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Abstract. Interior methods are an omnipresent, conspicuous feature of the constrained optimiza-
tion landscape today, but it was not always so. Primarily in the form of barrier methods,
interior-point techniques were popular during the 1960s for solving nonlinearly constrained
problems. However, their use for linear programming was not even contemplated because
of the total dominance of the simplex method. Vague but continuing anxiety about barrier
methods eventually led to their abandonment in favor of newly emerging, apparently more
efficient alternatives such as augmented Lagrangian and sequential quadratic programming
methods. By the early 1980s, barrier methods were almost without exception regarded as
a closed chapter in the history of optimization.

This picture changed dramatically with Karmarkar’s widely publicized announcement
in 1984 of a fast polynomial-time interior method for linear programming; in 1985, a formal
connection was established between his method and classical barrier methods. Since then,
interior methods have advanced so far, so fast, that their influence has transformed both
the theory and practice of constrained optimization. This article provides a condensed, se-
lective look at classical material and recent research about interior methods for nonlinearly
constrained optimization.
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1. Introduction. It is a truth universally acknowledged that the field of continu-
ous optimization has undergone a dramatic change since 1984. This change, sometimes
described as the “interior-point revolution,” has featured a continual blending of old
and new, with effects far beyond optimization. An especially appealing aspect of the
interior-point revolution is its spirit of unification, which has brought together areas
of optimization that for many years were treated as firmly disjoint. Prior to 1984,
linear and nonlinear programming, one a subset of the other, had evolved for the
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most part along unconnected paths, without even a common terminology. (The use
of “programming” to mean “optimization” serves as a persistent reminder of these
differences.) Today this separation seems, as it indeed was, artificial, yet it was a fully
accepted part of the culture of optimization not so many years ago.

1.1. Roots in Linear and Nonlinear Programming. Although the focus of this
article is on nonlinearly constrained problems, understanding the context of the
interior-point revolution requires a short digression on linear programming (mini-
mization of a linear function subject to linear constraints). A fundamental property
of well-behaved n-variable linear programs with m inequality constraints is that a ver-
tex minimizer must exist, i.e., a point where n constraints with linearly independent
gradients hold with equality. (See, e.g., [20, 92] for details about linear program-
ming.) The simplex method, invented by Dantzig in 1947, is an iterative procedure
that solves linear programs by exploiting this property. A simplex iteration moves
from vertex to vertex, changing (one at a time) the set of constraints that hold ex-
actly, decreasing the objective as it goes, until an optimal vertex is found. From the
very start, the simplex method dominated the field of linear programming. Although
“nonsimplex” strategies for linear programming were suggested and tried from time
to time, they could not consistently match the simplex method in overall speed and
reliability. Furthermore, a simplex-centric world view had the effect that even “new”
techniques mimicked the motivation of the simplex method by always staying on a
subset of exactly satisfied constraints.

The preeminence of the simplex method was challenged not because of failures
in practice—the simplex method was, and is, used routinely to solve enormous linear
programs—but by worries about its computational complexity. One can argue that
the simplex method and its progeny are inherently combinatorial, in that their per-
formance seems to be bound in the worst case to the maximum number of ways in
which n out of m constraints can hold with equality. In fact, with standard pivoting
rules specifying the constraint to be dropped and added at each iteration, the simplex
method can visit every vertex of the feasible region [64]; thus its worst-case complex-
ity is exponential in the problem dimension. As a result, there was great interest in
finding a polynomial-time linear programming algorithm.1

The first success in this direction was achieved in 1979 by Khachian, whose el-
lipsoid method was derived from approaches proposed originally for nonlinear opti-
mization. (See [92] for details about Khachian’s method.) Despite its polynomial
complexity bound, however, the ellipsoid method performed poorly in practice com-
pared to the simplex method, and the search continued for a polynomial-time linear
programming method that was genuinely fast in running time.

The start of the interior-point revolution was Karmarkar’s announcement [63]
in 1984 of a polynomial-time linear programming method that was 50 times faster
than the simplex method. Amid the frenzy of interest in Karmarkar’s method, it
was shown in 1985 [51] that there was a formal equivalence between Karmarkar’s
method and the classical logarithmic barrier method (see sections 1.2 and 3) applied
to linear programming, and long-discarded barrier methods were soon rejuvenated
as polynomial-time algorithms for linear programming. Furthermore, barrier meth-
ods (unlike the simplex method) could be applied not only to linear programming

1Assuming various distributions of random inputs, [11, 94] showed that the simplex method
converges in expected polynomial time. The recent development of “smoothed” complexity analysis
[95] has led to new insights about the average behavior of the simplex method.
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but also to other optimization problems, such as quadratic programming, linear and
nonlinear complementarity, and nonlinear programming. Although the ties between
Karmarkar’s method and barrier methods were controversial for a few years, these
disagreements have (mostly) faded away. Pedagogical and philosophical issues remain
about the best way to motivate interior-point methods—perturbing optimality condi-
tions? minimizing a barrier function?—and the multiplicity of viewpoints continues
to create new insights and new algorithms.

The interior-point revolution has led to a fundamental shift in thinking about
continuous optimization. Linear and nonlinear programming are seen as related parts
of a unified whole, and no one would seriously claim today that linear programming
is completely different from nonlinear optimization. (Of course, methods for solving
linear programs and nonlinear problems vary significantly in detail.)

As we shall see, the signature of interior methods is the existence of continu-
ously parameterized families of approximate solutions that asymptotically converge
to the exact solution. These paths trace smooth trajectories with algebraic and geo-
metric properties (such as being “centered” in a precisely defined sense) that can be
analyzed and exploited algorithmically. Many interior methods are characterized as
“path-following” to signal their dependence on properties of these paths, which pro-
vide the foundation for all complexity analyses of interior-point algorithms for linear,
quadratic, and convex programming.

The monumental work [79] of Nesterov and Nemirovskii proposed new families
of barrier methods and extended polynomial-time complexity results to new convex
optimization problems. Semidefinite programming—minimization of a convex func-
tion in the space of symmetric matrices subject to semidefiniteness constraints—is
arguably the most notable of these problems to receive widespread attention as a di-
rect result of the development of interior methods (see, e.g., the surveys [65, 99, 101]).
The evident similarity of interior methods to longstanding continuation approaches
(see, e.g., [1, 2]) has been recognized since the early days of modern interior methods
(see, e.g., [71]), but numerous aspects remain to be explored.

As a remarkable bonus, interior methods are playing a growing role in the study
of hard combinatorial problems. Many of the most important problems in discrete
optimization (where the variables are required to be integers) are NP-hard, i.e., they
cannot be solved in polynomial time unless someone favorably resolves the still-open
question of whether P = NP . In the meantime, good approximate solutions are being
found by approximation algorithms—polynomial-time algorithms whose solution is
provably within a certain factor of the optimal solution for the hard problem. A
main ingredient in a successful approximation algorithm is formulation of a convex
relaxation (often a semidefinite program) in which integrality constraints are replaced
by definiteness constraints on associated matrices. An exceptionally clear introduction
to this subject is given in [108].

Almost twenty years after the beginning of the interior-point revolution, there
seems to be no end in sight to new applications of interior methods and new interpre-
tations of the interior-point perspective.

1.2. Classical BarrierMethods. As we have just sketched, classical barrier meth-
ods are closely related to modern interior methods, and we briefly summarize their
history. During the 1960s, the accepted way to solve constrained problems was to
transform them into parameterized unconstrained problems via penalty or barrier
terms. For inequality constraints, a barrier method is motivated by unconstrained



528 ANDERS FORSGREN, PHILIP E. GILL, AND MARGARET H. WRIGHT

minimization of a function combining f and a positively weighted “barrier” that pre-
vents iterates from leaving the feasible region. Penalty methods, in contrast, are based
on minimizing a function that includes f and a positive penalty if evaluated at any
infeasible point.

A large body of beautiful mathematical theory about barrier and penalty func-
tions was developed during the 1960s by Fiacco and McCormick. They also seem to
have introduced the term “interior-point methods” in their seminal book [33, p. 41],
which describes in detail the relationships between minimizers of barrier and penalty
function and solutions of the original constrained problem.

Despite the good features of barrier methods, they were dogged by several con-
cerns. The worry expressed most often in print involved ill-conditioning, after Lootsma
[66] and Murray [73] showed independently in the late 1960s that in general the Hes-
sian of a barrier function becomes increasingly ill-conditioned as the solution is ap-
proached and is singular in the limit. Increasing awareness of this property led to
serious anxiety about the reliability of barrier methods just as other methods were
coming along that seemed to be more efficient in practice without being plagued
by unavoidable ill-conditioning. In particular, augmented Lagrangian and sequen-
tial quadratic programming (SQP) methods (see, for example, [6, 34, 52, 77, 80])
are based directly on the optimality conditions for constrained optimization. Barrier
methods appeared distinctly unappealing by comparison, and almost all researchers
in mainstream optimization lost interest in them.

As described in section 1.1, the dormancy of barrier methods ended in high drama
near the start of the interior-point revolution. An obvious question then needed to
be answered: Are classical barrier methods fundamentally flawed, as once feared?
The answer turns out to be “yes,” but, surprisingly, not because of ill-conditioning.
Classical barrier methods are indeed inefficient—but, by a strange twist of fate, ill-
conditioning, their longtime bugbear, has recently been shown not to be harmful under
circumstances that almost always hold in practice. We explore several interesting
properties, good and bad, of the classical Newton barrier method in section 4.3. An
obvious strategy has been to create interior methods that retain the good properties
of classical barrier methods, yet do not suffer from their defects. The general opinion
today is that primal-dual methods, to be discussed in section 5, offer the greatest
promise for achieving these ends.

It is impossible to cover interior methods for nonlinear optimization thoroughly
in anything less than a large volume. A major goal of this article is thus to show con-
nections between classical and modern ideas and to cover highlights of both theory
and practice; readers interested in learning more about interior-point methods will
find an abundance of papers and books on the subject. Since linear algebra is a spe-
cial interest of the authors, we have devoted extra attention to linear algebraic issues
associated with interior methods. The linear algebra needs of interior methods are
interesting for several reasons. Certain key matrices display increasing ill-conditioning
as the solution is approached, but the ill-conditioning is highly structured. In con-
trast to active-set methods like the simplex method that continually update a set of
constraints temporarily treated as equalities, interior methods typically include all
constraints at every iteration. Hence the matrices arising in interior methods must
somehow reveal, without omitting any constraints, that some constraints are more
important than others. Similarly, two subspaces—the range space of the transposed
Jacobian of the active constraints and the associated null space—strongly affect all
calculations near the solution, but these subspaces are not known explicitly.
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1.3. Statement of the Problem. We concentrate on interior methods for con-
tinuous nonlinear optimization problems of the following form:

(1.1)
minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I,

where c(x) is an m-vector of nonlinear constraint functions with ith component ci(x),
i = 1, . . . ,m, and E and I are nonintersecting index sets. It is assumed throughout
that f and c are twice-continuously differentiable. Any point x satisfying the con-
straints of (1.1) is called a feasible point, and the set of all such points is the feasible
region. We first consider problems containing only inequality constraints (sections 2
through 5) and then turn in sections 6 and 7 to the general form (1.1).

1.4. A Few Words on Coverage and Notation. Since thousands of scientific
papers have been written about interior methods, as already noted we cannot cover
more than a tiny fraction of the field, and it would be equally impractical to cite
all relevant references. We apologize in advance to all those whose favorite topics or
works have not been mentioned here.

Because this is a survey intended for nonexperts, we have included a substantial
amount of background material on optimality conditions in section 2. Readers already
familiar with optimization should skip directly to section 3. Various useful definitions,
lemmas, and miscellaneous results are collected in the appendix.

Finally, because there are not enough letters in the alphabet, especially letters that
are free from previous connotations, we confess to straining at times to find notation
that is clear and precise without being cluttered. To alleviate this dilemma, we
sometimes introduce local abbreviations for the sake of short formulas. For example,
when considering a particular point, say x∗, we will sometimes abbreviate quantities
evaluated at x∗ by adding a superscript “∗” and omitting the argument, e.g., we denote
c(x∗) by c∗. Following common usage in the interior-point literature, if a vector is
denoted by a lowercase letter, the same uppercase letter denotes the diagonal matrix
whose elements are those of the vector, so that V

�= diag(v). Finally, e denotes the
vector of all ones whose dimension is determined by the context.

2. Inequality-Constrained Optimization. We begin with problems containing
only inequality constraints:

(2.1) minimize
x∈Rn

f(x) subject to c(x) ≥ 0,

where c(x) is an m-vector of functions {ci(x)}, i = 1, . . . , m, and we assume through-
out that f and {ci} are twice-continuously differentiable. The gradient of f is de-
noted by either ∇f(x) or g(x), and ∇2f(x) denotes the Hessian matrix of second
partial derivatives of f . The gradient and Hessian of ci(x) are denoted by ∇ci(x)
and ∇2ci(x). The m × n Jacobian matrix c′(x) of first derivatives of c(x) has rows
{∇ci(x)T }, and we sometimes (to avoid clutter) use J(x) to denote this Jacobian.

The topic of optimality conditions for nonlinearly constrained optimization can
be complicated and confusing. We present only aspects that will be needed later;
detailed discussions may be found in, for example, [6, 88].

2.1. The KKT Conditions. The terms “KKT point” (standing for “Karush–
Kuhn–Tucker point”) and “KKT conditions” will be used often. In defining these
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terms, we use an analogue of the Matlab componentwise multiplication operator,
denoted by “ · ”.

Definition 2.1 (the componentwise multiplication operator · ). Given two vec-
tors x and y of dimension r, x · y is an r-vector whose ith component is xiyi.

Definition 2.2 (feasible region). Given the constraints c(x) ≥ 0, the feasible
region is F �= {x ∈ Rn : c(x) ≥ 0}.

Definition 2.3 (first-order KKT point). The first-order KKT conditions for
the inequality-constrained problem (2.1) hold at the point x∗, or, equivalently, x∗ is a
(first-order) KKT point, if there exists an m-vector λ∗, called a Lagrange multiplier
vector, such that

c(x∗) ≥ 0 (feasibility),(2.2a)
g(x∗) = J(x∗)Tλ∗ (stationarity),(2.2b)

λ∗ ≥ 0 (nonnegativity of the multipliers), and(2.2c)
c(x∗) · λ∗ = 0 (complementarity).(2.2d)

In the operations research literature, it is common to refer to x as the “primal
variables” and to the Lagrange multipliers as the “dual variables.” This usage orig-
inated with linear programming, where close relationships always hold between the
primal and dual variables, and between the original (primal) problem and a closely
related (dual) problem. (See the footnote in the proof of Lemma 2.7.) In nonlinear
optimization, these connections are local and sometimes tenuous, which is why the
divergence of terminology remains. As we shall see later in section 5, however, inte-
rior methods involve a mixture of terminology, reflecting their dual origins in linear
programming and nonlinear optimization.

The stationarity condition (2.2b) can be written as

(2.3) ∇xL(x∗, λ∗) = 0, where L(x, λ) �= f(x) − λT c(x).

Thus a KKT point is a stationary point with respect to x of the Lagrangian function
L(x, λ) defined in (2.3). (Note that some authors formulate the constraints as c(x) ≤ 0
and write the Lagrangian function with a “+” sign; in either case, the multipliers are
nonnegative.)

The first-order KKT conditions specify only that some suitable multiplier exists
at x∗. To describe how the nature of the constraints at x∗ affects the definition of
this multiplier, we need a further definition.

Definition 2.4 (active, inactive, and violated constraints). For the set of con-
straints c(x) ≥ 0, the ith constraint is said to be active at a point x̄ if ci(x̄) = 0 and
inactive if ci(x̄) > 0. The active set A(x̄) is the set of indices of the active constraints
at x̄, i.e., A(x̄) = {i : ci(x̄) = 0}; the argument of A is omitted when it is obvious.
The constraint ci(x) ≥ 0 is said to be violated at x̄ if ci(x̄) < 0.

To satisfy the complementarity condition c(x∗) · λ∗ = 0 (2.2d), the components
of λ∗ associated with inactive constraints are necessarily zero, which means that the
gradient of f at a KKT point x∗ must be a linear combination of the active constraint
gradients:

(2.4) g(x∗) = JA(x∗)Tλ∗A ,

where JA denotes the Jacobian of the active constraints and λ∗A the vector of multipliers
for the active constraints. Depending on the nature of x∗, there may be an infinite



INTERIOR METHODS 531

number of multipliers satisfying (2.4). The set of acceptable multipliers, which we
now define, will be of interest throughout.

Definition 2.5 (acceptable Lagrange multipliers). Given a KKT point x∗ for
problem (2.1), the set of acceptable multipliers is defined as

(2.5) Mλ(x∗) �= {λ ∈ Rm : g(x∗) = J(x∗)Tλ, λ ≥ 0, and c(x∗) · λ = 0}.

The complementarity condition c(x∗) · λ = 0 forces λi to be zero if constraint
i is inactive but allows the possibility that λi = 0 when constraint i is active. The
property of strict complementarity, which occurs when all the multipliers for active
constraints are positive, is so important that we define it formally.

Definition 2.6 (strict complementarity). Strict complementarity holds at the
KKT point x∗ if there is a multiplier λ∗ ∈ Mλ such that λ∗i > 0 for all i ∈ A.

A constraint ci(x) ≥ 0 is said to be strongly active at a KKT point x∗ if i ∈ A(x∗)
and there exists at least one λ∗ ∈ Mλ with λ∗i > 0. Similarly, the ith constraint is
said to be weakly active at x∗ if i ∈ A(x∗) and λi = 0 for all λ ∈ Mλ; in this case, we
say that constraint i has a null multiplier, by analogy with the term “null variable”
in linear programming. In the simple problem

(2.6) minimize
x∈R2

1
2 (x2

1 + x2
2) subject to x1 + x2 ≥ 4 and x2 ≥ 2,

portrayed in Figure 4, the unique solution is x∗ = (2, 2) and the (unique) multiplier
is λ∗ = (2, 0)T . Hence the second constraint has a null multiplier.

The next two results summarize the implications of a null multiplier and strict
complementarity (when there are no null multipliers).

Lemma 2.7 (implication of a null multiplier). Consider the problem of minimizing
f(x) subject to c(x) ≥ 0. If x∗ is a KKT point, the active constraint i has a null
multiplier at x∗ if and only if there exists p ∈ Rn such that J∗A p ≥ 0, g∗T p = 0, and
∇c∗Ti p > 0, where J∗A denotes JA(x∗), g∗ denotes g(x∗), and ∇c∗i denotes the gradient
of constraint i at x∗.

Proof. If the ith active constraint has a null multiplier at x∗, consider the linear
program of maximizing eTi λ subject to J∗TA λ = g∗ and λ ≥ 0, where ei is the ith
coordinate vector. This linear program is feasible, meaning that there is a vector λ
satisfying the constraints, because x∗ is a KKT point. By definition of a null mul-
tiplier, λi = 0 for all feasible λ, so that this linear program has a bounded optimal
objective value of zero. It follows from standard duality theory for linear program-
ming2 that its dual, minimizing g∗T p subject to J∗A p ≥ ei, is also feasible, with a
bounded optimal objective value of zero, which gives the desired result.

Lemma 2.8 (implication 1 of strict complementarity). Consider the problem of
minimizing f(x) subject to c(x) ≥ 0. If x∗ is a KKT point, strict complementarity
holds at x∗ if and only if every vector p satisfying J∗A p ≥ 0 and g∗T p = 0 also satisfies
J∗A p = 0.

Proof. This result follows immediately from Lemma 2.7.

2A tiny summary of the relevant linear programming duality results: for the primal linear program
of minimizing cT x subject to Ax ≥ b, the dual linear program involves maximizing bTλ subject to
ATλ = c and λ ≥ 0; the dual of the dual is the primal. If the primal linear program is feasible
(i.e., if there exists x such that Ax ≥ b) and has a bounded objective value, the same applies for
the dual, and vice versa; in this case, the optimal primal and dual objective values are equal. If the
primal linear program is feasible but the primal objective is unbounded below, then the dual must
be infeasible; i.e., there is no λ such that ATλ = c and λ ≥ 0.
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2.2. Constraint Qualifications. For problems with linear constraints, the first-
order KKT conditions are necessary for optimality. Unfortunately, this tidy char-
acterization does not carry over when nonlinear constraints are present. To specify
first-order necessary conditions for optimality with nonlinear constraints, we require
that the constraints satisfy certain regularity conditions, or constraint qualifications,
at x∗. If these regularity conditions do not hold, a prospective solution x∗ may or
may not be a KKT point.

Constraint qualifications allow us to deduce information about feasible points in a
neighborhood of x∗ from local linearizations of the constraints. This is why constraint
qualifications always hold when all the problem constraints are linear.

Here we consider the two constraint qualifications most often used in nonlinear
optimization.

Definition 2.9 (linear independence constraint qualification). Consider an
inequality-constrained problem with constraints c(x) ≥ 0. The linear independence
constraint qualification (LICQ) holds at the feasible point x̄ if x̄ is strictly feasible (so
that there are no active constraints) or if the Jacobian of the active constraints at x̄ has
full row rank, i.e., if the gradients of the active constraints are linearly independent.

Given a feasible point x̄, satisfaction of the LICQ at x̄ implies that J̄A has linearly
independent rows, where J̄A denotes JA(x̄). If x̄ is a KKT point, it follows from (2.4)
that the linear system ḡ = J̄ TA λ̄ must be compatible, where ḡ denotes g(x̄). Full
column rank of J̄ TA then means that λ̄ is unique, so that Mλ(x̄) contains a single
multiplier when the LICQ holds at a KKT point.

The second constraint qualification to be considered, the Mangasarian–Fromovitz
constraint qualification [67], ensures the existence of a direction along which, to first
order, all active constraints strictly increase.

Definition 2.10 (Mangasarian–Fromovitz constraint qualification). Consider
an inequality-constrained problem with constraints c(x) ≥ 0. The Mangasarian–
Fromovitz constraint qualification (MFCQ) holds at the feasible point x̄ if x̄ is strictly
feasible or if there exists a vector p such that ∇ci(x̄)T p > 0 for all i ∈ A(x̄), i.e., if
JA(x̄)p > 0.

The MFCQ is a weaker condition than the LICQ in the sense that satisfaction of
the LICQ implies the MFCQ, but not the reverse. Furthermore, although satisfaction
of the MFCQ ensures the existence of a path into the strict interior of the feasible
region that is tangent to p at x̄, a path into the strict interior of the feasible region
can exist even when the MFCQ is not satisfied.

We give two examples to illustrate these situations. First, consider a problem in
R

2 with the four constraints

c1(x) = x1 ≥ 0, c2(x) = x2 ≥ 0,(2.7a)
c3(x) = 4 − x2

1 − 4x2
2 ≥ 0, and(2.7b)

c4(x) = 5 − (x1 − 2)2 − x2
2 ≥ 0,(2.7c)

which are depicted on the left in Figure 1, with the darkest shading in the feasible
region. At x̄ = (0, 1)T , the active set is A(x̄) = {1, 3, 4}, and the Jacobian of the
active constraints does not have full row rank (so that the LICQ is not satisfied):

JA(x̄) =

 1 0
−2x1 −8x2

−2(x1 − 2) −2x2

 =

 1 0
0 −8
4 −2

 .
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Fig. 1 The left figure depicts the four constraints of (2.7), with the darkest shading inside the
feasible region. At the point (0, 1)T , constraints 1, 3, and 4 are active, and JA is rank-
deficient. Nonetheless, the MFCQ is satisfied, as can be seen by the vectors pointing into
the strict interior of the feasible region. The right figure shows the two constraints of (2.8),
with the feasible region (between the two parabolas) shaded. At the origin, the MFCQ is not
satisfied, since there are no directions pointing strictly into the feasible region. Yet every
neighborhood of the origin contains strictly feasible points.

Even so, the MFCQ holds, since (for example) p = (1,−1)T satisfies JA(x̄)p > 0. Two
vectors pointing into the strictly feasible region are shown in the figure.

In contrast, consider the two constraints

c1(x) = −x2
1 + x2 ≥ 0,

c2(x) = 3x2
1 − x2 ≥ 0,(2.8)

which are depicted on the right in Figure 1. The first constraint is satisfied by points
lying above or on the parabola x2 = x2

1; the second is satisfied by points below or on
the parabola x2 = 3x2

1. If we take x̄ as the origin, both constraints are active, with

JA(x̄) =

(
−2x1 1

6x1 −1

)
=

(
0 1
0 −1

)
.

The MFCQ clearly does not hold, since JA(x̄)p > 0 would imply the impossible
condition that p2 > 0 and −p2 > 0. Yet every neighborhood of the origin contains
strictly feasible points, and there are infinitely many strictly feasible, but nonlinear,
paths emanating from the origin.

An important consequence of the MFCQ is that its satisfaction at a first-order
KKT point implies boundedness of the set of multipliers [45].

Lemma 2.11 (implication 1 of MFCQ: a bounded multiplier set). If x̄ is a first-
order KKT point at which the MFCQ is satisfied, then the set of multipliers Mλ

defined in (2.5) is bounded.
Proof. First we consider the nature of Mλ at x̄, which consists of λ ∈ R

m

satisfying c̄ · λ = 0, ḡ = J̄Tλ, and λ ≥ 0, where c̄ denotes c(x̄) and J̄ denotes J(x̄).
It is easy to see that Mλ is convex. Given any λ̄ ∈ Mλ, Mλ can be unbounded only
if there is a nonzero ray u emanating from λ̄ such that λ̄+αu ∈ Mλ for all α ≥ 0. If
such a ray exists, the complementarity condition will be satisfied only if components
of u corresponding to inactive constraints are zero. Thus, in order for both λ̄ and
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λ̄ + αu to lie in Mλ, it must be true that

ḡ = J̄ TA λ̄A = J̄ TA (λ̄A + αuA),

where λ̄A and uA denote the subvectors of λ̄ and u corresponding to active constraints.
It follows that J̄ TA uA = 0. Finally, λ̄A + αuA will remain nonnegative for arbitrarily
large positive α only if uA ≥ 0.

Turning now to the implications of the MFCQ, we know that a vector p exists
such that J̄Ap > 0, which means that αJ̄Ap > 0 for any positive α. Thus for any
positive θ there is a vector p satisfying J̄Ap ≥ θe, where e denotes the vector of all
ones. As a result, the linear program

(2.9) minimize
p,θ

− θ subject to J̄Ap− θe ≥ 0, θ ≥ 0,

is feasible, but its objective function is unbounded below. Using standard duality the-
ory for linear programming (summarized in the footnote to the proof of Lemma 2.7),
unboundedness of the primal objective implies infeasibility of the dual. The con-
straints of the dual corresponding to (2.9) are J̄ TA uA = 0, eTuA = 1, and uA ≥ 0, and
so we know that there is no vector uA satisfying these conditions. But, as shown in the
first part of the proof, these are precisely the properties that uA must have in order
for Mλ to be unbounded. (The condition eTuA = 1 is simply a scaling restriction to
ensure that uA �= 0.) Consequently no ray u exists, and Mλ is bounded.

The next two lemmas summarize results in linear algebra associated with the
MFCQ.

Lemma 2.12 (implication 2 of MFCQ). Given a matrix A and a vector p such
that Ap > 0, the only nonnegative vector λ satisfying ATλ = 0 is λ = 0.

Proof. If ATλ = 0, then vTATλ = 0 for any vector v. Considering the specific
vector p for which Ap > 0 and noting that λ is required to be nonnegative, pTATλ =
(Ap)Tλ can be zero only if every component of λ is zero.

Lemma 2.13 (implication 3 of MFCQ and a nonzero multiplier). Given a matrix
A and a vector g such that the set

Mλ = {λ : g = ATλ, λ ≥ 0}

is nonempty, suppose that there is a vector p such that Ap > 0. If there is a nonzero
vector λ̂ ∈ Mλ, then λ = 0 is not in Mλ.

Proof. The proof is by contradiction. If λ = 0 is in Mλ, then g = 0, which means
that ATλ = 0. Using Lemma 2.12, it follows that λ = 0 is the only point in Mλ. But
this means that Mλ cannot contain a nonzero multiplier.

A practical disadvantage of the MFCQ compared to the LICQ is that verifying
satisfaction of the MFCQ is more difficult—in fact, determining whether or not the
MFCQ holds requires solving a linear program. The argument developed in the proof
of Lemma 2.11 shows that the MFCQ holds at the KKT point x̄ if the optimal solution
of the linear program

(2.10) minimize
p,θ

− θ subject to J̄Ap− θe ≥ 0, 0 ≤ θ ≤ 1,

occurs at the maximum possible value of θ, namely, θ = 1. Note that this linear
program is feasible since its constraints are satisfied by θ = 0 and p = 0.

2.3. NecessaryOptimalityConditions. Before stating necessary optimality con-
ditions, we need a precise definition of a local constrained minimizer.
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Definition 2.14 (local constrained minimizer). The point x∗ is a local con-
strained minimizer for the problem of minimizing f(x) subject to c(x) ≥ 0 if x∗ ∈ F
and there exists a compact set S such that

x∗ ∈ int(S) and f(x∗) = min f(x) for all x ∈ S ∩ F ,

where int(S) denotes the interior of the set S (see Definition A.2).
Taking S as a closed neighborhood of x∗ (see Definition A.1), we obtain the usual

form of this definition.
Our main interest is in sufficient conditions for optimality, which we address in

section 2.4. But first we show that, when a minimizer x∗ satisfies the MFCQ, x∗
must be a KKT point; see, for example, [33, p. 21]. The proof uses the ubiquitous,
incredibly useful lemma of Farkas, which we state for completeness.

Lemma 2.15 (Farkas’ lemma). Given an r × n matrix A and an n-vector b,
bT p ≥ 0 for all p such that Ap ≥ 0 if and only if b = ATy for some y ≥ 0.

Lemma 2.16 (first-order necessary conditions for a local constrained minimizer).
Consider the problem of minimizing f(x) subject to c(x) ≥ 0, and suppose that x∗ is
a local minimizer where the MFCQ holds. Then x∗ must be a KKT point.

Proof. Suppose that x∗ is a minimizer where the MFCQ holds. By definition, x∗
is feasible. If no constraints are active at x∗, x∗ is a local unconstrained minimizer of
f(x), and hence g(x∗) = 0 (see Lemma A.7), implying that x∗ is (trivially) a KKT
point. If at least one constraint is active, satisfaction of the MFCQ implies existence
of a vector p̂ such that JA(x∗)p̂ > 0. Using the smoothness of c, we have

ci(x
∗ + αp̂) = ci(x

∗) + α∇ci(x
∗)T p̂ + α2O(‖p̂‖2).

For all sufficiently small α > 0 and i ∈ A(x∗), it follows that ci(x∗+αp̂) > 0. If, for this
same vector p̂, g(x∗)T p̂ < 0, then smoothness of f implies that f(x∗ + αp̂) < f(x∗)
for all sufficiently small α. Thus, since every neighborhood of x∗ contains feasible
points with strictly smaller values of f , x∗ violates Definition 2.14 and is not a local
constrained minimizer.

It follows that x∗ can be a local constrained minimizer only if g(x∗)T p ≥ 0 for
every p satisfying JA(x∗)p > 0. Invoking Farkas’ lemma, this implies that g(x∗) is
a nonnegative linear combination of the columns of JA(x∗)T , say g(x∗) = JA(x∗)TλA
with λA ≥ 0. Taking λi = 0 if i �= A(x∗), complementarity is satisfied, and it follows
that x∗ is a KKT point.

First-order optimality conditions such as the KKT conditions (2.2a)–(2.2d) are
not enough to ensure optimality unless problem (2.1) is a convex program (Defi-
nition A.8). (For discussions of convex programming and convex analysis, see, for
example, [12, 89].) Consequently, it is common to consider second-order optimality
conditions as well. In this regard, the Hessian of the Lagrangian L(x, λ) (2.3) with
respect to x will be crucial:

(2.11) H(x, λ) �= ∇2
xxL(x, λ) = ∇2f(x) −

m∑
i=1

λi∇2ci(x).

Second-order conditions typically involve curvature of the Lagrangian function along
directions that belong to a subspace or a cone, meaning that we are interested in
quantities of the form pTH(x, λ)p for some direction p; see Definition A.13 for the
definition of “curvature” in this context.

We now give a second-order necessary optimality condition which states that
if the LICQ holds, a local minimizer must be a KKT point where the Hessian of
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the Lagrangian has nonnegative curvature when projected into the null space of the
Jacobian of the active constraints.

Lemma 2.17 (second-order necessary conditions). Consider the problem of min-
imizing f(x) subject to c(x) ≥ 0, and suppose that x∗ is a local minimizer at which
the LICQ holds. Then there is a vector λ∗ that satisfies λ∗ ≥ 0, c∗ · λ∗ = 0, and
g∗ = J∗Tλ∗, and, further, it must be true that

(2.12) pTH(x∗, λ∗)p ≥ 0 for all p satisfying J∗A p = 0.

Let NA denote a matrix whose columns form a basis for the null space of J∗A . The
curvature condition (2.12) of Lemma 2.17 may also be expressed in terms of the matrix
NT
A H(x∗, λ∗)NA, which is called the reduced Hessian of the Lagrangian. Condition

(2.12) is equivalent to a requirement that NT
A H(x∗, λ∗)NA be positive semidefinite.

2.4. Sufficient Optimality Conditions. During the past twenty years, a height-
ened awareness has developed of the importance of conditions that ensure an isolated
local minimizer—a minimizer with the property that it lies in a neighborhood con-
taining no other minimizers. Being an isolated minimizer is a stronger property than
being a strict local minimizer—a point whose function value is strictly greater than
at all points in a neighborhood. To understand the somewhat counterintuitive idea
that a point can be a strict minimizer without being isolated, consider minimizing
(without constraints) the function f(x) = x4

(
2 + cos(1/x)

)
, with f(0) = 0 (see, e.g.,

[34, p. 13] or [88, p. 206]). The origin is obviously a strict local minimizer: since
2 + cos(1/x) > 0 and x4 > 0 if x �= 0, it follows that f(x) > 0 when x �= 0. Yet the
infinitely many oscillations in cos(1/x) mean that every neighborhood of the origin
contains infinitely many local minimizers.

Definition 2.18 (isolated constrained minimizer). A local constrained mini-
mizer x∗ is isolated if there is a neighborhood of x∗ containing no other local con-
strained minimizers.

To guarantee that a point is an isolated local constrained minimizer, we need
conditions that involve second derivatives. Several forms of second-order sufficient
conditions exist in the literature. We discuss these conditions in some detail to alert
readers to the easy-to-miss nuances that may occur in their statement.

A common second-order condition applies to a KKT point x∗ and a specific La-
grange multiplier λ∗. Let g∗, c∗, and J∗A denote g(x∗), c(x∗), and JA(x∗), respectively.

Definition 2.19 (first second-order sufficient condition (SSC1)). Consider the
problem of minimizing f(x) subject to c(x) ≥ 0. Let x∗ denote a KKT point, so that
c∗ ≥ 0, and let the vector λ∗ satisfy λ∗ ≥ 0, c∗ · λ∗ = 0, and g∗ = J∗Tλ∗. We say
that SSC1 holds for (x∗, λ∗) if there exists ω > 0 such that

(2.13) pTH(x∗, λ∗)p ≥ ω‖p‖2 for all nonzero p satisfying g∗T p = 0 and J∗A p ≥ 0.

While SSC1 may hold for one multiplier λ∗, it may not hold for all acceptable
λ ∈ Mλ. For example, consider the problem

minimize
x∈R2

x1 subject to x1 ≥ 0 and 1 − (x1 − 1)2 − x2
2 ≥ 0,

in which only the second constraint has a nonzero Hessian. The origin is a KKT point
where both constraints are active, with

g∗ =

(
1
0

)
, J∗A =

(
1 0
2 0

)
, and Mλ(x∗) = {λ : λ1 + 2λ2 = 1, λ ≥ 0}.
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To determine whether condition SSC1 holds, we need to characterize all vectors p
satisfying g∗T p = 0 and J∗A p ≥ 0. Every such vector has the form α(0, 1)T for some
scalar α, so that the inner product appearing in (2.13) of SSC1 is given by

pTH(x∗, λ)p = 2pT
(

λ2 0
0 λ2

)
p = 2α2λ2.

It follows that SSC1 will hold only if λ2 > 0, which means that SSC1 holds for x∗ and
(say) λ = (0, 1

2 )T . However, although λ̄ = (1, 0)T is an acceptable multiplier, SSC1
does not hold for (x∗, λ̄).

A more demanding second-order condition imposes a requirement analogous to
that in SSC1 on every acceptable multiplier.

Definition 2.20 (second second-order sufficient condition (SSC2)). Consider
the problem of minimizing f(x) subject to c(x) ≥ 0, and let x∗ denote a KKT point.
We say that SSC2 holds at x∗ if for every Lagrange multiplier λ satisfying λ ≥ 0,
c∗ · λ = 0, and g∗ = J∗Tλ, there exists ω > 0 such that pTH(x∗, λ)p ≥ ω‖p‖2 for all
nonzero p satisfying g∗T p = 0 and J∗A p ≥ 0.

The purpose of defining second-order sufficient conditions is to allow us to verify
conclusively that a certain point is a local constrained minimizer. It turns out that,
strong as SSC1 and SSC2 may seem, they allow us to prove only that x∗ is a strict
local constrained minimizer of the inequality-constrained problem. The proof of the
next result is widely available in the literature; see, for example, [33, 34, 80, 88].

Theorem 2.21 (sufficient conditions for a strict constrained minimizer). Con-
sider the problem of minimizing f(x) subject to c(x) ≥ 0. The point x∗ is a strict
local constrained minimizer if

(i) x∗ is a KKT point, i.e., c∗ ≥ 0 and there exists a nonempty set Mλ of
multipliers λ satisfying λ ≥ 0, c∗ · λ = 0, and g∗ = J∗Tλ;

(ii) for all λ ∈ Mλ and all nonzero p satisfying g∗T p = 0 and J∗A p ≥ 0, there
exists ω > 0 such that pTH(x∗, λ)p ≥ ω‖p‖2.

Theorem 2.21 includes no mention of a constraint qualification, but such a con-
dition is needed to prove the stronger result that x∗ is an isolated local constrained
minimizer, as we are about to do in Theorem 2.23. The next lemma verifies bound-
edness of a sequence of multiplier sets; it also verifies boundedness of the multipliers
when the MFCQ is satisfied at a point (see Lemma 2.11).

Lemma 2.22 (locally uniformly bounded multipliers). Consider the problem of
minimizing f(x) subject to c(x) ≥ 0. Let x∗ be a KKT point, and assume that the
MFCQ holds at x∗. Consider a sequence {xk} converging to x∗ such that each xk is
a KKT point, and let Mk

λ denote the set of acceptable multipliers at xk. Then Mk
λ is

uniformly bounded for sufficiently large k.
Proof. The proof is by contradiction. Suppose that, for the given sequence {xk}

of KKT points converging to x∗, there is a corresponding sequence {λk} of acceptable
multipliers such that limk→∞ ‖λk‖ = ∞. Since the sequence {λk/‖λk‖} of unit-
norm vectors lies in a compact set, we can assume without loss of generality that
limk→∞ λk/‖λk‖ = !∗ with ‖!∗‖ = 1.

For sufficiently large k, the constraints inactive at x∗ are also inactive at xk, and
thus A(xk) ⊆ A(x∗). In the rest of the proof, A without an argument denotes A(x∗).
To satisfy complementarity at each xk, we must have λki = 0 for i /∈ A(xk), which
means that λki = 0 for i /∈ A. Consequently, ‖λk‖ = ‖λkA‖, !∗i = 0 for i /∈ A, and
‖!∗A‖ = 1.
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For each k, λkA ≥ 0, and it follows that !∗A ≥ 0. Using the relation gk = JA(xk)TλkA,
dividing by ‖λkA‖, and letting k → ∞, our assumption that ‖λkA‖ → ∞ implies that
J∗TA !∗A = 0.

Combining our results, !∗A ≥ 0, ‖!∗A‖ = 1, and J∗TA !∗A = 0. However, because the
MFCQ holds at x∗, Lemma 2.12 shows that no such !∗A can exist. We conclude that
there can be no unbounded sequence {λk}, proving the result.

The proof here of Theorem 2.23 specializes that of [88, Theorem 2.4].
Theorem 2.23 (sufficient conditions for an isolated constrained minimizer).

Consider the problem of minimizing f(x) subject to c(x) ≥ 0. The point x∗ is an
isolated local constrained minimizer if

(i) x∗ is a KKT point, i.e., c∗ ≥ 0 and there exists a nonempty set Mλ of
multipliers λ satisfying λ ≥ 0, c∗ · λ = 0, and g∗ = J∗Tλ;

(ii) the MFCQ holds at x∗, i.e., there is a vector p such that J∗A p > 0;
(iii) for all λ ∈ Mλ and all nonzero p satisfying g∗T p = 0 and J∗A p ≥ 0, there

exists ω > 0 such that pTH(x∗, λ)p ≥ ω‖p‖2.
Proof. The result is proved by contradiction, starting by showing that x∗ is an

isolated KKT point. Assume the contrary, that there is a sequence of points {xk},
xk �= x∗, converging to x∗ such that xk is a KKT point for every k. Consequently,
c(xk) ≥ 0, and there exists a set of multipliers Mλ(xk) containing vectors λk satisfying
λk ≥ 0, c(xk) · λk = 0, and g(xk) = JA(xk)Tλk.

The fact that c is twice-continuously differentiable means that, for sufficiently
large k, the only constraints that can be active at xk are those already active at x∗, so
that A(xk) ⊆ A(x∗). Because the MFCQ holds at x∗, we know that there is a vector
p∗ such that ∇ci(x∗)T p∗ > 0 for i ∈ A(x∗). Our assumptions about differentiability
of c and convergence of xk to x∗ mean that, for sufficiently large k, ∇ci(xk)T p∗ > 0
for i ∈ A(x∗). Since A(xk) ⊆ A(x∗), it follows that ∇ci(xk)T p∗ > 0 for i ∈ A(xk),
and hence that the MFCQ also holds at xk.

From Lemma 2.22, the sets of multipliers Mλ(xk) are uniformly bounded. Thus,
moving to a subsequence if necessary and noting that Mλ(xk) and Mλ(x∗) are closed,
we conclude that there is a sequence of multipliers {λk} that converges to some λ∗ ∈
Mλ(x∗).

By again moving to a subsequence if needed, we know that the unit vectors
(xk − x∗)/‖xk − x∗‖ converge to a limit, denoted by q:

(2.14) lim
k→∞

xk − x∗
‖xk − x∗‖ = q, with ‖q‖ = 1.

We will derive a contradiction by applying assumption (iii) of the theorem with q
playing the role of p. Thus we need to show that J∗A q ≥ 0 and g∗T q = 0.

As in the proof of Lemma 2.16, the first step is to expand ci around x∗, which
gives

ci(xk) = c∗i + ∇ci(x
∗)T (xk − x∗) + o(‖xk − x∗‖).

Feasibility of c(xk) implies that, for all i ∈ A(x∗),

∇ci(x
∗)T (xk − x∗) + o(‖xk − x∗‖) ≥ 0,

and so, dividing by ‖xk − x∗‖ and letting k → ∞, we conclude that J∗A q ≥ 0. Since
g∗ = J∗TA λA for some λA ≥ 0, it follows that

(2.15) g∗T q = λTA J
∗
A q ≥ 0.
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Now we wish to show that g∗T q ≤ 0, which will verify, in combination with (2.15),
that g∗T q = 0. For this, we need the hypothesis that {xk} is a sequence of KKT points.
For each k, it follows from the complementarity condition c(xk) · λk = 0, boundedness
of Mλ(xk), and smoothness of c that

(2.16) 0 = λTk c(xk) = λTk c
∗ + λTk J

∗(xk − x∗) + o(‖xk − x∗‖).

Note that boundedness of Mλ(xk), a consequence of the MFCQ, is necessary to
justify the size of the remainder term. Since c∗ ≥ 0 and λk ≥ 0, the quantity λTk c

∗ is
nonnegative, which means, rearranging (2.16), that

λTk J
∗(xk − x∗) + o(‖xk − x∗‖) = −λTk c

∗ ≤ 0.

If we now divide by ‖xk − x∗‖ and let k → ∞, the result is

(2.17) λ∗TJ∗q ≤ 0.

Again invoking the hypothesis that xk is a KKT point, we have g(xk) = J(xk)Tλk,
so that

g(xk)T (xk − x∗) = λTk J(xk)(xk − x∗).

Dividing by ‖xk − x∗‖, letting k → ∞, and using (2.17), the result is g∗T q ≤ 0.
Combining this with (2.15), it follows that g∗T q = 0. The vector q defined in (2.14)
thus satisfies g∗T q = 0 and J∗A q ≥ 0, qualifying for assumption (iii) of the theorem.

Let δk denote xk − x∗ and ξk denote λk − λ∗. For θ ∈ [0, 1], define

x(θ) = x∗ + θδk and λ(θ) = λ∗ + θξk,

so that x(0) = x∗, x(1) = xk, λ(0) = λ∗, and λ(1) = λk. Now consider, for each k,
the scalar function sk(θ), defined for 0 ≤ θ ≤ 1 as

sk(θ) = δTk

(
g
(
x(θ)

)
− J

(
x(θ)

)T
λ(θ)

)
+ ξTk c

(
x(θ)

)
= δTk∇xL

(
x(θ), λ(θ)

)
+ ξTk c

(
x(θ)

)
,

where L is the Lagrangian function (2.3). Because of the assumed smoothness proper-
ties of f and c, this function is continuous for θ ∈ [0, 1] and continuously differentiable
for θ ∈ (0, 1).

Observe that, from the definition of ξk and complementarity at x∗ and xk,

sk(0) = δTk∇xL(x∗, λ∗) + λTk c
∗ − λ∗T c∗ = λTk c

∗ ≥ 0 and
sk(1) = δTk∇xL(xk, λk) + λTk c(xk) − λ∗T c(xk) = −λ∗T c(xk) ≤ 0.

Applying the mean-value theorem, for each k there must be some θk ∈ (0, 1) such
that s′k(θk) ≤ 0. Writing out s′(θk), we have

0 ≥ s′k(θk) = δTk∇2
xxL

(
x(θk), λ(θk)

)
δk − δTk J

(
x(θk)

)T
ξk + ξTk J

(
x(θk)

)
δk

= δTk∇2
xxL

(
x(θk), λ(θk)

)
δk.

Dividing by ‖δk‖2 and letting k → ∞ gives qT∇2
xxL(x∗, λ∗)q ≤ 0, which violates

assumption (iii) of the theorem. We conclude that x∗ is an isolated KKT point.
Since x∗ satisfies all the conditions of Theorem 2.21, we know that x∗ is a strict

local constrained minimizer.
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Finally, to show that x∗ is an isolated local minimizer, we use Lemma 2.16, which
asserts that any local minimizer where the MFCQ holds must be a KKT point. Since
the MFCQ holds in a neighborhood of x∗, any minimizer in that neighborhood must be
a KKT point—but we have just shown that a neighborhood of x∗ exists in which there
are no other KKT points. Hence the neighborhood is also devoid of local minimizers
(apart from x∗), and x∗ is an isolated local constrained minimizer.

Although Theorem 2.23 is very nice, its conditions are not easy to check in their
full generality. Confirming that the MFCQ holds when the LICQ does not requires
solution of a linear program (2.10); verifying assumption (iii) for all p such that
J∗A p ≥ 0 requires finding the global minimizer of a possibly indefinite quadratic form
over a cone, an NP-hard problem [75, 82], not to mention the issue of how to check
that (iii) holds for all λ ∈ Mλ. If, however, the gradients of the active constraints
at x∗ are linearly independent and strict complementarity holds, Theorem 2.23 leads
immediately to the following result, which we state separately for future reference.

Theorem 2.24 (strong sufficient conditions for an isolated constrained mini-
mizer). Consider the problem of minimizing f(x) subject to c(x) ≥ 0. The point x∗
is an isolated local constrained minimizer if

(i) x∗ is feasible and the LICQ holds at x∗, i.e., JA(x∗) has full row rank;
(ii) x∗ is a KKT point and strict complementarity holds, i.e., the (necessarily

unique) multiplier λ∗ has the property that λ∗i > 0 for all i ∈ A(x∗);
(iii) for all nonzero vectors p satisfying JA(x∗)p = 0, there exists ω > 0 such that

pTH(x∗, λ∗)p ≥ ω‖p‖2.
Proof. The conditions of this theorem imply those of Theorem 2.23. In both cases,

x∗ is a KKT point. Satisfaction of the LICQ at x∗ (the second part of condition (i) in
this theorem) implies that the MFCQ holds at x∗. Using Lemma 2.8, it follows from
strict complementarity (the second part of (ii) in this theorem) that every nonzero
vector satisfying g∗T p = 0 and J∗A p ≥ 0 satisfies J∗A p = 0. Because of this and the
uniqueness of λ∗, which follows from the full row rank of J∗A , condition (iii) of this
theorem is equivalent to condition (iii) of Theorem 2.23.

Although the assumptions of Theorem 2.24 are more restrictive than those of
Theorem 2.23, they have the practical advantage that they can be confirmed (or not)
in a straightforward fashion. Linear independence of the active constraint gradients
can be verified, or shown to fail, by computing either the QR or LU factorization of
J∗A . The (unique) multiplier λ∗ is obtained by solving a single compatible linear system
for λ∗A , and strict complementarity can be checked by examining the components of
λ∗A to see whether they are sufficiently positive. Finally, the vectors of interest in
condition (iii) lie in the null space of J∗A , for which an explicit basis, say NA, can
be computed using either the QR or LU factorization. If this calculation is too
expensive, the inertia of NT

A H(x∗, λ∗)NA can be computed implicitly through the
associated augmented system; see Lemma A.15.

3. Barrier Methods. As described in section 1, classical barrier methods provide
the foundation for modern interior methods, and we accordingly devote this section
to a survey of the associated theory.

3.1. Overview of Barrier Methods. As noted in section 1.2, in the 1960s the
most popular approaches to solving constrained nonlinear optimization problems were
based on penalty and barrier methods, which have a common motivation: finding an
unconstrained minimizer of a composite function that reflects the original objective
function as well as the presence of constraints.
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The influence of the constraints can be reflected in the composite function in at
least two distinct ways: the constraints can be ignored as long as they are satisfied
(i.e., the composite function matches the objective function at all feasible points), or
the composite function is defined only at feasible points. An extreme way to take the
second approach is to define the composite function as f(x) when x is feasible and
as +∞ otherwise, but the wildly discontinuous result would be effectively impossible
to minimize. Adopting the approach of remaining feasible while preserving any nice
properties (such as smoothness) of c(x) leads to the concept of a well-behaved interior
function I(x) that is not allowed to leave the interior of the feasible region. By
appropriately combining I(x) with f(x) as well as systematically reducing the effect of
the constraints, we should be able to create a composite function whose unconstrained
minimizers will converge to a local constrained minimizer of the original problem.

This motivation suggests the following desirable properties for I(x):
I1. I(x) depends only on the constraint functions.
I2. I(x) preserves the continuity properties of c(x) at all points in int(F).
I3. For any sequence of points in int(F) converging to a point on the boundary

of the feasible region, I(x) → ∞.
If these desiderata can be achieved (and, as we shall see in section 3.2, they almost
can be), there is an obvious rationale for applying the descriptors “interior” and
“barrier” to the associated methods, since the effect of I(x) is to prevent unconstrained
minimizers of the composite function from leaving the feasible region.

The properties of generic interior functions are analyzed in [32, 33]. In 1961,
based on his 1959 Ph.D. thesis, Carroll [19] described the inverse interior function,

(3.1) Iinv(x) �=
m∑
i=1

1
ci(x)

.

Alternatively, since − ln ci(x) → ∞ as ci(x) → 0+ and ln ci(x) is twice-continuously
differentiable when ci(x) > 0, the logarithmic interior function Ilog(x), defined as

(3.2) Ilog(x) �= −
m∑
i=1

ln ci(x),

also appears to satisfy the desired properties. The earliest history of the logarith-
mic interior function is worth noting. Frisch’s 1955 “logarithmic potential method”
[44] is based on using the gradient of f(x) +

∑m
i=1 αi ln ci(x) to retain feasibility and

accelerate convergence; however, Frisch’s approach did not involve unconstrained min-
imization of this function. See [33, pp. 6–15] for a thorough and fascinating chronolog-
ical survey of ideas for solving constrained problems via a sequence of unconstrained
problems.

Because of its connection with Karmarkar’s linear programming method as well
as other reasons, the overwhelmingly predominant barrier function today is the loga-
rithmic barrier function, a composite based on the logarithmic interior function:

(3.3) B(x, µ) = f(x) − µIlog(x) = f(x) − µ

m∑
i=1

ln ci(x),

where µ is a positive scalar, the barrier parameter. An important feature of B(x, µ)
is that it retains the smoothness properties of f(x) and c(x) as long as c(x) > 0.
Accordingly, for very small µ > 0, B(x, µ) “acts like” f(x) except close to points where
any constraint is zero. Intuition then suggests that minimizing B(x, µ) for a sequence
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Fig. 2 The contours of the nonconvex objective function (3.4a) are shown, along with the boundaries
of the ellipsoidal and linear constraints (3.4b). A trajectory of local unconstrained minimizers
of the logarithmic barrier function, shown in red, begins at the strictly feasible analytic center
of the feasible region, corresponding to µ =∞, and converges to the boundary as µ→ 0.

of positive µ values converging to zero will cause the unconstrained minimizers of
B(x, µ) to converge to a local constrained minimizer of the original problem.

To illustrate the behavior of the log barrier function, we consider the two-variable
inequality-constrained problem:

minimize 10
3 x1x2 + 1

6x1(3.4a)

subject to 19
16 − x2

1 − 5
2x

2
2 ≥ 0 and x1 − x2 + 3

5 ≥ 0.(3.4b)

The first (nonlinear) constraint is satisfied inside an ellipse centered at the origin; the
second (linear) constraint cuts off part of the ellipse. Figure 2 shows the contours of f ,
which is unbounded below, and the boundaries of these two constraints; the feasible
region lies inside the ellipse, to the right of the line.

The figure makes clear that there are two local minimizers of f in the feasible
region. At the isolated constrained minimizer x∗ = ( 3

4 ,
−1

2 ), the first constraint is
active. The path of barrier minimizers converging to x∗ is shown in red. The strictly
feasible starting point of the path of barrier minimizers corresponds to the minimizer
of −

∑
ln ci(x)—in effect, to an infinite value of µ, so that the objective function has

no effect.3

3In general, the analytic center corresponding to the constraints c(x) ≥ 0 is the maximizer of
ln(
∏m
i=1 ci(x)). The analytic center depends on the forms of the constraints rather than on the

nature of the feasible region itself; see the discussion at the beginning of section 3.2.
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Fig. 3 The contours of the logarithmic barrier function (3.3) for the problem depicted in Figure 2
are shown for µ = 1 and µ = 0.1.

The effect of µ on the contours of the barrier function is depicted in Figure 3.
As µ becomes smaller, the barrier function becomes more and more like the objective
function, except very close to the boundary where the logarithmic singularity has
an effect. When µ = 0.1, the barrier function obviously has two local minimizers,
reflecting the same property of the original problem.

In sections 3.3 and 3.4 we shall probe the connection between minimizers of the
barrier function and local constrained minimizers of the original problem. An initial
hint of those relationships can be seen algebraically by writing down the gradient of
the barrier function (3.3), denoted by ∇B(x, µ), which can be expressed in various
equivalent forms:

∇B(x, µ) = g(x) −
m∑
i=1

µ

ci(x)
∇ci(x),(3.5a)

= g(x) − µJ(x)TC(x)−1e, and(3.5b)
= g(x) − J(x)T

(
µ ·/ c(x)

)
.(3.5c)

In the form (3.5b), C(x) denotes the m×m diagonal matrix of constraint values and
e the m-vector of all ones. The third form, (3.5c), uses a Matlab-like notation for a
componentwise quotient, which we now formally define.

Definition 3.1 (the componentwise division operator ·/ ). Given a scalar α
and an r-vector v whose components are all nonzero, α ·/ v is an r-vector whose ith
component is α/vi. Given two vectors u and v of dimension r, where each component
of v is nonzero, u ·/ v is an r-vector whose ith component is ui/vi.

An unconstrained minimizer of B(x, µ) will be denoted by either xµ or x(µ), and
we assume for the moment that c(xµ) > 0 (which we shall prove later). Because
∇B(x, µ) is twice-continuously differentiable, it must hold that ∇B(xµ, µ) = 0 (see
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Lemma A.7), which means, using (3.5a) and (3.5b), that

g(xµ) =
m∑
i=1

µ

ci(xµ)
∇ci(xµ) = µJ(xµ)TC(xµ)−1e.

Hence the objective gradient at xµ is a positive linear combination of the constraint
gradients. The coefficients in that linear combination, which will be important later,
are called the barrier multipliers (by analogy with Lagrange multipliers) and denoted
by λµ. Formally, λµ is defined as

(3.6) λµ
�= µC−1(xµ)e = µ ·/ c(xµ).

Thus at xµ we have

(3.7) g(xµ) =
m∑
i=1

µ

ci(xµ)
∇ci(xµ) = J(xµ)Tλµ, with λµ > 0.

This should vividly remind the reader of the stationarity and nonnegativity properties
(2.2b) and (2.2c), g(x∗) = J(x∗)Tλ∗ and λ∗ ≥ 0, that hold at a KKT point.

The resemblance is even more evocative when we express the definition of λµ as

(3.8) c(xµ) · λµ = µ, or ci(xµ)(λµ)i = µ, i = 1, . . . ,m.

This componentwise relationship between the barrier multipliers, constraint values,
and the barrier parameter, called perturbed complementarity, is analogous as µ → 0
to the complementarity condition c(x∗) · λ∗ = 0 (2.2d) that holds at a KKT point.

We shall explore these relationships in detail after presenting background that
exposes some messy nuances.

3.2. Background Results. Since our analysis of barrier methods hinges on the
properties of unconstrained minimizers, we need to define them formally.

Definition 3.2 (local unconstrained minimizer). The point x∗ is a local uncon-
strained minimizer of f(x) if there exists a compact set S such that x∗ ∈ int(S) and
f(x∗) = min f(x) for x ∈ S.

As with Definition 2.14, the set S is usually taken as a neighborhood of x∗.
Our discussion of interior methods thus far has glossed over a few points that need

further examination—in particular, the relationship between topological properties of
the feasible region F viewed as a set and the representation of F via inequality
constraints. Unfortunately, the two representations are not always equivalent. This
affects our discussion of barrier functions because the desired property I1 of an interior
function specifies that it should depend on the constraint functions, whereas properties
I2 and I3 are couched in terms of the interior and boundary of F .

For the set F of points x ∈ Rn satisfying c(x) ≥ 0, Definition A.2 characterizes its
interior, or topological interior, independently of how F happens to be represented.
Similarly, the boundary of a set (Definition A.3) is a topological property. On the
other hand, the set of strictly feasible points is defined in terms of the constraint
functions {ci}.

Definition 3.3 (strictly feasible points). The subset of points in F for which
all the constraint functions are strictly positive is denoted by strict(F) and defined as
strict(F) �= {x : ci(x) > 0, i = 1, . . . ,m}. A point x in strict(F) is said to be strictly
feasible.
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The topological interior of F is not always the same as the set of strictly feasible
points. Consider the two constraints

(3.9) c1(x) = x2 ≥ 0 and c2(x) = x + γ ≥ 0,

where γ > 0, with associated feasible set

F = {x : x2 ≥ 0 and x ≥ −γ}.

Since all real x satisfy x2 ≥ 0, the first constraint does not actually constrain anything,
and x = 0 is in fact an interior point of F , even though the first constraint is equal to
zero; thus int(F) = {x : x > −γ}. In contrast, the origin is excluded from strict(F),
so that

strict(F) = {x : 0 > x > −γ} ∪ {x : x > 0} = int(F)\{0},

and strict(F) �= int(F). If F is convex (Definition A.4), every point lying between two
strictly feasible points is also strictly feasible, so that these difficulties do not occur.
We briefly consider how to formalize such anomalies.

Definition 3.4 (topological inconsistency). A constraint ci(x) ≥ 0 is said to be
topologically inconsistent at x̂ if x̂ ∈ int(F) and ci(x̂) = 0. The constraint ci(x) ≥ 0
is topologically consistent if, for all x ∈ F , ci(x) = 0 only if x /∈ int(F).

Lemma 3.5. If a constraint ci(x) ≥ 0 is topologically inconsistent at x̂, then x̂
is a local unconstrained minimizer of ci(x), with ∇ci(x̂) = 0 and ∇2ci(x̂) positive
semidefinite.

Proof. From the definition of topological inconsistency, ci(x̂) = 0 and x̂ ∈ int(F).
By definition of int(F) (Definition A.2), there is a neighborhood of x̂ contained entirely
in F . Hence there exists ε > 0 such that if ‖x− x̂‖ ≤ ε, then ci(x) ≥ 0, so that ci(x̂) ≤
ci(x). Applying Definition 3.2, x̂ is a local unconstrained minimizer of ci. Since ci is
smooth, x̂ must satisfy standard necessary conditions for an unconstrained minimizer,
namely, that ∇ci(x̂) = 0 and ∇2ci(x̂) is positive semidefinite (see Lemma A.7).

In practice it is useful to determine when a constraint is topologically inconsistent.
We next summarize conditions under which topologically inconsistent constraints are
locally redundant, meaning that all points in a neighborhood are feasible. In par-
ticular, if ci(x) is convex and topologically inconsistent at a point, it is completely
redundant, meaning that all points are feasible.

Lemma 3.6 (redundant topologically inconsistent constraints).
(i) Assume that the constraint ci(x) ≥ 0 is topologically inconsistent at x̄ and

that ∇2ci(x̄) is positive definite. Then there is a neighborhood of x̄ in which all points
are strictly feasible with respect to this constraint.

(ii) If ci(x) is convex on Rn and topologically inconsistent at x̄, all points x in
R
n satisfy ci(x) ≥ 0, so that this constraint is redundant.

Proof. If ci(x) is topologically inconsistent at x̄, then Lemma 3.5 shows that x̄ is
a local unconstrained minimizer of ci(x). To verify (i), note that if ∇2ci(x̄) is positive
definite, x̄ must be an isolated, and hence strict, local unconstrained minimizer of
ci(x). Thus there is a neighborhood of x̄ in which ci(x̄) < ci(x) for all x �= x̄ in the
neighborhood, which means that all points in the neighborhood except x̄ are strictly
feasible.

To show (ii), we observe that if ci(x) is convex and topologically inconsistent
at x̄, we know from Lemma 3.5 and Definition A.5 that x̄ must also be a global
unconstrained minimizer of ci(x). Thus for all x ∈ Rn, ci(x) ≥ ci(x̄) = 0, all points
are feasible, and the constraint is redundant.
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The constraint c1(x) = x2 ≥ 0 of example (3.9) is convex and topologically
inconsistent at the origin, since 0 ∈ int(F) but c1(0) = 0. Hence c1(x) ≥ 0 is
redundant, as already observed for this example.

Although topologically inconsistent constraints tend to occur almost exclusively in
carefully constructed examples, we need to allow for them in our analysis. In practice,
Lemma 3.5 allows us to assert that all constraints are topologically consistent at x̄
if, for all i ∈ A(x̄), either ∇ci(x̄) �= 0 or ∇2ci(x̄) has at least one strictly negative
eigenvalue.

The effect of these anomalies is that we need to lower our expectations relative to
the three original goals I1–I3 for interior functions. Rather than being well behaved for
all points in int(F), the logarithmic interior function −

∑m
i=1 ln ci(x) is well behaved

only for points in strict(F). Similarly, the logarithmic interior function is unbounded
above for any sequence of points in strict(F) that converges to a point on the boundary
of strict(F), which is not necessarily the same as the boundary of F . These fine points
are irritating but inescapable since our only means of defining F for optimization
algorithms requires calculation of c(x).

We note three final details that are peculiar to the logarithmic interior function:
1. Because

∑m
i=1 ln ci(x) = ln

(∏m
i=1 ci(x)

)
, at points in strict(F) the logarith-

mic interior function corresponding to the m individual constraints ci(x) ≥ 0 has the
same value, gradient, and Hessian as if the problem contained the single constraint∏m
i=1 ci(x) ≥ 0, for which F is obviously different. See example (3.16) for a related

discussion.
2. The logarithmic interior function can be negative in strict(F). In contrast,

the inverse interior function 1/ci(x) (3.1) is positive and bounded below if ci(x) > 0.
3. The logarithmic interior function can be unbounded below when the feasible

region is unbounded. In such a case, the downward pull of the logarithmic interior
function may overpower the objective function and lead to an unbounded sequence of
minimizers of the barrier function. An example from Powell [87] illustrates what can
go wrong:

minimize
x

−1/(x2 + 1) subject to x ≥ 1.

The objective function is bounded below in the feasible region, and the unique solution
is x∗ = 1. Nonetheless, the barrier function

B(x, µ) = −1/(x2 + 1) − µ ln(x− 1)

is unbounded below, although it has a local minimizer that approaches x∗ as µ → 0.
Two important background results, which we state without proof, are intuitively

clear. These results are needed to prove Theorem 3.10, which shows under rela-
tively weak assumptions that there is a sequence of unconstrained minimizers of the
logarithmic barrier function that converges to a local constrained minimizer of the
original problem. Although in general we consider problems in which the objective
function and constraint functions are twice-continuously differentiable, Lemma 3.7,
Theorem 3.9, and Theorem 3.10 assume only continuity of f and {ci}. Since the def-
initions of both unconstrained and constrained minimizers (Definitions 3.2 and 2.14)
involve finding an appropriate compact set, much of the effort boils down to ensuring
existence of, and characterizing, this compact set.

The following lemma confirms our intuition that the barrier function achieves a
finite minimum value at a point in strict(F).
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Lemma 3.7. Given the constraints c(x) ≥ 0, where each ci(x) is continuous
for x ∈ F , let strict(F) denote the set of points such that c(x) > 0, and let S be
a compact set such that strict(F) ∩ S is nonempty. Consider a convergent sequence
{yk} ∈ strict(F) ∩ S whose limit point ȳ lies in S and on the boundary of strict(F):

(3.10) lim
k→∞

yk = ȳ, where ȳ ∈ bnd
(
strict(F)

)
∩ S.

Suppose that ϕ is a continuous function on strict(F)∩S with the property that ϕ(yk)
is unbounded above as k → ∞ for every sequence {yk} satisfying (3.10). Then ϕ
achieves its (finite) smallest value ϕ∗ for x ∈ strict(F) ∩ S at some point x∗ in
strict(F) ∩ S.

Proof. See [33, Corollary 8] and [110, Lemma 1].
Our basic convergence theorem (Theorem 3.10) depends on the existence of a

subset of local constrained minimizers that is “isolated” within the full set of local
constrained minimizers. To ensure existence of that subset, we need the following
definition and theorem.

Definition 3.8 (isolated subset). Let N and N∗ be sets in Rn such that N∗ ⊆
N . The set N∗ is called an isolated subset of N if there exists a closed set E such
that N∗ ⊂ int(E) and E ∩N = N∗.

The key element in this definition is the closed set E, which, in effect, “separates”
N∗ from the rest of N . The definition is satisfied if N is compact and N∗ = N , or
if N∗ consists of an isolated point in N , i.e., a point in a neighborhood containing
no other points of N . In most situations of interest, the local constrained minimizer
of interest is itself an isolated point within the set of local constrained minimizers, so
this definition applies automatically.

The purpose of the next theorem is to vouch for the existence of a compact set S
with two key properties: a set N∗ of local constrained minimizers lies entirely in the
interior of S, and all minimizers in N∗ display the strictly smallest value of f(x) for
all feasible points in S.

Theorem 3.9 (existence of compact enclosing set). Consider minimizing f(x)
subject to c(x) ≥ 0. Let N denote the set of all local constrained minimizers with ob-
jective function value f∗, and assume that f∗ has been chosen so that N is nonempty.
Assume further that the set N∗ ⊆ N is a nonempty compact isolated subset of N .
Then there exists a compact set S such that N∗ lies in int(S) ∩F and f(y) > f∗ for
any feasible point y in S but not in N∗. Every point x∗ in N∗ thus has the property
that f(x∗) = f∗ = min f(x) for all x ∈ S ∩ F .

Proof. See [33, Theorem 7] and [110, Theorem 6].
The conditions of this theorem are relatively mild, but they do not apply in all

cases. Consider the problem of minimizing f(x) = x6 sin2(1/x) with no constraints,
where f(0) �= 0. If we take f∗ = 0, N contains the origin and all points where
sin2(1/x) = 0. However, we cannot take N∗ as the origin since every neighborhood
of the origin includes minimizers for which f(x) = f∗ = 0.

3.3. A General Convergence Theorem for the Logarithmic Barrier Function.
We will (momentarily) state and prove a fundamental theorem about local convergence
of a sequence of minimizers of the logarithmic barrier function. Two ingredients in
this theorem have already been discussed—existence of a nonempty set N of local
constrained minimizers with objective function value f∗, and, as in Theorem 3.9,
existence of N∗ ⊆ N , a nonempty compact isolated subset of N . These assumptions
are mild and easy to satisfy.
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A new, not so mild requirement is a prescribed relationship between N∗ and the
strictly feasible region: that at least one of the points in N∗ must lie in the closure of
strict(F), i.e., N∗ contains either a strictly feasible point or a limit point of strict(F).
This assumption is needed because barrier methods can be viewed as finding the
infimum of f subject to c(x) > 0, so that a sequence of barrier minimizers, each of
which lies in strict(F), cannot converge to a feasible point in a neighborhood that
contains no other feasible points. For example, consider minimizing f(x) = (x + 1)2

subject to c1(x) = x(x− 1) ≥ 0 and c2(x) = x ≥ 0. The constraint function x(x− 1)
is nonnegative if x ≤ 0 or if x ≥ 1, so that the feasible points lie in two separated
regions. The second constraint, x ≥ 0, eliminates all of the region x ≤ 0 except for the
origin. It follows that the feasible region F for both constraints consists of the origin
and points satisfying x ≥ 1. The smallest value of f in F is f∗ = 1, which occurs
only at x∗ = 0, so that N∗ contains a single point, the origin. But since strict(F) is
the open interval (1,∞), the origin does not lie in the closure of strict(F), and N∗
does not satisfy the needed condition.

The proof of this theorem follows those of [33, Theorems 8 and 10] and [110,
Theorem 7]. We include a complete proof for two reasons: first, the proofs in [33]
are not completely correct because the logarithmic interior function can be negative
in strict(F), as noted in the second observation in section 3.2; second, the proofs in
[110] treat the convex case separately, which we have not done here. An analogous
convergence theorem [32, Theorem 1] with mild assumptions treats only the inverse
barrier function.

Theorem 3.10 (local convergence for barrier methods). Consider the problem
of minimizing f(x) subject to c(x) ≥ 0, where f and c are continuous. Let F denote
the feasible region, let N denote the set of minimizers with objective function value
f∗, and assume that N is nonempty. Let {µk} be a strictly decreasing sequence of
positive barrier parameters such that limk→∞ µk = 0. Assume that

(a) there exists a nonempty compact set N∗ of local minimizers that is an isolated
subset of N ;

(b) at least one point in N∗ is in the closure of strict(F).
Then the following results hold:

(i) there exists a compact set S such that N∗ ⊂ int(S) and such that, for any
feasible point x̄ in S but not in N∗, f(x̄) > f∗;

(ii) for all sufficiently small µk, there is an unconstrained minimizer yk of the
barrier function B(x, µk) in strict(F) ∩ int(S), with

B(yk, µk) = min {B(x, µk) : x ∈ strict(F) ∩ S }.

Thus B(yk, µk) is the smallest value of B(x, µk) for any x ∈ strict(F) ∩ S;
(iii) any sequence of these unconstrained minimizers {yk} of B(x, µk) has at least

one convergent subsequence;
(iv) the limit point x∞ of any convergent subsequence {xk} of the unconstrained

minimizers {yk} defined in (ii) lies in N∗;
(v) for the convergent subsequences {xk} of part (iv),

lim
k→∞

f(xk) = f∗ = lim
k→∞

B(xk, µk).

Proof. Assumption (a) satisfies the conditions of Theorem 3.9, which immediately
implies (i). Thus there is a compact set S such that all points in N∗ are in int(S)∩F
and, further, the value of f at points in N∗ is the smallest for any x ∈ S ∩ F . This
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conclusion is independent of the barrier function, but sets the stage for subsequent
results.

We now turn to the behavior of the barrier function B(x, µk) in the bounded set
strict(F) ∩ S. It follows from continuity of f and {ci} that B(x, µk) is continuous
in strict(F) ∩ S. Applying Lemma 3.7, for all k, B(x, µk) achieves its finite smallest
value at some point in strict(F) ∩ S. (This result is close to but not the same as (ii),
which states that the minimizing point is an unconstrained minimizer of B(x, µk);
this will be shown later.)

Let yk be any point in strict(F) ∩ S for which the smallest value of B(x, µk) is
achieved. Boundedness of {yk} means that it has at least one limit point, which we
denote by x∞. Let {xk} denote any convergent subsequence of {yk} whose limit is
x∞. Each xk is strictly feasible and the set S is compact; hence x∞ must lie in F ∩S,
so that x∞ is feasible.

Now we wish to show that the limit point x∞ lies in the set N∗ of constrained
minimizers, with f(x∞) = f∗. The result will be proved by contradiction, and we
accordingly assume the contrary, that x∞ /∈ N∗. In this case, since x∞ is feasible
and in S, result (i) implies that f(x∞) > f∗.

We next prove that this inequality implies the existence of a strictly feasible point
xint in S such that f(x∞) > f(xint), and we find xint by exploiting the properties of
N∗. Assumption (b) shows that at least one point in N∗, say x∗, is in the closure of
strict(F), and consequently x∗ must be either strictly feasible or else an accumulation
point of strict(F). The specification of xint depends on which of these two situations
applies.

Case 1. If x∗ is strictly feasible, we take xint = x∗.
Case 2. Otherwise, x∗ is an accumulation point of strict(F), which means that

every neighborhood of x∗ contains strictly feasible points. Since result (i) implies
that N∗ is in int(S), x∗ is also in the interior of S, and every neighborhood of x∗
thus contains points in S. Because f is continuous, our assumption that f(x∞) > f∗
means that there must be a strictly feasible point xint in a neighborhood of x∗ for
which f(xint) < f(x∞).

With xint in hand, the hypothesis that f(x∞) > f(xint) implies that, for the
convergent sequence {xk} whose limit is x∞ and for sufficiently large k,

(3.11) f(xk) > f(xint).

Since xint is in strict(F)∩S, the definition of xk as a point with the smallest value of
B(x, µk) in strict(F) ∩ S implies that

(3.12) f(xk) − µk

m∑
i=1

ln ci(xk) ≤ f(xint) − µk

m∑
i=1

ln ci(xint).

It follows from strict feasibility of xint that the sum of logarithms involving xint in
(3.12) is finite, and thus, letting µk → 0, limk→∞B(xint, µk) = f(xint).

Now we consider the nature of x∞. If x∞ is strictly feasible, then the sum
of logarithms in (3.12) involving xk is finite as k → ∞ and limk→∞B(xk, µk) =
f(x∞). Letting k → ∞ in (3.12), the result is f(x∞) ≤ f(xint), which contradicts the
hypothesis of (3.11) that f(xk) > f(xint).

Alternatively, we consider the consequences if x∞ is not strictly feasible. Adding
−µk

∑m
k=1 ln ci(xint) to both sides of f(xk) > f(xint), combining with (3.12), rear-
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ranging, and dividing by µk, we obtain the following result:

(3.13) −
m∑
k=1

ln ci(xk) < −
m∑
k=1

ln ci(xint).

As before, strict feasibility of xint guarantees that the sum on the right-hand side is
fixed and finite. However, since by assumption x∞ is not strictly feasible, − ln ci(xk)
approaches infinity for at least one i, and the left-hand side of (3.13) is unbounded
above. Once again, we have derived a contradiction.

In either case, we have shown that f(x∞) cannot exceed f∗, which implies that
f(x∞) = f∗ and hence that x∞ ∈ N∗. Since x∞ was taken as any limit point of
{yk}, we conclude that every limit point of a convergent subsequence of the points
for which the barrier function achieves its smallest value in strict(F) ∩ S must be a
constrained minimizer with objective value f∗.

To complete the proof of (ii)–(iv), we need to show that the strictly feasible point
xk, which corresponds to the smallest value of B(x, µk) for x ∈ strict(F) ∩ S, is an
unconstrained minimizer of B(x, µk). We have just shown that x∞ ∈ N∗, which
means that x∞ ∈ int(S). Because limk→∞ xk = x∞, xk must also lie in int(S)
for sufficiently large k. Hence, because xk ∈ strict(F) ∩ int(S), there is a closed
neighborhood N ⊆ S of xk with the property that, for all x ∈ N , B(xk, µk) ≤
B(x, µk). As a result, we can apply Definition 3.2, using N as the needed compact
set, to confirm that xk is an unconstrained minimizer of B(x, µk). This proves results
(ii), (iii), and (iv).

The first relation in (v), that limk→∞ f(xk) = f∗, follows because f(x∞) = f∗.
To verify the second part of (v), that limk→∞B(xk, µk) = f∗, we recall that xk is a
point where the barrier function B(x, µk) achieves its smallest value in strict(F)∩ S.
Thus we have, for sufficiently large k, that xk and xk+1 lie in strict(F) ∩ S, and
consequently

B(xk, µk) ≤ B(xk+1, µk) and B(xk+1, µk+1) ≤ B(xk, µk+1).

Multiplying the first inequality by µk+1/µk (a number strictly between 0 and 1),
adding the result to the second inequality, and canceling the terms containing loga-
rithms gives the result

f(xk+1)
(

1 − µk+1

µk

)
≤ f(xk)

(
1 − µk+1

µk

)
.

Since 0 < µk+1 < µk, it follows that f(xk+1) ≤ f(xk), so that f(xk) converges
monotonically from above to f(x∞).

There are two cases in treating the logarithm terms, depending on whether or not
x∞, the limit point of {xk}, is strictly feasible.

Case 1. If x∞ is strictly feasible, the sum of logarithms of the constraints at
xk remains finite as k → ∞. It is easy to see that in this case limk→∞B(xk, µk) =
f(x∞) = f∗, where the final equality was derived earlier in the proof, and result (v)
is proved.

Case 2. If x∞ is not strictly feasible, at least one constraint is converging to zero.
Hence −

∑m
i=1 ln ci(xk) must be positive for all sufficiently large k, which immediately

implies that B(xk, µk) > f(xk). Since f(xk) ≥ f(xk+1) and limk→∞ f(xk) = f∞, the
values B(xk, µk) are thus bounded from below.
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Because 0 < µk+1 < µk and −
∑m
i=1 ln ci(xk) > 0 for k large enough, we have

−µk+1

m∑
i=1

ln ci(xk) < −µk

m∑
i=1

ln ci(xk), so that B(xk, µk+1) < B(xk, µk).

Using this relation and the minimizing property of xk+1 gives

B(xk+1, µk+1) ≤ B(xk, µk+1) < B(xk, µk).

Letting Bk denote B(xk, µk), we see that the sequence {Bk} is monotonically de-
creasing and bounded from below, and consequently must converge monotonically
from above to a limit, say B∞, where B∞ ≥ f∞ and f∞ denotes f(x∞).

We wish, finally, to show that B∞ = f∞. Suppose instead that B∞ > f∞ and
define ζ = 1

2 (B∞ − f∞), so that ζ > 0. Because f is continuous, there would then be
a neighborhood of x∞ in which, for all x in the neighborhood,

(3.14) f(x) ≤ f∞ + ζ = B∞ − ζ.

Consider a specific strictly feasible point x̄ in this neighborhood; such a point must
exist because x∞ is either strictly feasible or lies in the closure of strict(F). By
definition of xk, B(xk, µk) is the smallest value of B(x, µk) for all x ∈ strict(F) ∩ S,
which means that

(3.15) B(xk, µk) ≤ B(x̄, µk) = f(x̄) − µk

m∑
i=1

ln ci(x̄).

Further, strict feasibility of x̄ implies that
∑m
i=1 ln ci(x̄) is finite. Because µk > 0 and

µk → 0, there must be an integer K such that, for k ≥ K,

−µk

m∑
i=1

ln ci(x̄) < 1
2ζ.

Combining this relation with the fact that f(x̄) ≤ B∞ − ζ (from (3.14)), it follows
from (3.15) that

B(xk, µk) < B∞ − ζ + 1
2ζ = B∞ − 1

2ζ,

which contradicts the monotonic convergence of {Bk} to B∞ from above. We conclude
that B∞ = f∞, verifying the second equality in result (v) when x∞ is not strictly
feasible.

On the bright side, Theorem 3.10 appears to be, and is, very strong. It implies, in
particular, that a barrier function method can converge to the solution of constrained
problems for which the usual sufficient conditions (see section 2.4) do not hold. Barrier
methods can converge, for example, when the constrained minimizer is not locally
unique or does not satisfy a constraint qualification.

In the spirit of full disclosure, however, we need to note what has not been proved.
Even within the compact set S whose existence is confirmed by the theorem, it is
not necessarily true that every sequence of minimizers {yk} of the barrier function
converges to a solution x∗ of the original problem, even though yk produces the
smallest value of B(x, µk) in strict(F) ∩ S; we know only that there is a convergent
subsequence. Furthermore, it would be impossible in practice to guarantee that yk
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has been found rather than some other local minimizer of B(x, µk), and we must
be content with sequences of local unconstrained minimizers of the barrier function.
Unfortunately, these sequences may converge to points that are not local constrained
minimizers.

This undesirable situation can happen when there are topologically inconsistent
points. Consider the simple problem containing the badly behaved constraints (3.9)
discussed earlier,

minimize x subject to x2 ≥ 0, x + γ ≥ 0,

whose unique solution is obviously the point x∗ = −γ. The barrier function B(x, µ)
has two feasible minimizers:

x(µ) = 1
2

(
3µ− γ ±

(
(3µ− γ)2 + 8γµ

)1/2)
.

For µ → 0, the sequence corresponding to the negative square root converges to −γ,
the unique solution of the constrained problem. However, the minimizing sequence
corresponding to the positive square root converges to the origin, which is a topolog-
ically inconsistent point but not a constrained minimizer.

Anomalous convergence in the barrier minimizers is not limited to topological
inconsistencies. Consider, for instance, a problem given in [32, p. 399]:

(3.16) minimize x1 + x2 subject to x1x2 ≥ 0.

The feasible region consists of the upper right and lower left quadrants, and the
objective function is unbounded below in the feasible region. Yet there is a minimizing
sequence of the barrier function that converges to the origin. The failure does not
result from topological inconsistency (see Definition 3.4), since the origin is not an
interior point of F . Rather, the failure can be attributed to the first peculiarity of the
logarithmic interior function noted in section 3.2. The logarithmic interior function
for the constraint x1x2 ≥ 0 is the same as for the two constraints x1 ≥ 0 and x2 ≥ 0,
and the barrier function has no way to make the distinction. If the problem contained
these two separate constraints, the origin would indeed be the (unique) solution.

3.4. The Barrier Trajectory. The major purpose of this section is to prove The-
orem 3.12, which summarizes conditions under which a sequence x(µ) of barrier mini-
mizers not only converges to x∗ but also defines a differentiable path to x∗. Depending
on the context, this path is called either the central path or the barrier trajectory ; we
shall use these terms more or less interchangeably. The term “central path” entered
the broad optimization lexicon via the interior-point revolution, following from anal-
ysis of points that satisfy perturbed complementarity conditions for linear programs.
It turns out that, modulo the presence of equality constraints in standard-form linear
programs, these are precisely analogous to the relations that hold at barrier function
minimizers as µ → 0—hence the older term “barrier trajectory,” which tends to be
used primarily when discussing nonlinear optimization. The central path can be de-
fined without mentioning barrier functions, but in our view it is helpful to remember
the connections.

The results in Theorem 3.12 were proved in [33, 110] for the case when the LICQ
and strict complementarity hold at x∗. They were recently proved in [122] when only
the MFCQ holds.

In sharp contrast to Theorem 3.10, which proved general results under a minimal
set of assumptions, our focus now is on what happens under favorable circumstances,



INTERIOR METHODS 553

and accordingly we impose conditions strong enough to ensure that x∗ is an isolated
local constrained minimizer. One of these, that the MFCQ holds at x∗, guarantees
that x∗ is in the closure of the strictly feasible region, as we now show.

Lemma 3.11 (implication 4 of MFCQ). If the MFCQ holds at a feasible point x̂
that does not lie in strict(F), then x̂ lies in the closure of strict(F).

Proof. To show that x̂ lies in the closure of strict(F), we verify that every neigh-
borhood of x̂ contains strictly feasible points. It follows from continuity of c(x) that
the constraints inactive at x̂ remain inactive in a sufficiently small neighborhood. Be-
cause the MFCQ holds at x̂, there is a vector p such that JA(x̂)p > 0. By continuity
of c(x),

ci(x̂ + αp) = ci(x̂) + α∇ci(x̂)T p + o(α‖p‖).

Hence ci(x̂ + αp) > 0 for all sufficiently small α and all i ∈ A(x̂), and thus there are
strictly feasible points in every neighborhood of x̂.

Theorem 3.12 (properties of the central path/barrier trajectory). Consider the
problem of minimizing f(x) subject to c(x) ≥ 0. Let F denote the feasible region, and
assume that the set strict(F) of strictly feasible points is nonempty. Let x∗ be a local
constrained minimizer, with g∗ denoting g(x∗), J∗ denoting J(x∗), and so on, and let
A denote A(x∗). Assume that the following sufficient optimality conditions hold at
x∗:

(a) x∗ is a KKT point, i.e., there exists a nonempty set Mλ of Lagrange multi-
pliers λ satisfying

Mλ = {λ : g∗ = J∗Tλ, λ ≥ 0, and c(x∗) · λ = 0};

(b) the MFCQ (Definition 2.10) holds at x∗, i.e., there exists p such that J∗A p > 0,
where J∗A denotes the Jacobian of the active constraints at x∗; and

(c) there exists ω > 0 such that pTH(x∗, λ)p ≥ ω‖p‖2 for all λ ∈ Mλ and all
nonzero p satisfying g∗T p = 0 and J∗A p ≥ 0, where H(x∗, λ) is the Hessian of the
Lagrangian (2.11).

Assume that a logarithmic barrier method is applied in which µk converges mono-
tonically to zero as k → ∞. Then

(i) there is at least one subsequence of unconstrained minimizers of the barrier
function B(x, µk) converging to x∗;

(ii) let {xk} denote such a convergent subsequence, with the obvious notation that
cki denotes ci(xk), and so on. Then the sequence of barrier multipliers {λk}, whose
ith component is µk/c

k
i , is bounded;

(iii) limk→∞ λk = λ̄ ∈ Mλ.
If, in addition, strict complementarity holds at x∗, i.e., there is a vector λ ∈ Mλ

such that λi > 0 for all i ∈ A, then
(iv) λ̄A > 0;
(v) for sufficiently large k, the Hessian matrix ∇2B(xk, µk) is positive definite;
(vi) a unique, continuously differentiable vector function x(µ) of unconstrained

minimizers of B(x, µ) exists for positive µ in a neighborhood of µ = 0; and
(vii) limµ→0+ x(µ) = x∗.
Proof. We prove this theorem in stages, starting with results (i)–(iii), which do

not require strict complementarity.
The properties assumed about x∗ ensure that it is an isolated constrained mini-

mizer (Theorem 2.23). Because the MFCQ holds at x∗, we know from Lemma 3.11
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that x∗ is in the closure of strict(F). Theorem 3.10 consequently applies to x∗ and
implies that there is at least one subsequence of unconstrained minimizers of B(x, µk)
converging to x∗. This proves (i).

Let {xk} denote such a convergent sequence, with redefinition of k as necessary,
so that limk→∞ xk = x∗. As convenient, we denote quantities associated with xk by a
subscript or superscript k; the subscript i denotes the ith element. Thus, cki denotes
ci(xk), ∇cki denotes the ith row of the matrix Jk, and so on.

Each xk is an unconstrained minimizer of B(x, µk), which means that the gradient
of the barrier function vanishes at xk:

(3.17) gk =
m∑
i=1

∇cki λ
k
i , where λki =

µk
cki

.

Because ck > 0 (from Theorem 3.10, result (ii)), λki is strictly positive for any µk > 0.
Suppose that constraint i is inactive at x∗. Then, because xk converges to x∗,

(3.18) lim
k→∞

cki = ci(x
∗) > 0, and hence lim

k→∞
λki = 0.

If no constraints are active, we have verified (ii).
Otherwise, at least one constraint is active. Let the positive numbers !k and vki

be defined as

!k =
m∑
i=1

λki and vki =
λki
!k

.

Note that vki > 0 and
∑m
i=1 v

k
i = 1, so that vki ≤ 1. Since !k > 0 and (3.17) holds at

xk, we have

(3.19)
1
!k
gk −

m∑
i=1

∇cki v
k
i = 0.

As k → ∞, the sequence {vki } is bounded for i = 1, . . . ,m and accordingly contains a
convergent subsequence, whose indices we relabel if necessary.

Now we show that lim supk→∞ !k, denoted by !̂, must be finite. Suppose not, i.e.,
that {!k} is unbounded above, and consider (3.19) as k → ∞. Because xk converges to
x∗, ∇cki converges to ∇c∗i . Under the assumption that !k is unbounded, the following
relation must hold for any set {v̂i} of limit points of {vki }:

(3.20)
m∑
i=1

∇c∗i v̂i = 0, where v̂i ≥ 0 and
m∑
i=1

v̂i = 1.

Because v̂i = 0 if constraint i is inactive at x∗, the first relation in (3.20) states
that a nonnegative linear combination of the active constraint gradients at x∗ is
zero, with at least one positive coefficient, since v̂ satisfies the last condition in (3.20).
However, since the MFCQ holds, we know from Lemma 2.12 that a nonnegative linear
combination of the active constraint gradients can vanish only if every coefficient is
zero—a contradiction, showing that !̂ is finite.

Finiteness of !̂ implies that each component λki is bounded for all k, proving (ii).
As a result, the sequence {λki } has at least one limit point, say λ̄i, with λ̄i ≥ 0. It
follows from convergence of xk to x∗, (3.17), and (3.18) that g∗ = J∗T λ̄. Since λ̄ ≥ 0
and c∗ · λ̄ = 0, it follows that λ̄ ∈ Mλ, proving (iii).

We postpone the proofs of the remaining parts until after a short discussion of
strict complementarity.
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3.5. Strict Complementarity. The stronger assumption of strict complementar-
ity at x∗ (Definition 2.6) means that there is a multiplier λ in Mλ with the property
that λi > 0 for all i ∈ A. When strict complementarity holds, Lemma 2.8 shows that
condition (c) of Theorem 3.12 can be stated in a simpler form, where the definiteness
of the Lagrangian Hessian is restricted only to the null space of J∗A .

Theorem 3.12, condition (c′). For all λ ∈ Mλ, there exists ω > 0 such that

(3.21) pTH(x∗, λ)p ≥ ω‖p‖2

for all λ ∈ Mλ and all nonzero p satisfying g∗T p = 0 and J∗A p = 0.
This condition can be stated conveniently in terms of NA, a matrix whose columns

form a basis for the null space of J∗A . The property (3.21) is equivalent to stating that

(3.22) NT
A H(x∗, µ)NA is positive definite,

or, in words, that the reduced Hessian of the Lagrangian is positive definite.
To prove (iv) of Theorem 3.12, that the limiting multiplier estimate of the barrier

method is strictly positive, we first prove an intermediate result: strict complemen-
tarity implies that xk must converge to x∗ at least as fast as µk converges to zero,
namely,

µk
‖xk − x∗‖ ≥ M > 0 or, equivalently, ‖xk − x∗‖ = O

(
µk
)
.

Lemma 3.13 (implication 2 of strict complementarity). Assume that the condi-
tions of Theorem 3.12 are satisfied and, in addition, that strict complementarity holds
at x∗. Then ‖xk − x∗‖ = O

(
µk
)
.

Proof. This result will be proved by contradiction, by showing that the relation-
ship µk/‖xk − x∗‖ → 0 cannot hold.

Let us define δk and sk from

(3.23) xk = x∗ + δk = x∗ + ‖xk − x∗‖sk, so that δk = xk − x∗, sk =
δk

‖δk‖
,

and ‖sk‖ = 1. Boundedness of ‖sk‖ means that there must be a convergent subse-
quence. Relabeling if necessary, we have limk→∞ sk = s.

Because f and {ck} are twice-continuously differentiable, we have the usual first-
order Taylor expansions around xk and x∗:

f∗ = fk − δTk gk + O
(
‖δk‖2) and fk = f∗ + δTk g

∗ + O
(
‖δk‖2);(3.24)

c∗i = cki − δTk∇cki + O
(
‖δk‖2) and cki = c∗i + δTk∇c∗i + O

(
‖δk‖2).(3.25)

Let A denote A(x∗). Since cki > 0, it must be true that (∇cki )T sk ≥ 0 for all i ∈ A,
so that J∗A s ≥ 0.

The desired result follows from a combination of mean-value theorems for scalar-
valued functions, properties of the barrier minimizers, and strict complementarity.

To begin, we obtain a relationship between the difference in objective values
fk − f∗ and the sizes of µk and ‖xk − x∗‖ by writing

(3.26) fk − f∗ = fk − f∗ −
m∑
i=1

λki (cki − c∗i ) +
m∑
i=1

λki c
k
i −

m∑
i=1

λki c
∗
i .
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Using (3.24) and (3.25) gives

(3.27) fk − f∗ = δTk

(
k −

m∑
i=1

λki∇cki

)
+

m∑
i=1

λki c
k
i −

m∑
i=1

λki c
∗
i + O

(
‖δk‖2).

By definition of xk, gk −
∑m
i=1 λ

k
i∇cki = 0 and

∑m
i=1 λ

k
i c
k
i = mµk. Further, since

c∗i = 0 for i ∈ A and λki = O
(
µk
)

for i /∈ A, relation (3.27) may be written as

fk − f∗ = O
(
µk
)

+ O
(
‖xk − x∗‖2)

.

Dividing by ‖xk − x∗‖, we have

(3.28)
fk − f∗
‖xk − x∗‖ =

O
(
µk
)

‖xk − x∗‖ + O
(
‖xk − x∗‖

)
.

Now we derive a second expression for fk − f∗ using a mean-value theorem:

fk − f∗ = g(x∗ + θδk)T δk = ‖xk − x∗‖ g(x∗ + θδk)T sk

for some θ satisfying 0 ≤ θ ≤ 1. Combining this with (3.28), we obtain

(3.29)
fk − f∗
‖xk − x∗‖ = g(x∗ + θδk)Tsk =

O
(
µk
)

‖xk − x∗‖ + O
(
‖xk − x∗‖

)
.

Note that (3.28) and (3.29) are valid without strict complementarity.
Now we make the assumption (to be proved not to hold) that µk/‖xk − x∗‖ → 0

as k → ∞. In this case, taking the limit in (3.29) and invoking continuity of g, it
follows that

(3.30) lim
k→∞

fk − f∗
‖xk − x∗‖ = 0 and g∗T s = 0.

This relation is interesting because we have assumed strict complementarity, and
we know that J∗A s ≥ 0. Hence we can apply Lemma 2.8, which says that s satisfies
g∗T s = 0 and J∗A s ≥ 0 only if J∗A s = 0. Hence, if µk = o

(
‖xk − x∗‖

)
, it must be true

that J∗A s = 0.
We now examine the consequences of the property that J∗A s = 0. Another version

of the mean-value theorem, this time applied to the Lagrangian function expanded
around x∗ for a fixed value of its second argument, tells us that

∇L(xk, λ̄)T δk = ∇L(x∗, λ̄)T δk + 1
2δ
T
k∇2L(x∗ + θδk, λ̄)δk

for some θ ∈ [0, 1], where λ̄ is the limit point of {λk} whose existence was proved
earlier. Since λ̄ ∈ Mλ, we know that ∇L(x∗, λ̄) = 0, and thus

∇L(xk, λ̄)T δk = 1
2δ
T
k∇2L(x∗ + θδk, λ̄)δk.

Recall that δk = sk‖δk‖, so that this expression may be written as

‖δk‖ ∇L(xk, λ̄)T sk = 1
2‖δk‖

2 sTk∇2L(x∗ + θδk, λ̄)sk.

As k → ∞, sk → s, and we have shown that J∗A s = 0 if µk = o
(
‖xk − x∗‖

)
. Because of

this property, positive-definiteness of the Hessian of the Lagrangian along directions
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orthogonal to J∗A (see (3.21)), continuity of ∇2L, and the fact that ‖sk‖ = 1, we
conclude that there is a positive number ω such that

∇L(xk, λ̄)T sk ≥ ω‖δk‖.

Dividing by ‖δk‖, we obtain

(3.31)
∇L(xk, λ̄)T sk

‖δk‖
≥ ω.

We now derive a different form for ∇L(xk, λ̄)T sk by noting that gk =
∑

λki∇cki ,
which means that

(3.32) ∇L(xk, λ̄) = gk −
m∑
i=1

λ̄i∇cki =
m∑
i=1

(λki − λ̄i)∇cki .

For i /∈ A, λki = O
(
µk
)

and λ̄i = 0. Consequently, as k → ∞,∑
i/∈A

(λki − λ̄i)∇cki = O
(
µk
)
.

For i ∈ A, we use the expansion ∇cki = ∇c∗i + O
(
δk
)
. Since λki is bounded and

converging to λ̄, we have∑
i∈A

(λki − λ̄i)∇cki =
∑
i∈A

o
(
1
)
∇c∗i + o

(
δk
)
.

Combining these results for active and inactive constraints in (3.32) thus gives, for
sufficiently large k,

∇L(xk, λ̄) = O
(
µk
)

+
∑
i∈A

o
(
1
)
∇c∗i + o

(
δk
)
.

Recalling the (temporary) conclusion that J∗A s = 0, where s is the limit of the unit
vectors δk/‖δk‖, the inner product of ∇L(xk, λ̄) and s satisfies

∇L(xk, λ̄)T s = O
(
µk
)

+ o
(
δk
)
, so that

∇L(xk, λ̄)T s
‖δk‖

=
O
(
µk
)

‖δk‖
+ o
(
1
)
.

Because we have assumed that µk/‖δk‖ → 0, it follows that

∇L(xk, λ̄)T s
‖δk‖

→ 0.

But this contradicts (3.31), which asserts that the same ratio is strictly positive in
the limit. We conclude that the relation µk = o

(
‖xk − x∗‖

)
does not hold, thereby

proving that ‖xk − x∗‖ = O
(
µk
)
.

Having shown that µk = O
(
‖xk − x∗‖

)
, we proceed to show that the barrier

multipliers converge to a strictly complementary multiplier.
Theorem 3.12, result (iv). If strict complementarity holds, then λ̄A > 0.
Proof. Let us define tk as

(3.33) tk =
xk − x∗

µk
, so that xk = x∗ + µktk, with ‖tk‖ =

‖xk − x∗‖
µk

.
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Lemma 3.13 has just shown that µk/‖xk − x∗‖ ≥ M > 0, which implies that ‖tk‖ is
bounded, i.e., that ‖tk‖ ≤ M1 for some constant M1. Boundedness of ‖tk‖ means that
there is a convergent subsequence, whose limit will be denoted by t, with limk→∞ tk =
t, relabeling the indices if necessary.

We show next that ‖tk‖ is bounded away from zero by expanding the ith constraint
around x∗ for i ∈ A(x∗). Since c∗i = 0, c(·) is smooth, and cki ≥ 0, we have

(3.34) cki = µk(∇cki )T tk + O
(
µ2
k‖tk‖2) for i ∈ A(x∗),

where we know that (∇cki )T tk ≥ 0. Using the definition λki = µk/c
k
i , it follows that

(3.35) λki =
1

(∇cki )T tk + µkO
(
‖tk‖2

) for i ∈ A(x∗).

Because λki is bounded for all i, as shown previously, the denominator of (3.35) must
be bounded away from zero, showing that ‖tk‖ cannot converge to zero, i.e.,

(3.36) ‖tk‖ ≥ M2 > 0.

Since {tk} is bounded and µk → 0, the term µkO
(
‖tk‖2

)
converges to zero. Bound-

edness of λki then implies that (∇cki )T tk cannot converge to zero for i ∈ A(x∗). Thus
J∗A t > 0.

Putting together the result that 0 < M2 ≤ ‖tk‖ ≤ M1 and the fact that µk → 0,
we see that the limiting barrier multiplier λ̄i must satisfy

(3.37) λ̄i =
1

(∇c∗i )T t
for i ∈ A(x∗).

Because J∗A t > 0, it follows that λ̄i > 0 if constraint i is active. This proves (iv) of
Theorem 3.12.

There is an immediate and useful corollary.
Corollary 3.14. Under assumptions (a)–(c) of Theorem 3.12 and the added

assumption of strict complementarity at x∗, ‖xk − x∗‖ = Θ(µk).4

Proof. Lemma 3.13 has just verified that ‖xk − x∗‖ = O
(
µk
)

when strict com-
plementarity holds. The lower bound (3.36) on ‖tk‖ shows that µk = O

(
‖xk − x∗‖

)
,

and the desired result is immediate.
In [122], it is shown that λ̄A converges to the analytic center of the set of strictly

complementary multipliers, i.e.,

(3.38) λ̄A = arg max

{∑
i∈A

lnλi : g∗ = J∗TA λA and λA > 0

}
.

We note for future reference that, following directly from (3.37),

(3.39) (∇c∗i )T t =
1
λ̄i

for i ∈ A(x∗), so that J∗A t = 1 ·/ λ̄A.

This relation is the foundation of the well-known nontangential approach of the barrier
trajectory to x∗; see Figure 4.

Given that λki > 0 for all i ∈ A(x∗), we proceed to verify the remaining results
(v)–(vii) of Theorem 3.12.

4See Definition A.9 for an explanation of the notation Θ(·).
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Theorem 3.12, results (v)–(vii). If strict complementarity holds, then
(v) for sufficiently large k, the Hessian matrix ∇2B(xk, µk) is positive definite;
(vi) a unique, continuously differentiable vector function x(µ) of unconstrained

minimizers of B(x, µ) exists for positive µ in a neighborhood of µ = 0;
(vii) limµ→0+ x(µ) = x∗.
Proof. The Hessian of the barrier function is

(3.40) ∇2B(x, µ) = ∇2f(x) −
m∑
i=1

µ

ci(x)
∇2ci(x) + J(x)TC(x)−2J(x).

Asymptotically, as µk → 0, ∇2B(xk, µk) approaches the sum of the Hessian of the
Lagrangian function (with multiplier λ̄) and a “large” matrix in the range space of the
active constraint gradients. The crucial element in verifying positive-definiteness is
positivity of the barrier multipliers corresponding to active constraints, which implies
that, in effect, the range space of J∗A is fully represented in the barrier Hessian.

We know that λki converges to a positive constant for all i ∈ A, where A denotes
A(x∗). Letting dki denote the ratio µk/(cki )2 = λki /c

k
i , it follows that, for i ∈ A, dki is

unbounded:

(3.41) lim inf
k→∞

dki = lim inf
k→∞

µk
(cki )2

= ∞ for i ∈ A.

For i /∈ A, dki → 0.
Denoting ∇2B(xk, µk) for compactness by Hk

B , we rewrite (3.40) as

Hk
B = ∇2B(xk, µk) = Hk

0 −
m∑
i=1

µk
cki

Hk
i + µkJ

T
k C
−2
k Jk,

where H0 denotes ∇2f and Hi denotes ∇2ci. To determine the properties of Hk
B as

k → ∞, we write it as

Hk
B = H∗ + M∗ + Mk

1 + Mk
2 + Mk

3 , with(3.42)

H∗ = H∗
0 −

m∑
i=1

λ̄iH
∗
i and M∗ = γ

∑
i∈A

∇c∗i ∇c∗Ti = γJ∗TA J∗A ,

where the positive constant γ will be defined later. The remaining three matrices in
(3.42) are expressed as differences involving xk, x∗, and γ:

Mk
1 = Hk

0 −H∗
0 −

m∑
i=1

λki H
k
i +

m∑
i=1

λ̄iH
∗
i , Mk

2 = γ(Jk TA JkA − J∗TA J∗A ), and

Mk
3 =

∑
i∈A

(dki − γ)∇cki (∇cki )T +
∑
i/∈A

dki∇cki (∇cki )T.

The matrix H∗ is the Hessian of the Lagrangian function at (x∗, λ̄). For suf-
ficiently large k, the matrices Mk

1 and Mk
2 become arbitrarily small in norm; this

follows from smoothness of f and {ci}, convergence of xk to x∗, convergence of λk to
λ̄, and (as we show later) boundedness of γ. Because dki is unbounded above for i ∈ A
(see (3.41)), the quantity (dki − γ) is positive for sufficiently large k; hence Mk

3 is the
sum of two positive semidefinite matrices and must itself be positive semidefinite.
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Positive-definiteness of Hk
B follows if H∗ + γJ∗TA J∗A is guaranteed to be positive

definite for some sufficiently large constant γ. Because strict complementarity holds,
we invoke assumption (c′) (see (3.21)), which is that pTH∗p > 0 for all p satisfy-
ing J∗A p = 0. Positive-definiteness of the barrier Hessian then follows directly from
Debreu’s lemma (Lemma A.14), which states that pTH∗p > 0 for all p satisfying
J∗A p = 0 if and only if there is a finite ρ̄ > 0 such that H∗ + ρJTA JA is positive definite
for all ρ ≥ ρ̄. Thus result (v) is proved, showing that ∇2B(xk, µk) is positive definite
and that xk is an isolated unconstrained minimizer of B(x, µk) (Lemma A.7).

To verify the existence of a unique, differentiable function x(µ) for positive µ in
a neighborhood of x(µk), we apply the implicit function theorem (see, for example,
[81, p. 128] and [80, pp. 585–586]) to the n+ 1 variables (x, µ). At (xk, µk), we know
that the following system of nonlinear equations has a solution:

Φ(x, µ) = g(x) − µJTA (x)C(x)−1e.

The Jacobian of Φ with respect to x is the barrier Hessian HB, which was just shown
to be positive definite at (xk, µk). The implicit function theorem then implies that
there is a locally unique, differentiable function x(µ) passing through x(µk) �= xk such
that Φ(x(µ), µ) = 0 for all positive µ in a neighborhood of µk.

Using continuation arguments, it is straightforward to show that the function
x(µ) exists for all 0 < µ ≤ µk for sufficiently large k, which gives result (vi).

Result (vii) is immediate from the local uniqueness of x(µ) and result (i), that xk
is a local unconstrained minimizer of the barrier function.

Local uniqueness of the sequence {xk} has just been proved; let t denote the
limit of the sequence {tk} defined in (3.33). For nonlinearly constrained problems,
the nature of t, the tangent to the barrier trajectory at x∗, has been considered by
various authors, including [109] (assuming the LICQ) and [122] (assuming the MFCQ).
We mention two of its most interesting properties.

1. For any active constraint i, we know from (3.39) that ∇c∗Ti t = 1/λ̄i. Letting
θi denote the angle between t and ∇c∗i , it follows that

(3.43) cos θi ∼
1

‖∇c∗i ‖λ̄i
.

If all active constraint gradients are approximately equal in norm, relation (3.43)
shows that the approach of the barrier trajectory to x∗ is “closer to tangential” for
active constraints with larger multipliers. This phenomenon will be illustrated in
Figure 4.

2. Treating x(µ) as a differentiable function of µ for positive µ in the neighbor-
hood of µ = 0, one can derive the relation

(3.44) H(x∗, λ∗)t = J∗TA w + J∗Tin (C∗
in)−1e,

where J∗in denotes the Jacobian of the inactive constraints at x∗, C∗
in denotes the

diagonal matrix of inactive constraint values at x∗, and w represents the rate of
change along t with respect to µ of the barrier multipliers corresponding to active
constraints. Letting NA denote a basis for the null space of J∗A and multiplying (3.44)
by NT

A , we have

(3.45) NT
A H(x∗, λ∗)t = NT

A J∗Tin (C∗
in)−1e.

Let us write t = J∗TA tA + NAtN , splitting t into components lying in the orthogonal
subspaces range(J∗TA ) and null(J∗A ). Relation (3.39) states that J∗A t = 1 ·/ λ∗A , which
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uniquely specifies J∗TA tA (but not the vector tA, since J∗A does not necessarily have full
row rank). Substituting for t in (3.45), we obtain

NT
A H(x∗, λ∗)NAtN = NT

A J∗Tin (C∗
in)−1e−NT

A H(x∗, λ∗)J∗TA tA.

Our assumptions of second-order sufficiency and its special form due to strict com-
plementarity (see (3.21) and (3.22)) imply that NT

A H(x∗, λ∗)NA is positive definite,
so that tN is uniquely determined. Further details about t are given in [122].

3.6. The Effects of Null Multipliers. When a null multiplier is present, i.e., if
there is an i ∈ A(x∗) such that λi = 0 for all λ ∈ Mλ, the properties of the barrier
trajectory change dramatically.

The situation in which the LICQ holds at x∗ and there is a null multiplier was
considered in [61]; the case of null multipliers when x∗ satisfies the MFCQ is analyzed
in detail in [122]. We summarize only the main points of interest, which are proved
in [122].

At a critical juncture in the proof of Lemma 3.13, strict complementarity was
needed to prove that J∗A t > 0. This eventually allowed us to show that ‖xk − x∗‖ =
Θ(µk), the powerful result ensuring that (for example) the constraint values and
barrier multipliers at xk differ from their optimal values by approximately a constant
times µ. Sadly, this property is destroyed if there is even a single null multiplier.
Consider the very simple example of minimizing 1

2x
2 subject to x ≥ 0. The unique

optimal solution is x∗ = 0, the constraint is active, the LICQ holds (trivially), and
λ∗ = 0. The barrier function is

B(x, µ) = 1
2x

2 − µ lnx, with x(µ) − x∗ =
√
µ.

This example suggests (correctly) the general property that

µk = Θ(‖xk − x∗‖2
);

see [122] for details. In the null-multiplier case when the MFCQ holds, the barrier
trajectory becomes tangent to the strongly active constraints (those with nonnull
multipliers); see Figure 4. Further, an example in [69] illustrates that in this case
the barrier multipliers do not necessarily converge to the analytic center of the set of
strongly complementary multipliers, as they do (3.38) with strict complementarity.

3.7. More on theCentral Path/Barrier Trajectory. The most convincing way to
understand barrier trajectories is to see them. We now give examples to illustrate the
differences in the central path’s approach to the solution when strict complementarity
does, and does not, hold.

An instance of the first is

(3.46) minimize
x∈R2

1
2 (x2

1 + x2
2) subject to 5

4x1 + x2 ≥ 4 and x2 ≥ 2,

where both constraints are linear. The unique solution is x∗ = (1.6, 2). Both
constraints are active at x∗, the LICQ holds, and the optimal multiplier is λ∗ =
(1.28, 0.72)T . The left side of Figure 4 shows the contours of the objective function,
the two constraints, and the cerulean trajectory of barrier minimizers converging to
x∗. It is evident that the barrier trajectory is approaching the solution nontangentially
to both active constraints. In contrast, the problem

(3.47) minimize
x∈R2

1
2 (x2

1 + x2
2) subject to x1 + x2 ≥ 4 and x2 ≥ 2,
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Fig. 4 On the left, contours of f(x) and the boundary of the feasible region are shown for problem
(3.46), along with the nontangential approach of the barrier trajectory. On the right, the
tangential approach of the path of barrier minimizers is shown for the null-multiplier problem
(3.47).

stated earlier as (2.6), is the same as (3.46) except that one of the constraints has been
perturbed so that it has a null multiplier. (Note that the LICQ holds at the solution
for both problems.) For (3.47), the red trajectory of barrier minimizers approaches
the strongly active constraint (the one with the nonnull multiplier) tangentially.

Appealing as the results of Theorem 3.12 are, we would be remiss to suggest
that the barrier trajectory always behaves as well as in the examples depicted so far.
As one would expect, analysis of the central path becomes more complicated as we
increase the generality of the functions involved. For the case of linear programming,
the central path is ultimately smooth and its approach to the optimal face is now
completely understood (see, for example, [55]). For convex problems satisfying the
LICQ, the barrier trajectory converges to the analytic center of the set of optimal
solutions [70], but the very recent examples of [48] show that the central path can
behave in strange and unexpected ways even for infinitely smooth convex functions.

Despite these caveats, the “centered” nature of the barrier trajectory, which pro-
vides at its best a differentiable, noncombinatorial approach to the solution, is ar-
guably the great strength of barrier and barrier-related methods such as primal-dual
methods (see section 5). Accordingly we present a different perspective on the central
path as a preview of things to come.

At xµ, the barrier gradient vanishes, which means that

(3.48) ∇B(xµ, µ) = g(xµ) − µJ(xµ)TC(xµ)−1e = 0.

This relationship explicitly involves only x, the so-called primal variables. (Note
the linear programming terminology.) An alternative interpretation can be derived
by defining m new independent variables λ and writing (3.48) as n + m nonlinear
equations in x and λ:

(3.49)

(
g(x) − J(x)Tλ
C(x)λ− µe

)
=

(
0
0

)
.
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Recalling that the barrier multipliers λµ are defined as µ ·/ c(xµ), it is easy to see
that (xµ, λµ) satisfy the nonlinear equations (3.49). Conversely, given any solution
(x, λ) of (3.49), the associated vector x is a stationary point of the barrier function
with parameter µ.

We mentioned earlier (see (3.8)) that the condition c(xµ) · λµ = µ represented in
the second equation of (3.49) can be interpreted as “perturbed complementarity” be-
cause, as µ → 0, this relation corresponds to an increasingly accurate approximation
of the complementarity condition c(x∗) · λ∗ = 0 that holds at x∗. An interesting his-
torical note is that Fiacco and McCormick [33, p. 40] present the perturbed optimality
conditions (3.49) as one possible motivation for the logarithmic barrier function.

We caution the reader that the primal-dual interpretation reflected in equations
(3.49), where x are the primal variables and λ the dual variables, captures only some
of the properties of xµ and λµ. In particular, the nonnegativity of c and λ is not
represented, nor are any second-order conditions associated with minimizing the bar-
rier function (rather than simply finding a stationary point). We shall return later to
these issues.

4. Newton’s Method and Barrier Functions. In developing interior methods for
nonlinearly constrained optimization, several aspects of Newton’s method specialized
to barrier functions will be important.

4.1. Background on Newton’s Method. We briefly review the use of Newton’s
method for solving both nonlinear equations and unconstrained optimization prob-
lems.

For the nonlinear equations F (x) = 0, where F is a continuously differentiable
function from R

n to Rn, the Newton step pk from an iterate xk where F ′(xk) is
nonsingular is defined as the step to the zero of the local linear Taylor-series model
of F :

(4.1) F ′(xk)pk = −F (xk).

Similarly, Newton’s method for minimizing a twice-continuously differentiable func-
tion f(x) is based on the local quadratic Taylor-series model

f(xk + p) ≈ f(xk) + gTk p + 1
2p
T∇2f(xk)p,

where gk denotes ∇f(xk). If ∇2f(xk) is positive definite, this quadratic function has
a unique minimizer at xk + pk, where pk satisfies

(4.2) ∇2f(xk)pk = −gk.

In both (4.1) and (4.2), the iterates in a pure Newton method are xk+1 = xk+pk, and
under well-known conditions these iterates converge quadratically to a zero of F (x)
or a minimizer of f(x) (see, e.g., [81]).

Although Newton’s method is famous for its fast local convergence, safeguards
need to be included in any practical Newton method to encourage convergence from a
generic starting point. A common globalization strategy in Newton-based methods for
both nonlinear equations and unconstrained minimization is to include a line search,
so that the new iterate is defined by

(4.3) xk+1 = xk + αkpk

with αk > 0, where αk is chosen to ensure that some suitable merit function is reduced
by the move to xk+1.
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A further issue in line-search methods for unconstrained minimization is what to
do when the current Hessian is not positive definite. Several approaches are widely
used, among the most popular of which are so-called modified Newton methods in
which pk satisfies the linear system

(4.4)
(
∇2f(xk) + E

)
pk = −gk,

where E is a positive semidefinite matrix, usually diagonal, chosen so that ∇2f(xk)+E
is positive definite. An alternative globalization strategy in unconstrained optimiza-
tion, embodied in trust-region methods, is to choose the step pk to minimize the local
Taylor-series model subject to a limitation on the size of ‖p‖, where various norms may
appear in the trust-region constraint (which, as its name suggests, specifies the local
region in which the Taylor-series model can be trusted). See, e.g., [28, 34, 52, 77, 80]
for material on line-search methods, and [25, 28, 34, 80] for discussion of trust-region
methods.

The presentation in section 3.3 focused on unconstrained minimizers of the log
barrier function; hence we consider how those points might be found.

4.2. The Classical Newton Barrier Method. A direct translation of the theory
from section 3 into practice leads to a method in which minimizers xµ of the barrier
function are computed for a sequence of positive barrier parameters µ converging
to zero. Such a method is structured into inner and outer iterations, where the
inner iterations apply some variant of Newton’s method to compute an unconstrained
minimizer of B(x, µ) for a fixed value of µ, and the outer iterations test for convergence
and adjust µ.

In recent algorithms, the idea is to improve efficiency by performing only an inex-
act minimization of the barrier function for each particular µ. With such a strategy,
Newton iterations are executed until a suitable measure of improvement has been
achieved; the barrier parameter is then reduced and the process repeated. The hope
is that only a very small number of inner iterations (perhaps even one) will be needed
for each value of µ.

The n× n classical Newton barrier equations ∇2Bp = −∇B (see (4.2)) are

(4.5)

(
∇2f −

m∑
i=1

µ

ci
∇2ci + µJTC−2J

)
p = −g + µJTC−1e,

where all arguments are evaluated at the current point. We call this the “classical”
method because it was the form used in the 1960s; it is sometimes called a “primal”
method because we are iterating solely on the original problem variables x. This
system can be simplified in form by introducing an auxiliary m-vector π(x, µ), which
can be viewed as a Lagrange multiplier estimate defined at an arbitrary strictly feasible
point.

Definition 4.1 (primal multipliers). At any strictly feasible point x, the vector
π(x, µ) = µ ·/ c(x) is known as the vector of primal multipliers. The dependence of
π on µ may be omitted if µ is obvious.

For any sequence {xk} converging to xµ, it must hold that limk→∞ π(xk, µ) = λµ.
Expressed in terms of π, the barrier gradient and Hessian take the forms

∇B(x, µ) = g(x) − J(x)Tπ(x, µ) and(4.6a)
∇2B(x, µ) = H

(
x, π

)
+ J(x)T Π(x, µ)C(x)−1J(x),(4.6b)
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where H(x, π) is the Hessian of the Lagrangian evaluated with π as the multipliers,
and Π = diag(π1, π2, . . . , πm). These relations indicate that derivatives of the barrier
function are intimately related to those of the Lagrangian evaluated with the primal
multipliers.

At least in theory, the subproblem of minimizing B(x, µ) can be solved through
a line-search or trust-region Newton method based on a quadratic model in which
the gradient and Hessian are given by (4.6). However, several practical issues arise in
applying a general-purpose unconstrained technique to the barrier subproblem.

A significant point that might be overlooked because of our emphasis on uncon-
strained barrier subproblems is that, although xµ is a locally unconstrained minimizer
of the barrier function (see result (ii) of Theorem 3.10), the barrier function cannot
be treated without constraints. Since B(x, µ) exists only at strictly feasible points,
there is always an implicit constraint c(x) > 0 that is not stated formally, but that
nonetheless greatly influences the nature and design of a successful interior method.

For linear and quadratic programming, in which all the constraints are linear, it
is possible to calculate exactly the closest point along p where any constraint becomes
active; permissible steps are then restricted to be strictly less than this value. (This
is the source of the frequently mentioned “0.99” rule in interior methods, meaning
that the initial step is taken as 99% of the distance to the boundary, thereby retaining
strict feasibility for linear constraints.) With nonlinear constraints, the step to the
boundary cannot be calculated explicitly, and in any case its determination may
require additional evaluations of the constraint functions.

Starting at a strictly feasible point x, it is straightforward to reduce α in a line-
search method until x + αp is strictly feasible. But since most general-purpose line-
search methods rely on quadratic, inverse quadratic, or cubic interpolation [72], they
may not be well suited to the extreme behavior of barrier functions, e.g., the sharp
rise near the boundary. Furthermore, a highly nonlinear constraint can be violated at
points lying between two strictly feasible points—a property that creates additional
complications for a standard line search. Various special-purpose line searches have
been proposed for use in this context (see, e.g., [37, 74]). With a trust-region method,
the discovery that the current trust region includes infeasible points typically requires
formulation and solution of a new trust-region subproblem.

4.3. Properties of the Classical Newton Barrier Method.

4.3.1. Condition of the Barrier Hessian. As sketched in section 1.2, the barrier
Hessian ∇2B is well known, even notorious, for being increasingly ill-conditioned and
asymptotically singular as µ → 0. This property was observed for points lying on
the barrier trajectory in the late 1960s [66, 73] and seems to have been a major
reason for the decline in popularity of barrier methods. Despite recent complete
analyses of the ill-conditioning associated with interior methods, its effects remain
widely misunderstood. We therefore discuss them in some detail in this section and
the next.

Using Definition 4.1, the classical Newton barrier equations (4.5) are

(4.7)
(
H(µ) + JT Π(µ)C−1 J

)
p = −g + JTπ(µ),

where all functions are evaluated at x and the argument µ is included for emphasis,
so that

(4.8) π(µ) = µ ·/ c and H(µ) = ∇2f −
m∑
i=1

π(µ)∇2ci.
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First, we examine the nature of the ill-conditioning by considering the barrier
gradient and Hessian near a solution x∗ that satisfies the strong second-order sufficient
conditions of Theorem 2.24, limiting our attention to strictly feasible points x close
to x∗ in the sense that

(4.9) c(x) > 0 and ‖x− x∗‖ ≤ δ for suitably small δ � 1.

For small enough δ, each inactive constraint ci(x) = Θ(1) in this region. (See Defini-
tion A.9 for an explanation of Θ(·) and Ω(·).)

We further assume that x is close enough to the barrier trajectory so that the
smallest active constraint value is not too small compared to µ; formally,

(4.10) cmin
�= min

i∈A
ci(x) = Ω(µ), so that max

i∈A
πi(x) = O

(
1
)
,

where A denotes A(x∗). Under the assumptions of Theorem 3.12, we have that
‖xµ− x∗‖ = Θ(µ). Since our intent is to move from x toward xµ, xµ should be closer
to x∗ than x, so we assume that µ = O

(
δ
)
.

Given that x satisfies (4.9) and µ = O
(
δ
)
, full column rank of JA(x∗)T , continuity

of g(x) and J(x), and the optimality conditions at x∗ imply that the objective gradient
satisfies

g(x) = JA(x)Tλ∗A + O
(
δ
)
, so that g(x) ≈ JA(x)Tλ∗A ,

where JA(x) denotes the Jacobian of the constraints active at x∗. (No constraints are
active at x.) Throughout this discussion, we take for granted that ‖g(x∗)‖ = Θ(1).

When (4.10) applies at x, the primal multiplier πi is Θ(µ) for inactive constraints
and O

(
1
)

for active constraints. Hence we may write

(4.11) ∇B = g − JTπ ≈ JTA λ∗A − JTA πA = JTA λ∗A − µJTA C−1
A e,

where unstarred functions are evaluated at x, and we see that the barrier gradient
lies almost entirely in the range of JA(x)T.

Let Jin denote the Jacobian of the constraints that are inactive at x∗, with
a similar meaning for Cin. Based on the same reasoning used in deriving (4.11),
H(x, π) = O

(
1
)
, where π denotes the primal multipliers (Definition 4.1). At points

satisfying (4.9) and (4.10),

JTΠC−1J = JTA ΠAC
−1
A JA + JTinΠ inC

−1
in Jin,

and the matrix JTΠC−1J will be dominated for sufficiently small µ by JTA ΠAC
−1
A JA,

which is O(1/µ). The barrier Hessian accordingly resembles a large matrix whose
column space is the range of JTA :

(4.12) ∇2B ≈ JTA ΠAC
−1
A JA = µJTA C−2

A JA.

As µ → 0, cA → 0, so that ∇2B becomes unbounded in norm, with its row and
column spaces converging to the row and column spaces of JTA ΠAC

−1
A JA, which is

rank-deficient if mA, the number of active constraints, satisfies 0 < mA < n. A point
to remember is that the ill-conditioning is created not by the size of ∇2B—a matrix
with a huge norm can be well-conditioned—but by its rank-deficiency.

Arguing more formally, one can show that, when evaluated at suitable points
near x∗ for small values of µ, the barrier Hessian has two widely separated sets of
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eigenvalues—mA asymptotically unbounded eigenvalues and n−mA eigenvalues that
are Θ(1). Further, the invariant subspace corresponding to the large eigenvalues is
close to the range of JTA and the complementary invariant subspace corresponding
to the small eigenvalues is close to the null space of JA [111]. The following theorem
summarizes properties of the eigenvalues of ∇2B at “nice” points; further details about
∇2B in a general neighborhood of x∗ are given in [111].

Theorem 4.2 (eigenvalues of the barrier Hessian). Consider a strictly feasible
point xδ satisfying

(4.13) ‖xδ − x∗‖ ≤ δ with δ � 1, µ = O
(
δ
)
, and min ci = Θ(µ) for i ∈ A(x∗),

where δ and µ are sufficiently small. Let mA denote the number of constraints active
at x∗, and assume that 0 < mA < n. Finally, let NA(x) denote a matrix whose
columns form an orthonormal basis for the null space of JA(x), where A is the set of
constraints active at x∗. Then

(i) ∇2B(xδ, µ) is positive definite;
(ii) ∇2B(xδ, µ) has mA eigenvalues that are Θ(1/µ), and n−mA eigenvalues that

are Θ(1); thus cond
(
∇2B(xδ, µ)

)
= Θ(1/µ);

(iii) let {νk} denote the n −mA eigenvalues of NT
A (xδ)H(xδ, π)NA(xδ), which is

the Lagrangian Hessian H(xδ, π) projected into the null space of JA(xδ). The n−mA
Θ(1) eigenvalues of ∇2B(xδ, µ), denoted by ξ1, . . . , ξn−mA , satisfy

(4.14) |ξk − νk| = O
(
µ
)
, k = 1, . . . , n−mA.

Result (iii) is especially interesting because it shows that the bounded (Θ(1))
eigenvalues of the barrier Hessian are close to those of the reduced Hessian of the
Lagrangian, assuming that H(x, π) is close to H(x∗, λ∗). In effect, crucial information
about the reduced Hessian of the Lagrangian function is buried in the barrier Hessian.

At “bad” points inordinately near the boundary (where (4.10) does not hold,
so that some active constraint values are very small relative to µ), the barrier Hes-
sian can become arbitrarily ill-conditioned [111]. This property provides support for
the classical strategy, still valid today, of avoiding iterates that are too close to the
boundary.

Ill-conditioning in the barrier Hessian translates into extreme behavior of the
barrier function. For the problem

(4.15) minimize
x∈R2

3
20x1x2 + x2 subject to 1 − 10x2

1 − x2
2 ≥ 0,

Figure 5 displays the contours of the barrier function very close to the solution, and
very close to the boundary of the active constraint, for µ = 10−2. The smaller the
value of µ, the more the level curves follow the curvature of the nonlinear constraint;
note that the significant nonlinearity of the constraint is disguised by the elongated
scales needed to show the crowded contour lines.

As reflected by the ill-conditioning of the Hessian, it is fair to say that barrier
functions are generically badly behaved for small values of µ. Speaking informally,
the associated widely divergent scaling in different subspaces underlies recent analyses
showing that the sphere of convergence for Newton’s method applied to the log barrier
function is Θ(µ) ([105]; also see [120]). This monotonic decrease in the size of the
neighborhood where the local quadratic model is guaranteed to be accurate confirms
our earlier remarks about the importance of keeping close to the trajectory.
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Fig. 5 This figure shows the contours of the log barrier function for the problem (4.15) for µ = 10−2.
Even for this relatively large value of µ, still a long way from µ = 0, the contours of the
barrier function hug the curvature of the nonlinear constraint.

4.3.2. Numerical Solution of the Classical Newton Barrier Equations. Given
the ill-conditioning just described, it would be entirely reasonable to expect serious
numerical trouble when solving for the Newton step. Since the revival of barrier meth-
ods, however, it has been repeatedly observed that the computed solutions in interior
methods are almost always much more accurate than they should be (see, for example,
[90, 110]). To explain why, numerous papers, e.g., [41, 85, 113, 114, 116, 118, 119],
have examined ill-conditioning in several contexts, including linear programming, lin-
ear complementarity, and primal-dual systems for nonconvex nonlinear optimization.
One of the surprising results that has emerged is that, despite extreme ill-conditioning,
it is usually possible to solve the Newton barrier equations with acceptable accuracy.

To understand the full effect of an ill-conditioned matrix, we need to consider
its computed version. In forming the barrier Hessian in finite precision, errors in the
computed active constraints play a central role, since their values are by definition
converging to zero. For most practical problems, the computed constraint values will
almost certainly be subject to cancellation, except for special cases like simple bound
constraints x ≥ 0, where the constraint and variable have the same value.

The properties of the computed barrier Hessian are exactly analogous to those
analyzed in [113, 119] for the condensed primal-dual Hessian (see (5.4)). A key result is
that, when the active constraints are computed with cancellation error, the computed
barrier Hessian and gradient at “nice” points (in the sense of Theorem 4.2) are likely
to experience relative perturbations much larger than the unit roundoff. But—and
this is the saving grace—these lie almost entirely in the range space of JTA and hence
are not blown up by the ill-conditioning.

For completeness, we quote a result, derived as in [113], about the accuracy of
the computed Newton direction.
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Result 4.1. Consider applying a log barrier method to the problem of minimizing
f(x) subject to c(x) ≥ 0, where the strong sufficient conditions of Theorem 2.24 are
satisfied at x∗. Assume that, for sufficiently small µ,

(i) the barrier Hessian and gradient are evaluated at a strictly feasible point x
satisfying (4.13);

(ii) the value of cmin in (4.13) is sufficiently large relative to the unit roundoff
u so that the chosen factorization of the barrier Hessian runs successfully to
completion;

(iii) the computed constraint functions are subject to cancellation error; and
(iv) the computed step p̃ is obtained by applying a backward-stable direct method

to solve the Newton equations, and any growth factor associated with the
factorization is bounded by a reasonable constant.

Let p denote the exact solution of the Newton equations. As long as ‖p‖ = Ω(δ), then

(4.16) ‖p̃− p‖ ≤ O(u) + ‖p‖O(u/δ).

The (happy) result is that the computed search direction typically differs from
the exact solution by an O(1) multiple of the unit roundoff. Note that even though p̃
and p are similar in norm, they need not display a small relative error when both are
small.

An interesting corollary is that solving alternative, well-conditioned systems such
as (4.21) that are satisfied by the classical Newton barrier step is unlikely to produce
more accurate answers; close to x∗, the computed right-hand side in such a system
will almost always contain absolute errors that are of the order of machine precision,
and so will the computed solution. Hence, even though the alternative matrix is well-
conditioned, the associated computed step is likely to contain absolute errors of order
machine precision—i.e., errors not much smaller than the errors (4.16) resulting from
solving the ill-conditioned Newton barrier system.

To summarize: because of a fortuitous combination of special structure in the
matrix, the right-hand side, and the errors arising in computing them, the much-
feared ill-conditioning of barrier methods is not harmful when the Newton system
(4.5) is solved at reasonable points in a carefully implemented algorithm.

4.3.3. Flaws in the Exact Newton Direction. Knowing that ill-conditioning is
not usually harmful, one might conclude that it makes sense to use a classical Newton
barrier method. However, as we shall now see, serious inefficiencies occur in the
classical barrier method because of fundamental defects in the exact Newton step.

Assume that the strong second-order sufficient conditions of Theorem 2.24 hold
at x∗. Using the approximate expressions (4.11) and (4.12) for the barrier gradient
and Hessian that apply when µ = O

(
δ
)

and x satisfies (4.9) and (4.10), the Newton
equations at x “look like” the following relation, which involves only vectors that lie
in the range of JTA :

(4.17) µJTA C−2
A JAp ≈ −JTA λ∗A + µJTA C−1

A e,

where A denotes the set of constraints active at x∗. Since by assumption JTA has full
column rank at x∗, it also has full column rank near x∗, and may be canceled from
both sides of (4.17). The Newton equations at x are thus (approximately)

(4.18) µC−2
A JAp ≈ −λ∗A + µC−1

A e.
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Fig. 6 For problem (3.4), the exact Newton step is shown for µ = 0.0125, starting at the exact
barrier minimizer x(0.1), which lies on the red barrier trajectory. As predicted, the full
Newton step moves to a point that violates, by a long way, the active ellipsoidal constraint.

For i ∈ A, the approximate Newton equation from (4.18) is

(∇ci)T p ≈ ci −
c2
iλ
∗
i

µ
.

Now suppose that the current iterate x is equal to the exact barrier minimizer
xµ, which means that µ/ci ≈ λ∗i . If we then reduce the barrier parameter to µ̂, where
µ̂ < µ, and compute the Newton step with the barrier parameter taken as µ̂, the
Newton step satisfies

(4.19) (∇ci)T p ≈ −ci

(µ
µ̂
− 1
)
.

When µ exceeds µ̂ by some reasonable factor, e.g., the ratio µ/µ̂ is greater than (say)
2, the relationship (4.19) strongly suggests that taking the full Newton step to x + p
will produce an infeasible point, since the linearized step to the boundary satisfies
(∇ci)T p ≈ −ci. For example, if µ̂ is smaller than µ by a factor of 10, as in a practical
barrier algorithm, then (∇ci)T p ≈ −9ci and the Newton step is likely to produce
substantial infeasibility. (See [22, 112] for further details and comments on the exact
Newton step.)

This phenomenon can be seen in Figure 6, which shows a closeup of the region near
the solution of problem (3.4), along with the (red) trajectory of barrier minimizers.
At the strictly interior barrier function minimizer x(0.1), the green line shows the
exact Newton step corresponding to µ = 0.0125, so that the ratio between old and
new µ is 8. As predicted by our analysis, the full Newton step moves to a significantly
infeasible point. Similar results apply when x is very close to a minimizer of the
barrier function.

Classical barrier methods are indeed inefficient—but, by a strange twist of fate,
ill-conditioning, their longtime hobgoblin, is not the culprit.

4.4. The Augmented Newton Barrier Equations. As noted in section 4.3.1,
the Hessian matrix in the classical Newton barrier equations (4.7) becomes increas-
ingly ill-conditioned as the solution is approached. Instead of solving the classical
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Newton system directly, it is possible to define an augmented or stretched system
that is not inevitably ill-conditioned as µ → 0 (see, e.g., [57]). Recalling the definition

(4.20) H
(
x, π(x, µ)

)
= ∇2f(x) −

m∑
i=1

πi(x, µ)∇2ci(x), with π(x, µ) = µ ·/ c(x),

and using block elimination, it is easy to see that the Newton barrier direction p is
part of the solution of the following (n + m) × (n + m) augmented system:

(4.21)

(
H
(
x, π(x, µ)

)
−J(x)T

Π(x, µ)J(x) C(x)

)(
p

q

)
= −

(
g(x) − J(x)Tπ(x, µ)

0

)
,

where the matrix in (4.21) can be symmetrized using diagonal row and column scaling
(see section 5.1).

Now consider what happens as µ → 0. For a constraint that is inactive at the
solution, πi(µ) → 0 because πi = µ/ci and ci �→ 0. For each such constraint, the
associated row of ΠJ converges to zero. Consequently, the matrix of (4.21) converges
to a matrix that can be symmetrically permuted into a 2 × 2 block-diagonal matrix,
where one diagonal block contains the values of the inactive constraints and the other
diagonal block is

(4.22) MA
�=

(
H
(
x, π(x, µ)

)
−JA(x)T

ΠA(x, µ)JA(x) 0

)
.

Assume now that the strong sufficient optimality conditions of Theorem 2.24 are satis-
fied at x∗: full row rank of JA(x∗), strict complementarity, and positive-definiteness of
NT
A H(x∗, λ∗)NA, where the columns of NA form a basis for the null space of JA(x∗).

Then, πA
(
x(µ), µ

)
→ λ∗A > 0. Hence, ΠA

(
x(µ), µ

)
remains nonsingular as µ → 0.

Lemma A.15 then implies that MA is nonsingular, with a bounded condition number,
as µ → 0.

Expressing the primal Newton step p as part of the solution of (4.21) provides
an alternative perspective on the difficulties discussed in section 4.3.3. The nonlinear
equations associated with the perturbed optimality conditions (3.49) are

g
(
x(µ)

)
− J

(
x(µ)

)T
λ(µ) = 0 and

C
(
x(µ)

)
λ(µ) − µe = 0.

Differentiating x(µ) and λ(µ) with respect to µ leads to the following equations for
the tangent step

(
x′(µ), λ′(µ)

)
:

(4.23)

(
H
(
x(µ), λ(µ)

)
−J(x(µ))T

Λ(µ)J(x(µ)) C(x(µ))

)(
x′(µ)
λ′(µ)

)
=

(
0
e

)
.

Applying the same arguments as in the analysis of (4.21), it follows that if the strong
sufficient optimality conditions of Theorem 2.24 hold at x∗, the matrix of (4.23) has
a bounded condition number as µ → 0.

Consider the situation where a solution
(
x(µ), λ(µ)

)
of the perturbed optimality

conditions (3.49) is known for a particular value µ. Our purpose is to study the
primal Newton step as the barrier parameter is reduced from µ to µ̂, where µ̂ < µ



572 ANDERS FORSGREN, PHILIP E. GILL, AND MARGARET H. WRIGHT

and µ̂ is close to µ. Since the matrix in (4.23) is expected to be well-conditioned,
the tangent step defined by (4.23) should be a good prediction of the step from the
barrier minimizer x(µ) to the barrier minimizer x(µ̂), i.e.,

(4.24) x(µ̂) ≈ x(µ) + (µ̂− µ)x′(µ).

Since π(x, µ) is identical to λ(µ) when x = x(µ), it follows that H
(
x, π(x, µ)

)
=

H
(
x(µ), λ(µ)

)
, and the system (4.23) for the tangent step may be written as

(4.25)

(
H −JT

ΠJ C

)(
x′(µ)
λ′(µ)

)
=

(
0
e

)
,

where H = H
(
x(µ), π

)
with π = π

(
x(µ), µ

)
, and J and C are defined at x(µ).

Now suppose that we proceed to minimize B(x, µ̂) using Newton’s method, start-
ing at x = x(µ). In order to simplify the notation in the augmented barrier equations,
we define π̂ = µ̂ ·/ c

(
x(µ)

)
and Ĥ = H

(
x(µ), π̂

)
. Since x = x(µ) we have π̂ = (µ̂/µ)π.

Consider the situation where the objective is linear, in which case Ĥ = (µ̂/µ)H. If we
take into account that g = µJTC−1e, it follows from (4.21) that the primal Newton
direction p at the point x(µ) satisfies

µ̂

µ
H −JT

µ̂

µ
ΠJ C


(

p

q

)
= −(µ− µ̂)

(
JTC−1e

0

)
,

or, equivalently,

(4.26)

(
H −JT

ΠJ C

)(
p̂

q̂

)
= −(µ− µ̂)

(
0
e

)
,

where p̂ = (µ̂/µ)p and q̂ = q − (π − π̂). Comparing (4.25) and (4.26) we see that the
primal Newton direction satisfies

(4.27) p =
µ

µ̂
(µ̂− µ)x′(µ)

and is a factor of µ/µ̂ larger than the “ideal” step suggested by (4.24). Thus we see
another explanation, from a different view than the one taken in section 4.3.3, of why
the Newton barrier step is poorly scaled immediately after a reduction in the barrier
parameter.

4.5. Extrapolation Methods. The poor step that occurs immediately following
a reduction in the barrier parameter can also be explained intuitively in terms of
the quality of the multiplier estimates provided by a barrier method. When the cur-
rent point x is equal or very close to a barrier minimizer x(µ) for small µ, the value
π(x, µ) = µ ·/ c(x) is likely to be a good estimate of the optimal multipliers, but
π(x, µ̂) = µ̂ ·/ c(x), which is smaller by a factor of µ̂/µ, will be a poor estimate. To
finesse this difficulty, extrapolation methods can be devised that retain the multiplier
estimate π

(
x(µ), µ

)
for the first iteration following a reduction in the barrier param-

eter from µ to µ̂ [7, 30, 58]. At this iteration, instead of the conventional strategy of
solving (4.21) with µ = µ̂, a special step ∆x is defined that satisfies

(4.28)

(
H
(
x, π(x, µ)

)
−J(x)T

Π(x, µ)J(x) C(x)

)(
∆x

∆λ

)
= −

(
g(x) − J(x)Tπ(x, µ̂)

0

)
,
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i.e., each occurrence of µ̂ in the augmented matrix is replaced by the old barrier
parameter µ.

To illustrate the effect of this strategy, consider computing the extrapolated ∆x
at a minimizer x = x(µ) of the barrier function. As in the previous section we
use a new barrier parameter µ̂ such that µ̂ < µ, and define H = H

(
x(µ), π

)
with

π = µ ·/ c
(
x(µ)

)
and π̂ = µ̂ ·/ c

(
x(µ)

)
. Simple rearrangement of the augmented

equations (4.28) and substitution of the relation π̂ = (µ̂/µ)π gives the equivalent
system

(4.29)

(
H −JT

ΠJ C

)(
∆x

∆λ̂

)
= −(µ− µ̂)

(
0
e

)
,

where ∆λ̂ = ∆λ − (π − π̂). Comparing this equation with (4.23) shows that ∆x
satisfies ∆x = (µ̂− µ)x′(µ), giving the desired step from (4.24).

By not updating the multiplier estimates until after the first Newton iteration,
it is thus possible to correct an inherent deficiency of the classical Newton barrier
method. Other forms of extrapolation have been proposed in [33, 78]. A related idea
is to convert the general problem into an equivalent problem with a linear objective
function. (This can be done by creating a new variable ζ, adding the inequality
constraint ζ−f(x) ≥ 0, and minimizing with respect to x and ζ.) With this approach,
the conventional barrier step is computed immediately after a reduction in the barrier
parameter, but the direction is then rescaled by the factor µ̂/µ (see (4.27)). For more
details, see [121].

4.6. Modified Barrier Functions. The unconstrained minimizers of the classical
log barrier function converge to a solution of the original constrained problem only
if the barrier parameter µ goes to zero. By contrast, modified barrier methods [13,
23, 54, 76, 84] define a sequence of unconstrained problems in which the value of µ
remains bounded away from zero, thereby avoiding the need to solve a problem whose
Hessian becomes increasingly ill-conditioned as µ is decreased.

Modified barrier methods are based on the observation that for a fixed positive µ,
the constraints ci(x) ≥ 0 and µ ln

(
1+ci(x)/µ

)
≥ 0 are equivalent, i.e., their associated

sets of feasible points are identical. Moreover, a KKT point for the original problem
(2.1) is also a KKT point for the modified problem

(4.30) minimize
x∈Rn

f(x) subject to µ ln
(
1 + ci(x)/µ

)
≥ 0, i = 1, 2, . . . ,m.

This motivates the definition of the modified barrier function,

(4.31) M(x, λ) = f(x) − µ

m∑
i=1

λi ln
(
1 + ci(x)/µ

)
,

which can be interpreted as the conventional Lagrangian function for the modified
problem (4.30).

A complete theory analogous to that of section 3 exists for the modified barrier
function (see [84]). A crucial property of the modified barrier function is that if λ∗ is a
multiplier vector in Mλ(x∗) (see Definition 2.5, section 2.1), then there exists a fixed
µ∗ such that for all µ < µ∗, the corresponding x∗ is a local minimizer of M(x, λ∗),
which implies that ∇M(x∗, λ∗) = 0 and ∇2M(x∗, λ∗) is positive semidefinite (see
Lemma A.7). It follows that if an optimal multiplier is known, x∗ can be found from
just one unconstrained minimization. (The motivation for modified barrier methods
is similar to that for augmented Lagrangian methods; see, e.g., [34, 52, 77, 80].)
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In practice, neither the optimal multiplier vector nor an upper bound on µ is
known in advance. As a result, a sequence of problems must be solved in which each
M(x, λ) is defined with estimates of λ∗ and µ∗. The multiplier estimate is updated
following each subproblem, and the barrier parameter is reduced if ∇2M(x, λ) is not
sufficiently positive definite. (For details, see, e.g., [13, 54, 76, 84].)

If the barrier parameter needs to be reduced to a new value µ̂, the current x may
not satisfy 1+ ci(x)/µ̂ > 0, and the modified barrier function will not be well-defined.
In this situation, either x must be reset to a known point in strict(F) or a special
feasibility procedure must be used to find an acceptable new point. This difficulty
can be alleviated using the techniques of section 6 for the treatment of inequalities
with no known interior point. However, modified barrier methods may be inefficient
for so-called critical inequalities that must be satisfied at all times.

The problem (4.31) implicitly imposes the shifted constraints c(x) + µe ≥ 0. A
related approach [23] is to define a set of explicit positive shifts {si} and find an
unconstrained minimizer of

(4.32) M(x, λ, s) = f(x) −
m∑
i=1

λisi ln
(
1 + ci(x)/si

)
.

In this case, the value of si can be interpreted as either a shift (see section 6.4) or as
a barrier parameter for the ith constraint.

We have now covered the main features of interior methods based on minimizing
the log barrier function through either the classical Newton equations (4.5) or the
stretched system (4.21). By far the most popular interior-point methods today are
primal-dual methods, which we discuss next.

5. Primal-Dual Interior Methods. Because of inherent flaws in the classical pri-
mal barrier method, primal-dual methods based on properties of x(µ) are increasingly
popular for solving general nonlinear programming problems; see, for example, the
recent papers [14, 24, 31, 39, 46, 93, 97, 103]. As in primal-dual methods for linear
programming, the original (primal) variables x and the dual variables λ (representing
the Lagrange multipliers) are treated as independent.

The usual motivation for primal-dual methods is to find (x, λ) satisfying the
equations that hold at x(µ). In the spirit of the perturbed optimality conditions
(3.49), we seek to compute a feasible solution (x(µ), λ(µ)) of the n + m nonlinear
equations Fµ(x, λ) = 0, where

(5.1) Fµ(x, λ) =

(
g(x) − J(x)Tλ
C(x)λ− µe

)
.

Let v denote the (n + m)-vector of the combined unknowns (x, λ) at a point that
is strictly feasible in both x and λ, i.e., c(x) > 0 and λ > 0. If Fµ(v) denotes the
function Fµ(x, λ), then a Newton direction ∆v = (∆x,∆λ) is defined by the Newton
equations Fµ(v)′∆v = −Fµ(v). After collecting terms on the right-hand side, the
Newton primal-dual equations may be expressed as

(5.2)

(
H(x, λ) −J(x)T

ΛJ(x) C(x)

)(
∆x

∆λ

)
= −

(
g(x) − J(x)Tλ

C(x)
(
λ− π(x, µ)

) ) ,

where H(x, λ) is the Hessian of the Lagrangian evaluated at (x, λ) and π = µ ·/ c(x).
All primal-dual methods are based on more or less the idea just described, which

is sometimes presented in terms of the logarithmic barrier function (hence leading to
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properties of x(µ)) or else in terms of perturbed complementarity (3.8) as a desired
property in itself.

The success of primal-dual methods is due in part to their effectiveness at following
the barrier trajectory. Consider a point (x, λ) =

(
x(µ), λ(µ)

)
on the trajectory, where

µ is now a specific value, and suppose that the barrier parameter is reduced from µ to
µ̂. The primal-dual direction computed at this point with the new barrier parameter
µ̂ (i.e., the solution of (5.2) with µ = µ̂) is tangent to the trajectory at (x, λ). This
property is easily shown by noting that g(x)− J(x)Tλ = 0, λ = π(x, µ), C(x)λ = µe,
and π(x, µ̂) = (µ̂/µ)π(x, µ). Hence ∆x and ∆λ satisfy

(5.3)

(
H(x, λ) −J(x)T

ΛJ(x) C(x)

)(
∆x

∆λ

)
= −

(
0(

µ− µ̂
)
e

)
.

Comparing this equation with (4.23) and (4.24) shows that ∆x = (µ̂ − µ)x′(µ) and
∆λ = (µ̂−µ)λ′(µ). Hence, ∆x and ∆λ will usually give a good approximation of the
step to

(
x(µ̂), λ(µ̂)

)
, the next point on the trajectory. This property does not hold

for the classical barrier method (see the discussion of sections 4.4–4.5).
Naturally, the primal-dual equations (5.2) do not begin to constitute a complete

algorithm for nonlinear programming. Primal-dual methods are the object of active
research today and involve a wide range of algorithmic issues, including

• formulation of the linear system that defines the Newton steps (section 5.1);
• choice of the scheme used to measure and ensure progress toward the solution

(section 5.2);
• treatment of nonconvexity; and
• treatment of equality constraints (section 6).

5.1. Formulation of the Primal-Dual Equations. As in the classical Newton
barrier method, primal-dual methods have a two-level structure of inner and outer it-
erations, with the inner iterations corresponding to the iterations of Newton’s method
for a given value of µ. Primal-dual methods exhibit excellent performance in the
neighborhood of a trajectory of minimizers of the barrier function, which we shall
subsequently call “a trajectory of minimizers.” In particular, under the assumption
of strict complementarity and a suitable constraint qualification, the inner iterations
converge at a Q-quadratic rate; see, e.g., [31]. (See Definition A.10 of Q-quadratic and
Q-superlinear convergence.) Moreover, the inner iterations can be terminated so that
the combined sequence of inner iterates ultimately converges to x∗ Q-superlinearly if
µ is reduced at an appropriate rate; see, e.g., [16, 59, 115, 124, 125].

Beyond the work associated with evaluating the objective function, constraint
functions, and their first and second derivatives, the cost of a primal-dual iteration is
dominated by the cost of solving the linear system (5.2), and effective sparse linear
system software is the key to efficiency for large problems. A common approach is
to use block elimination to obtain smaller “condensed” systems. Since c(x) > 0, the
(2, 2) block of (5.2) may be eliminated to give the following n× n system for ∆x:

(5.4) HC(x, λ)∆x = −
(
g(x) − J(x)Tπ(x, µ)

)
,

where the condensed primal-dual matrix HC(x, λ) is defined as

(5.5) HC(x, λ) �= H(x, λ) + J(x)TD(x, λ)−1J(x), with D(x, λ) = Λ−1C(x).

The matrix D, which is introduced for later convenience, is diagonal and positive
definite, with diagonal elements di = ci/λi. The symmetric matrix HC is equal to the
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barrier Hessian at any minimizer of the barrier function and so is positive definite at
points on the trajectory for sufficiently small µ. Observe that the right-hand side of
(5.4) is the negative gradient of the barrier function, so that (5.4) strongly resembles
the classical Newton barrier equations.

Like the barrier Hessian, HC becomes increasingly ill-conditioned in a highly struc-
tured way as the iterates converge. However, this ill-conditioning is usually harmless
[113, 119]. Furthermore, since the n −mA eigenvalues of HC that are Θ(1) converge
to the eigenvalues of N(x∗)TH(x∗, λ∗)N(x∗) (see [113] for details), HC contains pre-
cisely the information needed by the algorithm to determine whether the computed
iterates are converging to a point satisfying second-order optimality conditions; see
section 2.1. The condensed primal-dual system can be solved by either direct or
iterative methods, using (for example) an off-the-shelf Cholesky factorization or pre-
conditioned conjugate-gradient method.

A drawback with block elimination is that significant fill-in can occur in HC (ex-
cept when the constraints are simple bounds, in which case HC is simply H plus a pos-
itive diagonal matrix). An alternative strategy is to factorize the full (n+m)×(n+m)
system in (5.2) (see, e.g., [43, 49, 50]), typically after symmetrizing the system. A
symmetric matrix can be created by multiplying the second block of equations in (5.2)
by Λ−1 and changing the sign of the second block of columns, giving

(5.6)

(
H JT

J −D

)(
∆x

−∆λ

)
= −

(
g − JTλ

D(λ− π)

)
,

where dependencies on x, λ, and µ have been suppressed for brevity. As µ → 0, the
diagonals of D corresponding to the active constraints grow without bound, and so this
particular form of symmetrization produces an increasingly ill-conditioned system.
However, it can be shown that the ill-conditioning is benign as long as certain direct
methods are used to factorize the matrix. (For more details, see [41, 85, 114, 119].)

The structure of (5.6) is useful in later analysis, but in practical computation it
is better to symmetrize without increasing the condition of the system—for example,
by premultiplying the second block of equations in (5.2) by Λ−1/2 and simultaneously
scaling the λ-variables by Λ−1/2 [91]. This symmetrization gives

(5.7)

(
H JTΛ1/2

Λ1/2J −C

)(
∆x

−Λ−1/2∆λ

)
= −

(
g − JTλ

Λ−1/2C(λ− π)

)
.

If strict complementarity holds at the solution, and the gradients of the active con-
straints are linearly independent, the matrix of (5.7) remains well-conditioned as the
solution is approached. A benign ill-conditioned (diagonal) scaling remains when
forming the right-hand side.

Let K denote the symmetric matrix in (5.6). Since λ > 0, the inertias of the
matrices in (5.6) and (5.7) are identical, by Sylvester’s law of inertia (Lemma A.12).
Moreover, the inertia of the condensed matrix HC can be deduced from either of the
matrices of (5.6) or (5.7), since In(K) = In(H + JTD−1J) + (0,m, 0) by positive-
definiteness of D (Lemma A.16).

If (2.1) is a convex program (Definition A.8), the matrix K of (5.6) is symmetric
quasi-definite, which means that for every row and column permutation P there exists
a factorization PTKP = LBLT , where L is unit lower-triangular and B is diagonal
(see [53, 102]). This allows P to be selected solely for the purposes of obtaining a sparse
factor L. For nonconvex problems, the relevant factorization is PTKP = LBLT ,
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where B is now a block-diagonal matrix with diagonal blocks of order 1 × 1 or 2 × 2.
Efficient sparse-matrix methods are also available for this case (see, e.g., [5, 29]), but
additional overhead is likely since the choice of P depends on numerical considerations
unrelated to the sparsity of the factors.

In the neighborhood of a trajectory of minimizers we can expect nonsingularity of
the primal-dual system and Q-quadratic convergence of the inner iterates. However,
when the problem is nonconvex and the current primal-dual iterate is far from the
trajectory, there is no guarantee that a solution of the primal-dual system or condensed
system exists. Moreover, when a merit function is used to guarantee convergence from
arbitrary starting points, the solution of the primal-dual system—even if it exists—
may not be a direction of improvement for the merit function (see section 5.2). In
this case, the solution of (5.2) or (5.4) is not useful, and systems based on certain
modified Hessians H̄ must be formulated.

5.2. ForcingGlobalConvergence. An important ingredient of a practical primal-
dual method for nonconvex optimization is the technique used to ensure convergence
from a general starting point. One of the most popular choices is to require, through a
line search, a sufficient decrease in a merit function that encourages the early iterates
to move toward the trajectory. Letting ∆v denote the full Newton step (∆x,∆λ), a
typical strategy for a convex program (Definition A.8) is to choose a positive α such
that c(x + α∆x) > 0 and some norm of the residual associated with the nonlinear
equations Fµ(x, λ) = 0 (5.1) is sufficiently reduced, i.e., ‖Fµ(v + α∆v)‖ < ‖Fµ(v)‖
(see, e.g., [31, 115]).

The definition of a merit function for nonconvex problems is considerably more
complicated. Since the majority of primal-dual methods require the provision of
second derivatives, algorithms have all the information necessary to find second-order
points—i.e., points that satisfy the second-order necessary conditions for optimality
(Lemma 2.17). But the merit function ‖Fµ(v)‖ is not appropriate in this case since
it ensures convergence only to points satisfying the first-order conditions.

A number of primal-dual methods use the classical barrier function B(x, µ) as a
merit function (see, e.g., [21, 62]). Since B(x, µ) does not involve the multipliers, these
methods use a separate measure to safeguard the dual variables after the primal step
has been taken. For example, in [21], given an interior primal-dual estimate (x, λ), a
search direction p is generated from the trust-region subproblem:

min
p∈Rn

pT∇B + 1
2p
T (H + JTD−1J)p subject to ‖p‖W ≤ δ,

where ‖p‖W =
(
pTWp

)1/2, with W a positive-definite symmetric approximation to
the condensed Hessian H + JTD−1J . After completion of the primal step, the dual
variables are updated by a separate procedure that ensures convergence of ‖λ−π(x)‖
to zero.

A different approach is based on the merit function

(5.8) Mµ(x, λ) = f(x) − µ

m∑
i=1

ln ci(x) − µ

m∑
i=1

(
ln
(
ci(x)λi

µ

)
+ 1 − ci(x)λi

µ

)
,

which includes both primal and dual variables (see [39]). The function Mµ(x, λ) is
the classical barrier function B(x, µ) augmented by a weighted proximity term that
measures the distance of (x, λ) to the trajectory

(
x(µ), λ(µ)

)
. (Similar proximity

measures have been used in convex programming; see, e.g., [104].) The defining
property of Mµ(x, λ) is that it is minimized with respect to both x and λ at any
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point (x(µ), λ(µ)) on the trajectory of minimizers, which implies that a decrease in
Mµ(x, λ) can be used to encourage progress toward a minimizer of B(x, µ). The
gradient and Hessian of Mµ(x, λ) are

∇Mµ(x, λ) =

(
g − JT (2π − λ)
Λ−1C(λ− π)

)
, ∇2Mµ(x, λ) =

(
HM JT

J µΛ−2

)
,

where π is the vector of primal multipliers and HM = H(x, 2π−λ)+2JTC−1ΠJ . Since(
x(µ), λ(µ)

)
minimizes Mµ(x, λ), it follows that ∇Mµ(x, λ) = 0 and ∇2Mµ(x, λ) is

positive semidefinite at every point on the trajectory. As a result, line-search or
trust-region methods can be devised in which the local quadratic model is Q(s) =
sT∇M + 1

2s
TGs, where

(5.9) G =

(
H + 2JTD−1J JT

J D

)
,

i.e., G is ∇2Mµ(x, λ) with π replaced by λ and µΛ−1 replaced by C. It can be shown
that if H + JTD−1J is positive definite, the solution of Gs = −∇M is the unique
minimizer of Q(s) and that s = (∆x,∆λ) also solves the primal-dual system (5.2).
To see this, note that a premultiplication of both sides of (5.2) by the nonsingular
matrix (

I 2JTD−1

0 Λ−1

)

gives the equivalent equation

(5.10)

(
H + 2JTD−1J JT

J D

)(
∆x

∆λ

)
= −

(
g − JT (2π − λ)

D(λ− π)

)
.

These properties suggest a line-search method that uses the solution of the primal-
dual system (5.2) as a search direction (for more details, see [39]). If G of (5.9) is
sufficiently positive definite, the search direction is the unique solution of Gs = −∇M
(which is equivalent to the primal-dual system (5.2)). Otherwise, the search direc-
tion is a linear combination of two vectors that are by-products of the relevant fac-
torization of (5.6); the first vector is the solution of a related positive-definite sys-
tem Ḡs = −∇M , and the second vector is a direction of negative curvature for the
quadratic model Q(s) (see Definition A.13). If the condensed matrix is formed, it
can be modified “on the fly” during the factorization so that its factors are those
of a positive-definite H̄ + JTD−1J for some implicitly defined H̄ (see, e.g., [40]).
Alternatively, the inertia-controlling LBLT factorization discussed in [38, 39, 42] de-
tects and modifies indefiniteness of the (implicitly defined) matrix H+JTD−1J while
factorizing the full system (5.6). A potential drawback is that the row and column
interchanges needed by the inertia-controlling factorization may interfere with the row
and column ordering used to maintain sparsity, producing factors that are generally
less sparse than those obtained by off-the-shelf sparse-matrix software.

A related strategy is to apply a trust-region method based on finding an approx-
imate solution of the subproblem

minimize
s∈Rn+m

Q(s) subject to ‖s‖T ≤ δ,
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where ‖s‖T = (sTTs)1/2, δ is the trust-region radius, and T is the block-diagonal
matrix T = diag(I,D), where D = Λ−1C as before. In [47], it is shown that a trust-
region step can be computed by factorizing a sequence of systems with diagonally
modified primal-dual structure, where the inertia of these systems can be determined
without recourse to a special factorization method.

A quite different procedure for forcing convergence is to use a filter, first proposed
in [36] in the context of SQP methods. Constrained optimization is a “two-objective”
problem in which we would like to minimize (i) the objective function and (ii) the norm
of the constraint violations. Since these goals usually conflict, most merit functions
define a compromise based on a weighted combination of (i) and (ii). In the SQP
context, a filter is a collection of ordered pairs, each consisting of the objective value
and violated constraint norm at a particular point, with the property that no entry
in the filter is dominated by any other entry. (A point x is said to dominate a point
x̂ if the objective and constraint violation norm at x are both less than or equal
to the corresponding values at x̂.) A new iterate is accepted only if its objective
function value or constraint violation yields a strict improvement compared to some
point in the filter. If the new iterate qualifies, it is added to the filter, and all filter
entries that it dominates are removed. In practice many details need to be specified in
order to define a convergent filter algorithm; we refer the interested reader to [35, 36].
Recently, several algorithms were proposed that use a filter to force convergence of
a primal-dual interior method (see [8, 100, 107]). In the primal-dual context, there
are several ways to define the filter pair, including the norm of the gradient of the
Lagrangian and the proximity norm ‖C(x)λ− µe‖.

6. Treatment of Equality Constraints. We now turn to the general problem

(6.1) minimize
x∈Rn

f(x) subject to ci(x) = 0, i ∈ E and ci(x) ≥ 0, i ∈ I,

which contains both inequality and equality constraints. Although interior-point
methods are, strictly speaking, relevant only to inequality constraints, equality con-
straints are an essential part of the picture for several reasons.

1. Equality constraints may arise naturally as part of an optimization problem
that also contains inequalities—e.g., one wants to find an optimal point with nonnega-
tive coordinates on, not inside, a sphere, or the variables are nonnegative probabilities
that must sum to one.

2. Although our discussion so far has consistently assumed that an initial strictly
feasible point is known, this may not always be true. Inequality constraints arising
in practice can (informally) be divided into two classes: critical inequalities that
must be satisfied at all times and noncritical inequalities that can be violated at
intermediate iterates. Critical inequalities arise when the constraint functions not only
characterize the desired properties of the solution but also define a region in which
the problem statement is meaningful. Fortunately, it is typical in these circumstances
that a strictly feasible point can easily be determined—for example, in structural
design, the initial specification of a bridge may be overengineered to guarantee that
an inordinately heavy load can be carried. However, in other situations a strictly
feasible point may not be available, even if such a point exists.

3. Finally, it is sometimes more efficient to convert an inequality constraint into
an alternative form involving one or more equality constraints. The two most common
reformulations of the single inequality constraint ci(x) ≥ 0 are

ci(x) − si = 0, si ≥ 0, where si is called a slack variable; or
ci(x) + si ≥ 0, si = 0, where si is called a shift variable.
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Both of these forms are “equivalent” to the original inequality in the sense that the
same set of points in x-space satisfies them. We return to them in section 6.4.

6.1. Optimality Conditions for Mixed Constraints. Before turning to algo-
rithms, we state selected definitions and results that are relevant to optimality con-
ditions for the mixed-constraint problem.

6.1.1. KKT Points and Constraint Qualifications. Let cI(x) denote the sub-
vector ci(x), i ∈ I, and let cE(x) denote the subvector ci(x), i ∈ E . The following
is directly analogous to the definition of a KKT point for an inequality-constrained
problem (Definition 2.3).

Definition 6.1 (first-order KKT point). The first-order KKT conditions for
problem (6.1) hold at the point x∗, or, equivalently, x∗ is a (first-order) KKT point,
if there exists a Lagrange multiplier vector λ∗ such that

cI(x
∗) ≥ 0 and cE(x

∗) = 0 (feasibility),(6.2a)
g(x∗) = J(x∗)Tλ∗ (stationarity),(6.2b)

λ∗I ≥ 0 (nonnegativity of the inequality multipliers), and(6.2c)
cI(x

∗) · λ∗I = 0 (complementarity for the inequality constraints).(6.2d)

In contrast to Definition 2.3 for the inequality-constrained case, the Lagrange
multipliers λ∗E associated with the equality constraints are not restricted in sign.
Complementarity holds automatically for equality constraints, which vanish at the
solution.

The first-order KKT conditions may be written more compactly as F (x, λ) = 0,
cI(x∗) ≥ 0, λI ≥ 0, with

(6.3) F (x, λ) =

 g(x) − J(x)Tλ
cI(x) · λI
cE(x)

 .

The KKT conditions are based on the properties of constraint linearizations, and
hence they are necessary conditions for optimality only when the local constraint
linearizations are sufficiently good, i.e., when a constraint qualification holds. (See
the analogous discussion in section 2.2.)

Definition 6.2 (active, inactive, and violated constraints). For the inequality
constraints cI(x) ≥ 0, the ith constraint is said to be active at x̄ if ci(x̄) = 0, inactive
if ci(x̄) > 0, and violated if ci(x̄) < 0. For the equality constraints cE(x) = 0, the ith
constraint is active at x̄ if ci(x̄) = 0 and violated at x̄ if ci(x̄) �= 0. The active set
A(x̄) is the set of indices of the constraints active at x̄, i.e., A(x̄) = {i : ci(x̄) = 0}.
The set of active inequality constraints at x̄ is denoted by AI(x̄), i.e., AI(x̄) = {i ∈
I : ci(x̄) = 0}. The arguments of A and AI are omitted when they are obvious.

Note that all equality constraints are active at any feasible point, i.e., if x̄ is
feasible for (6.1), then A(x̄) = AI(x̄) ∪ E . We now define two standard constraint
qualifications for mixed constraints.

Definition 6.3 (LICQ for mixed constraints). Consider a constrained problem
with constraints ci(x) ≥ 0, i ∈ I, and ci(x) = 0, i ∈ E. The linear independence
constraint qualification holds at the feasible point x̄ if JA(x̄), the Jacobian of the
active constraints at x̄, has full row rank, i.e., if the combined gradients of the active
inequality constraints and the equality constraints are linearly independent.
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Definition 6.4 (MFCQ for mixed constraints). Consider a problem with con-
straints cI(x) ≥ 0 and cE(x) = 0. The Mangasarian–Fromovitz constraint qualifi-
cation holds at the feasible point x̄ if the gradients of the equality constraints at x̄,
∇ci(x̄), i ∈ E, are linearly independent and if there exists a nonzero vector p such
that ∇ci(x̄)T p > 0 for all i ∈ AI(x̄) and ∇ci(x̄)T p = 0 for all i ∈ E.

It should be emphasized that full row rank of JE(x̄) is needed for the MFCQ to
hold at x̄. Further, satisfaction of the LICQ implies that the MFCQ holds as well.

6.1.2. Necessary Optimality Conditions for Mixed-Constraint Problems. As
in the inequality-constrained case, we can state necessary conditions for optimality
only if a constraint qualification holds.

Lemma 6.5 (first-order necessary conditions for a local constrained minimizer).
If x∗ is a local minimizer of problem (6.1) and the MFCQ holds at x∗, then x∗ must
be a KKT point.

By analogy with Definition 2.5 for the inequality case, we define the set of mul-
tipliers that satisfy the KKT conditions of Definition 6.1.

Definition 6.6 (acceptable Lagrange multipliers). Given a KKT point x∗ for
problem (6.1), the set of acceptable multipliers is defined as

(6.4) Mλ(x∗) �= {λ ∈ Rm : g(x∗) = J(x∗)Tλ, λI ≥ 0, and λI · cI(x∗) = 0}.
Using Mλ(x∗), second-order necessary conditions for optimality can be stated

when the LICQ holds.
Lemma 6.7 (second-order necessary conditions). Consider problem (6.1), and

suppose that x∗ is a local minimizer where the LICQ holds. Then there is a vector λ∗
which satisfies λ∗I ≥ 0, c∗I · λ∗I = 0, and g∗ = J∗Tλ∗, and pTH(x∗, λ∗)p ≥ 0 for all p
satisfying J∗A p = 0.

6.1.3. SufficientOptimality Conditions forMixed-Constraint Problems. Sec-
ond-order sufficient optimality conditions for problem (6.1) are similar to the sufficient
conditions for the all-inequality problem; see section 2.4.

Definition 6.8 (second second-order sufficient condition (SSC2)). Consider
problem (6.1). Let x∗ denote a KKT point, so that c∗I ≥ 0 and c∗E = 0. We say that
SSC2 holds at x∗ if for every Lagrange multiplier λ satisfying λI ≥ 0, c∗I · λI = 0,
and g∗ = J∗Tλ, there exists ω > 0 such that pTH(x∗, λ)p ≥ ω‖p‖2 for all nonzero p
such that g∗T p = 0, J∗E p = 0, and J∗AIp ≥ 0.

Proving that x∗ is an isolated local constrained minimizer requires a constraint
qualification. The next theorem is analogous to Theorem 2.23; see [88, Theorem 2.4]
for the proof.

Theorem 6.9 (sufficient conditions for an isolated constrained minimizer). The
point x∗ is an isolated local constrained minimizer of problem (6.1) if

(i) x∗ is a KKT point, i.e., c∗I ≥ 0, c∗E = 0, and there exists a nonempty set Mλ

of multipliers λ satisfying λI ≥ 0, c∗I · λI = 0, and g∗ = J∗Tλ;
(ii) the MFCQ holds at x∗;
(iii) for all λ ∈ Mλ(x∗) of (6.4) and all nonzero p satisfying g∗T p = 0, J∗E p = 0,

and J∗AIp ≥ 0, there exists ω > 0 such that pTH(x∗, λ)p ≥ ω‖p‖2.
Finally, we state the following theorem separately for future reference.
Theorem 6.10 (strong sufficient conditions for an isolated constrained mini-

mizer). The point x∗ is an isolated local constrained minimizer of problem (6.1) if
(i) x∗ is feasible and the LICQ holds at x∗, i.e., JA(x∗) has full row rank;
(ii) x∗ is a KKT point and strict complementarity holds, i.e., the (necessarily

unique) multiplier λ∗ has the property that λ∗i > 0 for all i ∈ AI(x∗);
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(iii) for all nonzero vectors p satisfying JA(x∗)p = 0, there exists ω > 0 such that
pTH(x∗, λ∗)p ≥ ω‖p‖2.

Condition (iii) of Theorem 6.10 is equivalent to stating that the reduced Hessian
of the Lagrangian, NA(x∗)TH(x∗, λ∗)NA(x∗), is positive definite, where NA(x∗) is a
matrix whose columns form a basis for the null space of JA(x∗).

6.2. A Barrier-SQP Approach.

6.2.1. A Very Short Word on SQP Methods. To focus our attention for the
moment on the treatment of equality constraints, we consider the problem

(6.5) minimize
x∈Rn

φ(x) subject to cE(x) = 0,

where the objective is called φ so that it is not confused with f . SQP is a powerful
technique for solving mixed-constraint problems; here we consider how SQP might
be applied to the all-equality problem (6.5). We emphasize that we address only a
minute fraction of what can be said about SQP (see, e.g., [6, 10, 34, 52, 77, 80]) and
that we do not exploit the full generality of SQP methods.

SQP methods are based directly on optimality conditions, and accordingly they
maintain estimates of both x and λ. The step p in the x-variables calculated by a
Newton SQP method (the only kind considered here) can be viewed in two ways.
First, p is the solution of the following quadratic program defined at the point x:

(6.6) minimize
p∈Rn

1
2p
THφ(x, λ)p + ∇φ(x)Tp subject to JE(x)p = −cE(x),

where λ is the current Lagrange multiplier estimate, Hφ(x, λ) is the Hessian of the
Lagrangian for φ and cE ,

(6.7) Hφ(x, λ) �= ∇2φ(x) −
∑
i∈E

λi∇2ci(x),

and JE is the Jacobian of cE . (SQP methods take their name from this interpreta-
tion.) Second, and equivalently, p is part of the Newton step associated with solving
the nonlinear equations that specify the KKT conditions for the equality-constrained
problem (6.5):

(6.8) ∇φ(x) = JE(x)TλE and cE(x) = 0,

where λE is a Lagrange multiplier vector associated with the constraints cE(x) = 0.
(See Definition 6.1.)

6.2.2. Combining Barrier and SQPMethods. The original motivation for a bar-
rier method was to eliminate inequality constraints by blending them into a composite
objective and then to solve a sequence of unconstrained subproblems. An analogue
for mixed constraints is to treat the inequalities through a barrier transformation but
to retain the equalities, leading to a sequence of equality-constrained subproblems of
the form

(6.9)
minimize
x∈Rn

f(x) − µ
∑
i∈I

ln ci(x)

subject to ci(x) = 0, i ∈ E .

(The constraints ci(x) > 0, i ∈ I, are not shown because they are treated implicitly by
the barrier term.) To solve the overall problem (6.1), we need to solve the subproblem
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(6.9) for a sequence of µ values converging to zero. (This was the approach taken in
[51] for standard-form linear programming, which has the mixed constraints Ax = b
and x ≥ 0.)

The next question is, How can we solve (6.9)? Based on the motivation sketched
in section 6.2.1, an SQP method can be applied to the equality-constrained problem
(6.9) whose objective function φ is the log barrier function. Substituting in (6.8), the
associated KKT conditions have the form

(6.10) g(x) − JI(x)T
(
µ ·/ cI(x)

)
= JE(x)TλE and cE(x) = 0.

To define a primal-dual method as in section 5, we now create an independent variable
λI of multipliers for the inequality constraints from the additional equation

cI(x) · λI = µe,

which holds at KKT points of (6.9). With this definition, the KKT conditions (6.10)
can be rewritten as a system of nonlinear equations

(6.11) Fµ(x, λ) =

 g(x) − J(x)Tλ
cI(x) · λI − µe

cE(x)

 = 0.

A method based on applying Newton’s method to (6.11) will be called a barrier-SQP
approach. As before in (3.49), the second equation can be viewed as perturbing the
complementarity condition for the inequality constraints in the KKT conditions (6.3).

If the constraints satisfy the LICQ (see section 6.1.1) and strong second-order con-
ditions hold at x∗ (see Theorem 6.10), a differentiable trajectory of solutions (xµ, λµ)
exists when µ is small enough, (xµ, λµ) converges to (x∗, λ∗) as µ → 0, and xµ is a
local constrained minimizer of (6.9). Barrier-SQP interior methods attempt to follow
this trajectory of minimizers by finding an approximate solution of Fµ(x, λ) = 0 for
a suitable sequence µ → 0. For a given µ, Newton’s method can be applied to (6.11),
imposing a further requirement that x and λI remain strictly feasible with respect to
the implicit inequality constraints cI(x) ≥ 0 and λI ≥ 0.

Letting v denote the n+m unknowns (x, λ), so that Fµ(v) denotes Fµ(x, λ), the
Newton direction ∆v = (∆x,∆λ) is defined as the solution of Fµ(v)′∆v = −Fµ(v).
The explicit Newton equations are

(6.12)

 H −JTI −JTE
ΛIJI CI 0
JE 0 0


 ∆x

∆λI

∆λE

 = −

 g − JTλ

λI · cI − µe

cE

 ,

where we have suppressed the arguments x and λ.
Let W (x) and Z(λ) denote diagonal matrices whose entries are

(6.13) wI(x) = cI(x), wE(x) = 0, zI(λ) = λI, and zE(λ) = 1,

and define the vector rµ(x, λ) as

(6.14) rµI (x, λ) �= cI(x) · λI − µe and rµE (x, λ) �= cE(x).

The equations (6.12) may then be written in a compact form similar to (5.2):

(6.15)

(
H −JT

ZJ W

)(
∆x

∆λ

)
= −

(
g − JTλ

rµ

)
.
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Since Z is diagonal and positive definite and W is diagonal and positive semidefinite,
(6.15) can be symmetrized as (5.2) was in the inequality-constrained case, and the
discussion of section 5.1 applies with D = Z−1W . Because W has zeros on its
diagonal, the (2, 2) block in (6.15) cannot be eliminated to form a condensed system
analogous to (5.4), but inertial properties can be deduced using Lemma A.16.

For future reference, we define πI(x, µ) as

(6.16) πI(x, µ) �= µ ·/ cI(x),

so that πI is an estimate of λI at the current iterate x for a specific value of µ; see Defi-
nition 4.1. (Definition of πE will be deferred until it is needed.) Section 6.2.1 mentions
that the SQP direction can be interpreted as the solution of a quadratic programming
problem (6.6) that includes the Hessian of the Lagrangian and linearizations of the
equality constraints. The barrier-SQP Newton step ∆x then solves the subproblem

(6.17)
minimize
∆x∈Rn

1
2∆xT (H + JTI C

−1
I ΛIJI)∆x + (g − JTI πI)

T∆x

subject to JE∆x = −cE .

The solution of (6.17) produces the same result as if the SQP formulation (6.6) were
applied directly to (6.9). Interior-point algorithms based on the quadratic program-
ming subproblem (6.17) typically utilize SQP-based merit functions to enforce con-
vergence (see, e.g., [15, 27, 46, 83, 123]). If indefiniteness is addressed with a suitable
line-search or trust-region technique, the limit points of the sequence of iterates satisfy
the second-order necessary optimality conditions for (6.9) with a fixed value of µ.

Rather than factorize the matrices in (6.12) and (6.15), one might use an iterative
method. Since the (3, 3) block of the matrix in (6.12) is zero and W in (6.15) is
singular, it is not clear how to obtain a matrix guaranteed to be positive definite. One
strategy is to consider the KKT conditions for the quadratic programming subproblem
(6.17), which can be written as

(6.18)

(
H + JTI C

−1
I ΛIJI JTE

JE 0

)(
∆x

−(λE + ∆λE)

)
= −

(
g − JTI πI

cE

)
,

where the “new” multiplier λE + ∆λE constitutes the multipliers for the quadratic
programming subproblem. Note that (6.18) is identical to the result of eliminating
the (2, 2) block of the matrix in (6.12).

The matrix of (6.18) is symmetric but necessarily indefinite (Lemma A.15), so
that a standard conjugate-gradient method cannot be applied directly. However,
conjugate-gradient methods can be extended to this situation by introducing a sym-
metric indefinite preconditioning matrix, which may take the form

(6.19)

(
M JTE
JE 0

)
,

where M is a positive-definite “approximation” to H + JTI C
−1
I ΛIJI. In choosing M ,

there is usually a tradeoff between ease of factorization—for example, taking M as
diagonal—and speed of convergence of the conjugate-gradient iterations. (See, e.g.,
[21, section 5].)

6.3. A Penalty-Barrier Approach. In contrast to the SQP approach just de-
scribed, the classical treatment of equality constraints is to eliminate them through
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unconstrained minimization of a composite function that includes a penalty for violat-
ing cE(x) = 0—most commonly, the quadratic penalty function ‖cE‖2

2/µ. Reverting in
part to the constraint-removal spirit of the 1960s, we now consider dealing with equal-
ity constraints by unconstrained minimization of a penalty-barrier function, exactly
as proposed in [33]:

(6.20) ΦPB(x, µ) �= f(x) − µ
∑
i∈I

ln ci(x) +
1

2µ
‖cE‖2

2.

(The appearance of 1
2 in the penalty term avoids irritating factors of two in the

derivatives.) The implicit constraints cI(x) > 0 are handled by the barrier term
and hence are not included in (6.20). Let xµ denote an unconstrained minimizer of
ΦPB(x, µ). A detailed analysis, analogous to the results in sections 3.3 and 3.4, is
given in [33] of the conditions under which, for sufficiently small µ, the sequence {xµ}
defines a differentiable penalty-barrier trajectory converging to x∗.

To find xµ, we exploit its stationarity (Lemma A.7). Writing out ∇ΦPB(x) and
rearranging, we obtain a system of nonlinear equations equivalent to the condition
that ∇ΦPB(x) = 0:

(6.21) Fµ(x, λ) =

 g(x) − J(x)Tλ
cI(x) · λI − µe

cE(x) + µλE

 = 0,

where λI and λE represent multiplier estimates that converge to λ∗I and λ∗E as µ → 0
and, at xµ, satisfy the relations

(6.22) cI(xµ) · λI = µe and µλE = −cE(xµ).

A useful interpretation of (6.21) is that we have perturbed the complementarity por-
tions of the KKT conditions (6.3) corresponding to both inequality and equality con-
straints.

To complete the definition of π(x, µ) for the equality constraints (see (6.16)), we
define

(6.23) πI(x, µ) �= µ ·/ cI(x) and πE(x, µ) �= −cE(x)/µ.

Application of Newton’s method for equations to (6.21) gives

(6.24)

(
H −JT

ZJ W

)(
∆x

∆λ

)
= −

(
g − JTλ

W (λ− π)

)
,

where W and Z are defined in (6.13). The matrix in (6.24) can be symmetrized into
the form (5.6), where D = Z−1W ; thus the discussion of section 5.1 applies and the
linear algebraic work extends straightforwardly from the inequality-constrained case.

Treating equalities via a quadratic penalty function tends to regularize the prob-
lem in the sense that, as long as µ is nonzero, the matrix (ZJ W ) may have full row
rank even if the Jacobian JE is rank-deficient. Consequently, one needs to modify only
H to make the matrix in (6.24) nonsingular [39]. (A related regularization approach
for general SQP methods is described in [117].)

We began this section with a discussion of unconstrained minimization of the clas-
sical penalty-barrier function ΦPB (6.20), but the techniques presented have all been
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based on solving the nonlinear equations (6.21) through Newton’s method. As noted
previously, either line-search or trust-region techniques must be applied to ensure
convergence.

In the context of a line-search method, ΦPB itself can be used as a merit function.
Alternatively, the merit function Mµ(x, λ) of (5.8) can be generalized by adding

(6.25)
1

2µ
‖cE(x)‖2

2 +
1

2µ
‖cE(x) + µλE‖2

2,

which represents a combination of the original quadratic penalty term from (6.20)
and a term that reflects proximity to the condition µλE = −cE(xµ) that holds along
the penalty-barrier trajectory. If xµ is a point on the penalty-barrier trajectory and
λµ is the associated multiplier defined by (6.21), then (xµ, λµ) is an unconstrained
minimizer of Mµ(x, λ) for sufficiently small µ. See [39, 47] for further details.

6.4. The Slack and Shift Reformulations. We observed at the beginning of sec-
tion 6 that an inequality constraint ci(x) ≥ 0 can be reformulated as two “equivalent”
constraints—one inequality and one equality—by adding a new variable. The slack
and shift reformulations of ci(x) ≥ 0 are

ci(x) − si = 0, si ≥ 0 (slack),(6.26a)
ci(x) + si ≥ 0, si = 0 (shift).(6.26b)

Both of these ideas have a long history in optimization. Slack variables pervade linear
programming, and the idea of shifted constraints underlies the motivation in [86] of
augmented Lagrangian methods for nonlinearly constrained optimization. We con-
sider only shifts of the form (6.26b); for more general discussions of shifted constraints
in interior methods, see, e.g., [23, 46, 60, 84, 98] and section 4.6.

The appeal of altering the constraints via either slacks or shifts may not be evident
at first, since the dimension of the problem appears to have increased. However, two
major benefits accrue:

1. Within an interior method, it is extremely simple to retain strict feasibility
with respect to the bound constraint si ≥ 0 imposed on a slack variable, since the step
to the boundary of such a constraint along any direction can be calculated exactly. In
contrast, the step to the boundary of a general nonlinear constraint must be calculated
by iteration, so that maintaining strict feasibility may lead to many wasted evaluations
of the constraint function at infeasible points.

2. The slack and shift reformulations allow interior-point methods to be applied
to inequality constraints even if no initial strictly feasible point is known, as long
as suitable techniques are available for dealing with equality constraints. Suppose
that ci(x0) < 0 at the initial point x0. For the shift reformulation, the constraint
ci(x) + si ≥ 0 is strictly satisfied at x0 for any si greater than −ci(x0), and any
positive value of the slack variable si is strictly feasible for the inequality si ≥ 0. But
the equality constraint si = 0 is not satisfied in the case of a shift, nor is ci(x0)−si = 0
in the slack case. Thus we can interpret both reformulations as placing the burden of
ultimate feasibility on whatever method is used to satisfy the equality constraints.

For general constraint functions, these reformulations may dramatically change
the behavior of an interior method—as we have repeatedly stressed, equality and
inequality constraints are treated differently. With a shift reformulation, for example,
if a shift variable ever becomes zero during the iterations of a barrier-SQP method
(section 6.2.2), it will remain zero thereafter, which means that the original inequality
constraint ci(x) ≥ 0 will be strictly satisfied at subsequent iterates. This is because



INTERIOR METHODS 587

∆si, the component of the barrier-SQP search direction for the shift, satisfies the
linearization si+∆si = 0; if si = 0, then ∆si = 0 and the shift variable will never move
away from zero. With a slack reformulation, on the other hand, even if ci(xk)−si = 0
at the kth iteration, this equality constraint is unlikely to remain satisfied at later
iterations when ci(x) is nonlinear. It is not difficult to construct examples in which,
starting from a strictly feasible point for the constraint ci(x) ≥ 0, the Newton step
resulting from a slack reformulation subsequently violates the constraint even though
the corresponding slack variable remains positive. (See [18] for a discussion of related
issues.)

Other relevant aspects of these reformulations involve the nature of the feasible
region. If the constraint function ci(x) is concave (Definition A.5), both reformu-
lations preserve convexity of the feasible region for that constraint. With a slack
reformulation, the feasible region defined by the inequality constraints {si ≥ 0} on
the slack variables is convex, and any nonconvexity of the feasible set for the original
problem is reflected in the equality constraints ci(x) − si = 0. Certain difficulties
associated with these reformulations will be considered in section 7.

As already noted, a strictly feasible initial point with respect to the (reformulated)
inequality constraints can always be found. Thus, assuming that equality constraints
can be coped with, there is no loss of generality in assuming that the initial point of the
mixed-constraint problem (6.1) strictly satisfies any inequality constraints. (Of course,
no such assurance can be given concerning feasibility for the equality constraints.)

It might seem that these reformulations lead to an undesirable increase in work
because of the larger numbers of variables and constraints. Luckily, the linear al-
gebraic calculations can be arranged so that there is no change in the dimension of
the linear systems to be solved. Consider, for example, using a barrier-SQP method
(section 6.2.2) to solve a problem that originally contained m inequality constraints,
all of which have been reformulated using slack variables, and suppose that we need
to solve the linear system (6.15). Following a straightforward elimination of the un-
knowns ∆s (the changes in the m slack variable), the system to be solved may be
written as

(6.27)

(
H −JT

ΛJ S

)(
∆x

∆λ

)
= −

(
g − JTλ

Cλ− µe

)
,

where S is the positive diagonal matrix of slack values. After solving (6.27), ∆s can
be recovered from the relation

∆s = −s + µΛ−1e− Λ−1S∆λ.

Note that the system (6.27) has the same form as the primal-dual system (5.2) where
no slack variables are present, except that the diagonal matrix C of constraint values
in the (2, 2) block of (5.2) is replaced by S in (6.27). Hence, the only extra expenses
come from storing and updating the slack variables. Similar arguments can be made
for the shift reformulation (see [96]).

7. Complications in the Nonconvex Case. For convex programming problems,
interior methods display particularly nice properties; see, e.g., [3, 4, 79]. Even in this
case, however, the trajectory may show undesirable properties if only smoothness and
convexity are assumed [48].

The theoretical results for general nonconvex problems are weaker and mostly
asymptotic, as exemplified by Theorems 3.10 and 3.12. In spite of this potential
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concern, interior methods successfully and efficiently solve large nonconvex nonlinear
programming problems every day, but the possibility of strange or even pathological
behavior should not be ignored.

We have alluded previously to the fact that many interior-point methods are
based on satisfying the first-order KKT conditions, but verification that a solution is
a minimizer requires satisfaction of second-order conditions. An important issue in
the nonconvex case is thus how to treat indefiniteness, a topic that would consume
too many pages to allow its detailed treatment in this article.

A more fundamental difficulty arises at the theoretical level. In [106], a class of
one-dimensional examples was recently defined for which certain line-search barrier-
SQP methods (section 6.2.2) fail to find a feasible point and, much more seriously, do
not even converge to a meaningful point.

The examples in [106] have the general form

(7.1)
minimize

x∈R
f(x)

subject to x2 + α ≥ 0, x− β ≥ 0,

where β ≥ 0 and f is unspecified for the moment.
If α ≤ 0, x2 + α can be written as (x +

√
−α)(x−

√
−α), which means that the

constraint x2 + α ≥ 0 is satisfied if and only if x ≥
√
−α or x ≤ −

√
−α. In effect,

two disjunctive relations have been lumped together together into one constraint; see
section 3.2 and the constraint of (3.16).

Suppose that a slack reformulation (section 6.4) is applied. Then we have

(7.2)

minimize
x∈R,s∈R2

f(x)

subject to x2 + α− s1 = 0,
x− β − s2 = 0,
s1, s2 ≥ 0.

A necessary ingredient of a barrier-SQP method is linearization of equality constraints,
which for (7.2) means that ∆x and ∆s must satisfy

2x∆x−∆s1 = −x2 + s1 − α,(7.3a)
∆x−∆s2 = −x + s2 + β.(7.3b)

If β ≥ 0 and the initial x and s satisfy

x < 0, x < β + s2, and(7.4a)

α +
β(x2 − s1 + α)
(x− s2 − β)

≤ min{ 0,− 1
2α },(7.4b)

then any step (∆x,∆s) satisfying (7.3) has the property that s+∆s �≥ 0. It is further
shown in [107] that a feasible point will never be reached by a line-search barrier-SQP
method that maintains feasibility by reducing the step length, i.e., by choosing iterate
k + 1 as

xk+1 = xk + αk∆xk, sk+1 = sk + αk∆sk,

where αk > 0 and sk +αk∆sk > 0. Instead, the full step (∆x,∆s) persistently moves
outside the region of strict feasibility for the slacks, the values of αk converge to zero,
and the iterates converge to a point without any apparent desirable properties (for
instance, it does not minimize the constraint violations).
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Fig. 7 The figure illustrates two numerically computed penalty-barrier trajectories x(µ) of minimiz-
ers of (7.5). For each larger value of µ, there are two distinct minimizers, but there is only
one minimizer below a threshold value of µ ≈ 0.23. The trajectory to the right leads to the
optimal solution x∗ = 1, whereas the trajectory to the left ceases to exist.

Although these particular difficulties can be avoided, it is interesting to see what
can go wrong in such a small and seemingly innocuous problem. It can also be shown
that this form of “false convergence” implies that the multiplier search directions
diverge [96]. For further discussion, see [9, 17, 68].

We now consider a particular instance of (7.1) with f(x) = x, α = −1, and β = 1
2 ,

so that the optimal solution is x∗ = 1 and the first constraint is active. The log barrier
function for the original inequality-constrained problem is

B(x, µ) = x− µ ln(x2 − 1) − µ ln(x− 1
2 ),

and there is a well-defined trajectory of barrier function minimizers (see section 3.4)
converging to x∗ as µ → 0. In contrast, a penalty-barrier method applied to the
slack formulation (7.2) seeks unconstrained minimizers of the penalty-barrier function
(6.20):

(7.5) ΦPB(x, s, µ) = f(x) − µ

2∑
i=1

ln si +
1

2µ
(x2 − 1 − s1)2 +

1
2µ

(x− 1
2 − s2)2.

This particular ΦPB has two distinct local minimizers for larger values of µ, and so
there are two penalty-barrier trajectories. As µ is reduced to approximately 0.23,
one of these trajectories suddenly disappears at the point where the Hessian of the
augmented penalty-barrier function of (6.25) becomes indefinite. This phenomenon
is illustrated in Figure 7, which shows the x coordinates of the two penalty-barrier
trajectories.

With a slack reformulation, the feasible region with respect to the inequality
constraints, s ≥ 0, is always convex, but a shift reformulation (see section 6.4) may
lead to inequalities that specify a nonconvex, possibly even disconnected, feasible
region. In such a situation, even if a step of unity along the search direction produces
a point that satisfies the inequalities, there may exist points corresponding to smaller
values of the step that do not satisfy the inequality constraints. The phenomenon
of crossing the infeasible region with respect to the inequality constraints is called



590 ANDERS FORSGREN, PHILIP E. GILL, AND MARGARET H. WRIGHT

tunneling, a phenomenon seen when analyzing the shift reformulation of (7.1) [96].
It is evident that even deciding on the best problem formulation can be extremely
difficult for nonconvex problems.

8. Of Things Not Covered. Because of limitations on space and time, this
article does not include everything that should be said about interior methods for
nonlinearly constrained optimization. Our omission of any discussion of software
is the most obvious lack. Several codes are available today (late 2002) that have
been successfully applied to solve very large, nonlinear, nonconvex optimization prob-
lems; we urge interested readers to visit the Web site of “Optimization online” at
www.optimization-online.org.

Other important aspects of interior methods that have not been discussed include
complexity analyses for convex programs, the initial choice of barrier and/or penalty
parameter, strategies for reducing the barrier parameter, criteria for terminating inner
iterations, more detailed global convergence results, and methods that do not require
second derivatives.

9. Summary. The interior-point revolution has had many highly positive results,
including

• a deeper, more unified understanding of constrained optimization;
• continuing improvements in theory and methods;
• more algorithmic options for familiar problems;
• the ability to solve new problems; and
• closer ties between discrete and continuous optimization.

On the (possibly) negative side, life has become much more complicated for at least
two classes of people: those who use optimization, and those who teach it.

Anyone wishing to solve a nonlinearly constrained problem, or even a linear pro-
gram, is faced with a greatly expanded set of algorithmic options, especially since
researchers continue to show that apparently different problem forms can be trans-
formed into one another. Our focus throughout has been the very general area of
nonlinearly constrained optimization, but newly emerging problem classes such as
“mathematical programs with equilibrium constraints” (MPECs) are even more gen-
eral. Beyond MPECs, there are nonlinear mixed integer programming problems, the
extremely challenging union of continuous and discrete optimization. We have every
expectation that interior-point methods will be helpful for both of these categories.

For teachers of optimization, the added pedagogical responsibilities are substan-
tial; knowledge of Newton’s method is needed today just to teach linear programming.
But for those of us who enjoy nonlinearity and its difficulties, this is a privilege rather
than a burden.

On balance, the interior-point revolution has unquestionably energized the field
of constrained optimization, not to mention its creation of new connections with other
areas of optimization and, more broadly, with numerical analysis, computer science,
and scientific and engineering applications.

Appendix. Useful Definitions and Results. This appendix contains a set of
definitions and results that may be useful for the reader.

Definition A.1 (neighborhood of a point). Given a point x̄ ∈ Rn, a (closed)
neighborhood of x̄ is the set of points x satisfying ‖x− x̄‖ ≤ δ for some δ > 0, with
an analogous definition of an open neighborhood.

Definition A.2 (interior of a set). Given a set S, a point x is an interior point
of S if x ∈ S and there exists a neighborhood of x that is entirely contained in S. The
interior of S, denoted by int(S), is the collection of all interior points of S.
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Definition A.3 (boundary of a set). Given a set S, a point x is a boundary
point of S if every neighborhood of x contains at least one point in S and at least
one point not in S. The boundary of S, denoted by bnd(S), is the collection of all
boundary points of S. A closed set contains all its boundary points.

Definition A.4 (convex set). The set S ⊆ Rn is convex if, for every x1 and x2
in S and for all θ ∈ [0, 1], the point (1 − θ)x1 + θx2 is also in S.

Definition A.5 (convex and concave functions). The function ϕ(x), defined for
x in a nonempty open convex set S, is a convex function if, for every two points x1
and x2 in S and all θ ∈ [0, 1],

ϕ
(
(1 − θ)x1 + θx2

)
≤ (1 − θ)ϕ(x1) + θϕ(x2).

The function ϕ(x) is concave if −ϕ(x) is convex.
Lemma A.6 (special properties of smooth convex functions). If the function ϕ(x)

is convex and twice-continuously differentiable on Rn, then ∇2ϕ(x) is positive semidef-
inite. Further, every local unconstrained minimizer x̄ of ϕ is a global unconstrained
minimizer in the sense that ϕ(x̄) = {min ϕ(x) : x ∈ Rn}.

Lemma A.7 (optimality conditions for unconstrained optimization). Consider
unconstrained minimization of the twice-continuously differentiable function f(x).

(i) If x∗ is a local unconstrained minimizer of f(x), then ∇f(x∗) = 0 and ∇2f(x∗)
is positive semidefinite.

(ii) If ∇f(x∗) = 0 and ∇2f(x∗) is positive definite, x∗ is an isolated local uncon-
strained minimizer of f(x).

Proofs of Lemma A.7 and related results may be found in, for example, [25, 28,
34, 52, 77, 80].

Definition A.8 (convex program). The optimization problem

(A.1) minimize
x∈Rn

f(x) subject to ci(x) = 0, i ∈ E , and ci(x) ≥ 0, i ∈ I,

is said to be a convex program, or a convex programming problem, if
(i) f is convex,
(ii) all of the equality constraint functions ci(x), i ∈ E, are affine, and

(iii) all of the inequality constraint functions ci(x), i ∈ I, are concave.
Definition A.9 (order notation). Let φ be a scalar, vector, or matrix function

of a positive variable h, let p be fixed, and let κu and κl denote constants.
(i) If there exists κu > 0 such that ‖φ‖ ≤ κuh

p for all sufficiently small h, we
write φ = O(hp) and say, “φ is big oh of hp.”

(ii) If, for any ε > 0, ‖φ‖/hp < ε for all sufficiently small h, we write φ = o(hp)
and say, “φ is little oh of hp.”

(iii) If there exists κl > 0 such that ‖φ‖ ≥ κlh
p for all sufficiently small h, we

write φ = Ω(hp) and say, “φ is omega of hp.”
(iv) If there exist κl > 0 and κu > 0 such that κlh

p ≤ ‖φ‖ ≤ κuh
p for all

sufficiently small h, we write φ = Θ(hp) and say, “φ is theta of hp.”
Definition A.10 (rates of convergence). Let {xk} be a sequence that converges

to x∗, with xk �= x∗, and assume that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2 = γ2, where 0 < γ2 < +∞.

Then {xk} converges Q-quadratically to x∗.
A sequence {xk} converges to x∗ Q-superlinearly if there exists a sequence {βk}

converging to zero such that for all sufficiently large k,

‖xk+1 − x∗‖ ≤ βk‖xk − x∗‖.
A Q-superlinearly convergent sequence {xk} thus satisfies ‖xk+1−x∗‖ = o(‖xk−x∗‖).
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Definition A.11 (inertia of a matrix). Given a symmetric matrix H, its inertia,
denoted by In(H), is the integer triple (ip, in, iz), where ip(H), in(H), and iz(H) are
the numbers of positive, negative, and zero eigenvalues of H.

Lemma A.12 (Sylvester’s law of inertia). Given a symmetric matrix H and a
nonsingular matrix U of the same dimension, then In(H) = In(UHUT ).

Definition A.13 (directions of curvature). Given a symmetric matrix H, we say
that the vector p is a direction of positive curvature (with respect to H) if pTHp > 0,
a direction of zero curvature if pTHp = 0, and a direction of negative curvature if
pTHp < 0. When H is the Hessian of a nonlinear function f , a similar terminology
applies with respect to f . For example, if H = ∇2f , a direction p satisfying pTHp > 0
is said to be a direction of positive curvature for f , and so on. The scalar pTHp is
sometimes called the curvature of f along p.

Lemma A.14 (Debreu’s lemma [26]). Given an m × n matrix J and an n × n
symmetric matrix H, then xTHx > 0 for all nonzero x satisfying Jx = 0 if and only
if there is a finite ρ̄ ≥ 0 such that H + ρJTJ is positive definite for all ρ ≥ ρ̄.

Lemma A.15 (inertia of the augmented system [56, Lemma 3.4]). Given an n×n
symmetric matrix H and an m× n matrix J , let r denote the rank of J and let N be
a matrix whose columns form a basis for the null space of J . If we define K as

K =

(
H JT

J 0

)
, then In(K) = In(NTHN) + (r, r,m− r).

Lemma A.16 ([38, Proposition 2]). Given an n × n symmetric matrix H, an
m×n matrix J , and an n×n symmetric positive semidefinite matrix D, let r denote
the rank of

(
J −D

)
. Further, let U0 be a matrix whose columns form a basis for the

null space of D and let N be a matrix whose columns form a basis for the null space
of UT0 J . Finally, let D† denote the pseudoinverse of D, m0 the dimension of the null
space of D, and define HC as H + JTD†J . Then rank(UT

0 J) = m0 −m + r and, if

K
�=

(
H JT

J −D

)
, then In(K) = In

(
NTHCN

)
+ (m0 −m + r, r,m− r).
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[107] A. Wächter and L. T. Biegler, Global and Local Convergence for a Class of Interior
Point Methods for Nonlinear Programming, Tech. Report B-01-09, CAPD, Department
of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 2001.

[108] D. P. Williamson, Lecture Notes on Approximation Algorithms, Research Report RC 21409,
IBM T. J. Watson Research Center, Yorktown Heights, NY, 1998. Available online from
www.almaden.ibm.com/cs/people/dpw.

[109] M. H. Wright, Numerical Methods for Nonlinearly Constrained Optimization, Ph.D. thesis,
Department of Computer Science, Stanford University, Stanford, CA, 1976.

[110] M. H. Wright, Interior methods for constrained optimization, in Acta Numerica, 1992, Cam-
bridge University Press, New York, 1992, pp. 341–407.

[111] M. H. Wright, Some properties of the Hessian of the logarithmic barrier function, Math.
Program., 67 (1994), pp. 265–295.

[112] M. H. Wright, Why a pure primal Newton barrier step may be infeasible, SIAM J. Optim.,
5 (1995), pp. 1–12.

[113] M. H. Wright, Ill-conditioning and computational error in interior methods for nonlinear
programming, SIAM J. Optim., 9 (1998), pp. 84–111.

[114] S. J. Wright, Stability of linear equations solvers in interior-point methods, SIAM J. Matrix
Anal. Appl., 16 (1995), pp. 1287–1307.

[115] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1997.



INTERIOR METHODS 597

[116] S. J. Wright, Stability of augmented system factorizations in interior-point methods, SIAM
J. Matrix Anal. Appl., 18 (1997), pp. 191–222.

[117] S. J. Wright, Superlinear convergence of a stabilized SQP method to a degenerate solution,
Comput. Optim. Appl., 11 (1998), pp. 253–275.

[118] S. J. Wright, Modified Cholesky factorizations in interior-point algorithms for linear pro-
gramming, SIAM J. Optim., 9 (1999), pp. 1159–1191.

[119] S. J. Wright, Effects of finite-precision arithmetic on interior-point methods for nonlinear
programming, SIAM J. Optim., 12 (2001), pp. 36–78.

[120] S. J. Wright, On the convergence of the Newton/log barrier method, Math. Program., 90
(2001), pp. 71–100.

[121] S. J. Wright and F. Jarre, The role of linear objective functions in barrier methods, Math.
Program., 84 (1999), pp. 357–373.

[122] S. J. Wright and D. Orban, Properties of the Log-Barrier Function on Degenerate Non-
linear Programs, Preprint ANL/MCS-P772-0799, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, 1999.

[123] H. Yamashita and H. Yabe, A primal-dual interior point method for nonlinear optimization:
Global convergence, convergence rate and numerical performance for large scale problems,
in Parametric Optimization and Related Topics, V (Tokyo, 1997), Lang, Frankfurt am
Main, Germany, 2000, pp. 213–250.

[124] Y. Zhang, R. Tapia, and F. Potra, On the superlinear convergence of interior-point algo-
rithms for a general class of problems, SIAM J. Optim., 3 (1993), pp. 413–422.

[125] Y. Zhang and R. A. Tapia, A superlinearly convergent polynomial primal-dual interior-point
algorithm for linear programming, SIAM J. Optim., 3 (1993), pp. 118–133.


