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Abstract— This paper proposes an optimization based ap-
proach to multi-UGV surveillance. In particular, we formu-
late both the minimum time- and connectivity constrained
surveillance problems, show NP-hardness of them and propose
decomposition techniques that allow us to solve them efficiently
in an algorithmic manner.

The minimum time formulation is the following. Given a set
of surveillance UGVs and a polyhedral area, find waypoint-
paths for all UGVs such that every point of the area is visible
from a point on a path and such that the time for executing
the search in parallel is minimized. Here, the sensor’s field of
view are assumed to be occluded by the obstacles and limited
by a maximal sensor range. The connectivity constrained
formulation extends the first by additionally requiring that the
information graph induced by the sensors is connected at the
time instants when the UGVs stop to perform the surveillance
task. The second formulation is relevant to situation when
mutual visibility is needed either to transmit the sensor data
being gathered, or to protect the team from hostile persons
trying to approach the stationary UGVs.

I. INTRODUCTION

The surveillance and security solutions of today are based
on a combination of human guards, electronic systems

(cameras, intrusion alarms), physical security (fences, gates)
and software (verification, logging). However, recent sci-
entific and technological developments enable more au-
tonomous and mobile complementary solutions. It is there-
fore not surprising that the research area of control of
surveillance vehicles is also active and growing. In this paper,
we extend our previous work [1], [2], on cooperative surveil-
lance using multiple UGVs in terms of the algorithms and
theoretical properties such as formal NP-hardness proofs.

The main focus of this paper will lie on two different
optimization problems, namely the Minimum Time UGV
Surveillance Problem (MTUSP) and the Connectivity Con-
strained UGV Surveillance Problem (CUSP). Informally, the
MTUSP is the following. Given a set of surveillance UGVs
and a user defined area to be covered, find waypoint-paths
such that:

• the area is completely surveyed,
• the time for performing the search is minimized.
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The on-board sensor’s field of view are assumed to be
occluded by the obstacles and limited by a maximal sensor
range. In the CUSP formulation, in addition to the above,
we also require that

• the information graph is kept recurrently connected,
i.e. the UGVs are mutually visible when they stop to
perform the surveillance task.

Here connectivity constraints of both line-of-sight and lim-
ited sensor range types are considered. More formal state-
ment of the MTUSP and CUSP are provided in Section IV
and an illustrative surveillance mission can be seen in
Figure 1.
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Fig. 1. Four snapshots during an illustrative minimal CUSP mission.
The two UGVs start off to the left, depicted in Figure 1(a), and maintain
connectivity recurrently at the three surveillance instances, Figures 1(b)-
1(d). The area already visited is shadowed and the mission is completed
once the entire area is surveyed. Notice how the two UGVs are allowed to
split temporarily in order to pass on different sides of the rightmost obstacle.

The remainder of this paper is organized as follows.
Section II provides a concise exposition of related work.
Section III then presents some basic concepts that underly
the rest of the paper. The considered problems are formally
defined in Section IV and the proposed algorithms for solving
them efficiently can be found in Section V. Simulations
illustrating the approach are presented in Section VI. Finally,
the paper is concluded in Section VII.



II. RELATED WORK

For the purpose of the MTUSP formulation, we divide the
rich set of work in the field of coverage problems into the
following three categories: First moving sensor platforms,
where the main limitation on field of view is the physical
sensor range. Applications where such a formulation is rea-
sonable include vacuum cleaning and demining [3], general
coverage [4], multi robot coverage [5] and some robotic
security applications [6]. Furthermore, a number of UAV
surveillance papers, such as [7], [8] fall into this category.
The pursuit-evasion problem, where a number of pursuers
try to find an evader is sometimes also formulated in this
way [9].

The second category consists of problems dealing with
positioning of static sensors where occluding objects and
walls present the main limitation on field of view. Such
formulations are found in the so called Art Gallery Problems,
where the number of guards required to monitor a building
is to be minimized (see e.g. [10] and the excellent survey
in [11]).

In the third category, where the field of view of moving
guards is mainly limited by occluding walls and other
objects, we also find results building on the Art Gallery work.
In an indoor environment, the pursuit-evasion problem can
be solved with a guarantee that a moving evader will be
caught [12]. Some of this work also deals with the situation
where the area is unknown [13]. The MTUSP falls in this
third category, but differ from earlier work in terms of the
minimum time objective.

As for literature relevant for the CUSP formulation, a
number of publications have been devoted to different as-
pects of the communication maintenance problem for mobile
platforms. The great majority of these papers have focused
on the sensor range constraint and often deal with obstacle-
free environments. However, [14] and [15] consider commu-
nication restrictions involving both limited sensor range and
line-of-sight constraints in the presence of obstacles. In the
following, both these papers will be discussed in detail.

The problem formulation in [14] considers optimal path
planning for a number of relay vehicles that have the mission
of maintaining a chain of line-of-sight communication links
that connect a given leader vehicle to the ground station.
In accordance with their previous work in multi-vehicle path
planning, Schouwenaars et al. use binary variables to capture
connectivity between subsequent relay vehicles and end up
solving a mixed integer linear program (MILP).

The problem considered in [15] is closely related to our
work. However, Esposito and Dunbar aim at reaching a final
configuration while our high-level objective is to complete
the surveillance mission. They furthermore utilize a potential
function to synthesize a feasible movement direction for the
vehicles and consider the case when a fixed information
graph is given a priori and focus on maintaining these given
links intact throughout the entire duration of the motion.
This is equivalent with maintaining 1-hop connectivity of
the information graph.

III. PRELIMINARIES

The areas to be searched in this paper are all going to be
so called orthogonal polygons with holes (obstacles), thus
we denote them A, for area. The orthogonality property is
however a matter of implementational convenience for the
maximal convex cover subproblem. It should be noted that
the provided algorithms are not limited to the orthogonal
case, but can handle any general polygon-with-holes type of
environment.

Definition 1 (Orthogonal polygons with holes): A poly-
gon Q in the plane is an ordered sequence of points
q1, . . . , qn ∈ R

2, n ≥ 3, called vertices of Q together
with the line segments qi to qi+1 and qn to q1, called
edges. In the following we assume that none of these edges
intersect. A polygon is called orthogonal if adjacent edges
are orthogonal. Given a polygon Q and a set of h disjoint
polygons Q1, . . . , Qh contained in Q we call the set A =
Q \ {Q1 ∪ ... ∪ Qh} a polygon with h holes.
In order to define our surveillance problems we make the
following definitions.

Definition 2 (Guardiance): Given two points p and q in
A we say that p is visible from q if the line segment joining
p and q is contained in A

αp + (1 − α)q ∈ A, ∀α ∈ [0 1]

and the distance between them is not greater than the sensor
range,

‖p − q‖ ≤ R.

A set of points H = {h1, . . . , hk} ⊂ A guards A if for all
p ∈ A there exists hi ∈ H such that p is visible from hi.

Definition 3 (Maximal convex cover): A convex cover C

of A is a set of convex sets C = {ci} such that |ci| ≤ R and
A ⊆ ∪ici. Here, |ci| = sup

a,b∈ci

dist(a, b) denotes the diameter

of the set ci. We define a maximal convex cover of A to be
a convex cover C = {ci} of A, such that for all i, there is
no convex set s ⊆ A such that |s| ≤ R and s ⊃ ci.

Definition 4 (Visiting waypoint path): A waypoint path P

is an ordered set of points P = {p1, . . . , pn}. Any convex
cover C is said to be visited by the waypoint path P =
{p1, . . . , pn} if ∀ci ∈ C ∃pj ∈ P : pj ∈ ci.
Given the above definitions, the following lemma can be
stated.

Lemma 1: If there exists a convex cover C of A such that
the path P visits C, then P guards A

Proof. Since P visits C, and every set ci in C is convex
with |ci| ≤ R, P guards every set ci. Furthermore, since
A ⊆ ∪ici, P guards A.

Next, two concepts needed for making a formal statement
of the CUSP are presented.

Definition 5 (Information graph): Let V = {v1, . . . , vN}
denote the vertex set representing the N UGVs. There is a
link, eij ∈ E(t), in the information graph, G(t) = (V, E(t)),
if and only if

‖pi(t) − pj(t)‖ ≤ R and



αpi(t) + (1 − α)pj(t) ∈ A, ∀α ∈ [0 1].

Here R denotes the limited sensor range and pi(t) ∈ R
2 is

the position of UGV i at time t.
Definition 6 (Connectivity-primitive): A connectivity-

primitive s = {p1, . . . , pN} ∈ R
2×N is a collection of N

UGV positions pi ∈ R
2, that induce an information graph

that is connected.
The notion of connectivity-primitive is depicted in Figure 3

IV. PROBLEM FORMULATION

In this section, using concepts from Section III, we state
the two surveillance problems considered in this paper,
namely the Minimum Time UGV Surveillance Problem
(MTUSP) and the Connectivity Constrained UGV Surveil-
lance Problem (CUSP).

Problem 1 (MTUSP): Given N UGVs and a polyhedral
area A, find a set of waypoint-paths P = {P 1, . . . , PN}
that solve the following optimization problem

min
P

max
i∈Z

+

N

ni−1∑

j=1

‖pi
j − pi

(j+1)‖

such that ∪iP
i guards A

Here P i = {pi
1, . . . , p

i
ni
} and the start and finish depots,

denoted by pi
1, p

i
ni

, i ∈ Z+
N , {1, . . . , N}, may be given.

Remark 1 (Sensor field of view): In the above problem
statement, each point in A is demanded to be visible from
some point in P . This is reasonable in the case of omni-
directional sensors. It is however also relevant in the case
of cameras mounted on pan-tilt units. In these cases the
time right before and after passing pi

j must be used to cover
the areas visible from pi

j . If necessary, the UGVs will have
to slow down to facilitate the sensor coverage. A similar
argument can be made for the case when the sensor is one
or more laser scanners.

Problem 2 (CUSP): Given N UGVs and a polyhedral
area A, find a set of waypoint-paths P = {P 1, . . . , PN}
that solve the following optimization problem

min
P

n−1∑

j=1

N∑

i=1

||pi
j − pi

(j+1)||

such that ∪i P i guards A

GP (j) ∈ C, ∀j

Here P (j) = {p1
j , . . . , p

N
j } denotes the UGV positions at

time instance j and GP (j) is the induced information graph
when the UGVs are at P (j). Further, C is the set of connected
graphs on N vertices, P i = {pi

1, . . . , p
i
n}, Z

+
N = {1, . . . , N}

and the start and finish positions, denoted by pi
1, p

i
n, i ∈ Z

+
N

may be given.

NP-hardness
In the following, it is shown that both MTUSP and CUSP

are NP-hard. This implies that we can not hope to solve an
arbitrary problem instances to optimality in reasonable time
but must adopt heuristic solution methods. This is the topic
of Section V.

Proposition 1: Problem 1 (MTUSP) is NP-hard.
Proof: The proof will build upon a polynomial reduc-

tion [16] from an arbitrary instance of a well-known NP-
hard problem, namely the Euclidean-TSP (ETSP) [17], to a
special instance of MTUSP.

Given an ETSP instance, (n, [dij ]), where n is the number
of cities and [dij ] denotes the matrix with inter-city distances,
we are free to choose the following parts of Problem 1
(MTUSP) such that the achieved optimal solution corre-
sponds to that of the given ETSP:

1) Number of UGVs, N .
2) Start and finish depots for all UGVs, pi

1, p
i
n+1, i ∈ Z+

N .
3) Obstacle configuration.
4) Area to be surveyed, A.
5) Maximal sensor range, R.

Regarding the number of UGVs, N = 1 is a natural selection.
In order to achieve a tour for this single UGV, we locate
the start and finish depot, p1

1, p
1
n+1 at an arbitrary city

cite, as long as they are set equal. Further, an obstacle-free
environment is chosen and the area A is taken as the union of
isolated points located at the n cites. Finally, we set R = 0.

Due to these choices, the area A is fully guarded if and
only if the UGV visits all the city locations and since the
distances are preserved, the optimal solution of this specially
designed instance of the MTUSP will coincide with the
optimal solution of the given ETSP. This completes the proof.

Proposition 2: Problem 2 (CUSP) is NP-hard.
Proof: Follows directly from the previous proof since in

the single UGV case, the connectivity constraint is trivially
fulfilled.

V. PROPOSED SOLUTION

In this section we will propose solutions to Problem 1
(MTUSP) and Problem 2 (CUSP) respectively.

A. MTUSP
As for the MTUSP, the solution encompasses three sub-

problems, as illustrated in Figure 2. We begin by formally
stating the algorithm, and then describe the subproblems in
somewhat more detail.

Find feasible paths and 
evaluate the cost

Assign and order the convex
sets using Tabu Search

Find a maximal convex cover

PSfrag replacements

C = {c1, ..., cM}

π F (π), P

Fig. 2. The proposed solution relies on decomposing the problem into
three subproblems.



Algorithm 1 (Proposed solution for MTUSP): The algo-
rithm consists of the following two steps, where the second
step involves the iterative solution of two subproblems:

1) Create a maximal convex cover C = {c1, . . . , cM} of
area A in accordance with Algorithm 2 in [1].

2) Solve the following combined assignment and ordering
problem using Tabu search:

min
π

F (π) = α max
i

fi(π) + (1 − α)Σifi(π) (1)

where π is a permutation of Z+
M+N , representing the

assignment/ordering of the M convex sets to the N

UGVs, α ∈ [0 1], and fi(π) is the optimal path length
of UGV i given the constraints in π. The value of
fi(π) is found in a sub-routine by using a shortest
path formulation to solve the following optimization
problem:

fi(π) = minP i Σj ||p
i
j − pi

(j+1)|| (2)
s.t. P i guards ∪Iπ

i
cj

P i visits cIπ

i
(j) before cIπ

i
(j+1), j ∈ Z+

|Iπ

i
|−1

Here, Iπ
i is the index of the sets in C that are assigned to

UGV i in the minimization of F . In (1), α = 1 corresponds
to the minimum time problem (MTUSP) and α = 0 corre-
sponds to the minimum distance problem. Examples of both
these options are found in Figure 6 in Section VI.

In the first subproblem, the computationally intractable
problem of finding the minimum time paths that enable
complete regional surveillance, is turned into a finite dimen-
sional combinatorial optimization problem. This is achieved
by finding a maximal convex cover of A, as defined in
Section III. In the second subproblem, the order in which to
visit the sets in the cover is determined using Tabu search.
The third subproblem, which is called as a subroutine of
the second one to evaluate the objective function in the
Tabu search, involves a shortest path problem on a special
graph, constructed from the given visitation order. Most of
the details of the implementation of these three subproblems
are identical to those presented in [1]. Hence, the reader is
referred to that paper for a fuller description.

Below we will show that Algorithm 1 does result in a
complete coverage, i.e., it solves Problem 1. Before doing
so we first note that decomposing the problem into subprob-
lems, might remove the optimal solution from the new set of
feasible solutions. However, since it was shown in Section IV
that Problem 1 (MTUSP) is NP-hard, our aim is not to solve
the problem to optimality, but rather to produce good-enough
solutions in reasonable time.

Proposition 3: Algorithm 1 produces a feasible solution
to Problem 1 (MTUSP).

Proof: This is clear from Lemma 1 and the following
three observations regarding Algorithm 1:

1) A convex cover is created.
2) All sets are assigned to different UGVs in (1).
3) Paths visiting all assigned sets are created in (2).

We now move on to the connectivity constrained version of
the problem.
B. CUSP

The solution method suggested for Problem 2 (CUSP),
is tailored for handling the hard connectivity constraints
explicitly and builds upon the notion of a connectivity-
primitive; introduced in Definition 6 and depicted in Figure 3.

As depicted in Figure 4, the suggested algorithm for
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Fig. 3. Two connectivity-primitives (in solid and dashed) composed of
four UGV positions each. The connectivity-primitives are created in step
two of the algorithm. The dotted paths indicate the result of step three, i.e.,
how the UGVs should move from one primitive to another. The sum of
these path-lengths is then used as distance dij between the two primitives
when solving the TSP in step four to find the order in which to visit the
primitives.

Find distances and UGV movements
between the connectivity−primitives

Find a maximal convex cover

Solve the associated TSP

Create connectivity−primitives

PSfrag replacements

C = {c1, ..., cM}

S = {s1, s2, ..., sp}

dij i, j ∈ {1, 2, ..., p}

F (S), P

Fig. 4. Schematic overview of the suggested algorithm for solving CUSP.

solving CUSP consists of four subproblems. We first state
the algorithm and then discuss the four steps in detail.

Algorithm 2 (Proposed solution for CUSP): The
algorithm consists of the following four steps:

1) Create a maximal convex cover C = {c1, . . . , cM} of
area A in accordance with Algorithm 2 in [1].

2) Create a set of connectivity-primitives, S =
{s1, s2, ..., sp}, that completely covers the area, i.e.,
the convex cover C is visited by the path ∪isi.

3) Solve an assignment problem for each pair (si, sj)
of connectivity-primitives in S, where the cost of an



assignment of pk ∈ si to pl ∈ sj is equal to the shortest
obstacle free path from pk to pl. Let dij be the sum
of these path-lengths in the optimal assignment.

4) Solve a TSP having the p connectivity-primitives in
S as cities and the total path lengths dij as inter
city distances. While the maximal number of iterations
have not been reached, goto 2.

The first subproblem is the same as in Algorithm 1, finding
a maximal convex cover.

In the second subproblem, a collection of connectivity-
primitives, S = {s1, s2, ..., sp}, is created in such a way
that the entire area is covered, i.e., there is at least one
connectivity-primitive node in every set of the cover, C. Let
V ⊆ C be the set of convex sets that have been visited
by a connectivity-primitive already. In order to keep the
number of connectivity-primitives low, it is preferable that
the next connectivity-primitive is created in the set C \ V .
This procedure is repeated until C\V = ∅ which means that
by visiting the connectivity-primitives, S = {s1, s2, ..., sp},
the entire area is surveyed.

In order to decide in which order to visit the primitives
(subproblem four) we need some notion of how far apart
they are. In the third subproblem we find such distances
dij by solving an assignment problem for each pair of
connectivity-primitives. One such assignment is depicted in
Figure 3. We let the distance be the minimal combined
length all UGVs need to travel to get from primitive i to
primitive j. The p(p−1)

2 assignment problems as well as the
underlying shortest path problem are solved by polynomial
time algorithms, [16].

The distances between the connectivity-primitives, de-
noted dij in Figure 4, are then passed down to the fourth
and last subproblem which is to determine the order in which
to visit the connectivity-primitives as well as the objective
function, F (S) equal to total distance traveled by all UGVs.
This is in fact a Traveling Salesmen Problem (TSP) where
connectivity-primitives play the role of cities and dij the
corresponding distances. This also explains our earlier con-
cern to keep the number of connectivity-primitives low in
subproblem two. Various heuristic solution methods exist
for solving TSPs [17]. In our particular case, a Simulated
Annealing algorithm has been adopted. This then generates
a feasible solution to the CUSP and the algorithm may stop.
However, in order to get closer to an optimal solution, it may
be beneficial to re-do the process for a particular number of
iterations by repeating the last three subproblems.

Proposition 4: Algorithm 2 produces a feasible solution
to Problem 2 (CUSP).

Proof: This is since all connectivity-primitives are
visited and they are designed to both respect the connectivity
constraints and provide a complete coverage of area, A.

Having discussed the algorithms in detail, it is now time
to run some simulation examples.

VI. SIMULATIONS

In this section, a small selection of the simulations made
is presented. The objective is to highlight some of the key

characteristics of the proposed solution method. Throughout
this section, the search area A is chosen to be all of the
obstacle free space, i.e., the white area in all figures.
A. MTUSP simulations

In all figures of this section, the initial position of the
UGVs are marked with a square (�), while the final positions
are marked with a diamond (�). These two, together with
the filled larger circles represent the surveillance points for
guarding A.

The first simulation, found in Figure 5, illustrates the
cooperative nature of the MTUSP. The final positions of
the UGVs are here free variables to be chosen by the
optimization routine. As can be seen, this extra degree of
freedom is used constructively so that the UGVs survey the
horizontally and vertically aligned streets in a cooperative
manner with the common objective of minimizing the search
time, i.e., we have chosen α = 1 in (1).
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Fig. 5. The Manhattan grid is surveyed cooperatively in minimum time.
The starting points of the UGVs are marked with �.
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(a) Minimum time objective.
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(b) Minimum distance objective.

Fig. 6. Two MTUSP simulation examples with different objectives.

Figure 6 illuminates the interplay between the choice of
the objective function and the obtained solutions. In Fig-
ure 6(a), the solutions are obtained by minimizing the total
search time. It can be noted that these solutions distribute the
work load quite evenly over the vehicle fleet. In Figure 6(b)
however, the objective has been set to minimize the total
distance traveled by the UGVs, i.e., α = 0 in (1). Since
this option does not take into consideration the division of
the work load between the different vehicles, the resulting
solutions often do not utilize some of the vehicles at all.
This may be of interest e.g. when unemployed vehicles can
be used to perform other tasks.



B. CUSP simulations
In Figure 7, the starting positions of the UGVs are

chosen randomly while the final positions are optimized by
Algorithm 2. The most important aspect to notice is that
the three UGVs are not restricted to pass on the same “side”
of the obstacles but are nevertheless recurrently connected at
the five surveillance instances, Figure 7(b)- 7(f). Also, notice
that the randomly selected initial positions in Figure 7(a) do
not necessarily induce a connected information graph and
that the area is completely surveyed.
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Fig. 7. An example CUSP simulation. The UGVs are recurrently connected
at the five surveillance instances in Figure 7(b)– 7(f). Notice how they are
free to pass on different “sides” of the obstacles and that the randomly
selected initial positions in Figure 7(a) do not necessarily induce a connected
information graph.

VII. CONCLUDING REMARKS

Problem 1 (MTUSP), which is the basic problem of
this paper, considers minimum-time surveillance of a given
polyhedral area with obstacles using a group of UGVs. The
on-board sensors are assumed to be occluded by the obstacles
and limited by a maximal sensor range. In Problem 2
(CUSP) we also impose connectivity constraints by requiring

the induced information graph to be recurrently connected.
As a distinguishing feature, the considered communication
restrictions may involve both line-of-sight constraints and
limited sensor range constraints in the presence of obstacles.
The main motivation for introducing this weaker notion of
connectivity is surveillance applications where the sentry
vehicles may have to split temporary in order to complete the
given mission efficiently but are required to establish contact
recurrently in order to exchange information and/or to make
sure that all units are intact and well-functioning.
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