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Abstract. This chapter addresses the problem of concurrent task and
path planning for a number of surveillance Unmanned Ground Vehicles
(UGVs) such that a user defined area of interest is covered by the UGVs’
sensors in minimum time.
We first formulate the problem, and show that it is in fact a generalization
of the Multiple Traveling Salesmen Problem (MTSP), which is known to
be NP-hard. We then propose a solution that decomposes the problem
into three subproblems. The first is to find a maximal convex covering
of the search area. Most results on static coverage use disjoint partitions
of the search area, e.g., triangulation, to convert the continuous sensor
positioning problem into a discrete one. However, by a simple example,
we show that a highly overlapping set of maximal convex sets is better
suited for minimum time coverage.
The second subproblem is a combinatorial assignment and ordering of the
sets in the cover. Since the Tabu search algorithm is known to perform
well on various routing problems, we use it as a part of our proposed
solution.
Finally, the third subproblem utilizes a particular shortest path sub-
routine in order to find the vehicle paths, and calculate the overall ob-
jective function used in the Tabu search. The proposed algorithm is il-
lustrated by a number of simulation examples.

1 Introduction

S
urveillance is an application area that has received an increasing amount
of attention over the last decades. In civilian as well as military applications,

automated solutions ranging from security cameras to surveillance UGVs are
used in increasing numbers. It is therefore not surprising that the research area
of automated positioning and control of surveillance sensors is also active and
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growing. In this chapter we investigate how small scale UGVs, such as the one
depicted in Figure 1, can be used in surveillance and security applications.

For the purpose of this chapter, we divide the rich set of work in this field
into the following three categories: First moving sensor platforms where the main
limitation on field of view is the physical sensor range. Applications where such
a formulation is reasonable include demining, vacuum cleaning, UAV-search and
outdoor pursuit-evasion games. The second category consists of problems deal-
ing with positioning of static sensors where occluding objects and walls present
the main limitation on field of view. Such formulations are found in the so called
Art Gallery Problems, where the number of guards required to monitor a build-
ing is to be minimized. The third category consists of problems where moving
sensors are to cover an area where again, occluding objects and walls present
the main limitation of field of view. This last category includes applications
such as pursuit-evasion games or exploration and mapping, in urban or indoor
environments. We will now discuss each of these categories in more detail.

Fig. 1. This Surveillance UGV testbed, developed by SAAB Aerotech, will be used in
real-world experiments.

In the first category, where sensor range is the main limitation on the ex-
tension of the visible area we find problems such as vacuum cleaning and demi-
ning, [1,2], general coverage [3–5], multi robot coverage [6] and some robotic se-
curity applications [7]. Furthermore, a number of UAV surveillance papers, such
as [8–10] fall into this category. The last set of papers also consider the combined
problems of ordering a set of surveillance areas, and planning the search sweep of
each individual area. The pursuit-evasion problem, where a number of pursuers
try to find an evader is sometimes also formulated in this way [11].

In the second category, the field of view of stationary sensors is limited by
occluding objects instead of physical sensor range. This corresponds to indoor or
urban environments, where the distance between e.g., walls, is in general smaller
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than the range of the sensor, e.g., a camera or a laser scanner. The first group of
results in this category comes from combinatorial geometry, and addresses Art
Gallery Problems, see e.g., [12,13] and the excellent survey in [14]. This work has
then been built upon in [15] where a feedback solution to the guard positioning
was proposed.

In the third category, where the field of view of moving guards is mainly
limited by occluding walls and other objects, we also find results building on
the Art Gallery work. In an indoor environment, the pursuit-evasion problem
can be solved with a guarantee that the evader will be caught. Such results
are found in [16, 17]. Some of this work also deals with the situation where the
area is unknown. These problems are sometimes referred to as exploration and
mapping, and examples include [18,19].

Some papers address coverage problems that do not fall into one of the above
categories. Examples include [20], where the mean squared distance from a sensor
to a random event is minimized, and [21], where both sensor range and occlusions
are incorporated into a combined planning of both UAV and sensor movements.

In the first category, many papers study the problem of covering an area in
minimum time. However, when occlusions and not sensor range are the main
limitations to field of view, as in the third category, we have found no paper
addressing the minimum time coverage problem. In this chapter we formulate
such a problem and propose an algorithm to solve it.

The organization of this chapter is as follows. In Section 2 some concepts and
results from combinatorial geometry and multi vehicle routing problems is given.
Then, in Section 3, we state our problem and propose a solution in Section 4.
Simulations illustrating the approach are presented in Section 5. Finally, the
chapter is concluded in Section 6.

2 Theoretical Background

In this section we review some tools from combinatorial geometry and combina-
torial optimization that will be used in the rest of the chapter.

2.1 Art Gallery Problems

We start by reviewing some terminology from combinatorial geometry. In this
section we closely follow the approach of Urrutia [14], but add the sensor range
R into some of the definitions.

A polygon Q in the plane is an ordered sequence of points q1, . . . , qn ∈ R
2, n ≥

3, called vertices of Q together with the line segments qi to qi+1 for i = 1, . . . , n−1
and qn to q1, called edges. In the following we assume that none of these edges
intersect. A polygon is called orthogonal if adjacent edges are orthogonal.

Given a polygon Q and and a set of m disjoint polygons Q1, . . . , Qm contained
in Q we call the set A = Q \ {Q1 ∪ ...∪Qm} a polygon with m holes. A polygon
with holes is called orthogonal if every pair of edges are either orthogonal or
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(a) A polygon with holes (b) Convex Cover of the polygon.

Fig. 2.

parallel. The areas to be searched in this chapter, denoted A, are all going to be
of this form. An orthogonal polygon with holes is depicted in Figure 2(a).

Given two points p and q in A we say that p is visible from q if the line
segment joining p and q is totally contained in A, and ||p − q|| ≤ R, where R is
the maximal sensor range. A set of points H = {h1, . . . , hk} ⊂ A guards A if for
all p ∈ A there exists hi ∈ H such that p is visible from hi.

In order to define our minimum time coverage problem we make the following
definitions. A path P is an ordered set of points P = p1, . . . , pn. A convex cover
C of A is a set of convex sets C = {ci}, such that A ⊆ ∪ici. A convex cover C

is visited by the path P = {p1, . . . , pn} if ∀ci ∈ C ∃pj ∈ P : pj ∈ ci. We define
a maximal convex cover of A to be a convex cover C = {ci} of A, such that3

|ci| ≤ R, and for all i, there is no convex set s ⊆ A, |s| ≤ R such that s ⊃ ci.

An example of a convex cover can be found in Figure 2(b). Note that the four
leftmost sets are maximal and overlap, while the sets to the right are disjoint
and not maximal. Hence the depicted cover is not maximal. Below we will argue
that the overlapping in a maximal cover is preferable in minimum time coverage
applications.

Given the above definitions we can state the following lemma before we define
the main problem addressed.

Lemma 1. If there exists a convex cover C of A such that the path P visits C,
then P guards A

Proof. Since P visits C, and every set ci in C is convex, P guards every set ci.
Furthermore, since A ⊆ ∪ici, P guards A.

3 Here, |s| = sup
a,b∈s

dist(a, b) denotes the diameter of the set s.
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3 Problem Formulation

In this section we first informally state the Minimum Time UGV Surveillance
Problem (MTUSP) and then show that it is NP-hard.

Informally, the problem we are studying is the following: Given a set of
surveillance UGVs and a user defined area to be covered, find paths such that
every point of the area can be seen from a point on a path and such that the
time for executing the search in parallel is minimized.

Problem 1 (Minimum Time UGV Surveillance Problem) Given N ve-
hicles and an area A, find a set of waypoint paths P = {P1, . . . , PN} that solve
the following optimization problem

min
P

max
i

ni−1∑

k=1

||pik − pi(k+1)||

s.t. ∪iPi guards A

Here Pi = {pi1, . . . , pini
} and the start and finish depots, denoted by pi1, pini

, i ∈
Z+

N , {1, . . . , N} may be given.

An example solution to a MTUSP can be found in Figure 3.

2 4 6 8 10 12 14
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6

Fig. 3. An approximate solution to the Minimum Time UGV Surveillance Problem
(MTUSP) involving two UGVs on the area in Figure 2. Note that all the obstacle
free area can be seen from some point on the UGV paths. Details on this and other
simulations can be found in Section 5.

Remark 1 (Sensor field of view). In the problem statement above we demand
that each point in A is visible from some point in P . This is reasonable in the
case of omni-directional sensors. It is however also relevant in the case of cameras
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mounted on pan-tilt units. In these cases the time right before and after passing
pik must be used to cover the areas visible from pik. If necessary, the UGVs will
have to slow down to facilitate the sensor coverage. A similar argument can be
made for the case when the sensor is one or more laser scanners.

Remark 2 (Variations). Throughout this chapter we are focusing on the mini-
mum time coverage problem. However, other closely related problems can also be
addressed using the same approach. For instance when surveillance of some par-
ticular region has higher priority, or when battery power is a scarce resource and
the user wishes to minimize the overall distance traveled by the UGVs. A third
option is to make the UGVs avoid high threat areas. All these variations can be
incorporated into the solution algorithm presented below by simply varying the
considered objective function and edge costs.

We end this section with showing that the problem defined above is NP-hard.

Proposition 1. Problem 1 (MTUSP) is NP-hard.

Proof. The proof will built upon a polynomial reduction from an arbitrary in-
stance of a well-known NP-hard problem, namely the Euclidean-TSP (ETSP)
to a special instance of MTUSP4.

Given an ETSP instance, (n, [dij ]), where n is the number of cities to be
visited and [dij ] denotes the inter-city distances, we are free to choose the fol-
lowing parts of Problem 1 (MTUSP) such that the achieved optimal solution
corresponds to that of the given ETSP.

1. The number of UGVs, N
2. The start and finish depots for all UGVs, pi

1, p
i
n+1, i ∈ Z+

N

3. The obstacle configuration
4. The area to be surveyed, A
5. The maximal sensor range, R

Regarding the number of UGVs, N = 1 is a natural selection. In order to achieve
a tour for this single UGV, we may locate the start and finish depot, p1

1, p
1
n+1

at an arbitrary city cite, as long as they are set equal. Further, an obstacle-free
environment is chosen and the area A is taken as the union of isolated points
located at the city cites. Finally, we set R = 0.

Due to these choices, the area A is fully guarded if and only if the UGV visits
all the city locations and hence the optimal solution of this specially designed
instance of the MTUSP will coincide with the optimal solution of the given
ETSP. This completes the proof.

Knowing that MTUSP is NP-hard, we can not hope to solve all problem
instances to optimality in reasonable time but must adopt heuristic solution
methods. In fact, the comparative study [25] shows that for similar class of
problems, finding globally optimal solutions (by commercial software packages
like CPLEX) is not a viable approach.

4 Consult [22–24] to read more about showing NP-hardness through reduction.
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4 Proposed Solution

In this section we will propose a solution to the MTUSP described above. The
solution encompasses three subproblems, as illustrated in Figure 4. In the first
subproblem, the computationally intractable problem of finding the minimum
time paths that enable complete regional surveillance, is turned into a finite
dimensional combinatorial optimization problem. This is achieved by finding a
maximal convex cover of A, as defined in Section 2. In the second subproblem, the
order in which to visit the sets in the cover is determined using Tabu search. The
third subproblem, which is called as a subroutine of the second one to evaluate
the objective function in the Tabu search, involves a shortest path problem on
a graph, constructed from the given visitation order.

Find a maximal convex cover

Assign and order the convex sets using Tabu Search

Find the paths by solving Shortest Path Problems

Fig. 4. The proposed solution relies on decomposing the problem into three subprob-
lems.

Formally we state the algorithm below.

Algorithm 1 (Proposed solution) The algorithm consists of the following
two steps:

1. Create a maximal convex cover C = {c1, . . . , cM} of A in accordance with
Algorithm 2.

2. Solve the following combined assignment and ordering problem using Tabu
search:

min
π

F (π) = α max
i

fi(π) + (1 − α)Σifi(π) (1)

where π is a permutation of Z+
M+N , representing the assignment/ordering

of the M convex sets to the N vehicles, α ∈ [0 1], and fi(π) is the optimal
path length of UGV i given the constraints in π. The value of fi(π) is found
in a sub-routine by using a shortest path formulation to solve the following
optimization problem:

fi(π) = minPi
Σk||pik − pi(k+1)|| (2)

s.t. Pi guards ∪Iπ

i
cj

Pi visits cIπ

i
(j) before cIπ

i
(j+1), j ∈ Z+

|Iπ

i
|−1
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Here, Iπ
i is the index of the sets in C that are assigned to UGV i in the min-

imization of F . In (1), α = 1 corresponds to the minimum time problem and
α = 0 corresponds to the minimum distance problem. Examples of both these
options are found in Figures 10 and 11 in Section 5.

Having stated Algorithm 1 we first note that it does indeed result in a com-
plete covering of the surveillance area A, i.e., it produces a feasible solution to
Problem 1. This is clear from the following three observations in conjunction
with Lemma 1:

1. A convex cover is created.
2. All sets are assigned to different UGVs in (1).
3. Paths visiting all assigned sets are created in (2).

It is now time to describe and motivate the different subproblems in detail.
This will be done in Section 4.1 through 4.3. But first we make the following
assumption.

Assumption 1 Throughout the rest of this chapter we assume that the area A

is orthogonal, see Section 2. This assumption is due to the nature of Algorithm
2. Finding a maximal convex cover for a non-orthogonal environment is how-
ever not a hard problem and it should be noted that the rest of the solution in
Algorithm 1 can handle any general polygon-with-holes type of environment.

4.1 Finding a maximal convex cover

Since the polygons are all orthogonal, one can see that the maximal convex sets
ci must be rectangles aligned with the polygon. With this fact in mind we can
apply the following procedure to find a maximal convex cover.

Algorithm 2 (Maximal convex cover)

1. Make a discretization of the area A and construct the corresponding graph
representation, G(A). Since A is orthogonal, a variable sized grid can be
created with grid boundaries intersecting all points in the polygon Q and
holes Q1, . . . , Qm.

2. Find a yet uncovered cell, p.
3. Start growing a rectangle ci from p until it is bounded by |ci| ≤ R, or the

holes on all four sides.
4. While uncovered cells exist, goto 2.

When no more uncovered grid cells can be found the process terminates and A

is covered, A ⊆ ∪ici. Having described how to find a maximal convex cover in
detail, we now discuss a number of related issues.

We first note that decomposing the problem into subproblems, first creating
a maximal cover and then finding paths visiting that cover, might remove the
optimal solution from the new set of feasible solutions. Since Problem 1 is NP-
hard however, our aim is not to solve the problem to optimality, but rather to
produce high-quality solutions in reasonable time.
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The second thing to notice is that one straight forward solution to the prob-
lem would be to first solve a so-called Art Gallery Problem [12] to find a small
set of points guarding A, and then solve an ETSP visiting these points. This
would however not be efficient, since the points are chosen to be as few as pos-
sible, not to permit short vehicle paths. For the same reason, we do not choose
a cover with as few sets as possible. That option furthermore happens to be an
instance of the optimal set cover problem which is one of Karp’s 21 NP-complete
problems [26].

The benefit of a maximal convex cover is illustrated in Figure 5. If the area
A is cross–shaped, as depicted in the figure, then the entire area can be instantly
surveyed from any point in a1 ∩ a2. Using disjoint orthogonal sets however,
the minimum time path for visiting all the orthogonal polygons (b1, b2, b3), and
thereby be sure to have surveyed the entire area, is strictly larger than zero.
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(a) Maximal convex cover.
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(b) Rectangular disjoint
convex cover.

Fig. 5.

4.2 Assignment and ordering of the convex sets using Tabu search

In this section we describe how we propose to solve the optimization problem
in (1), i.e.,

min
π

F (π) = α max
i

fi(π) + (1 − α)Σifi(π).

Above, π is a permutation representing the assignment/ordering of the sets ci

to the UGVs, and fi(π) is evaluated by solving another optimization problem,
as explained in Section 4.3 below.

In order to solve the assignment and ordering problems simultaneously we
first give the sets and UGVs id-numbers. Assign the id numbers 1, . . . ,M to
the convex sets ci, i ∈ Z+

M . Let furthermore the N vehicles have id numbers
M + 1, . . . ,M + N . The search space for the Tabu search then consists of all
permutations of the id numbers, i.e., Z+

M+N . The interpretation of a sequence
of id numbers is then best explained by means of the following example: Let
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M = 14, N = 3, and the final sequence be

π = (15, 1, 4, 17, 10, 14, 9, 3, 8, 16, 2, 13, 12, 7, 6, 5).

This corresponds to the following assignments:

Set with id numbers assigned to UGV with id number

1 4 15
2 13 12 7 6 5 16
10 14 9 3 8 17

The details of the implementations are, apart from the evaluation of fi(π),
identical to those presented in [27]. Hence we refer the interested reader to that
paper for a detailed description. We just note that the neighborhood search is
performed by pairwise interchanging components in π and the Tabu condition
corresponds to requiring a minimum number of iterations before switching a
particular pair again.

We now turn to see how the function fi(π) is evaluated in each Tabu step,
and how the individual UGV paths are found.

4.3 Path planning and functional evaluation by solving shortest
path problems

In the Tabu step above, each UGV is assigned a number of sets ci and an order of
visitation. The problem is now to decide what part of each set to pass through,
in order to make the resulting UGV path as short as possible while visiting the
assigned sets in the correct order. Formally, we need to solve the optimization
problem in (2) for a given assignment and ordering π, i.e.,

fi(π) = minPi
Σk||pik − pi(k+1)||

s.t. Pi guards ∪Iπ

i
cj

Pi visits cIπ

i
(j) before cIπ

i
(j+1), j ∈ Z+

|Iπ

i
|−1

Given a pair of starting and finishing positions for each vehicle5, we construct
a particular graph for each vehicle. This graph, which is termed a Route Graph,
has the starting and finishing positions as its first and last node. As depicted
in Figure 6, the intermediate nodes are extracted from the ordering π and cor-
respond to the nodes of G(A) inside the convex sets cj , j ∈ Iπ

i . To obtain the
edge costs for the Route Graph, an “all pairs shortest path problem” is solved
in the graph representation of A, G(A). This can be done by running Dijkstra’s
algorithm, [22], once with each node of G(A) as source node.

We illustrate the Route Graph with the following example. Assume as in the
table above that the UGV with id number 15 starts from some point p1 and is
assigned to visit first c1 and then c4 on its way to p2. These sets and positions
can be found in Figure 7.

5 For applications indifferent to finishing point, it is possible to let the optimization
routine choose it freely.
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p1 cIπ

i
(1) cIπ

i
(2) cIπ

i
(l) p2

Fig. 6. A graph representation of the route of one UGV.

c1
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c4

c4

p1

p1
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p2

q1,1

q1,1

q1,2

q1,2

q1,3
q1,3

q1,4

q1,4

q1,5

q1,5

q1,6

q1,6

q4,1
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q4,2

q4,2

q4,3

q4,3

q4,4

q4,4

q4,5

q4,5

q4,6

q4,6

Fig. 7. Example scenario with corresponding Route Graph and optimal path (dashed).
Note how the fourth node in c1, q1,4, coincides with the third one in c4, q4,3, hence the
cost of the edge between them equals zero in the Route Graph.

The shortest path starting from p1, visiting at least one node in c1 and then
visiting at least one node in c4 and finally ending up at p2, is plotted in the
figure as well as in the Route Graph. As can be seen, the fact that c1 and c4

overlap makes q1,4 coincide with q4,3, enabling a very short path.
The evaluation of fi(π) corresponds to solving a shortest path problem in

the Route Graph; a task for which polynomial time algorithms such as Dijkstra
or A* exist. Note that the solution of this optimization problem yields both the
UGV path Pi and its length fi(π).

5 Simulations

In this section, a small selection of examples are presented. The objective is
to highlight some of the key characteristics of the proposed solution method.
Throughout this section, the search area, A, is chosen to be all of the obstacle
free space. Implemented in Matlab, the area representation is normally taken
as a random matrix with obstacle density ρ ∈ {0.3 0.7}. It is assumed that
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the obstacles have been enlarged with the diameter of the vehicle so that paths
passing between two obstacles do not imply collision. Furthermore, the initial
position of the vehicles are marked with a square (�), while the final positions
are marked with a diamond (�). These two, together with the filled larger circles
represent the surveillance points for guarding A.

The first two simulations, found in Figures 3 and 8, illustrate the cooperative
nature of the MTUSP. The final positions of the vehicles are here free variables
to be chosen by the optimization routine. As can be seen, this extra degree of
freedom is used constructively so that the vehicles survey the horizontally and
vertically aligned “streets” in a cooperative manner with the common objective
of minimizing the search time, i.e., we have chosen α = 1 in (1). These simula-
tions are also a testimony of the advantage of using a highly overlapping cover.

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Fig. 8. The Manhattan grid is surveyed cooperatively in minimum time. The starting
points of the UGVs are marked with �.

Figure 9 illustrates a possible drawback of choosing the objective function as
pure minimum time. Here, the route of the vehicle to the left, (dash-dotted), is
unnecessarily long since a complete coverage would also have been achieved if
the vehicle did not move at all. However, the minimum time objective has no
way of distinguishing between these two solutions and regards them as equally
good since the time for executing them in parallel is indeed equal.
Figures 10 and 11 further illuminate the interplay between the choice of the
objective function and the obtained solutions. In Figures 10(a) and 11(a), the
solutions are once again obtained by minimizing the total search time. It can be
noted that these solutions distribute the work load quite evenly over the vehicle
fleet. In Figures 10(b) and 11(b) however, the objective has been set to minimize
the total distance traveled by the vehicles, i.e., α = 0 in (1). Since this option
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Fig. 9. Minimum time surveillance. Note how the UGVs collectively guard A.
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(a) Minimum time objective.
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(b) Minimum distance objective.

Fig. 10.
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(a) Minimum time objective.
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(b) Minimum distance objective.

Fig. 11.

does not take into consideration the division of the work load between the dif-
ferent vehicles, the resulting solutions often do not utilize some of the vehicles
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at all. This may be of interest when e.g., battery power must be saved, or when
unemployed vehicles can be used to perform other tasks.

6 Concluding Remarks

The Minimum Time UGV Surveillance Problem (MTUSP), where it is occlusion,
and not sensor range, that is the main limitation to the sensors’ field of view, is
at the focal point of this chapter. We initially show that this problem is in fact
NP-hard, hence we cannot hope to solve all instances to optimality in reason-
able time. We then proceed by proposing a decomposed solution method that
encompasses finding a maximal convex cover, performing Tabu search on the
assignment and ordering of the convex cover and finally, solving shortest path
problems in the so called Route Graphs. The simulations demonstrate the ad-
vantage of using a maximal and highly overlapping convex cover, the cooperative
nature of the MTUSP and the interplay between minimum time and minimum
distance solutions.

Future research involves various interesting extensions of the current prob-
lem formulation, for instance, imposing path-wise constraints that require the
induced information graph to be kept recurrently connected.
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