)
ϕ

L

υ

y

x
Figure 2.3: The car-like robot model.

The car-like robot model, has the same state variables as the unicycle robot, i.e.
x = (x, y, ϕ). Again, the task is to find a set of differential equations f1, f2 and f3
(cf. equation (2.9)), that properly describes the kinematic properties of the car.
Since the “rolling without slipping” assumption is valid even in this case, the motion
in the R2-plane is dictated by the same equations as before, so that ẋ = υ cos ϕ and
ẏ = υ sin ϕ.
Proceeding to the time evolution of the orientation angle ϕ̇ , let s denote the distance
traveled by the vehicle. Then ṡ = υ , which is the speed of the car. As shown in
figure 2.3 , r represents the radius of a circle that will be traversed by (x, y) , when
the steering angle is fixed. Consequently ds = r dϕ. From simple trigonometry, we
have tan δ = L

r , which implies

dϕ =
tan δ

L
ds.

Dividing by dt and using the fact that ṡ = υ , yields

ϕ̇ =
υ

L
tan δ.
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Thus, the system dynamics for the car-like robot is

ẋ = υ cos ϕ

ẏ = υ sin ϕ (2.12)

ϕ̇ =
υ

L
tan δ.

Since the linear velocity appears in the time evolution of all the state variables, this
car model does not have the possibility to make arbitrary rotations while standing
still in R2. It is only able to follow paths that are at least continuously differentiable.

Front-wheeled Car Model

In the car-like robot model (equation (2.12)), we had the steering angle as an input
and assumed to have direct control over its value. This corresponds to being able
to move the front wheels instantaneously, which obviously contradicts our intuition
about cars in general, and in many real-life applications this assumption is an unreal­
istic one. Whenever the value of δ changes discontinuously, the path traced out in
the plane by (x, y) , will have a discontinuity in its curvature. To put this right and
make a car model that only generates smooth paths (i.e. belongs to C2), we might
add the steering angle as an extra state variable and consider its derivative to be one
of the input signals. Introducing this integrator-chain, results in a delay in the lateral
control, such that δ is only allowed to change its values in a continuous manner.
We thus have to consider a four-dimensional state space, in which each state is rep­
resented as x = (x, y, δ, ϕ). The system dynamics for the front-wheeled car model
then becomes

ẋ = υ cos ϕ (2.13)
ẏ = υ sin ϕ

δ̇ = ω

ϕ̇ =
υ

L
tan δ

where, as usual, υ represents the linear velocity, while ω now is the angular velocity
of the steering angle. By setting

ϒ1 =


cos(ϕ)
sin(ϕ)

0
tan(δ)

L

 and ϒ2 =


0
0
1
0

 ,

we may re-write equation (2.13) as

ẋ = ϒ1 υ + ϒ2 ω = ϒ · u (2.14)

where, as before, u = [υ ω]T and ϒ has ϒi as its ith column.
Although it holds true that the method of introducing the former input signal

δ , as a state variable and rather consider its time derivative to be the new control
input, gives a more realistic model for describing a real car, one should ask weather
such approach is justified, as long as we do not take similar action for the linear
control, υ. Is it reasonable to consider that we are able to dictate the instant value
of the linear velocity of a car? Because of its weight, the inertia along the platform’s
main axis, is generally orders of magnitude larger than the resistance existing in
the steering device, why it may be motivated to introduce an integrator-chain in
the linear direction as well. But on the other hand, allowing the steering angle to
change instantaneously, corresponds to matter moving in a discontinuous manner in
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X , which is physically offensive. This is however not the case when υ is allowed to
change its value discontinuously.

For a summary of what has been said about the kinematic modeling of mobile
platforms, consider table 2.3

Model name Unicycle Robot Model Car-like Model Front-wheeled Car

System Dynamics ẋ = υ cos ϕ ẋ = υ cos ϕ ẋ = υ cos ϕ
ẏ = υ sin ϕ ẏ = υ sin ϕ ẏ = υ sin ϕ

ϕ̇ = ω ϕ̇ = υ
L tan δ δ̇ = ω

ϕ̇ = υ
L tan δ

Path Smoothness C C1 C2

Table 2.3: The system dynamics and the required smoothness of the generated paths,
for the unicycle, car-like and the front-wheeled car models.

Figure 2.4: The autonomous ground vehicle at FOI.

Generally, we make the following two assumptions about the platform’s kinematic
abilities:

Assumption 1 (Rolling Without Slipping) It is customary to assume that the
robot wheels do not slip. This assumption is legitimate in all moderate-speed scenarios.

Assumption 2 (Maximum Steering Angle) We further assume that we have a
limitation on the maximum steering angle |δ| ≤ δmax , meaning that the turning radius
for our car is lower bounded.

Let us examine the effects of these two assumptions. Assuming pure rolling contact
between the wheels and the ground, i.e. no slipping, the velocity of (x, y) is always
orthogonal to the axis connecting the rear wheels, or equivalently, parallel to the main
axis of the vehicle, which naturally coincide with the direction of υ. Hence we have

ẋ = υ cos ϕ and ẏ = υ sin ϕ.
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CHAPTER 2. ROBOT MOTION PLANNING

Eliminating υ , we get
ẋ sin ϕ − ẏ cos ϕ = 0. (2.15)

In order to be able to characterize the integrability properties of equation (2.15), we
re-write it in the following form

(sin ϕ, − cos ϕ, 0) ·

 ẋ
ẏ
ϕ̇

 = g(x) ẋ = 0. (2.16)

Then, we deduce from remark 3 that equation (2.15) would be holonomic (and hence
integrable) if and only if A = g · [∇ × g] = 0. Now since in our case

A = g · [∇ × g] = (sin ϕ, − cos ϕ, 0) · (− sin ϕ, cos ϕ, 0) = −1 6= 0

regardless of the orientation angle ϕ , we conclude that the no slipping assumption,
imposes a scalar linear nonholonomic equality constraint, restricting the space of
accessible velocities to a 2-dimensional subspace of TxX (see figure 2.5).

ϕ

ϕ

υ

ϕ)

( x

x, y,(

x

y

)∆

Figure 2.5: In the presence of the “rolling without slipping” assumption, the velocity
vector (ẋ, ẏ) , must lie in the direction of υ and is therefore restricted to the 2-dim
hyper surface Ñ(x).

Proceeding to the second assumption, our objective is to re-write the constraint
|δ| ≤ δmax as a kinematic-level type of constraint. From figure 2.3 we understand that
tan δmax = L

R , where R denotes the radius of the circle traced out by (x, y) when the
steering angle δ = δmax. Also, we have (cf. table 2.3) ϕ̇ = υ

L tan δ. Then it follows
that

| arctan(
ϕ̇L

υ
)| = |δ| ≤ δmax = arctan(

L

R
)

which implies

|ϕ̇| ≤ |υ|
R

(2.17)

or, equivalently, by expressing |υ| =
√

ẋ2 + ẏ2

R2ϕ̇2 − ẋ2 − ẏ2 ≤ 0.

Due to the fact that in all real-life applications, there must exist an upper bound on
the value of the linear velocity, we might re-write equation (2.17) as

|ϕ̇| ≤ 1
R

(2.18)
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where we have re-scaled the maximum admissible velocity to one. To get an expression
for ϕ(t) , we calculate

|ϕ(t) − ϕ(0)| = |
∫

ϕ̇(t) dt| ≤
∫

|ϕ̇(t)|dt ≤ t

R
, (2.19)

where the last inequality follows from equation (2.18). Equation (2.19) has been
sketched in figure 2.6 , from where we might conclude that ϕ , must lie within a
isosceles triangle with top-angle 2α.

1 t

ϕ

1/R
αϕ0

R
tϕ(t) = ϕ 

0
+ 

R
tϕ(t) = ϕ 

0 -

Figure 2.6: The maximum steering angle assumption, entraps ϕ(t) in a triangle with
α = arctan 1

R .

Hence, assumption 2 restricts the set of accessible velocity vectors to a two-sided cone
with angle 2α , where α = arctan 1

R . However, it does not reduce the dimension of
Ñ(x) , but merely restricts it to a subset of TxX .
Finally, the augmented effect of both our assumptions, is shown in figure 2.7. We
observe that these two assumptions, restrict the set of accessible velocity vectors
to the intersection between the 2-dimensional plane dictated by the “rolling without
slipping” assumption (illustrated in figure 2.5) and a two-sided cone that origins from
the “maximum steering angle” assumption.
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α ϕ)x, y, (
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Figure 2.7: The shadowed area represents the restricted set of accessible velocity
vectors, for a non-slipping vehicle with bounded steering angle.

2.3.1 Controllability Analysis We will now, by utilizing the results presented
in section 2.2 (proposition 5 to be more precise), show that all the models presented,
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CHAPTER 2. ROBOT MOTION PLANNING

are small-time controllable. This determination will be carried out by checking the
Lie Algebra Rank Condition (LARC) for each of the three models. Notice though
that all of these results only hold true when there are no bounds on the input signals,
so that U = Rm.

Unicycle Robot Model
Let us consider the two admissible controls u1 = [1 0]T and u2 = [0 1]T . Using
the notations used in equation (2.11), the associated vector fields are ϒ1 and
ϒ2. The Lie bracket them between, is (see definition 4)

[ϒ1, ϒ2] =

 sin ϕ
− cos ϕ

0


We can immediately observe that [ϒ1, ϒ2] is linearly independent from ϒ1 and
ϒ2 , by noting that the determinant of the matrix cos ϕ sin ϕ 0

0 0 1
sin ϕ − cos ϕ 0


is non-zero for all (x, y, ϕ). This implies that the dimension of CLA(Ñ) = 3.
Hence, the unicycle robot model fulfills LARC and is by virtue of proposition
5 , small-time controllable.

Car-like Robot Model
Firstly, we wish to re-write the system dynamics for the car-like robot model
(equation (2.12)), as an affine control system. Then, by setting ω̂ = υ

L tan δ , we
get

ẋ = υ cos ϕ

ẏ = υ sin ϕ

ϕ̇ = ω̂,

which is to be recognized as the system dynamics for the unicycle robot model.
However, by doing this we have introduced a subtle difference which involves
that ω̂ is no longer a free variable but has to equal zero whenever υ = 0, i.e.
the ω̂-axes in the ω̂ − υ plane, is non-admissible. This holds true whenever
there are no restrictions imposed on δ. But considering that we only require the
control input to be a piecewise continuous function, we realize that it does not
matter if the control is not allowed on a null set. Consequently, from what has
been said in the previous paragraph about the controllability properties of the
unicycle robot model, we conclude that the car-like robot model is small-time
controllable as well.

Front-wheeled Car Model
We recall from equation (2.14), that the system dynamic for this model was

ẋ = ϒ1(x) υ + ϒ2(x) ω,

where

ϒ1 =


cos ϕ
sin ϕ

0
tan δ

L

 and ϒ2 =


0
0
1
0

 .
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We then have

[ϒ1, ϒ2] = Dϒ2 · ϒ1 − Dϒ1 · ϒ2 = −


0 0 0 − sin ϕ
0 0 0 cosϕ
0 0 0 0
0 0 1+tan2 δ

L 0




0
0
1
0

 = −


0
0
0

1+tan2 δ
L


and

[ϒ1, [ϒ1, ϒ2]] = −


0 0 0 0
0 0 0 0
0 0 0 0
0 0 2(tan δ+tan3 δ)

L 0




cos ϕ
sin ϕ

0
tan δ

L

+


0 0 0 − sin ϕ
0 0 0 cosϕ
0 0 0 0
0 0 1+tan2 δ

L 0




0
0
0

1+tan2 δ
L



=


− sin ϕ( 1+tan2 δ

L )
cos ϕ( 1+tan2 δ

L )
0
0

 .

In order to check the linear dependency of the four vectors ϒ1, ϒ2, [ϒ1, ϒ2] and
[ϒ1, [ϒ1, ϒ2]] , we calculate∣∣∣∣∣∣∣∣

cos ϕ sin ϕ 0 tan δ
L

0 0 1 0
0 0 0 − 1+tan2 δ

L

− sin ϕ( 1+tan2 δ
L ) cos ϕ( 1+tan2 δ

L ) 0 0

∣∣∣∣∣∣∣∣ = −
(1 + tan2 δ

L

)2
,

which is 6= 0, for all configurations (x, y, δ, ϕ) ∈ X . Thus, the system (2.14),
fulfills LARC in every point in the state space, and is thereby small-time con­
trollable.

24



CHAPTER 3. OPTIMAL CONTROL

3. Optimal Control

We start this chapter by formulating an optimal control problem that is general enough
to correspond to the problems that will be considered in chapters 4 through 6. The
main purpose of this chapter is then to present a method for characterizing the optimal
control associated with such a problem. This is the scope of section 3.1. The solution
method presented here, was first presented in 1957 by the Soviet mathematician L.S.
Pontryagin [18] and is called the Pontryagin Maximum Principle (PMP).
In section 3.2 , we take a look at more general optimal control problems and the
implications of these generalizations on the results presented in section 3.1.
It must be emphasized that there exist other approaches to solve optimal control
problems, where Dynamic Programming plays a leading role. For an extensive survey
of this method, consult [9].

Control problems typically concern finding a (not necessarily unique) control law
u(·) , which transfers the system in finite time from a given initial state Xi , to a given
final state Xf . This transition is to occur along an admissible path, i.e. x(·) ∈ X
and respects all kinematic constraints imposed on it. Here X denotes, in accordance
with what has been introduced in sections 2.1 and 2.2 , the state space of the robot.
We further assume that u(·) is admissible, i.e. is piecewise continuous and belongs to
U , the admissible control space.
Let there now be a rule which assigns a unique, real-valued number to each of these
transfers. Such a rule can be viewed as the transition cost between Xi and Xf along
an admissible path, completely specified by u(·). Optimal control then, concerns
specifying this rule and thereby providing a systematic method for selecting the “best”,
or “optimal” control law, according to some prescribed cost functional.
An optimal control problem may have the following form

minimize
∫ tf

0
L(x(t), u(t)) dt (3.1)

subject to
ẋ(t) = f(x(t), u(t)) system dynamics (3.2)
x(0) = Xi initial condition
x(tf ) = Xf final condition
x(·) ∈ X ⊆ Rn state constraint
u(·) ∈ U ⊆ Rm control constraint
tf ∈ (0,∞) final time (to be optimized)
where
L : X × U → R integral cost function
f : X × U → TX system vector field

where the integrand L , assigns a cost to the state- and control trajectories. We
assume (cf. section 2.1) that the system dynamics f ∈ C∞. Notice that since the
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stated optimal control problem is invariant under time-translation (since neither f
nor L depends explicitly on the time parameter, t), the value of initial time may be
selected arbitrary, hence there is no loss of generality to choose ti = 0.

3.1 The Pontryagin Maximum Principle

In this section we shall state a slimmed-down version of the Pontryagin Maximum
Principle (PMP) that covers the optimal control problem (3.1). More general prob­
lems, for instance those involving terminal cost terms or non-autonomous systems,
can be re-stated and solved by means of this more basic result as well (see e.g. [9] ,
[13] , [17] or [18]). One should however be aware of how these generalizations modify
the proposition to be presented and take that into consideration. These topics will
be covered in this chapters last section, 3.2.

Given the problem statement (3.1), the Pontryagin approach is to introduce a
vector of auxiliary variables λ and construct a Hamiltonian function

H(x, λ) = max
u

H (x, λ, u), where H (x, λ, u) = λT f − L. (3.3)

The following proposition then, gives us necessary condition for optimality of a control
law.

Proposition 8 (PMP) In order for u∗ to be an optimal solution of (3.1), the fol­
lowing are necessary conditions:

1. There exists a non-zero adjoint variable λ , such that λ̇ = −∂H
∂x

2. u∗ = arg max H (x, λ, u), ∀t ∈ [0, tf ]

3. H(x, λ) = 0, ∀t ∈ [0, tf ]

Remark 4 In the reference literature, the Hamiltonian (3.3), is sometimes defined as
H (x, λ, u) = λT f+λ0L. In that case, PMP supplies us with the additional constraint
λ0 = constant ≤ 0. Then we have:

Case 1: (λ0 = 0) This pathological case arises usually by virtue of lack of control­
lability or other related problems and will therefore not be considered in this
report. However, when presenting the sufficient family of paths for Dubins’, as
well as Reeds-Shepp’s car models (in chapter 4 and 5 respectively), the time
optimal paths associated with the pathological case are implicitly considered in
the sense that they turn out to be included in the solutions that correspond to
the the λ0 < 0 case.

Case 2: (λ0 < 0) Set λ̃ = [λ0 λ] and f̃ = [L f ] , allowing us to write the Hamiltonian
as H = λ̃f̃ . The adjoint equation then becomes ˙̃

λ = −∂H
∂x̃ . Now, since the

Hamiltonian H is linear in λ̃ , the adjoint equation is linear in λ̃ as well, and
can therefore be arbitrary re-scaled, meaning that we can put λ0 = −1 without
any loss of generality.

Remark 5 The linearity of the adjoint equation is also the reason for requiring λ to
be a non-zero vector, since an adjoint vector λ such that λ(t) = 0 for some t , in fact
satisfies λ(t) = 0 for all t.

Remark 6 If we fix the final time tf , i.e. prescribe the arrival time, the second
condition becomes: H = constant. Knowledge about the value of the Hamiltonian is
replaced by knowledge of the transfer time.
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To present a roughly sketched motivation for the appearance of the necessary
conditions specified by proposition 8 , let us focus on the integral cost function and
the system dynamics in problem (3.1). If, for the sake of clarity, the arguments are
disregarded, (3.1) can be written as

minimize
∫ tf

0
[L + λT (ẋ − f)] dt (3.4)

subject to the constraints specified in (3.2). Notice in particular the constraint on the
generalized velocity ẋ = f , which makes the newly introduced parentheses equal to
zero. We have thus added a term to the value function, which the constraint forces
to be equal to zero, hence this paraphrase is valid for all λs. Using the definition of
the Hamiltonian function (3.3), we shall proceed by expressing the value function J
as

J =
∫ tf

0
[λT ẋ − H ] dt.

We proceed by considering a small variation in the control Ñu and the free terminal
time Ñt , causing a variation Ñx in x , together with a variation Ñλ in the arbitrary
λ. The first order contribution to the change in J , will then be

ÑJ =
∫ tf

0

(
Ñλẋ+λT Ñẋ− ∂H

∂x
Ñx− ∂H

∂λ
Ñλ− ∂H

∂u
Ñu

)
dt+Ñt

[
λT ẋ−H

]
t=tf

(3.5)

Paying extra attention to the second term of the integrand and applying integration
by parts to it, yields ∫ tf

0
λT Ñẋdt =

[
λT Ñx

]
t=tf

−
∫ tf

0
λ̇Ñxdt, (3.6)

the equality following from the fact that the initial time is fixed and at this point the
initial state is given, i.e. [Ñx]t=0 = 0. Combining (3.5) and (3.6) gives

ÑJ =
∫ tf

0

(
(ẋ − ∂H

∂λ
)Ñλ − (λ̇ +

∂H

∂x
)Ñx − ∂H

∂u
Ñu

)
dt (3.7)

+ λT
[
ẋÑt + Ñx

]
t=tf

− Ñt
[
H

]
t=tf

At an optimal point, we must have ÑJ = 0. Let’s see what necessary conditions
must be fulfilled at such a point. From the definition of the Hamiltonian, it follows
that ∂H

∂λ = f and by virtue of the systems dynamic constraint imposed on problem
(3.4), the first term of the integrand is vanishing. Proceeding to the second term;
after realizing that we have the full freedom to dictate the time-evolution of the
adjoint variable λ , which is devised and introduced by us , we might use this freedom
constructively by requiring that λ has to be governed by a differential equation such
that the second term in equation (3.7) is vanishing as well, that is

λ̇ = −∂H

∂x
. (3.8)

Next, since Ñu is unconstrained and we do not want ÑJ to be negative (that would
contradict the optimality of the solution), it follows that in order for a point to be
optimal the control must necessarily satisfy (3.9)

∂H

∂u
= 0, (3.9)
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explicitly assuming that H is a differentiable function. However, by employing a
more solid proof (cf. [18]), condition (3.9) can be strengthened to u∗ = arg max H
for all t in the domain, allowing it to have discontinuities.
We know that the final state, which due to the variation in time, is reached at t = tf +
Ñt , is given, i.e. [Ñx]t=tf +Ñt = 0. Alternatively, we write the first order contribution
to the end-point variation as[

Ñx
]

t=tf +Ñt
=

[
Ñx

]
t=tf

+
∫ tf +Ñt

tf

f(x(t), u∗(t)) dt

=
[
Ñx

]
t=tf

+ f(x(tf ), u∗(tf ))Ñt

=
[
Ñx

]
t=tf

+
[
ẋ
]

t=tf

Ñt

=
[
Ñx + ẋÑt

]
t=tf

(3.10)

which is to be recognized as the parenthesis that accompany λT in equation (3.7).
Hence, even this term is vanishing.
Finally, since the variation in final time Ñt is arbitrary, it follows that at an optimal
point [

H
]

t=tf

= 0. (3.11)

Putting it all together, we have seen that a point is optimal only if
λ̇ = −∂H

∂x

∂H
∂u = 0[
H

]
t=tf

= 0

(3.12)

Let us now study the time evolution of H . We know that H is a function of the
state vector x , the vector of auxiliary variables λ and the control u , which themselves
are functions of time. Therefore the time-derivative of H becomes

˙H =
∂H

∂x
ẋ +

∂H

∂λ
λ̇ +

∂H

∂u
u̇. (3.13)

Compiling (3.12) and (3.3) we have
∂H
∂x = −λ̇

∂H
∂λ = f = ẋ

∂H
∂u = 0

(3.14)

which together with (3.13) yields ˙H = 0, i.e. H = constant and from the last
constraint in (3.12), we obtain that

H = 0, ∀t ∈ [0, tf ]. (3.15)

Since we have chosen u such that H is optimal (∂H
∂u = 0), it follows from (3.3),

that we are permitted to draw the same conclusion about the Hamiltonian function
H(x, λ) = max

u
H (x, λ, u). Hence

H = 0, ∀t ∈ [0, tf ]. (3.16)

By introducing the auxiliary variables and defining the Hamiltonian as appearing
in (3.3), Pontryagin transferred the optimal control problem (3.1) to a problem in its
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cotangent bundle, with the same optimal value. The problem of finding the optimal
control, then reduces to determinating the pointwise maximum of the Hamiltonian
function. It must be emphasized that the Pontryagin Maximum Principle merely
provides necessary conditions for optimality. PMP must be viewed as a method
for finding candidates for optimal control. To extract the global optimum, we must
rule out the non-optimal candidates. If existence is guaranteed and the number of
candidates are reasonable, simple comparison will do the work.

From the problem statement (3.1) and proposition 8 , in conjunction with what
has been said in the previous paragraph, it can be concluded that the following steps
are to be taken in order to apply PMP to an optimal control problem:

Step 1 Define the Hamiltonian:

H (x, λ, u) = λT f − L

Step 2 Perform the pointwise maximization:

u∗ = arg max
u ∈ U

H (x, λ, u) for all t ∈ [0, tf ]

H(x, λ) = H (x, λ, u∗)
(3.17)

Step 3 Solve the Two Point Boundary Value Problem (TPBVP):

ẋ = ∂H(x,λ)
∂λ

λ̇ = −∂H(x,λ)
∂x

(3.18)

where x(0) = Xi and x(tf ) = Xf .

Step 4 Compare the candidates given by PMP to extract the global optimum.

In this line of action, the major difficulty is undoubtedly to solve the TPBVP, which
is a mixed boundary value problem, i.e. the boundary condition for some of the
parameters are given at both the initial and final time, while other parameters are
unrestricted. In section 3.2 , we will see that in more general problems, for instance
when we require the initial- and/or final state to belong to smooth manifolds, solving
TPBVP will become an even more delicate problem. The reason for this is that
these generalizations impose, what we call a transversality condition on the auxiliary
variables (cf. equation (3.20) and (3.22)). As we shall see in chapter 6 , the success
of solving the mixed boundary value problem depends to a large extent on whether
or not it is possible to obtain closed-form solution of the Hamiltonian system of
differential equations (3.18). If no closed-form solution is available, we must take
recourse in numerical methods such as the shooting method. This approach is based
on successive improvements of the unspecified initial or terminal condition. Although
conceptually simple, this approach suffers from the serious drawback of it being hard
to find good initial estimates of the unspecified parameters. This fact will be treated
more thoroughly in chapter 6.

3.2 PMP Generalizations

Thus far we have stated and presented a solution method for a very special optimal
control problem, namely when we strive to control an autonomous system1 between

1The term autonomous, refers to the fact that there is no explicit time dependence in the system
dynamics nor the integral cost function.
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two a priori given points in the state space, while minimizing a cost function in
integral form (3.1). This problem can be extended and modified in various ways.
The following generalizations are to be discussed in greater detail below:

• initial and/or final configurations are not specified, but are required to belong
to smooth manifolds.

• the cost function includes, in addition to the integral term, an initial and/or
final cost term.

• the system dynamics or the optimal control problem itself, are explicitly time-dependent.

First off, rather than specifying the initial and/or final state, one might instead
find it more appropriate to require them to belong to smooth manifolds. This wish
is highly motivated, since in some applications, rather than designating a fixed value
to a specific state variable, it is more relevant to specify an interval for it. In the
formerly mentioned rocket example (see section 2.1), where the amount of remaining
fuel (henceforth denoted as ι), could serve as an eligible state variable, it might be
hard to specify boundary values for it. We have an ambition not to hump any extra
weight, so we want the amount of remaining fuel to be as close to zero as possible at
the arrival time. But what about the initial value? We do not know the length of the
optimal rocket trajectory, which makes it impossible to calculate how much fuel we
should take on board at launching moment. Therefore, we might prescribe reasonable
minimum and maximum values on ι(0) , so that we require ι(0) ∈ [ιmin, ιmax].

We shall assume, that the prescribed set of allowed states at the initial- and final
time, Mi and Mf , are both smooth manifolds. A (n−k)-dimensional smooth manifold
is given by

M = {x ∈ Rn : Ú(x) = 0}, where Ú(x) =

 Ú1(x)
...
Úk(x)

 (3.19)

that is, it is the intersection of k smooth hyper-surfaces2 , whose equations are Úi(x) =
0, i = 1, 2, . . . , k. Furthermore we shall assume that the gradients ∇Úi(x) are linearly
independent so that M possesses a unique tangent plane at every point x ∈ M . This
is equivalent to requiring that ∇Ú(x) , the Jacobian matrix of Ú(x) , has full rank k.

Upon introducing the possibility to control a system between two smooth mani­
folds, instead of between two given states, we have to re-state proposition 8 in the
following manner:

Proposition 9 (PMP - Endpoint Manifolds) Suppose u∗ transfers the system
from a state in the initial manifold Mi to a state in the final manifold Mf with
minimum cost (i.e. it is optimal). Then the following are necessary conditions:

1. There exists a non-zero adjoint variable λ , such that λ̇ = −∂H
∂x

2. u∗ = arg max H (x, λ, u) ∀t ∈ [ti, tf ]

3. H(x, λ) = 0 ∀t ∈ [ti, tf ]

4. The vector λ(t) , at t = ti and t = tf respectively, is orthogonal to the end-point
manifolds Mi and Mf .

2A surface described by Úi(x) = 0 can be shown to be smooth on a domain if Úi(x) is continuously
differentiable and ∇Úi(x) does not vanish on that domain.
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The last added condition is also called the transversality condition imposed on λ
and is denoted as λ⊥M . More precisely, it expresses the condition that λ has to be
perpendicular to every vector that belongs to the end points tangent spaces. That is

λT $ = 0, ∀$ : ∇Ú(x∗)$ = 0 (3.20)

This transversality condition is to hold at both the initial and final time instant. It
is also notable that, although the last condition looks like an addendum to propos­
ition 8 , it can be interpreted as when the end manifolds consist of only one single
point, then all λ-vectors are normal to that point’s tangent space and thereby fulfills
the transversality condition. That explains why λ appeared to be unrestricted in
proposition 8 when both the initial and final states were given.

Remark 7 Remark 4-6 apply to proposition 9 as well.

Next up, is to discuss the generality of the cost function given in (3.1). The
integral cost function L , assigns a cost to the state and control trajectories. It
is however not hard to think of cases when in addition to this, we might want to
inflict a penalty on, or with a different point of view, privilege some special end
point configurations. Recurring to the state variable that expressed the amount of
remaining fuel in the rocket control example, it was desirable to have ι(tf ) & 0. To
express this desire, it is recommended to add Ùf (x(tf )) = ι2(tf ) , to the cost function
which is to be minimized3. This motivates generalizing the cost function given in
(3.1), by appending two end point cost functions to it, so that it becomes

J = Ùi(x(ti)) +
∫ tf

ti

L(x(t), u(t)) dt + Ùf (x(tf )), (3.21)

where Ùi is the cost that penalize deviation from the desired initial set of configura­
tions, while Ùf is the corresponding final cost. These two boundary point costs are
assumed to be continuous differentiable functions.
We are now set to re-state proposition 9 so that it applies to optimal control problems
between two manifolds, in presence of end point cost terms:

Proposition 10 (PMP - Endpoint Manifolds and Costs) Suppose u∗ transfers
the system from a state in the initial manifold Mi to a state in the final manifold Mf

while minimizing the cost function J given in (3.21) (i.e. it is optimal). Then the
following are necessary conditions:

1. There exists a non-zero adjoint variable λ , such that λ̇ = −∂H
∂x

2. u∗ = arg max H (x, λ, u) ∀t ∈ [ti, tf ]

3. H(x, λ) = 0 ∀t ∈ [ti, tf ]

4. The vector [λ(t) + ∇Ù(x∗(t))] at t = ti and t = tf respectively, is orthogonal to
the end manifolds Mi and Mf .

Another equivalent formulation of this modified transversality condition is

[λ(t) + ∇Ù(x∗(t))]T $ = 0 ∀$ : ∇Ú(x∗(t))$ = 0 t ∈ {ti, tf} (3.22)

Remark 8 Remark 4-6 on proposition 8 apply to proposition 10 as well.

3The non-negativity constraint imposed on ι is to be taken care of when defining X and can
therefore be neglected here.
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So far, we have treated autonomous systems which are transferred between points
on two fixed manifolds in state space. We have also disregarded the possibility that
the integral cost L or the end-point costs, might be explicitly time dependent. We shall
now see how the maximum principle is modified when the system is non-autonomous
and the integral- and boundary point costs, as well as the end point manifolds are
time-dependent. Hence, we shall state the maximum principle for the following op­
timal control problem

min

[
Ùi(ti, x(ti)) +

∫ tf

ti

L(t, x(t), u(t)) dt + Ùf (tf , x(tf ))

]
(3.23)

subject to
ẋ(t) = f(t, x(t), u(t)) non-autonomous system dynamics
x(ti) ∈ Mi(ti) time-dependent initial condition
x(tf ) ∈ Mf (ti) time-dependent final condition
x(·) ∈ X ⊆ Rn state constraint
u(·) ∈ U ⊆ Rm control constraint
tf ∈ (ti,∞)
where
L : R × X × U → R Lagrange/penalty function
f : R × X × U → TX dynamics
Ùi, Ùf : R × X → initial- and terminal costs
Mi(t),Mf (t) smooth manifolds

In addition to this, as always, we assume that u(·) is a piecewise continuous function.
Here-below, proposition 11 shows that for time dependent optimal control problems,
the Hamiltonian is no longer a constant.

Proposition 11 (PMP - General) Suppose u∗ is an optimal solution to optimal
control problem (3.23). Then the following are necessarily conditions:

1. There exists a non-zero adjoint variable λ(t) , such that λ̇(t) = −∂H(t,x(t),λ(t))
∂x

2. u∗ = arg max H (x, λ, u) ∀t ∈ [0, tf ]

3. The Hamiltonian H(t, x(t), λ(t)) = max
u

H (t, x(t), λ(t), u(t)) satisfies:

H(t, x(t), λ(t)) =
[
H(tf , x(tf ), λ(tf )) −

∫ tf

t
∂H(τ,x(τ),λ(τ))

∂τ dτ
]
, t ∈ [ti, tf ]

where the first term equals:
H(tf , x(tf ), λ(tf )) = −

∑k
i=1 $i

∂Úi(tf ,x(tf ))
∂t − ∂Ù(tf ,x(tf ))

∂t

4. The vector [λ(t) + ∂Ù(t,x(t))
∂x ] at t = ti and t = tf respectively, is orthogonal to

the end manifolds Mi and Mf .

Remark 9 Remark 4-5 made for proposition (8) apply to proposition 11 as well.

It is conceivable to formulate even more general control problems, for instance those
involving time or state dependent X or U . However, by means of a set of high-level
operations, it is possible to re-formulate them so that the above stated proposition
applies. To investigate the technical conditions under which these transformations
may occur, consult [17].
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CHAPTER 4. DUBINS’ CAR

4. Dubins’ car

Dubins’ problem1 in R2 can be stated as follows: Given two points Xi, Xf ∈ R2 and
two normalized velocity vectors Vi, Vf , find a curve γ : [0, T ] → R2 such that

1. γ(s) is a continuously differentiable curve, parameterized by arclength.

2. ‖γ̇‖ = 1 and satisfies the Lipschitz condition

‖γ̇(s2) − γ̇(s1)‖ ≤ κ0 |s2 − s1|

for all s1, s2 in the domain of γ.

3. γ satisfies the boundary conditions:

γ(0) = Xi, γ̇(0) = Vi, γ(T ) = Xf , γ̇(T ) = Vf .

4. Among all possible curves satisfying 1-3, γ has shortest length, i.e. T is minimal.

Now, from 2, since Lipschitz functions are differentiable almost everywhere, it follows
that γ has a curvature κ = ‖γ̈‖ , a.e. and that the curvature is upper bounded by κ0.
For convenience, this bound might be re-scaled to 1.

A very common interpretation to Dubins’ problem concerns finding the shortest
continuously differentiable path between two given points taken by a car, for which
the starting and ending directions are specified. In addition, we assume that the car
is moving with unit speed and subject to a minimum turning radius constraint.

This chapter’s disposition is as follows; we start by formulating Dubins’ problem
as an optimal control problem of the form appearing in the beginning of chapter 3.
Secondly, by applying the PMP results presented in section 3.1 , we characterize the
optimal control. It will be shown that optimal paths for “Dubins’ car”, consist of the
concatenation of three distinctly different path segments; a straight line segment and
two circular arcs of maximum curvature. These circular arcs correspond to the right-
and left turn respectively. The task of determining how to combine these three pieces
of elementary path segments, is a much more delicate matter. This difficulty was first
solved by L.E. Dubins himself in [4] , where he prescribed the set of sufficient family
of optimal paths. In 1991, these results were slightly improved by Sussman and Tang
in a very readable article [24]. It must also be mentioned that similar results were
obtained independently and presented almost simultaneously by Boissonnat, Cerezo
and Leblond in [2].

Upon presenting the characteristics of the sufficient family of paths for Dubins’
car, FD , we make a remark that possessing a finite, and as a matter of fact small
set of paths, which includes the optimal one, is clearly a very pleasant situation. The
procedure of optimal path synthesis then boils down to computing the length of all
the candidates and by comparison, selecting the minimal length path for the car -
a trivial task for any modern computer. This is exactly what we take advantage of

1This problem was originally studied in the 1880’s by Andrei A. Markov, who was looking for
optimal railway constructions across the Russian landscape.
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4.1. CHARACTERIZING THE OPTIMAL CONTROL

next, where we outline a procedure for motion planning for Dubins’ car by, rather
thoroughly, present an algorithm for finding the time-optimal path for Dubins’ car.
The nature of this algorithm is geometrical, which makes it highly suitable for nu­
merical computations. The robot then ought to follow this synthesized path, using
preferred path following technique (consult for instance [5] or [6]).

Formulating Dubins’ problem as an Optimal Control problem In accord­
ance with the problem formulation and interpretation presented above, our objective
is to find the shortest possible continuously differentiable path inter-connecting two
given points in R2 , with prescribed tangent vectors at the end points. Thus, the
quantity that we wish to minimize is∫ T

0

√
ẋ2 + ẏ2 dt =

∫ T

0
|υ|dt (4.1)

where (x, y) is the position of the vehicle and υ is the linear velocity of the car.
The unit speed assumption then, clearly makes this equivalent to a time optimal
problem. Considering the car’s dynamics, the unicycle robot model (cf. page 16)
will be exploited. Hence, recurring to the optimal control problem formulation in the
beginning of chapter 3 , Dubins’ problem can be stated as

minimize
∫ T

0 1dt

subject to

ẋ(t) = [cos ϕ(t), sin ϕ(t), ω(t)]T system dynamics

x(0) = [xi, yi, ϕi]T = Xi initial configuration

x(T ) = [xf , yf , ϕf ]T = Xf final configuration

x(·) ∈ X = R2 × S1 state constraint

ω(·) ∈ [−1, 1] lateral velocity constraint

T ∈ (0,∞) final time (to be minimized)

(4.2)

4.1 Characterizing the Optimal Control

Initially we follow the step-wise instructions given in section 3.1 , describing how to
solve optimal control problems with PMP. We define the Hamiltonian

H (x, λ, ω) = λT f − L = λx cos ϕ + λy sin ϕ + λϕω − 1. (4.3)

Next step is to recognize the optimal control ω∗ , as the pointwise maximizing argu­
ment of the Hamiltonian

ω∗ = arg max
|ω|≤1

H (x, λ, ω) = arg max
|ω|≤1

λϕω. (4.4)

We comfortably extract that the optimal control basically depends on the sign of λϕ{
λϕ < 0 ⇒ ω∗ = 1 corresponds to making a left turn
λϕ > 0 ⇒ ω∗ = −1 corresponds to making a right turn.

(4.5)

But what happens if the switching function λϕ ≡ 0? If the switching function vanishes
at a finite and isolated number of instants, this situation may be ignored, since the
value of ω∗ at these distinct points, neither affect the optimal solution nor the optimal
cost. Contrary to this, if λϕ vanishes on a non-zero time-interval I , we must make
further investigations. The switching function vanishing on a non-zero time interval
is normally referred to as the so called singular case , about which it is often said
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CHAPTER 4. DUBINS’ CAR

that “the pointwise maximization step of PMP does not provide any information
about the optimal control”. But in our particular case, it turns out that we are able
to extract a considerable amount of supplementary information about the singular
optimal control. Assume that λϕ ≡ 0 on I , then

H |(λϕ≡0) = λx cos ϕ + λy sin ϕ − 1 = 0, (4.6)

where the last equality origins from the fact that, in accordance with proposition
8 , the value of the Hamiltonian function for autonomous systems with unspecified
terminal time is a known constant and equals zero.

Now, since there is no explicit x− or y−dependence in H , it follows from the
adjoint equations that λx and λy are cyclic, i.e. constants. Since λ is a non-zero
vector, (4.6) can only hold iff ϕ(t) is a constant for all t ∈ I , which imply that
ϕ̇(t) = ω(t) = 0 in the non-zero time interval, I. Constant orientation angle ϕ ,
naturally corresponds to advancing by driving on a straight line segment.
Before proceeding, let us summarize what we know thus far about the optimal control
for Dubins’ car

ω∗(t) =

 −1 if λϕ(t) < 0 (turn right)
0 if λϕ(t) = 0 (go straight)
1 if λϕ(t) > 0 (turn left)

(4.7)

Notational Conventions

At this point, it is suitable to introduce some unified notation to describe these three
different types of path segments. Let S denote the straight line segments and B
denote the circular arcs, or bends that the optimal path consists of. At a sub-level,
B includes both the right- and left turn, and whenever we wish to refer to them
distinctly, they will be labeled as R and L. The duration of the time-interval spent
on each path segment, which clearly coincide with its length, will be indicated using
subscripts. Note that this does not exclude the possibility that a segment may have
zero duration, i.e. be absent. So that, for instance Lπ

2
SaBb might refer to, among

others, any of the path segments in figure 4.1.

π
2

LbSaL L SaL
2

π
2

Rbπ

Figure 4.1: Examples of Lπ
2
SaBb paths for Dubins’ car.

4.2 Sufficient Family of Paths

While it is now clear that every time-optimal path for Dubins’ car consists of a
number of circular arcs of maximum curvature, in concatenation with straight line
segments, the question of these path segments mutual order, number and duration
are still open. When making an inquiry into this matter, it turns out that classical
optimal control theory, to which PMP belongs, do not suffice to fully unveil this
problem. The reason for this is, as indicated in section 3.1 , PMP is a local criterion
and merely provides necessary condition for optimality, which is often too weak and
allows a large set of potential solutions. Furthermore, it can be laborious to extract
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4.2. SUFFICIENT FAMILY OF PATHS

concrete information from PMP and it is hard to know when all accessible information
is deduced. For these reasons, PMP alone is not an adequate tool to dissect Dubins’
problem. Hence it has to be augmented by other techniques and concepts. The issue
of the combination of the three basic path segments, was first solved by L.E Dubins
himself in [4]. However, in [24] , Sussman and Tang elegantly exhibit the power of the
more modern geometric optimal control theory and, almost as a byproduct, extract
the characteristics of time-optimal paths for Dubins’, as well as Reeds-Shepp’s car
(chapter 5). Their main result on the structure of time-optimal paths for Dubins’
car, which in fact is a slight improvement of the results obtained by Dubins in [4] , is
formulated in the following proposition.

Proposition 12 Every time-optimal path for Dubins’ car in R2 , is of form BaSbBc

or BdBeBf , where the subscripts lay information about the duration of each segment.
These time-indices must obey the following constraints:

(i) a, c ∈ [0, 2π)
(ii) b > 0
(iii) e ∈ (π, 2π)
(iv) min{d, f} < e − π
(v) max{d, f} ≤ e

Naturally there is a non-negativity constraint imposed on the time-indices as well and
as indicated before, it is admissible that one or two of these indices are vanishing on
each path.

Figure 4.2: Illustration of a BBB type of path for Dubin’s car.

We will proceed by defining the concept of sufficient family:

Definition 10 (Sufficient Family) A collection of paths F , is said to be a sufficient
family for a problem if, given any two points Xi and Xf , there exists an element in
F that goes from Xi to Xf and is both admissible and optimal.

Since this definition merely requires that F contains the optimal path, we conclude
that the substance of FD is given by proposition 12. This enables us to present the
characteristics of the sufficient family for Dubins’ car.

Property 1 (Sufficient Family for Dubins’ Car) The following six elements are
the constituents of FD:

1. RaSbRc

2. RaSbLc

3. LaSbRc
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4. LaSbLc

5. RdLeRf

6. LdReLf

where the time-indices obey the constraints specified in proposition 12.

Possessing FD , genuinely facilitates any effort to execute on-line path planning, since
it adds very strong and tight bounds on the number of eligible candidates. This being
an negligible number, plays a crucial role for real-life control scenarios, since searching
for an optimum among ten or so candidates, is a minor task for any modern computer.
How to perform this search is the scope of the next section, but as for now, we can
establish the fact that once we have synthesized the optimal path, we are to follow
it. This is done by adopting an appropriate path following scheme, for instance the
virtual vehicle approach (see e.g. [5] or [6]). This completes our search for an optimal
as well as numerically feasible motion planner. The path planning part consists of
path synthesis within the set of sufficient family (cf. section 4.3), while path following
is made possible adopting for instance the virtual vehicle technique given in [5].

4.3 Optimal Path Synthesis

Although it is very satisfying to be able to restrict the search for optimal paths to the
set of sufficient family, the ultimate goal we want to reach is the exact specification
of the optimal control law, allowing us to control the car between any two arbitrary
points in the state space. The truly interesting issue is to depict the instructions or
directives that have to be passed to the car for optimally linking every initial point
Xi to a given terminal point, Xf . It is notable that our system being left-invariant,
i.e. the system dynamics is indifferent for arbitrary translational and/or rotational
transformation, we might without loss of generality choose Xf to be the origin. An­
other reason for doing so is that, due to the lack of symmetry properties that the unit
speed assumption conveys, in most cases, the optimal path from Xi to Xf differs
from the one leading from Xf to Xi.

Let µ(x) denote a function that captures these directives, i.e. the solution of
ẋ = f(x, µ(x)) is the optimal path interconnecting x and the origin, O. The domain
of µ(x) is required to be the state space X and its range, the control set U . Due to
Pontryagin, a more formal definition of µ , the so called synthesis function , can be
found in [18]. For a given optimal control problem, we call the problem of finding
µ(x) a synthesis problem , while generating the corresponding solution (i.e. the optimal
path), is referred to as path synthesis. So that path synthesis, basically provides a
systematic way to select an optimal path between two arbitrary configurations, inside
the sufficient family. To make these concepts more concrete, consider the following
example.

Example 2 (Path Synthesis) Consider the problem of steering Dubins’ car between
Xi = [0, 4, π]T and Xf = [0, 0, 0]T . The two end point configurations as well as the
optimal path can be seen in figure 4.3.

The explicit instructions for following the optimal path can simply be given as:
“Turn left for π

2 time units (t.u.), then go straight for 2 t.u. and finally, make a
left turn for another π

2 t.u. ”. These directives are captured by defining the synthesis
function at Xi as

µ(Xi) =
{

0 if t ∈ [π
2 , π

2 + 2]
1 else

The corresponding optimal path synthesis from Xi , is then represented by Lπ
2
S2Lπ

2
.

Finally, in order to obtain the complete synthesis, the synthesis function and the
optimal path synthesis have to be defined for all initial points Xi ∈ X .
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p
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Figure 4.3: Optimal path interconnecting Xi = [0, 4, π]T and Xf = [0, 0, 0]T .

Another customary and natural requirement on a synthesis, is that it is “memory­
less”, meaning that the instructions given by the synthesis function do not depend on
the car’s past history. For instance, the synthesis function at p in figure 4.3 , should
be

µ(p) =
{

0 if t ∈ [0, 1]
1 else

regardless if p is chosen as initial point, or is just passed cause it belongs to the
path synthesis from Xi. This requirement has very close bonds to the principle of
optimality. This is because µ completely determines the optimal path synthesis, and
we know from the principle of optimality that an optimal solution is also optimal over
any subinterval.

One must realize that the major difficulty in synthesis, mentioned at the very end
of Example 2 , is to define the synthesis for all admissible initial points. How is that
viable? As for the Dubins’ problem, we note that three pieces of such elementary
geometrical shapes as straight lines and circular arcs, can be matched together by
means of basic geometric reasoning. The insignificant number of candidates makes
this approach adequate. However, by completing the local reasoning of PMP with
more global geometric arguments, and making use of the problem’s reduction prop­
erties, it is possible to construct the domains of validity for each type of path and
even get analytic expressions for their boundaries. This work has been elegantly
carried out by Souéres and Laumond in [22] for Reeds-Shepp’s car, and jointly with
Boissonnat and Bui in [3] , in the case of Dubins’ car. The partition of the state
space varies continuously w.r.t. the initial orientation angle ϕi and gives rise to an
efficient way of selecting the optimal path within the sufficient family. We will return
to the results from these works later in chapter 5 , where we study Reeds-Shepp’s
car. But as mentioned earlier, a purely geometrical approach suffice to synthesize the
optimal control whenever the number of constituents are less or equal to three, as it
is for the Dubins’ car. In the sequel, our proposed algorithm for selecting the optimal
path inside FD will be presented. Paying attention to proposition 12 , it is clear that
whenever the euclidean distance between the initial and final configurations is greater
than 6R , where R is the minimum turning radius, the BBB type of paths are to be
disregarded. The reason for this being that the final configuration then clearly is
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beyond the range of any BBB path, making the 6R limitation, a self-evident but
not necessarily tight upper bound. Now, assuming that R is much smaller than the
distances we are interested in moving the car, we are entitled to, for the time being,
overlook the BBB type of paths when presenting the algorithm.

Proposed Algorithm for Finding the Time-Optimal Path for Dubins’ Car
Initial data are the given end point configurations Xi = (xi, yi, ϕi) and Xf = (xf , yf , ϕf ).
The notations used in the algorithm can be interpreted by means of figure 4.4. In
addition, whenever what is stated, applies to both the initial and final points, the sub­
script specifying the end point will be dismissed, so for instance, rc refers indistinctly
to both rci and rcf .

v
r

r

r

rr

i

ici

f

cftf

fv

rti

iα

αf

Ο

rifcifr

x

y

Figure 4.4: Used notations.

Step 1 From the given data, create the position vectors r and the velocity vectors
V , as defined in figure 4.4.

Step 2 Find the center of the two circles at each end point, i.e. construct rc+ and
rc− by rotating V , ±90◦ as shown in figure 4.5.

r

r

r

ci+

cf+

cf- vf

rci-

vi

Figure 4.5: The center of the end point circles are found by rotating V,±90◦. Notice
the enforced motion directions on the circles.

Now, from any of the two circles at the initial point, it is possible to construct four
tangents to any of the two final point circles. But considering that the circles are
directed, i.e. the circles centered at rc− and rc+ , are only admissible for clockwise
and anti-clockwise motion respectively, entitles us to rule out three of these four
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tangents. This is done by imposing three constraints that the tangents have to fulfill,
namely a parallelity , a perpendicularity and a regularity constraint. The source of
these constraints originates from the following reasoning:
We start by defining α ∈ [0, 2π) , as the angle between the horizontal axes and the
sought tangent vector rt. Notice that the prescribed unit length of the tangent vector,
equalizes the search for α and rt. We further define the direction of a circle as
d = v × rc. By this means, we are able to compare the directions of two arbitrary
circles that are to be connected, since{

di · df = 1 =⇒ equi-directed circles
di · df = −1 =⇒ counter-directed circles

The reason why this quantity is relevant is enlightened in figure 4.6 , where it is
shown how two of the four common tangents can be instantly dismissed by requiring
the tangent vectors rti and rtf to be parallel if the direction of the circles coincide,
and to be anti-parallel otherwise. This requirement is more appropriately formulated
as the following parallelity constraint on α:

|αf − αi| =
{

0 equi-directed circles
π counter-directed circles (4.8)

Figure 4.6: Two of the tangents can instantly be disregarded by imposing a parallelity
constraint upon rt.

Unfortunately, constraint (4.8) does not preclude the existence of non-admissible solu­
tions of the form appearing in figure 4.7. Their presence is eliminated by the following
perpendicularity constraint

rt ⊥ rif . (4.9)

fv

iv

tfrtir

Figure 4.7: The parallelity of the tangent vector, is not a sufficient condition for path
feasibility. The thicker line clearly is not a continuously differentiable path.

To exclude the third tangent, we draw our attention to figure 4.8. As we can see on
the right-hand side, selecting the incorrect tangent vector, results in a non-smooth
and thereby non-feasible solution. In order for a tangent vector to be regular, i.e. to
have the proper orientation and structure such that the resulting path has both the
feasible orientation and smoothness, it must satisfy the following regularity constraint

[d × rt] · rif > 0. (4.10)

40



CHAPTER 4. DUBINS’ CAR

rif

rif

v v

rc rt

rt

rc

rtdx rtdx

Figure 4.8: For admissible paths, d × rt must not be anti-parallel to rif .

Summarizing these three constraints, we set di ·df = D and get a system of nonlinear
equations for α |αf − αi| + (D−1

2 )π = 0 parallelity[
cos α, sin α

]
· rcif + 1 − D = 0 perpendicularity

D
[
sin α, cos α

]
· rif > 0 regularity

(4.11)

We are now ready to state the third step of the algorithm.

Step 3 From each of the two circles at the starting point, find a tangent connecting it
to each of the two end point circles, such that it satisfies (4.11). Practically, the
most convenient way to achieve this, is in a two phase manner; firstly we find all
the candidates that are solutions to the non-linear equation system consisting of
the two upper constraints in (4.11), upon which we check regularity and select
the proper solution by means of the last constraint.

As a final step, we are to calculate the length of each of the four remaining path
candidates and appoint the optimal solution. Every BSB type of path, has three
constituents. In accordance with proposition 12 , let a denote the length of the first
circular path segment, b the length of the straight tangent interconnecting the circles,
and finally, c denote the length of the final circle segment. We then trivially have

b = ‖rif‖. (4.12)

As for the length of the circular path segments, we must not be as heedless. Let 〈a, b〉
denote the angle between two vectors, a and b. Judging from figure 4.4 , it might be
tempting to set a = 〈rti,−rci〉 and c = 〈rtf ,−rcf 〉 . However, since the angle between
two vectors, is usually calculated as 〈a, b〉 = arccos [ a·b

‖a‖ ‖b‖ ] , and the inverse cosine
function’s range is [0, π] , this procedure returns the smallest, or inner angle between
the vectors. But as it can be noted on the right-hand side in figure 4.9 , for some con­
figurations, we are instead interested in the outer angle, so that a = 2π − 〈rti,−rci〉
and c = 2π − 〈rtf ,−rcf 〉.

rifv v

rif

i i

a
a

cir
tir

tir

cir

Figure 4.9: For some configurations, the outer angle between rt and −rc is to be
considered.

But what condition specifies this? It turns out that the decisive condition varies de­
pending on which of the end points we are considering. At the initial point, whenever
〈rti, Vi〉 is greater than π

2 , we spend more than π t.u. on the circular path and there­
fore have to calculate the outer angle, while 〈rtf , Vf 〉 < π

2 is the proper condition at
the final point.
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Having clarified this, we can calculate the length of the circular path segments ac­
cording to the pseudo-code given in (4.13).

Length of initial circle, a Length of final circle, c

if 〈rti, Vi〉 < π
2 if 〈rtf , Vf 〉 > π

2
a = 〈rti,−rci〉 c = 〈rtf ,−rcf 〉

else else
a = 2π − 〈rti,−rci〉 c = 2π − 〈rtf ,−rcf 〉

(4.13)

Step 4 Calculate the length of each of the four remaining candidates by taking the
sum of a, b and c and by comparison appoint the optimal solution. The time
indices, a − c are to be calculated as put forward in (4.12) and (4.13).

It must be mentioned, that by defining α as the angle between rc and rt , instead of
the angle between the horizontal axes and rt , we would have avoided the implication
we encountered when trying to calculate the length of the circular paths segments.
The price of that being, a less neat parallelity constraint on α in the previous step.

Results from simulations made in Matlab, using the above described algorithm
can be seen in figure 4.10.
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(a) Candidates for optimal path after the
third step. The task is to steer from ini­
tial configuration Xi = (−5, 3, π

2 ) , to final
configuration Xf = (0, 0, 0)
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(b) In the last step, we appoint the op­
timal solution by calculating and compar­
ing the length of each of the four remain­
ing paths shown in figure 4.10(a).

Figure 4.10: Simulation results using the above described geometrical algorithm, for
finding the time-optimal path for Dubins’ problem.
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5. Reeds-Shepp’s car

In 1990, Reeds and Shepp [20] , extended Dubins’ pioneering work, which was the
scope of the previous chapter, by augmenting the car with a reverse gear. The problem
that Reeds and Shepp (henceforth abbreviated as RS) considered, is best interpreted
as finding the shortest continuous differentiable path interconnecting two given points,
taken by a car with prescribed end-point directions. As a further constraint, it is
assumed that the car has limited steering angle and is moving with constant speed
in the plane but, contrary to Dubins’ car, has the possibility to perform backwards
motions as well. Considering the car dynamics, the unicycle robot model (2.10) will
be exploited. The allowance of reversed movement is the only point that separates
the RS-car from that of Dubins. Hence, recurring to the optimal control problem
formulation in chapter 3 , RS’s problem can be stated as

minimize
∫ T

0 1dt

subject to

ẋ(t) = [υ(t) cosϕ(t), υ(t) sin ϕ(t), ω(t)]T system dynamics

x(0) = [xi, yi, ϕi]T = Xi initial configuration

x(T ) = [xf , yf , ϕf ]T = Xf final configuration

x(·) ∈ X = R2 × S1 state constraint

υ(·) ∈ {−1, 1} linear velocity constraint

ω(·) ∈ [−1, 1] lateral velocity constraint

T ∈ (0,∞) final time (to be minimized.)

(5.1)

Although appearing insignificant, allowing the car to perform backwards motions,
turns out to have implications on various issues, including the car’s controllability and
symmetry properties. For instance, since RS’s problem is symmetric, it is possible
to use LARC (cf. proposition 7) in order to show that it is locally controllable from
everywhere in X . On the contrary, Dubins’ car is a system with a drift, controllable
but not locally controllable from everywhere. This is, of course, due to the inability
to move backwards, hence it takes, for instance 2π − ε units of time to steer from
Xi = (0, 0, 0) to Xf = (−ε, 0, 0). The differences in symmetry properties are also
natural. In the case of the RS-car, since the linear velocity might change sign, we
can persuade ourselves that the optimal path leading from Xi to Xf is also optimal
for the problem of optimally steering from Xf to Xi. It is possible to follow every
path backwards. This is clearly not the case for Dubins’ car, therefore the optimal
path leading from Xi to Xf is always different from the one leading in the opposite
direction.
However, as will be seen in the sequel, Dubins’ and the RS-car, share a significant
amount of common ground as well. Consider for instance the RS-car between two
consecutive cusp-points, i.e. a subsection of a optimal path for which the linear
velocity is kept constant, υ = ±1. Every time-optimal path for the RS-car between
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two cusps is clearly also optimal for Dubins’ car and hence belongs to FD , the
sufficient family of paths for Dubins’ problem. Notice that this observation is not
conversive, since by executing backwards movement, the RS-car possesses an extended
set of motion abilities. A path γ may be optimal for Dubins’ problem, but by using
the possibility to move backwards, a RS-car might execute a motion along a path γ̂
which is shorter than γ but non-feasible for Dubins’ car.

The outline of this chapter will, to a large extend, resemble that of the previous
one. In section 5.1 , we start by applying PMP to problem (5.1) to characterize the
optimal control. As in the case of Dubins’ car, we are to establish the fact that
every time-optimal solution to problem (5.1), consists of the concatenation of straight
line segment and circular arcs or bends of maximum curvature. But considering the
possibility to move both forward and backward, as well as to turn in both directions,
we have a total of six elementary path types which are to be combined in an appro­
priate manner to construct the optimal path (cf. figure 5.1). The problem of these
elementary path segments’ mutual order, number and duration is solved in section
5.2 where we utilize the results in [24] and [22] to define the sufficient family of paths,
FRS , and synthesize the optimal path, linking any given initial configuration to the
origin.

5.1 Optimal Control Characterization

As in the case of Dubins’ car, we outset by defining the Hamiltonian

H (x, λ, u) = λT f − L = λxυ cos ϕ + λyυ sin ϕ + λϕω − 1 (5.2)
= υ[λx cos ϕ + λy sin ϕ] + ωλϕ − 1 = υ συ + ω σω − 1

Next, we are to determine the optimal control as the pointwise maximizing argument
of the Hamiltonian

υ∗ = arg max
|υ|=1

H = arg max
|υ|=1

υ συ (5.3)

ω∗ = arg max
|ω|≤1

H = arg max
|ω|≤1

ω σω. (5.4)

Thus, the optimal control is bang-bang and essentially depends on the sign of the
switching functions , συ and σω respectively. The argumentation for obtaining the
optimal control in the lateral direction ω∗ , is identical to the one outlined in the case
of Dubins’ car. Therefore, referring to equation (4.7) and the preceding reasoning,
we recognize the optimal control in the lateral direction as

ω∗(t) =

 −1 if σω < 0 (turn right)
0 if σω = 0 (go straight)
1 if σω > 0 (turn left)

(5.5)

Proceeding to the optimal control in the linear direction υ∗ , we wish to extract some
information about the singular case , that is when συ ≡ 0 on a non-zero time interval
I.

συ ≡ 0 ∀t ∈ I =⇒ ϕ ≡ − arctan
λx

λy
∀t ∈ I (5.6)

Now, since there is no explicit x- or y-dependence in H , it follows from the adjoint
equations that λx and λy are cyclic, i.e. constants. Equation (5.6) then tells us that ϕ
must be constant for all t ∈ I. Constant orientation angle ϕ , obviously corresponds
to moving along a straight line. From (5.5) we deduce that along a straight line,
the switching function in the lateral direction σω is also equal to zero. With both
the switching functions vanishing, (5.2) yields H = −1. This is a contradiction to
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the third optimality condition stated in proposition 8 , namely that the Hamiltonian
function for an autonomous system with free terminal time is a constant and equalizes
zero. Therefore we conclude that συ 6= 0 except at possibly a finite and distinct
number of points, which are not going to affect neither the optimal control nor the
optimal cost. Thus we might disregard the singular case in linear direction and obtain

υ∗(t) = sign συ = sign [λx(t) cosϕ(t) + λy(t) sin ϕ(t)] (5.7)

Remark 10 The fact that the two switching functions συ and σω cannot vanish
simultaneously, excludes the possibility that υ and ω switch at the same time.

Notational Conventions

Let us next take a look at the set of motions that the RS-car is able to execute
and introduce a nomenclature for them. Between any two consecutive cusp-points,
i.e. when we change the sign of υ , the RS-car’s range of motion abilities, coincide
with Dubins’ car. Hence it seems convenient to reclaim the notational conventions
introduced at the end of section 4.1 and complement it with some additional notation.
Re-stating what has been introduced earlier, let S denote a straight line segment, R
a right turn , while L signifies a left turn. We use B , whenever we wish to refer to the
bends indistinctly, i.e. B = {R, L}. As before, we indicate the duration of each path
segment, by using subscripts.
Proceeding to the the RS-car significant type of motions, let the direction of motion
be specified by a superscript on a path segment. For forward motions, ′+′ will be
used, while ′−′ will denote backward motions. The six basic path segments that are
the constituents of every time-optimal path for the RS-car, are denoted as R±, L±

and S±. Notice in figure 5.1 that the letters R/L , refer to the direction in which
the velocity vector of the car is turning. Occasionally we may want to stress the
fact that the velocity υ , changes sign. These cusp-points, will be denoted as f.
Augmenting this with remark 10 , made above about the absence of cases when υ and
ω switches simultaneously, enables us to refine and restrict our notations further. As
an example, the notation B+BB might refer to 8 different path combinations, while
B+fBfB includes only 2 cases.

S

S

R

L

L+

-

- -

+ R+

Figure 5.1: The six elementary path types for the RS-car.

5.2 Sufficient Family and Path Synthesis

The notion of sufficient family and path synthesis was introduced earlier in sections
4.2 and 4.3 respectively. For a brief overview of these concepts, consult these sections.

Contrary to Dubins, Reeds and Shepp did not provide a solid proof for the exist­
ence of optimal paths in [20]. Instead, they based their reasoning on specific ad hoc
arguments from differential calculus and geometry, resulting in the sufficient family
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of paths for their car, FRS . Their approach to find the right set of elements for the
sufficient family, was based on the comparison of the length of various non-optimal
paths. Starting with an admissible path γ from Xi to Xf , they made a direct study of
the possibility of replacing γ with a shorter path, until it cannot be shortened further
and happens to be of the special kinds appearing in FRS . The computer played a
fundamental role in their discovery of the results and the following quote made by
Reeds and Shepp in [20] (page 390), might illuminate the empirical spirit in that
paper and explain why their efforts cannot serve as a framework for further studies.

“There is another solution which we have never observed to be optimal
and so doubtless can be discarded.”

One of the main problems encountered in this pioneer work, was that since the con­
trol set for the RS-car is non-convex, the standard existence results for time-optimal
trajectories from optimal control theory (i.e. Fillipov’s theorem), no longer apply
directly. This problem was set right by Sussman and Tang in [24] , by replacing the
non-convex control set U = {−1, 1} by its convex hull Û = [−1, 1] resulting in what
the authors name the “Convexified Reeds-Shepp” problem (CRS), which then lends
itself directly to the use of Follipov’s theorem (cf. figure 5.2).

b) CRSa) RS

ωω

υυ
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1
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Figure 5.2: The control domains for Reeds-Shepp (RS) and Convexified Reeds-Shepp
(CRS) problem.

The price one have to pay for using this finesse is that nothing guarantees that the
obtained time-optimal paths are RS-admissible. This must be investigated explicitly.
However, it turns out that the sufficient family of paths for CRS’s problem, consists
solely of S or B pieces. Therefore, proving regularity of the CRS solutions for the
RS-car, will be done a posteriori by direct inspection.

The following proposition gathers the main results presented in [24] on time-optimal
paths for the RS-car.

Proposition 13 Let γ denote the time-optimal path for RS’s problem in R2. Then γ
is the concatenation of at most five pieces of elementary path segments (B or S pieces),
of which at most four are B ’s and at most one is S. The possible combinations are
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(i) B+
a fBbfBc

where (a + b + c) ∈ [0, π]

(ii) BaBbBc or BaBbBbBc

where a, c ∈ [0, b], b ∈ [0, π
2 ] , and the switchings alternate between υ and ω.

(iii) BaSbBc

where a, c ∈ [0, π
2 ], b > 0

(iv) BafBπ
2
SbBπ

2
fBc

where a, c ∈ [0, π
2 ], b > 0 , and the two middle B ’s must be of different types.

(v) BafBπ
2
SbBc or BcSbBπ

2
fBa

where b > 0 and if all the B ’s are similar, a + c ∈ [0, π
2 ] , else a, c ∈ [0, π

2 ]

Remark 11 In [20] , the original paper by Reeds and Shepp, group (i) was presented
as BafBbfBc. This contributed with four of the 48 three-parameter path combin­
ations, that formed their set of sufficient family. In [24] however, due to a more
powerful lemma, the need for combinations L−L+L− and R−R+R− are ruled out by
Sussman and Tang. This lowers the above mentioned 48 to a 46.

Remark 12 Notice that although some of the items consist of up to five pieces of
elementary path types, all the groups have three undetermined time indices. This
issue will become important when we want to synthesize the optimal path (see section
5.2).

Remark 13 The constraints on the time indices within group (i) and (v) , are due
to Boissonnat et al. (see [2] for more details).

Now that we are familiar with the form of every optimal solution to RS’s problem,
let us characterize FRS by specifying its substance.

Property 2 (Sufficient Family for Reeds-Shepp’s Car) Group (i)-(v) presented
in proposition 13, are the constituents of FRS.

It should be mentioned that it is possible to express FRS in some less accurate but
more well-presented ways. The contrary is also valid. Reeds’ and Shepp’s most gen­
eral representation is: “FRS = BBSBB , where one or more of the arcs or segments
may vanish”. However, we found the representation in proposition 13 , an appropriate
compromise between legibility and correctness.

Optimal Path Synthesis

The concept and notion of path synthesis was introduced in section 4.3. Concisely, we
ought to determine the optimal path linking any initial configuration Xi in the entire
state space X to the origin. In the same section, we also presented an algorithm
for finding the time-optimal path for Dubins’ car model. The algorithm is based on
geometrical reasonings and might be used whenever the candidate for optimal path,
consists of no more than three pieces of elementary path segments. Although the
possibility of generalizing the algorithm to enclose more general path combinations
has not been investigated in any greater detail, it does seem viable. This belief is
based on the fact that, although some of the candidates for optimal solution to RS’s
problem consist of up to five pieces of elementary path segments, none of them have
more than three undetermined time indices. In other words, all the candidates for
optimal solution, have three or less degrees of freedom.
For now though, we might utilize the achievements of Souéres and Laumond in [22].
There, they elegantly construct the domains of validity for each type of path and
even get analytic expressions for their boundaries. These results have been gathered
by completing the local reasoning of PMP with more global geometric arguments.
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By making use of the RS’s problem’s reduction- and symmetry properties, they were
able to narrow their study to the quadrant enclosed between two axes of symmetry.
Moreover, they established that it suffices to only consider positive or negative values
of ϕi. These observations significantly reduce the sufficient family. The outcome of
this conducted research is a partition of the state space which varies continuously
with respect to ϕi and gives rise to an efficient way of pinpointing the optimal path
given Xi. To synthesize the optimal path for steering the car to the origin, it suffices
to determine in which cell the starting point is located. The cell-decomposition of the
planes Pϕi

are shown on pages 132-134 in [12] , for several different values of ϕi. It
is notable that the 46 path types never appear simultaneously in a plane Pϕi

. Table
5.1 presents boundaries on ϕi , for which each group of path exists.

group path type intervals of validity
(i) B+

a fBbfBc ϕi ∈ [−π, π]
(ii) BaBbBc ϕi ∈ [−π, π]

BaBbBbBc ϕi ∈ [− 2π
3 , 2π

3 ]
(iii) BaSbBc ϕi ∈ [−π

2 , π
2 ] if sign(ω) changes

ϕi ∈ [−π, π] if sign(ω) is constant
(iv) BafBπ

2
SbBπ

2
fBc ϕi ∈ [−2 arcot (2), 2 arcot (2)]

(v) BafBπ
2
SbBc or ϕi ∈ [−π, π] if sign(ω) changes

BcSbBπ
2
fBa ϕi ∈ [−π,−π

2 ] ∪ [π
2 , π] if sign(ω) is constant

Table 5.1: Intervals of validity for the constituents of FRS

In some cells the optimal directives for reaching the origin is not uniquely determ­
ined, upon which an impartial choice can be made. Consequently the optimal path
synthesis for the RS-car is not unique. Moreover, we have said that the cell-decomposition
of the configurations space, reduces the path synthesis procedure to pinpointing the
cell in which the starting point is located. Thereby we are able to recognize the op­
timal path type that steers the car to the origin. But one last obstacle, namely to
determine the duration of each time index in the optimal path type, must not be over­
looked. This issue still calls for a numerical algorithms similar to the one presented
in section 4.3. However, the computational complexity of such an algorithm is highly
reduced due to the very strong bounds that the partition of the plane Pϕi induces.
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6. Nearly Time-Optimal Paths

In the previous two chapters, the problem of finding time-optimal paths for Dubins’
and Reeds-Shepp’s car has been considered. By using the Pontryagin Maximum
Principle (PMP), we concluded that such paths are made of circular arcs and straight
line segments, all tangentially connected. These time-optimal solutions suffer from
some drawbacks. Their discontinuous curvature profile, together with the wear and
impairment on the control equipment that the bang-bang solutions induce, calls for
“smoother” and more supple reference paths to follow. Our main tool for generating
such nearly time-optimal paths is to make an appropriate and cunning choice of the
integral cost function, L. What objectives to consider when making that choice and
a handful of more or less fruitful examples of suitable Ls are presented in section 6.1.
A nearly time-optimal, but nevertheless smoother and more pliable solution, also
brings more flexibility and robustness, in the presence of uncertainty. All the above
mentioned advantages are illustrated in section 6.2 where some simulation results
are presented. It turns out however, that the presented concept suffers from severe
numerical instability properties. The origin of this undesirable behavior is revealed
in section 6.3 , where we establish the fact that the problem at hand is singular.
Finally, in an effort to reduce the numerical difficulties that the shooting methods
brings, an alternative approach, viz. the Method of Perturbation , is adopted
in section 6.4. By making a Taylor expansion about the synthesized time-optimal
paths, we are able to study the first order contribution from a change in the design
parameter, ε , to the change in the appearance of the generated paths.
Throughout this chapter, the convexified RS-car (CRS), will be exploited. That is a
unicycle robot model, with a convexified control set (cf. page 46). It should also be
clarified that whenever we wish to refer to the linear- or the lateral control indistinctly,
we use u , so that u ∈ {υ, ω}.

6.1 Selection of the Lagrangian

Initially, we establish the fact that we have the full freedom to make a cunning
choice for an arbitrary integral cost function, L , for an optimal control problem
(3.1). This freedom should be used constructively by selecting L , with some practical,
control-motivated reasons in mind. We consider three main objectives, individually
contributing to the Lagrangian.

1. We have the obvious intention of reaching the terminal configuration as fast
as possible. Hence, we wish to eliminate the solution candidates, in which
unnecessarily amount of time is being wasted. This target is, as in the case
of time-optimal control problems, reached by including an integral constant ,
L1 = 1 in the integral cost function, L.

2. In order to avoid, or at least reduce, the drawbacks of time-optimal, bang-bang
solutions, we wish to obtain smoother and more pliable paths. This issue in­
volves introducing a penalty for steering the car with control values close to
their boundary points (see figure 6.1). The penalty function enables us to en­
courage a more prudent and moderate driving style, avoid bang-bang solutions
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and thereby obtain more supple paths. The embedded flexibility in such paths,
also results in increased robustness in the presence of uncertainty. The most
intuitive contribution of this objective to L , is any even polynomial, for instance
L2 = ω2.

-1 1

L

u

2

Figure 6.1: Moderate driving style is encouraged by means of a penalty function.

3. As discussed in chapter 3 , technological limitations, such as the car’s turning
radius, normally leave us with a restricted control domain. Our third and
last objective when selecting L , is to handle input saturations in a convenient
manner. A direct approach, involves adopting an integral cost function, having
the form of a well (see figure 6.2). For instance

L3 =
{

0 if u ∈ [−1, 1]
∞ else (6.1)

provides a solid barrier , in which the control function is allowed to take its
values. This idea is exploited in the two examples below. However, as illustrated
in the up-following discussion, by making a more clever and cunning selection
of L , we show a more subtle and implicit way to handle input restrictions.
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Figure 6.2: The well function, provides a restricting barrier for the domain of u.

The naive and adverse way to bond the contribution of our three objectives together,
is to simply add them up, that is to set L =

∑3
i=1Li. We might however observe

that by using superposition, the penalizing properties of L2 can be welded together
with the off-barriering characteristics of L3 and expressed by means of a common
cost function, L0. For instance, L0 =u tan u will have the same impact on an optimal
control problem as L2 and L3 traced out in figure 6.1 and 6.2 respectively and can
with advantage replace them both (cf. example 3).

To obtain even more flexibility and versatility, let us introduce, what we call a
design parameter ε , in L0. Then by adjusting ε , we will be able to decide how close
to the time-optimal solution we wish to find ourselves. Setting ε = 0 yields L=L1 =1
and thus equals this with the time-optimal problems considered in chapter 4 and 5.
The outcome of this, will naturally be the same, i.e. the same set of time-optimal
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solutions that were presented in the above mentioned chapters. Then by gradually
tuning ε up, we penalize the usage of the boundary points of the control domain more
and more, and hence put more value into a moderate driving style. This of course
occurs at the expense of time-optimality.

For reasons of presentation, we will follow the natural line of thought when striving
to find an appropriate choice of integral cost function L. We will start with the most
natural and intuitive guess, extract what is to be learned and proceed to more and
more cunning and implicit choices of L.

Example 3 (Taking L0 as a hybrid between a penalty function and a well.)
Motivated by the foregoing discussion about our preferences when selecting Lag­
rangian and their contributions to it, it seems tempting to choose L0 as a hybrid
between a penalty function and a well. Intuitively, this should capture the sought
penalizing and restricting properties of L2 and L3. Plenty of such very natural, but
nevertheless fruitless, attempts were made. A representative example of that being
L0 = ε u tan u. The polynomial term corresponds to the sought penalizing properties,
while the tangent function provides a barrier which serves as the control domain (see
figure 6.3).

1

u1-1

0L = ε u tan(u)

Figure 6.3: The Lagrangian for different values on ε when L0 is a hybrid between a
penalty function and a well.

Let us examine what the characterization of the optimal control boils down to in this
case. With L = L0 + L1 = ε u tan u + 1, the Hamiltonian becomes

H = λT f − L = λ1υ cos ϕ + λyυ sin ϕ + λϕ ω − ε υ tan υ − ε ω tan ω − 1 (6.2)

Maximizing equation (6.2) pointwise gives{
∂H
∂υ = λx cos ϕ + λy sin ϕ − ε [tan υ + υ

cos2 υ
] = 0

∂H
∂ω = λϕ − ε [tan ω + ω

cos2 ω
] = 0

(6.3)

which is an implicit system of equations, for υ and ω. Without any analytical expres­
sion of the pointwise optimal control, it is hard to proceed any further.

Example 4 (An analytically solvable example and a source of inspiration)
Another intuitively justified candidate for an appropriate integral cost function, is

L = L0 + L1 =
ε

2 (1 − u2)
+ 1 (6.4)

which is sketched in figure 6.4 and undeniably possesses both the desired penalizing
and restricting properties. We will see, that this choice of integral cost function,
will lead to analytically solvable equations for the optimal control. However, by
means of a simple but cunning approximation trick, we will proceed and get extremely
perspicuous and tidy expressions for the optimal control, simultaneously possessing
all the desired qualities we seek. This approximation then, will serve as a source
of inspiration for the section to follow, where we derive the same results without
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-1 1 u
1

L

Figure 6.4: Integral cost function used in example 4 , sketched for different values on
ε.

employing the approximation step.
The Hamiltonian in this case becomes

H = λT f − L = λxυ cos ϕ + λyυ sin ϕ + λϕ ω − ε

2 (1 − υ2)
− ε

2 (1 − ω2)
− 1 (6.5)

Maximizing this Hamiltonian pointwise, involves finding the roots of its partial deriv­
atives

∂H

∂υ
= σ − ευ

(1 − υ2)2
= 0 (6.6)

∂H

∂ω
= λϕ − εω

(1 − ω2)2
= 0 (6.7)

where σ = λx cos ϕ + λy sin ϕ. By virtue of the similarities between equations (6.6)
and (6.7), it suffices to study either one. Consider then the partial derivate w.r.t.
the lateral velocity and initially, assume λϕ 6= 0 (the λϕ ≡ 0 case, will be examined
later). Then, we are able to write equation (6.7) as

(1 − ω2)2 =
ε

λϕ
ω (6.8)

In the time-optimal case, when ε = 0, we trivially have (1 − ω2)2 = 0, meaning that
ω has two double roots in ±1 respectively (see figure 6.5(a)). Now, what happens to
the roots and how do they evolve as the design parameter ε is gradually increased?
We know that the roots of ω are complex conjugated, i.e. are symmetric with respect
to the real axis. Then, there exist only three possible loci for ω ’s roots, ω∗. Figure
[6.5(b)-(d)] illustrate these three different cases. The situation in figure 6.5(b) can be
disregarded directly, since it gives four imaginary, hence non-feasible roots.
In order to be able to select between the remaining two cases (i.e. one or two real
roots in the restricted control interval, ω ∈ [−1, 1]), we refer to figure 6.6. There, the
intersection points of the functions f1(ω) = (1 − ω2)2 and f2(ω) = ε

λϕ
ω obviously

correspond to the roots of equation (6.8). Hence, we conclude that we only have one
real root in the admissible interval, or equivalently that the pointwise maximization
of the Hamiltonian has a unique solution. In addition, we have found out that there is
another real root, but outside the domain of the control and two roots with non-zero
imaginary parts.

In the time-optimal case (ε = 0), the slope of f2(ω) is zero, hence the two possible
values for ω∗ are ±1. This coincides with the results presented in chapter 4 and 5
(ω∗ = sign λϕ) and naturally corresponds to the minimum radius left- and right turn
respectively. This holds for all non-zero values on λϕ. But as we set ε 6= 0, only
the quadrant of location of our only real and admissible root, is determined by sign
λϕ. Its exact value is indefinite but nevertheless, continuously varying with λϕ. We
further note that the boundary values of the lateral control, are not reached unless
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-1 1
xx xx

(ω)Im

(ω)Re

(a) The time-optimal case (ε = 0)
results in two double roots, at ω =
±1 respectively.

-1 1
xx xx

(ω)Im

(ω)Re

(b) The case when the roots split
along the imaginary axes, can be
disregarded since it gives imaginary,
hence non-feasible roots.

-1 1
xx xx

(ω)Im

(ω)Re

(c) If both double roots split along
the real axis, we get two roots in the
admissible control set |ω| ≤ 1.

-1 1
xx xx

(ω)Im

(ω)Re

(d) This last case, results in one ad­
missible root.

Figure 6.5: Root loci.

ω

f2
f1

1

1-1

Figure 6.6: The roots of equation (6.8) correspond to the intersection points of f1(ω) =
(1 − ω2)2 and f2(ω) = ε

λϕ
ω.

53



6.1. SELECTION OF THE LAGRANGIAN

λϕ → ∞ , excluding the occurrence of bang-bang solutions. These are all desirable
properties. Now, what happens as λϕ → 0 and we cross the border line instead? Will
ω∗ remain continuous even at this point? As λϕ → 0 , the straight line f2(ω) , becomes
more and more vertically aligned, meaning that ω∗ → 0. To see what happens as we
cross the imaginary axis, we take a look at the case when λϕ = 0. Setting λϕ = 0 in
equation (6.7) yields ε ω = 0 and since ε is a free variable, we get ω∗ = 0. Hence, we
conclude that ω∗ varies continuously as λϕ evolves and changes sign.

Although it is fully possible to analytically solve equation (6.7) for ω∗ , the result­
ing expressions looks anything but tidy. Therefore, we approximate f1(ω), ω ∈ [−1, 1]
in figure 6.6 , with the upper half of a unit circle. With this approach, expressing the
lateral control as a function of ε , reduces to finding the point of intersect between a
straight line and a semi-circle. Referring to figure 6.7 and considering the fact that
tan ϑ equals the direction of the straight line ε

λϕ
, we get

ω∗ = cosϑ =
1√

tan2 ϑ + 1
=

1√
( ε

λϕ
)2 + 1

=
λϕ√

ε2 + λ2
ϕ

(6.9)

(ω)f

ω
ϑ

1

1-1

Figure 6.7: The circle segment approximates f1(ω), ω ∈ [−1, 1] in figure 6.6 and leads
to some awarding results.

We observe that by setting ε = 0 in equation (6.9), we get ω∗ = sign λϕ , which
is to be recognized as the optimal control we had in the time-optimal case. Then
by gradually tuning the design parameter up, we damp the fluctuating behavior of
the optimal control whenever λϕ changes sign, and thereby replace the bang-bang
solutions with smoother and more pliable paths (cf. figure 6.8).
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Figure 6.8: The ε-dependence of the optimal control. ε varying between 0 and 0.5.

Analogous reasoning applies for the linear control υ∗ , with σ playing the role of
λϕ. The summarizing results of this example will therefore be
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υ∗ = σ√
ε2+σ2

ω∗ = λϕ√
ε2+λ2

ϕ

Motivated by the perspicuous results and their desirable properties obtained in
example 4 , we make the following choice for Lagrangian

L = 1 − ε
√

1 − u2, (6.10)

its circular form, evidently influenced by the approximation made in the previous
example. The Hamiltonian then becomes

H = λT f − L = λxυ cos ϕ + λyυ sin ϕ + λϕ ω + ε
√

1 − υ2 + ε
√

1 − ω2 − 1 (6.11)

and its pointwise maximization gives

∂H

∂υ
= σ − ευ√

1 − υ2
= 0 =⇒

√
1 − υ2 =

ε

σ
υ (6.12)

∂H

∂ω
= λϕ − εω√

1 − ω2
= 0 =⇒

√
1 − ω2 =

ε

λϕ
ω, (6.13)

where σ = λx cos ϕ+λy sin ϕ. The solutions of both (6.12) and (6.13), involve finding
the point of intersection between a straight line, with a known slope ( ε

σ or ε
λϕ

) and
the upper half of a unit circle and is best interpreted by means of figure 6.7. In
accordance with the calculations made in example 4 , we obtain

υ∗ = σ√
ε2+σ2

ω∗ = λϕ√
ε2+λ2

ϕ

(6.14)

Reflecting upon what this choice of the Lagrangian has resulted in, we are able to
pinpoint some distinguished characteristics; firstly, notice that L0 in this case, concep­
tually differs from the ones considered so far. This one merely satisfies our penalizing
objective, while no solid control restricting barrier, is imposed. Nevertheless, we can
conclude from the expressions for the optimal controls (equation (6.14)), that even
this requirement is met. For all non-zero values on the design parameter ε , |u∗| < 1 ,
which is the saturation boundary for the optimal control. This provides us with a
more subtle and implicit approach for handling control constraints.
Secondly, we observe that we have the possibility to make a continuous and arbitrary
adjustment of the design parameter, in order to damp the fluctuating behavior of the
optimal control pertaining to time-optimal solutions. This introduced flexibility, is
illustrated in figure 6.8 and enables us to designedly avoid time-optimal solutions and
their drawbacks while obtaining more supple paths.
Yet another advantage is the smoothing effect of u∗ on the systems Hamiltonian
function H. This benefit is to be discussed more thoroughly in section 6.3.

6.2 Simulation Results

In addition to the systems dynamics that governs the time evolution of the state
vector and the optimal control law specified by equation (6.14), the time evolution of
the auxiliary variables will be of interest, when we carry out our simulations. The
TPBVP that we ought to consider is
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Two Point Boundary Value Problem (TPBVP)


ẋ = ∂H

∂λx
= υ∗ cos ϕ

ẏ = ∂H
∂λy

= υ∗ sin ϕ

ϕ̇ = ∂H
∂λϕ

= ω∗


λ̇x = −∂H

∂x = 0

λ̇y = −∂H
∂y = 0

λ̇ϕ = −∂H
∂ϕ = υ∗[λy cos ϕ − λx sin ϕ]

s.t. x(0) = Xi and x(T ) = Xf (6.15)

where
υ∗ = σ√

ε2+σ2

ω∗ = λϕ√
ε2+λ2

ϕ

Since the state variables are specified at both the initial and final time instant, while
the auxiliary variables are unrestricted, we have a mixed boundary value problem at
hand. Taking resource in the numerical methods, the so called shooting method is
the most well-tried and dependable technique. The idea behind and the algorithm
for this method, is discussed and presented in appendix A. Also, when employing
numerical DE solvers in e.g. Matlab, the duration of the time interval in which the
numerical integration should last, have to be prescribed. This naturally contradicts
the fact that we have a free arrival time, which is to be optimized. To set this right,
we utilize the time transformation described in appendix B.

Figure 6.9 and 6.10 are the outcome of our first simulation and serve as a perfect
example of how choosing L as prescribed by (6.10) results in such expressions for
optimal input that meets all our three objectives specified on page 49. The task is to
steer the car between Xi = [−2, 2, −π

2 ] and Xf = [0, 0, −π
2 ]. The time-optimal path

is obtained by setting ε = 0 and is sketched with a thicker line in figure 6.9. However,
by tuning ε up gradually, we are able to digress from this time-optimal (bang-bang)
solution in a continuous and controlled manner.

Figure 6.9: By tuning ε up gradually, we digress from the time-optimal (bang-bang)
solution. In this particular case, ε varies in the interval [0.1, 0.5].

The corresponding plot of ω∗(t) in figure 6.10 , shows how the fluctuating behavior of
the optimal input is damped gradually for higher values on ε. This helps us to reduce
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the impairment of the steering device, but also raises the robustness with respect to
any possible uncertainties.

Figure 6.10: The effect of ε on the optimal input, ω∗(t).

This robustness is illustrated in greater detail in our next simulation where we wish
to study the flexibility of the mobile platform with respect to a change in a prescribed
time of arrival, T̂ . Such flexibility is of great importance when simultaneous rendez­
vous problems for a team of platforms are considered. In such cases, a common time
over target (TOT) is determined which both ensures simultaneous intercept and is
feasible for each platform on the team. However, due to incomplete or even incor­
rect information about the surrounding world, some of the team members might not
be able to reach the target upon the agreed time. Consequently, it is of interest to
determine whether the remaining team members are able to postpone their time of
arrival and agree upon a new feasible TOT. Notice that since the time of arrival is
prescribed, the integral constant L1 = 1 might as well be excluded from the integral
cost function, L. It is so because this term only contributes with an additive constant
in the value function J . However, for the sake of consistency, it might be motivated
to include the integral constant in L.
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Figure 6.11: As the time of arrival sets to higher values, a more moderate driving
style is being adopted. By decreasing the value of the linear velocity, the car “wastes
time” and is thereby able to adjust its time of arrival within a considerable interval
of time.
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Referring to figure 6.11 and 6.12 , the task in all five trials is to steer between
the same two prescribed configurations. However, the prescribed time of arrival, T̂ ,
varies. As seen in figure 6.11 , when T̂ is set to 2 , the linear velocity υ∗(t) , almost
takes its highest value, i.e. equals 1 , during the entire time interval - this in order to
be able to make it to the final configuration at the prescribed time of arrival. But as
we set T̂ to higher and higher values, we note how the linear velocity decreases and
a more moderate driving style is being adopted.
The corresponding control in the the lateral direction ω∗(t) , can be seen in figure
6.12 , where we note that for T̂ = 2, ω∗(t) is relatively bang-bang. But as the value
of the arrival time increases, the fluctuating behavior of the angular velocity is being
damp, resulting in much smoother paths.
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Figure 6.12: As the time of arrival is postponed, the generated paths become
smoother.

These two abovementioned simulations, illustrate that the proposed control law
meets all our requirements and fulfills all our objectives thus far. However, the nu­
merical computations in the shooting method, turns out to be divergent at some
instances. This is to be illustrated in our next simulation. Once again, the resistance
and flexibility against a change in T̂ is being investigated, but this time the outcome
is not as successful. Figure 6.13 shows the generated paths when the task is to steer
the platform from the initial configuration Xi = [0, 0, 0] , to the final configuration
Xf = [1.5, 2, π

2 ] , while T̂ varies between 3 and 10. For T̂ < 8 , the corresponding
paths succeed to interconnect Xi and Xf by making a smooth left turn. But for
arrival times T̂ > 8 , the generating paths fail to end up in the prescribed final config­
uration. This is because it is extremely hard to make a initial guess of the auxiliary
variables λ(0) such that x(T̂ ) = Xf (see appendix A for more details). In the next
section, we are to locate the origin of this undesirable behavior.
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Figure 6.13: The generated paths when the prescribed time of arrival varies between 3
and 10 time units. Because of the numerical instability of the shooting method, some
of the paths fail to end up in the prescribed final configuration, Xf = (1.5, 2, π

2 ).
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6.3 The Singular Property of the Problem

In order to get a glimpse beneath the surface and gain some insight about the reasons
for the shooting method to diverge, we recur to Dubins’ problem which was the scope
of chapter 4.

Initially, compiling equation (4.3) and (4.7) together with the definition of the
Hamiltonian function (cf. equation (3.3)), we get

H(x, λ) = H (x, λ, ω∗) = λx cos ϕ + λy sin ϕ + |λϕ| − 1. (6.16)

Since neither of the state variables specifying the position of the platform (i.e. x or
y) is included in H , the corresponding auxiliary variables, λx and λy , are cyclic, that
is they are time constants. Then by setting{

λx = −µ cos ϕ0
λy = µ sin ϕ0,

we are able to write equation (6.16) as

H = µ cos(ϕ − ϕ0) + |λϕ| − 1.

Now, from the PMP chapter, or more precisely, proposition 8 in conjunction with
remark 6 , we conclude that the Hamiltonian is constant on a full trajectory - that
is, the level curves of H correspond to different trajectories for the mobile platform.
Let us therefore pay attention to these. The level curves of the system are sketched
by means of Mathematica in figure 6.14. The reason for rewriting the cyclic auxiliary
variables (λx and λy) in terms of µ and ϕ0 might be more obvious now, since the
constant ϕ0 solely adjusts the horizontal alignment of the level curves, while the
constant µ specifies their depth. We are thus able to study the full motion of the
mobile platform by just paying attention to the time evolution of two variables, namely
ϕ(t) and λϕ(t).
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Figure 6.14: The level curves of the Hamiltonian correspond to different trajectories
of the mobile platform. Generating a path for Dubins’ car by choosing an appropriate
λ(0) is a singular problem.

Referring to figure 6.14 , let us demonstrate the singular property of the problem by
considering how the generation of a typical BSB path for Dubins’ car is carried
out. The orientation of the platform at the initial point, ϕ(0) , is known, so that we
know where on the ϕ-axis we are at t = 0. We then ought to follow a level curve
until we reach a switch-point, i.e. λϕ becomes zero. This corresponds to the first
circular movement. In order to generate the straight line segment in the BSB type
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of path, we are then to stop at this particular point for an arbitrary amount of time,
namely as long as the S segment endures. This because on a straight line segment,
the orientation angle is constant while λϕ equals zero. Following this, in a controlled
manner, we are to decide which of the level curves to follow, the one that leads to
higher values on ϕ (left turn) or the one leading in the opposite direction, resulting
in a right turn. Generating such a motion by just finding an appropriate value on
λϕ(0) is of course a singular problem.
Same conclusion can be drawn from studying figure 6.15 where the level surface of
the Hamiltonian can be seen. We note that two smooth surfaces are seamed together
at a joint, centered at the axis along λϕ = 0. Hence the Hamiltonian has different
derivatives on different sides of this joint, making the right hand side (the dynamics) of
the TPBVP (6.15) a discontinuous function. Then it follows from standard results on
differential equations, that in the case of a discontinuous dynamics, not even existence
of a solution is guaranteed, even less its optimality or uniqueness. It is a widespread
idea that all the information about the motion of a mobile platform lies in the initial
values of the auxiliary variables λ(0). We have however shown that this does not
hold true in all cases and that a more careful analysis of the system properties must
be carried out in order to be able to draw any conclusions about that matter.
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Figure 6.15: The level surface of the Hamiltonian function for Dubins’ problem.

Let our next study involve the Hamiltonian of the CRS car, i.e. when we utilize
the control law specified by equation (6.14). Combining this with equation (6.11)
yields the following expression for the Hamiltonian function for the CRS car

HCRS(x, λ) = H (x, λ, u∗)

=
σ2

√
ε2 + σ2

+
λ2

ϕ√
ε2 + λ2

ϕ

+ ε

√
1 − σ2

ε2 + σ2 + ε

√
1 −

λ2
ϕ

ε2 + λ2
ϕ

− 1

=
√

ε2 + σ2 +
√

ε2 + λ2
ϕ − 1. (6.17)

To fully understand the advantage with (6.17) , let us present the expression for the
Hamiltonian for the RS-car and make a comparison. Putting equations (5.2), (5.5)
and (5.7) together, we get

HRS(x, λ) = H (x, λ, u∗) = |σ| + |λϕ| − 1
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Comparing this with equation (6.17), we see that by introducing ε , we have abolished
the discontinuous properties of HRS , which does not have a sharp joint for ε > 0
and is a continuously differentiable function. Possessing a continuously differentiable
Hamiltonian is noticeable, since it improves and rectifies the numerical issues of the
optimal control problem. However, our ambition is to produce nearly time-optimal
paths, hence we are concerned with rather small values on the design parameter ε. As
a result, the corresponding improvements in the numerical properties of the problem
at hand, will be comparatively small. In order to get a significant improvement and
obtain numerically stable algorithms for real-life applications, we have to tune ε up
to considerable values. That in turn, penalizes the input signals correspondingly and
results in paths that differ too much from the time-optimal paths to be classified as
“nearly time-optimal”. Similar paths might more conveniently be generated by any
“non-optimal” planning scheme, such as the cell-decomposition or visibility graph
method (cf. [11]).

We have also investigated the possible approach of choosing L differently, so that
better numerical properties are obtained for relatively low values on ε. A representat­
ive candidate for such a choice is L = ε ln(1−u2)+1. Notice that since lim

u→±1
L = −∞ ,

this choice of integral cost function, in accordance with the ones considered in ex­
amples 3 and 4, provides a solid barrier, in which the control function is allowed
to take its values. The common characteristic of suitable Lagrangians for this ap­
proach, is that they put a considerable penalty on the input signal even for relatively
low values on ε. The net outcome of the simulations adopting such Lagrangian is
however similar to the ones aforementioned. There is obviously a trade-off between
the numerical stability of the problem and the magnitude of the penalty imposed on
the control function on one hand, and yet another one between the imposed penalty
and the appearance of the generated paths. The bottom line is that, even in the case
when we do possess a continuously differentiable H , it is extremely hard to find ap­
propriate starting values for λ(0) which take us to the prescribed final configuration,
Xf . Moreover, even in the case that these values were given to us by some omnipo­
tent and above all generous being, due to the singular property of the problem, we
would most probably run into trouble, trying to apply numerical evaluations on the
TPBVP.

6.4 An Alternative Approach: the Method of Perturbation

Once we had observed the difficulties we had while trying to solve TPBVP (6.15) nu­
merically, but before we had determined its singular properties, we realized that an
alternative approach for generating nearly time-optimal paths would be of great in­
terest. With inspiration from Hamiltonian Perturbation Theory, a paradigm from the
sphere of Analytical Mechanics, our objective is to study the first order contribution
of introducing the design parameter ε , to the shape of the synthesized time-optimal
paths. The basic idea is to introduce and recognize an explicit ε-dependence in all
variables. Adopting this view involves considering the time-optimal solutions as an
unperturbated case, while a change in ε (and hence in the Hamiltonian function)
is regarded as a perturbation, whose time-evolution is to be determined (cf. figure
6.16). The analysis of the design parameter’s influence on a system is not a trivial
task. How will a small change in the design parameter ε , effect the time-evolution of
the configuration- and the auxiliary variables?
Two different approaches have been considered, but because of the similarities in
the outcome of them, we will herewithin only present one of these. This approach,
which is the conceptually simplest one, starts off from the Taylor expansion of the
time-optimal (unperturbated) solution. The objective is then to get a first order dif­
ferential equation (DE) for the derivatives, which is to be solved with conventional
methods, either analytically or numerically. Although it is possible to do this in a
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recursive matter, for derivatives of arbitrary order, resulting in higher order approx­
imation of the contribution of ε , it is seldom practically motivated to go beyond the
second order. Hence, we will restrict ourselves to get a linear approximation of the
solution, i.e. calculating the rate of change of the state- and auxiliary variables with
respect to the design parameter ε (cf. figure 6.16).

Xi

Xf

y

x
Figure 6.16: The path sketched with solid line is to represent an unperturbated solu­
tion, while the dashed line is the perturbed counterpart. A first order approximation
of ε ’s effect on the time-optimal paths is to determine the time-evolution of [X Ó]T,
which corresponds to evaluating the value of the small arrows in the figure.

Illustrating this, if we express the time-optimal solution in terms of its Taylor expan­
sion (

x(t, ε)
λ(t, ε)

)
=

(
x(t)
λ(t)

)
+ ε

(
X(t)
Ó(t)

)
+ O(ε2),

a first order approximation of ε ’s effect on [x λ]T is to determine the time evolution of
[X Ó]T . This time evolution, serves as an indicator of the change in the shape of the
unperturbated solution, originating from an infinite-small change in ε. It corresponds
to evaluating the value of the small arrows in figure 6.16. Remember that what we
now seek is a DE for X(t) and Ó(t).
Upon the introduction of the explicit ε-dependence, Hamilton’s system of equations
(3.18), becomes

∂

∂t
x(t, ε) = H ′

λ(x(t, ε), λ(t, ε), ε) (6.18)

∂

∂t
λ(t, ε) = −H ′

x(x(t, ε), λ(t, ε), ε).

Taking the ε-derivative of (6.18) gives us the desired (linear) DE for X(t) and Ó(t).

Ẋ(t) = H ′′
λxX(t) + H ′′

λλÓ(t) + H ′′
λε (6.19)

Ó̇(t) = −H ′′
xxX(t) − H ′′

xλÓ(t) − H ′′
xε

Before we proceed, let us make a small digression into the world of finite dimensional
systems theory, to see how to solve systems of differential equations of the type ap­
pearing in (6.19).
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Introducing ξ(t) =
(

X(t)
Ó(t)

)
, enables us to write (6.19) in the following more com­

pact form
ξ̇ = A ξ + B, (6.20)

with

A =
(

H ′′
λx H ′′

λλ

−H ′′
xx −H ′′

xλ

)
and

B =
(

H ′′
λε

−H ′′
xε

)
.

The general solution of such systems of differential equations is (cf. [14])

ξ(t) = Ø(t, ti)ξ(ti) +
∫ tf

ti

Ø(t, s)B(s)ds, (6.21)

where Ø is the so called transition matrix function. How to determine the transition
matrix function can be a delicate issue. For time-invariant systems however, i.e.
constant A and B1 , determining the transition matrix function becomes much simpler
in that it can be expressed in the terms of the matrix exponential and becomes

Ø(t, s) = eA(t−s). (6.22)

To make the idea of this approach even more concrete, let us now apply this
method to a simple optimal control problem. In order to demonstrate and bring out
the full taste of it, we have designedly chosen to formulate the optimal control problem
such that matters are kept as simple as possible.

Example 5 (Method of Perturbation) In the following, an illustrative optimal
control problem of form (3.1) will be considered with

L(x, u) =
x2 + u2

2
+ εu (6.23)

ẋ = f(x, u) = u

x(0) = 0, x(1) = 1.

Applying PMP to this yields (cf. section 3.1),

∂H

∂u
= 0 ⇒ u∗ = λ − ε,

resulting in

H(x, λ, ε) =
λ2 − x2

2
− ελ +

ε2

2
.

Here above, the necessary tools for solving a linear DE of type (6.20) are provided,
let us then start off smoothly by calculating the second order partial derivatives of
H(x, λ, ε) and setting ε = 0 (since we the Taylor expansion is along the time-optimal
trajectory). These calculations yield

A =
(

0 1
1 0

)
B =

(
−1
0

)
.

1This result can in fact be generalized to time-varying cases for which all A(t) commute.
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Now, using this A and B in (6.21) and (6.22) leaves us with the complete solution of
[X Ó]T as a function of time

(
X(t)
Ó(t)

)
=

(
cosh(t) sinh(t)
sinh(t) cosh(t)

) (
X(ti)
Ó(ti)

)
+

(
− sinh(t)

1 − cosh(t)

)
. (6.24)

This is the time function of a first order approximation for the perturbation that
introducing ε in (6.23) conveys.

Returning to our main problem, we make an observation that the perturbation of the
time-optimal path, X(t) , have to equal zero at the initial, as well as the final time
instance, that is, we require X(0) and X(T ) to vanish - this, because are to steer
between two prescribed configurations. On the contrary, there are no constraints on
Ó(t) at corresponding time instances. Hence, what the proposed approach boils down
to, is yet another TPBVP, this time in terms of X and Ó , instead of the state vector
and the vector of auxiliary variables. The only remaining question to be answered is,
whether this TPBVP is easier to solve than the previous one (i.e. (6.15)). In order to
illuminate this issue and apply the above mentioned method to our particular problem,
we recur to equation (6.17) to get the expression for the Hamiltonian function for the
convexified Reeds-Shepp’s car. We thus have

HCRS(x, λ) =
√

ε2 + σ2 +
√

ε2 + λ2
ϕ − 1,

where σ = λx cos ϕ + λy sin ϕ. Now, to get A and B (cf. equation (6.20)), we
have to calculate the second order partial derivatives of this Hamiltonian, but we
might beforehand notice that since it is only ε2 that occurs in HCRS , the first order
approximation of ε ’s effect on the optimal paths will be vanishing. Hence, we either
have to make a second order approximation (i.e. calculate the time evolution of yet
another term in the Taylor series expansion), or more conveniently, noticing that
since ε is an arbitrary chosen constant, we might as well make a substitution ε0 = ε2.
Now, calculating the second order partial derivatives of the Hamiltonian function and
setting ε0 = 0 (since we the Taylor expansion is along the time-optimal trajectory)
yields

A =


0 0 − sin ϕ 0 0 0
0 0 cos ϕ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 σ sin ϕ − cos ϕ 0


B = −1

2

(
0 0 ρ

σ2
cos ϕ

σ2
sin ϕ
σ2

1
λ2

ϕ

)T

,

where ρ is the time derivative of σ , i.e. ρ = −λx sin ϕ+λy cos ϕ. It should be noticed
that we no longer are dealing with a time-invariant system, so that it is no longer
possible to calculate the transition matrix function by means of equation (6.22). We
thus have to take resource in some numerical method two solve the TPBVP at hand.
However, we might predict the outcome of such an effort by noticing that along an
time-optimal trajectory (ε0 = 0), the last component of B obviously goes to infinity as
we approach a switching point, i.e. λϕ → 0. This makes the time evolution of the DE
(6.20) divergent and consequently, the proposed line of action have to be disregarded.
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7. Conclusions and Future Work

Initially, the problem of finding time-optimal paths for Dubins’ and Reeds-Shepp’s
(RS) car models is considered. Upon the presentation of the sufficient family of paths
for both these models, a geometric algorithm for finding the time-optimal path for
Dubins’ car is provided. Although the possibility of generalizing this algorithm to
include more general path combinations and thereby covering the RS-car has not been
investigated in any greater detail, it does seem viable. This belief is based on the
fact that all candidates for optimal solution to RS problem, have the same number of
undetermined time indices as Dubins’ problem, namely three. Once this extension is
carried out, we ought to adopt preferred path following technique in order to follow
this synthesized time-optimal path.

When considering the problem of generating nearly time-optimal paths for the
CRS car model, we concluded that PMP, augmented with the shooting method, is
not an adequate approach. This is due to the singular properties of the associated TP­
BVP. It is a widespread belief that all the information about the motion of a mobile
platform lies in the initial values of the auxiliary variables, λ(0). We have however
shown that this does not hold true in all cases and that a more careful analysis of
the system properties must be carried out in order to be able to draw any conclusions
about that matter.
We were however able to rectify the numerical difficulties to some extend by either
significantly increasing the value of the design parameter ε , or choosing another type
of Lagrangian. The common characteristic of suitable Lagrangians for this line of
action, is that they put a considerable penalty on the input signal even for relatively
low values on ε. There is obviously a trade-off between the numerical stability of the
problem and the magnitude of the penalty imposed on the control function on one
hand, and yet another one between the imposed penalty and the appearance of the
generated paths. Hence, the generated paths when striving to get a numerically stable
algorithm for real-life applications, are too unlike the time-optimal bang-bang solu­
tions, to be classified as “nearly time-optimal” paths and thus have to be disregarded.
Similar paths might more conveniently be generated by any “non-optimal” planning
scheme, such as the cell-decomposition or visibility graph method (cf. [11]). The
insignificant number of variables involved in the treacherously simple problems we
have studied, turn them into perspicuous and invaluable textbook cases, from where
we are able to extract a considerable amount of information while striving to put our
theoretical knowledge in practice. For this reason, it might be motivated to go beyond
the case of Ground Vehicles and extend the conducted study to the three-dimensional
case and thus study the problem of finding time-optimal paths for Aerial Vehicles
and missiles. Dubins problem in R3 is not as well-studied, although some rather
spotty and counterintuitive results have been presented. It was for instance an open
conjecture whether optimal paths in R3 are again concatenations of straight lines and
circle segments, until this was disproved by Sussman in [23]. Dubins’ problem can
be generalized to several space dimensions in a number of different ways. Important
contributions have been given in [15] , [19] and [23].
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APPENDIX A. THE SHOOTING METHOD

A. The Shooting Method

We pay attention to the TPBVP (6.15). It is alternatively formulated as the problem
of finding an initial condition for the auxiliary variables λ(0) , such that A(tf ) =
x(tf )−Xf = 0. The shooting method approach, is based on successive improvements
of the unspecified boundary conditions (in our case the λ ’s). The iterative procedure
continues until all the specified boundary conditions are met, i.e. A(tf ) = 0.
To apply shooting to a TPBVP, the following stepwise algorithm is used to update
the initial condition for λ (see [9]):

Step 1 Make a qualified initial guess λ(0) = λ0.

Step 2 Integrate the system {
ẋ = Hλ x(0) = Xi

λ̇ = −Hx λ(0) = λ0
(A.1)

while choosing u such that Hu = 0. In our case, this corresponds to choosing
υ∗ and ω∗ , in accordance with equation (6.14).

Step 3 Compute the final error A(tf ) = x(tf ) − Xf .

Step 4 Update the initial condition λ0 = λ0 + η Ø(0, tf ) A(tf ) , where the transition
matrix Ø(0, tf ) =

[∂A(tf )
∂λ(0)

]−1, transfers a perturbation in λ(0) to a perturbation
in the final error. Moreover, η is a suitably chosen step-length.

Step 5 Iterate steps 2-4, until |A(tf )| < tol.

The transition matrix in step 4, can be calculated, either by means of numerical
differentiation, or by linearizing the system (A.1) and the final error A(tf ).

Remark 14 Generalizing this, if not all the state variables at the final time are
specified, then λ(tf ) has to fulfill a so called transversality condition (cf. section 3.2).
Then the final error will, instead of being solely a function of the state vector, become
a function of both the final state vector and final vector of auxiliary variables, i.e.
A(x(tf ), λ(tf )).

Although conceptually simple and quite reliable (using shooting method, satellites
were launched in the 1950s), this method’s main drawbacks are two folded; firstly it
can be crucial, as seen in section 6.2 , to find good initial estimates on the unspecified
parameters. Secondly, the linearized system used in the calculation of the transition
matrix Ø(0, tf ) , may be gravely ill-conditioned and might result in divergent calcula­
tions (see e.g. [9]).
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Figure A.1: Illustration of the shooting method

70



APPENDIX B. TIME TRANSFORMATION OF OPTIMAL CONTROL
PROBLEMS

B. Time Transformation of Optimal Control
Problems

When employing numerical methods in e.g. Matlab, the duration of the time interval
in which the numerical integration should dure, have to be prescribed. This naturally
contradicts the fact that we have a free arrival time, which is to be optimized. To set
this right, we utilize the following time transformation.

Consider the following dynamical system and its cost functional

min
∫ tf

ti
L(x(t), u(t)) dt

subject to

ẋ(t) = f(x(t), u(t))

x(ti) = Xi

(B.1)

Suppose problem (B.1) is defined on a free end-time interval [ti, tf ]. Assume addition­
ally, that we are able to put an (not necessarily tight) upper bound on the optimized
arrival time t∗f , i.e. find a constant T̂ ∈ R : t∗f ≤ T̂ . Initially, define a new time
variable τ ∈ [0, 1] and let the old time variable t be a linear transformation of it,
that is set t(τ) = aτ + ti where a ∈ R is a constant. Next, introduce two new state
variables {

α(τ) = t(τ) = aτ + ti and

β(τ) = dt(τ)
dτ = a.

Then, one has the following new dynamical system defined on the fixed end-time
interval [0, 1]: 

x†(τ) = dx
dt · dt

dτ = f(x(τ), u(τ)) · β(τ)

α†(τ) = β(τ)

β†(τ) = 0

where the symbol † , refers to the operation of differentiation with respect to τ . Intro­
duce now an extended state vector x̃ and a modified Lagrangian L{

x̃ = [xT (τ), α(τ), β(τ)]T ∈ Rn+2

L(x̃(τ), u(τ)) = L(x(τ), u(τ)) · β(τ).

By virtue of this, we are able to re-formulate problem (B.1) as

min
∫ 1
0 L(x̂(τ), u(τ)) dt

subject to

˙̃x(τ) = [f(x(τ), u(τ)) · β(τ), β(τ), 0]T

x̃(0) = [Xi, 0, a]T ,

(B.2)
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where the constant that specifies the rate of time-growth, a ∈ [ti, T̂ ]. This is the
alternative representation of problem (B.1), defined on the fixed end-time interval
[0, 1].

Remark 15 The generalization of this time transformation, to comprise non-autonomous
systems, is straightforward.
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