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Abstract. This paper concerns large-scale general (nonconvex) nonlinear programming when
first and second derivatives of the objective and constraint functions are available. A method is
proposed that is based on finding an approximate solution of a sequence of unconstrained subproblems
parameterized by a scalar parameter. The objective function of each unconstrained subproblem is an
augmented penalty-barrier function that involves both primal and dual variables. Each subproblem
is solved with a modified Newton method that generates search directions from a primal-dual system
similar to that proposed for interior methods. The augmented penalty-barrier function may be
interpreted as a merit function for values of the primal and dual variables.

An inertia-controlling symmetric indefinite factorization is used to provide descent directions and
directions of negative curvature for the augmented penalty-barrier merit function. A method suitable
for large problems can be obtained by providing a version of this factorization that will treat large
sparse indefinite systems.
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1. Introduction. This paper concerns second-derivative line-search methods for
the solution of the nonlinear programming problem

NP minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I,

where c(x) is an m-vector of nonlinear functions with ith component ci(x), i = 1, . . . ,
m, and E and I are nonintersecting index sets. Throughout, it is assumed that f and
c are twice-continuously differentiable, with the gradient of f(x) denoted by g(x) and
the m× n Jacobian of c(x) denoted by J(x).

The methods considered in this paper are all interior methods in the sense that,
given an initial iterate x0 in the strict interior of the set {x | ci(x) ≥ 0, i ∈ I}, then
all subsequent iterates lie in the strict interior. In recent years, interior methods for
NP have received considerable attention because of their close relationship with the
“new” polynomial approaches to linear and quadratic programming. The methods of
this paper exploit some of this recent research, particularly in the area of primal-dual
methods for convex programming.

The format for the constraints allows a general inequality constraint to be treated
either directly as an inequality ci(x) ≥ 0 or indirectly as an equality and nonnegative
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slack variable ci(x) − si = 0, si ≥ 0. We make this distinction because the meth-
ods considered here treat equality and inequality constraints differently: inequality
constraints are evaluated only at feasible points, whereas equality constraints are
feasible only as a solution is approached. This implies that the equality constraint
ci(x) − si = 0 is likely to be evaluated at a point for which ci(x) < 0. The only
exception occurs with linear equality constraints, which can be kept feasible at every
iterate (see, e.g., Gill, Murray, and Wright [19]).

In many physical and engineering applications, the constraint functions not only
characterize the desired properties of the solution but also define a region in which
the problem statement is meaningful (for example, f(x) or some of the constraint
functions may be undefined outside the feasible region). In these applications, an
interior point can usually be determined trivially. Interior methods are therefore
highly appropriate for this class of problem. Ironically, interior methods were origi-
nally proposed for precisely this reason, but this feature was largely overlooked during
the revival of interior methods because of the emphasis on computational complexity.
One aspect of our research on interior methods has concerned the benefits provided by
the knowledge of strictly feasible approximate solutions. In certain applications, the
exploitation of feasibility may account for the superiority of some specialized methods
compared to generic NLP methods (e.g., the method of moving asymptotes in struc-
tural optimization; see Svanberg [40]). The availability of general-purpose methods
that generate interior points will considerably strengthen our ability to solve practical
problems efficiently.

The proposed algorithm for NP is based on solving a sequence of unconstrained
minimization problems parameterized by a positive parameter µ. In the classical
penalty-barrier method given by Fiacco and McCormick [13], the unconstrained func-
tion

Mµ(x) = f(x) +
1

2µ

∑
i∈E

ci(x)2 − µ
∑
i∈I

ln ci(x)(1.1)

is minimized for a sequence of decreasing values of µ. The first constraint term on
the right-hand side is the usual quadratic penalty function with penalty parameter
1/(2µ). The second constraint term is the logarithmic barrier function, which creates
a positive singularity at the boundary of the feasible region and thereby enforces strict
feasibility while approaching the solution.

The penalty-barrier methods described here involve outer and inner iterations.
Each outer iteration is associated with an element of a decreasing positive sequence
of parameters {µj} such that limj→∞ µj = 0. The inner iterations correspond to an
iterative process for the unconstrained minimization of Mµ(x) for a given µ. The
first-order optimality conditions for the unconstrained problem imply that there exist
vectors (x(µ), λ(µ)) such that

g(x(µ))− J(x(µ))Tλ(µ) = 0, where λi(µ) =

{
−ci(x(µ))/µ if i ∈ E ,

µ/ci(x(µ)) if i ∈ I.
(1.2)

The m-vector λ(µ) can be interpreted as an estimate of λ∗, the Lagrange multipliers
of NP, and Fiacco and McCormick [13] give conditions under which local solutions
(x(µ), λ(µ)) of Mµ(x) converge to (x∗, λ∗) as µ→ 0. When regarded as a function of
the parameter µ, the set of minimizers x(µ) defines a continuously differentiable path
known as the trajectory or penalty-barrier trajectory .
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The direct unconstrained minimization of Mµ(x) involves a number of serious
difficulties that all result from the fact that the minimization problem becomes in-
creasingly ill conditioned as µ is decreased. These difficulties have been addressed in
recent papers by Gould [22, 23], Conn, Gould, and Toint [8], and Dussault [11], who
propose several modifications of the classical penalty-barrier algorithm. As in the
original method, these modifications emphasize the minimization of Mµ(x) with re-
spect to the “primal” variables x and define new estimates of λ(µ) as a by-product of
the main computation. Dussault [11] observes that these multiplier estimates can be
inaccurate when x is not close to the trajectory and proposes computing least-squares
multipliers from an estimate of the active constraints at x∗.

In this paper we propose a different approach in which estimates of x(µ) and
λ(µ) are updated simultaneously. This approach has been very successful for interior
methods for convex programming, but its extension to the nonconvex case has been
problematic because of the lack of a suitable merit function or potential function that
forces convergence from an arbitrary starting point. Here we propose a merit function
based on the classical penalty-barrier function augmented by a weighted proximity
measure that measures the distance of (x, λ) to the trajectory (x(µ), λ(µ)). This
augmented penalty-barrier function is denoted by Mµ,ν(x, λ), where ν denotes the
positive weight on the proximity measure (see section 3.1). The function Mµ,ν(x, λ)
has several important properties.

• The penalty-barrier solutions x(µ) and λ(µ) are local minimizers of Mµ,ν(x, λ).
• Mµ,ν(x, λ) can be minimized with respect to both x and λ using a modified

Newton method that generates search directions from a symmetric primal-
dual system similar to that proposed for interior methods. These search di-
rections can be calculated in a numerically stable way, even when the Hessian
∇2Mµ,ν(x, λ) is not positive definite.

• For all positive µ and ν, under certain assumptions, the inner iterates con-
verge to a point x(µ) satisfying the second-order necessary conditions for a
minimizer of Mµ,ν(x, λ).

The paper is organized as follows. In section 2 we review some basic proper-
ties of the classical penalty-barrier method and consider some recent developments in
primal-dual interior methods for convex programming. The unsymmetric and sym-
metric primal-dual equations and their properties are discussed in sections 2.3 and
2.4. In section 3 we propose a new augmented penalty-barrier merit function and pro-
vide a modified Newton method for minimizing this function with respect to both the
primal and dual variables. The linear system associated with this method is shown
to be equivalent to the symmetric form of the primal-dual equations. It follows that
Mµ,ν(x, λ) may be interpreted as a merit function for primal and dual variables gen-
erated by the primal-dual system. Finally, in section 4 we describe how the search
direction can be calculated using a certain inertia-controlling symmetric indefinite
factorization of the primal-dual system. This factorization allows the efficient calcu-
lation of descent directions and directions of negative curvature for the merit function.
A method suitable for large problems can be obtained by providing a version of this
factorization that will treat large sparse indefinite systems.

In practice, the penalty-barrier subproblem is never solved to completion. In-
stead, the subproblem is terminated early, and the next value of µ is chosen so that
the sequence of aggregated inner iterates converges to x∗ at a rapid rate. However,
although our choice of merit function is influenced by the desire for rapid local con-
vergence, the principal focus is on the construction of the inner iterations, i.e., on the
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minimization of Mµ,ν(x, λ) for given µ and ν. Methods that terminate the subprob-
lems early and define an associated decrease in µ will be considered in a future paper.
Such methods rely heavily on the techniques discussed here.

2. Background.

2.1. Nomenclature. Given a real symmetric matrix A, the inertia of A—
denoted by In (A)—is the associated integer triple (a+, a−, a0) indicating the number
of positive, negative, and zero eigenvalues of A. The largest and smallest eigenvalues
of A are denoted by ηmax(A) and ηmin(A). The expression A � 0 means that A is
positive definite. A member of a sequence of real symmetric matrices {Ak} is said
to be sufficiently positive definite if its eigenvalues are greater than a small positive
number independent of k. The vector ei is used to denote the ith unit vector of the
appropriate dimension. The vector e denotes the vector of all ones whose dimension
is defined by the context of its use.

2.2. The classical penalty-barrier function. Standard second-order line-
search or trust-region methods are easily adapted to find a local minimizer of Mµ

(for details see, e.g., Dennis and Schnabel [10]). Regardless of the choice of method,
as the iterates converge to an isolated local solution x(µ), the change in variables at
iterate x is determined by the Newton equations ∇2Mµ(x)∆x = −∇Mµ(x), which de-
fine ∆x as the step to the point that minimizes a quadratic model of Mµ. The Hessian
∇2Mµ(x) and gradient ∇Mµ(x) can be represented in terms of auxiliary quantities
πµ(x) and Ωµ(x) as follows. Let πµ(x) denote the m-vector:

πµi (x) =

{
−ci(x)/µ if i ∈ E ,

µ/ci(x) if i ∈ I.
(2.1)

For any given µ and x, the vector πµ(x) approximates λ(µ) (and hence λ∗). In
particular, if x = x(µ), then πµ(x) = λ(µ), from (1.2).

Let Ωµ(x) denote the diagonal matrix diag(ωµ(x)), where

ωµi (x) =

{
1/µ if i ∈ E ,

µ/ci(x)2 if i ∈ I.
(2.2)

Given πµ(x) and Ωµ(x), the derivatives of Mµ can be written as

∇Mµ(x) = g(x)− J(x)Tπµ(x),(2.3a)

∇2Mµ(x) = H(x, πµ(x)) + J(x)TΩµ(x)J(x),(2.3b)

where H(x, λ) denotes the Hessian with respect to x of the Lagrangian f(x)−λT c(x).
Unconstrained methods for minimizing Mµ are well defined as long as the deriva-

tives (2.3) are bounded. This will always be the case if c is evaluated at points that
are strictly feasible with respect to the inequality constraints. For example, in a line-
search method, the initial estimate x0 is chosen to lie in the strict interior of the region
{x | ci(x) ≥ 0, i ∈ I}, and subsequent line searches ensure that ci(x + α∆x) > 0 for
all i ∈ I (see, e.g., Murray and Wright [37]).

Given the derivatives (2.3), the Newton equations can be written as(
H(x, πµ(x)) + J(x)TΩµ(x)J(x)

)
∆x = −(g(x)− J(x)Tπµ(x)).(2.4)
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Unfortunately, the direct minimization of Mµ cannot be recommended as a practical
algorithm. As µ → 0, terms in the matrix J(x)TΩµ(x)J(x) associated with the
gradients of the equality constraints and active inequality constraints can become
unbounded. If the number m̄ of unbounded terms satisfies 0 < m̄ < n, then ∇2Mµ(x)
becomes increasingly ill conditioned as µ is reduced, and the inverse of ∇2Mµ(x) is
singular in the limit (see Murray [36] and Wright [41]).

The ill-conditioning of ∇2Mµ not only affects the sensitivity of the numerical
solution of (2.4) but also inhibits the final rate of convergence of the Newton iterates.
In the next three sections we review some recent approaches that are intended to
overcome these difficulties.

2.3. The primal-dual equations. The effects of inevitable ill-conditioning can
be removed by exploiting some recent developments in interior methods for convex
programming. These methods compute primal and dual variables that satisfy a sys-
tem of nonlinear equations equivalent to a perturbed system of first-order optimality
conditions.

For any value of µ, an associated point (x(µ), λ(µ)) on the penalty-barrier trajec-
tory satisfies the n+m equations

g(x)− J(x)Tλ = 0,(2.5a)

µλi + ci(x) = 0, i ∈ E ,(2.5b)

ci(x)λi − µ = 0, i ∈ I.(2.5c)

These relations imply that (x(µ), λ(µ)) can be determined by solving n+m nonlinear
equations in the n + m unknowns (x, λ) using an iterative method, which is usually
some variant of Newton’s method.

To derive a suitable form of Newton’s method, it is helpful to rewrite the m
relations (2.5b)–(2.5c) in vector form Wµ(x)(λ−πµ(x)) = 0, where πµ(x) is given by
(2.1) and Wµ(x) is the diagonal matrix with diagonal entries

wµi (x) =

{
µ if i ∈ E ,

ci(x) if i ∈ I.
(2.6)

Conditions (2.5) imply that (x(µ), λ(µ)) solves the n + m nonlinear equations
Fµ(x, λ) = 0, where Fµ(x, λ) and its Jacobian Fµ′(x, λ) are given by

Fµ(x, λ) =

(
g(x)− J(x)Tλ

Wµ(x)(λ− πµ(x))

)
, Fµ′(x, λ) =

(
H(x, λ) −J(x)T

Z(λ)J(x) Wµ(x)

)
,

and Z(λ) is a diagonal matrix with diagonal entries

zi(λ) =

{
1 if i ∈ E ,

λi if i ∈ I.
(2.7)

Suppose that (x, λ) is an estimate of (x(µ), λ(µ)). Let π, g, c, J , H, and W
denote the quantities πµ(x), g(x), c(x), J(x), H(x, λ), and Wµ(x). Given (x, λ), the
next iterate of Newton’s method for a solution of Fµ = 0 is (x+∆x, λ+∆λ), where
(∆x,∆λ) satisfies the Newton equations(

H −JT
ZJ W

) (
∆x

∆λ

)
= −

(
g − JTλ
W (λ− π)

)
.(2.8)
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Similar equations have been proposed for interior methods for convex programming
(see, e.g., Kojima, Mizuno, and Yoshise [28], Lustig, Marsten, and Shanno [29],
Megiddo [31], Mehrotra [32], Monteiro and Adler [33], and Gill et al. [18]) and non-
convex programming (see, e.g., El-Bakry et al. [12] and Forsgren, Gill, and Shinnerl
[16]).

The class of methods considered in this paper is characterized by the property
that every iterate (x, λ) satisfies ci(x) > 0 and λi > 0 for all i ∈ I. (It is this
property that has come to be associated with the idea of a “primal-dual” method.) If
this property is satisfied at an initial point (x0, λ0), then it can be enforced at every
subsequent iterate if we are prepared to restrict the step along each search direction.
In this case, the next iterate will be (x+α∆x, λ+α∆λ), where α is a step length such
that ci(x + α∆x) > 0 and λi + α∆λi > 0 for all i ∈ I. (The primal-dual property
is enforced automatically by the merit function proposed in section 3.1.) With this
restriction on the choice of x and λ, the Newton equations (2.8) are known as the
unsymmetric primal-dual equations. Note that the diagonal matrices Z and W are
positive definite.

The primal-dual equations have the important property that, if the second-order
sufficient conditions for optimality hold, the Jacobian Fµ′(x, λ) is nonsingular in a
neighborhood of (x∗, λ∗) for µ sufficiently small (see Fiacco and McCormick [13]).
This result has two important implications. First, it allows the application of the
standard convergence theory for Newton’s method, which states that the Newton
iterates will converge quadratically in a sufficiently small neighborhood of (x(µ), λ(µ))
for µ sufficiently small.

The second benefit of a nonsingular primal-dual Jacobian concerns the quality of
the first Newton iterate immediately after µ is reduced (to µ̄, say). In practice, each
unconstrained minimization is done only approximately, with a termination condition
that determines the accuracy of the unconstrained minimizers. An important feature
of any implementation of a penalty-barrier method is that, in the limit, this termina-
tion condition should allow only one inner iteration for each value of µ. If this is to
be the case, the solution of the first primal-dual system associated with µ̄ must pro-
vide an increasingly good estimate of (x(µ̄), λ(µ̄)). If second-order sufficiency holds at
(x∗, λ∗), and µ is reduced to µ̄ at a point (x(µ), λ(µ)) on the trajectory, then the new
primal-dual nonlinear system will be “close” to the old one for µ sufficiently small.
This implies that the aggregated set of inner iterates will converge very rapidly, given
a suitable scheme for reducing µ.

Alternative methods for (x(µ), λ(µ)) can be derived by linearizing equivalent
forms of the perturbed condition (2.5c) (see, e.g., Ye [45], Gill et al. [18], and Gon-
zaga [21]). However, it must be emphasized that the favorable property mentioned
above does not hold for these alternatives. For example, suppose that (2.5c) is re-
placed by the condition λi − µ/ci(x) = 0 for i ∈ I; or, equivalently, λi − πµ(x) = 0
for i ∈ I. The associated Newton equations for the combined constraints are(

H −JT
ΩJ I

) (
∆x

∆λ

)
= −

(
g − JTλ
λ− π

)
,(2.9)

where Ω is the diagonal matrix Ωµ(x) of (2.2). These equations are known as the
unsymmetric primal barrier equations for (x, λ). If these equations are defined with
λ = πµ(x), and ∆λ is eliminated from the system, we obtain the classical penalty-
barrier equations (2.4) for ∆x. This implies that the solution of (2.9) can be used
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to find a solution of (2.4) in a numerically stable way (see Gould [22], who first pro-
posed this calculation for the corresponding row-scaled symmetric system). However,
although the Newton direction can be calculated accurately, the Jacobian associated
with the primal system (2.9) is unbounded as µ → 0, and the region of quadratic
convergence shrinks with µ. Moreover, reducing µ may give a new ∆x that differs
substantially from the step to the minimizer on the trajectory (see Wright [42] for
a discussion of this point in the context of the primal barrier method). For a dis-
cussion of the asymptotic rate of convergence of the classical penalty-barrier method,
see Gould [23] and Dussault [11]. They show that for certain termination criteria, an
initial inner iterate can be calculated so that the aggregated sequence of inner iter-
ates converges at a two-step Q-quadratic rate. Strategies for modifying the classical
barrier method are considered by Conn, Gould, and Toint [8].

2.4. The symmetric primal-dual system. An important implication of solv-
ing nonconvex problems is the prominent role of symmetric systems in the definition
of the search direction. If the objective is not convex, even the verification of optimal-
ity requires knowledge of the inertia (i.e., the number of positive, negative, and zero
eigenvalues) of the Hessian in the subspace orthogonal to the active constraint gradi-
ents. It is not at all obvious how the inertia of a matrix can be estimated efficiently
without utilizing its symmetry.

The unsymmetric primal-dual equations can be symmetrized by premultiplying
the last m rows by Z−1 and changing the sign of ∆λ. This gives(

H JT

J −D

) (
∆x

−∆λ

)
= −

(
g − JTλ
D(λ− π)

)
,(2.10)

where D = Z−1W . Following the convention used in convex programming, we call
these equations the symmetric primal-dual equations.

The diagonal matrix D in (2.10) plays a crucial role in the analysis. Formally, we
write D = Dµ(x, λ), with

dµi (x, λ) =

{
µ if i ∈ E ,

ci(x)/λi if i ∈ I.
(2.11)

If the second-order sufficient conditions for optimality hold at (x∗, λ∗), then the el-
ements of Dµ either go to zero or go to infinity as µ → 0. For equality constraints
and active inequality constraints, dµi (x(µ), λ(µ))→ 0, and for inactive inequality con-
straints, dµi (x(µ), λ(µ)) → ∞. This implies that the symmetric system (2.10) is ill
conditioned, with some diagonal elements becoming unbounded as µ → 0. Forsgren,
Gill, and Shinnerl [16] show that this ill-conditioning is artificial in the sense that the
true sensitivity of the solution is independent of the size of the large diagonals. In
particular, they show that the primal-dual solution can be found accurately using a
certain symmetric indefinite factorization of the primal-dual system (see section 4.1).
Related stability discussions can also be found in Ponceleón [38] and Wright [43, 44].

2.5. Global convergence. Until now we have considered the local properties
of the primal-dual method. In doing so, we have made two assumptions: (i) the
iterates (x, λ) lie in a sufficiently small neighborhood of (x(µ), λ(µ)) for µ sufficiently
small; and (ii) (x(µ), λ(µ)) lies on a trajectory of local minimizers of Mµ. In order to
make the method suitable for general problems, it is necessary to use the primal-dual
direction (∆x,∆λ) in conjunction with a merit function that forces convergence from
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an arbitrary starting point. Moreover, since second derivatives of f and c are being
calculated at each iteration, it seems reasonable to expect that every limit point
of the sequence of iterates should satisfy the second-order necessary conditions for
optimality.

In the case of primal-dual interior methods (where it is assumed that all con-
straints are inequalities), various merit functions have been suggested. One particu-
larly popular merit function is

M(x, λ) =
1

2
Fµ(x, λ)TFµ(x, λ),

where Fµ(x, λ) is the residual vector associated with the primal-dual equations (2.10).
El-Bakry et al. [12] propose this merit function for general nonlinear programming
and show that, under certain assumptions, it provides convergence to a point that
satisfies the first-order conditions for optimality. In section 3.1, we propose a merit
function with the potential of giving limit points that satisfy the second-order neces-
sary optimality conditions.

3. Second-order penalty-barrier methods.

3.1. An augmented penalty-barrier merit function. For positive parame-
ters µ and ν, consider the combined augmented penalty and barrier function Mµ,ν(x, λ)
such that

Mµ,ν(x, λ) = f(x) +
1

2µ

∑
i∈E

(
ci(x)2 + ν(ci(x) + µλi)

2
)

− µ
∑
i∈I

(
ln ci(x) + ν

(
ln

(
ci(x)λi
µ

)
+ 1− ci(x)λi

µ

))
.(3.1)

This function is well defined for all (x, λ) such that ci(x) > 0 and λi > 0 for i ∈ I.
For fixed x, the vector λ = πµ(x) minimizes Mµ,ν(x, λ) with respect to λ, where

πµ(x) is defined in (2.1). Moreover, Mµ,ν(x, πµ(x)) = Mµ(x), where Mµ(x) de-
notes the classical penalty-barrier function (1.1). This result implies that a point
(x(µ), λ(µ)) on the penalty-barrier trajectory can be found by minimizing Mµ,ν(x, λ)
with respect to both x and λ. The following lemma makes this precise.

Lemma 3.1. Let Mµ,ν(x, λ) be the augmented penalty-barrier function (3.1) de-
fined with any positive µ and ν. A point (x, λ) such that ci(x) > 0 and λi > 0 for i ∈ I
is an unconstrained local minimizer of Mµ,ν(x, λ) if and only if (x, λ) = (x(µ), λ(µ)).
Furthermore, minλM

µ,ν(x, λ) = Mµ,ν(x, πµ(x)) = Mµ(x), where Mµ(x) is the clas-
sical combined penalty-barrier function (1.1) and πµ(x) is defined in (2.1).

Proof. For x fixed, Mµ,ν(x, λ) is a strictly convex separable function of λ for λ > 0.
It is straightforward to verify that the minimizing λ is given by πµ(x), where πµ(x)
is given by (2.1). Substituting these values in (3.1) gives Mµ,ν(x, πµ(x)) = Mµ(x),
where Mµ(x) is given by (1.1). The definition of x(µ) as a minimizer of Mµ(x) in
conjunction with the definition λ(µ) = πµ(x(µ)) gives the required result.

The augmented penalty-barrier function Mµ,ν(x, λ) can be interpreted as the
classical combined penalty-barrier function augmented by a function that measures
the proximity of (x, λ) to the penalty-barrier trajectory. The parameter ν defines the
relative weight of the proximity measure.

The most important property of Mµ,ν(x, λ) is that it is minimized at a point
(x(µ), λ(µ)) on the trajectory. (We observe that this is in contrast to the saddle-
point property typically associated with Lagrangians and augmented Lagrangians.)
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It follows that the Fiacco–McCormick penalty-barrier method can be generalized to
include dual variables by minimizing Mµ,ν(x, λ) with respect to both x and λ using
any unconstrained minimization method. In this case, a second-order method will
require both the first and second derivatives of Mµ,ν(x, λ). Differentiating Mµ,ν(x, λ)
with respect to both x and λ and using the auxiliary quantities πµ(x) (2.1) and
Dµ(x, λ) (2.11) give

∇Mµ,ν(x, λ) =

(
g(x)− (1 + ν)J(x)Tπµ(x) + νJ(x)Tλ

νDµ(x, λ)(λ− πµ(x))

)
, and(3.2a)

∇2Mµ,ν(x, λ) =

(
∇2
xxM

µ,ν(x, λ) νJ(x)T

νJ(x) νΓµ(λ)

)
,(3.2b)

where Γµ(λ) is the diagonal matrix diag(γµ(λ)) such that

γµi (λ) =

{
µ if i ∈ E ,

µ/λ2
i if i ∈ I.

(3.3)

The Hessian ∇2
xxM

µ,ν(x, λ) is written in terms of the Lagrangian Hessian H(x, λ).
Differentiating Mµ,ν(x, λ) twice with respect to x and collecting terms gives

∇2
xxM

µ,ν(x, λ) = H
(
x, (1 + ν)πµ(x)− νλ

)
+ (1 + ν)J(x)TΩµ(x)J(x),

where Ωµ(x) is defined in (2.2).
Rather than use these derivatives directly within a “black-box” line-search or

trust-region method, we propose that ∇2Mµ,ν(x, λ) be approximated by a symmetric
matrix Sµ,ν(x, λ) in such a way that the search direction is defined by the primal-dual
equations (2.10). This strategy requires the use of a modified Newton method that
can exploit an approximate Hessian. Such methods are described next.

3.2. Modified Newton methods using an approximate Hessian. We con-
sider a certain class of modified Newton methods for the minimization of a function
M(v) with gradient ∇M(v) and Hessian ∇2M(v). For brevity, we consider a method
similar to that discussed by Forsgren, Gill, and Murray [15]. However, the modified
Newton methods of McCormick [30], Mukai and Polak [35], Kaniel and Dax [27], Moré
and Sorensen [34], and Goldfarb [20] are all suitable alternatives.

The method generates a sequence {vk}∞k=0 of improving estimates of a local min-
imizer of M . At iteration k, a line search is performed along a nonzero direction ∆vk
of the form

∆vk = sk + dk,

where sk and dk are computed using a symmetric matrix S(v) that approximates the
Hessian ∇2M(v) at vk. The crucial property of S is that the approximation is exact
at any stationary point of M . In particular, we require that

‖S(vk)−∇2M(vk)‖ = O(‖vk − v∗‖),
where v∗ is any stationary point of M . We emphasize that the exact Hessian ∇2M(v)
is known at each step, but that we choose not to use it to compute the search direction
(see section 3.1). Note that a regular modified Newton method is obtained if S(v) =
∇2M(v) for all v.
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Although sk and dk are computed using S(vk), they are forced to have cer-
tain properties with respect to ∇M(vk) and S(vk). In particular, we ensure that
∇M(vk)Tsk ≤ 0, ∇M(vk)Tdk ≤ 0, and dTk S(vk)dk ≤ 0. Each sk satisfies a positive-
definite system of the form

S̄(vk)sk = −∇M(vk),

where S̄(vk) = S(vk) + Ek with Ek = 0 if S(vk) is sufficiently positive definite. The
vector dk is defined as a direction of negative curvature for S(vk) and is normalized so
that ∇M(vk)Tdk ≤ 0. If dTk∇2M(vk)dk > 0, the vector dk can be reset to zero. This is
not essential, but it provides the convenient property that ∇2M(vk) has at least one
zero or negative eigenvalue if dk is nonzero.

Once ∆vk has been determined, a line search is used to find a step length αk such
that vk+1 = vk +αk∆vk and M(vk +αk∆vk) < M(vk). The principal role of the line
search is to ensure that ∇M(vk)Tsk → 0 and dTk∇2M(vk)dk → 0. If these conditions
are satisfied, and the directions sk and dk are sufficient in the sense that {sk} and
{dk} are bounded sequences that satisfy the conditions

∇M(vk)Tsk → 0 ⇒ ∇M(vk)→ 0 and sk → 0,(3.4a)

dTk∇2M(vk)dk → 0 ⇒ min{ηmin(∇2M(vk)), 0} → 0 and dk → 0,(3.4b)

then every limit point of the sequence {vk}∞k=0 will satisfy the second-order necessary
conditions for optimality (see Moré and Sorensen [34]). In our case, conditions are
imposed on dTkS(vk)dk rather than dTk∇2M(vk)dk. However, the properties of S(vk)
ensure that dTkS(vk)dk → dTk∇2M(vk)dk if ∇M(vk) → 0, and it follows that, in the
limit, S(vk) is positive semidefinite if and only if ∇2M(vk) is positive semidefinite.

To keep things simple, a backtracking line search is described here. (For a review
of some alternatives, see Moré and Sorensen [34].) An initial step αk = 1 is reduced (if
necessary) by a constant factor until the reduction in M is at least as large as a fixed
factor τ (0 < τ < 1) of the reduction predicted by a model function formed from the
first two or three terms of a Taylor-series approximation to M(vk + α∆vk). If mk(α)
denotes the univariate function M(vk + α∆vk), then a step length αk is accepted if

mk(α) ≤ mk(0) + τ

(
αkm

′
k(0) +

1

2
α2
k min{0,m′′k(0)}

)
,

where m′ and m′′ denote the first and second derivatives of m(α) with respect to α.
The modified Newton method can be summarized as follows.

Algorithm 3.1. Modified Newton method.
Specify τ such that 0 < τ < 1

2 ;
Choose v0;
k ← 0;
repeat

Evaluate M(vk), ∇M(vk);
if S(vk) is positive semidefinite and ∇M(vk) = 0 then

stop; [vk satisfies the second-order necessary conditions for optimality.]
else if S(vk) is positive semidefinite then

Compute sk such that ∇M(vk)Tsk < 0; dk ← 0;
else

[S(vk) must have at least one negative eigenvalue.]
Compute sk such that ∇M(vk)Tsk ≤ 0;
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Compute dk such that ∇M(vk)Tdk ≤ 0 and dTk S(vk)dk < 0;

end

∆vk ← sk + dk;

αk ← 1; mk(αk)←M(vk + αk∆vk);

do while mk(αk) > mk(0) + τ(αkm
′
k(0) + 1

2α
2
k min{0,m′′k(0)})

αk ← αk/2; mk(αk)←M(vk + αk∆vk);

end do

vk+1 ← vk + αk∆vk;

k ← k + 1;

until converged;

3.3. The primal-dual method. Our aim is to use the primal-dual equations
(2.10) to define the search direction but to relate this search direction to the aug-
mented penalty-barrier merit function (3.1).

Consider the matrix Sµ,ν(x, λ) obtained by approximating πµ(x) by λ, Ωµ(x) by
Dµ(x, λ)−1, and Γµ(λ) by Dµ(x, λ) in the matrix ∇2Mµ,ν(x, λ) of (3.2b). Then

Sµ,ν(x, λ) =

(
H(x, λ) + (1 + ν)J(x)TDµ(x, λ)−1J(x) νJ(x)T

νJ(x) νDµ(x, λ)

)
,(3.5)

and Sµ,ν(x, λ) → ∇2Mµ,ν(x, λ) as (x, λ) → (x(µ), λ(µ)). It follows that Sµ,ν(x, λ)
can be used as an approximate Hessian in a modified Newton method of the type
suggested in section 3.2.

The next result provides the theoretical basis for the new method. It indicates
that the modified Newton direction based on the approximate Hessian Sµ,ν(x, λ),

Sµ,ν(x, λ)

(
∆x

∆λ

)
= −∇Mµ,ν(x, λ),(3.6)

satisfies the primal-dual equations (2.8) or, equivalently, the symmetric primal-dual
equations (2.10). Moreover, the approximation Sµ,ν(x, λ) is exact whenever (x, λ) is
a stationary point of Mµ,ν , i.e., when ∇Mµ,ν(x, λ) = 0.

Theorem 3.2. Let Mµ,ν(x, λ) be the augmented penalty-barrier function (3.1)
defined with any positive µ and ν. Let Sµ,ν(x, λ) denote the approximate Hessian
(3.5). If ci(x) > 0 and λi > 0 for all i ∈ I, then the vector (∆x,∆λ) solves the
modified Newton equations (3.6) if and only if it solves the primal-dual equations
(2.8) and the symmetric primal-dual equations (2.10). Moreover, if ∇Mµ,ν(x, λ) = 0,
then Sµ,ν(x, λ) = ∇2Mµ,ν(x, λ).

Proof. If ci(x) > 0 and λi > 0 for i ∈ I, and µ > 0, the diagonal matrices Dµ(x, λ)
(2.11) and Z(λ) (2.7) are positive definite. The definiteness of Z(λ) implies that the
unsymmetric primal-dual equations (2.8) and the symmetric primal-dual equations
(2.10) are equivalent. Hence, it suffices to consider the symmetric equations (2.10).
To simplify the notation, let H = H(x, λ), D = Dµ(x, λ), J = J(x), g = g(x), and
π = πµ(x, λ). As ν is nonzero and D is positive definite, the (n+m)× (n+m) block
upper-triangular matrix (

I (1 + ν)JTD−1

0 νI

)



PRIMAL-DUAL METHODS FOR NONLINEAR PROGRAMMING 1143

is well defined, nonsingular, and can be applied to both sides of the modified Newton
equation. The first part of the theorem follows directly from the identities(

I (1 + ν)JTD−1

0 νI

) (
H −JT
J D

)
=

(
H + (1 + ν)JTD−1J νJT

νJ νD

)
and (

I (1 + ν)JTD−1

0 νI

) (
g − JTλ
D(λ− π)

)
=

(
g − (1 + ν)JTπ + νJTλ

νD(λ− π)

)
,

upon comparison of (2.10), (3.2a), (3.5), and (3.6).
For the second part of the proof, assume that ∇Mµ,ν(x, λ) is zero, with ci(x) > 0

and λi > 0 for all i ∈ I. It follows that Dµ(x, λ) (2.11) is nonsingular. Hence, (3.2a)
implies that λ = πµ(x), where πµ(x) is defined by (2.1). It is then straightforward to
verify that Γµ(πµ(x)) = Dµ(x, πµ(x)) and Ωµ(x) = Dµ(x, πµ(x))−1.

It is essential that Sµ,ν is an exact approximation of ∇2Mµ,ν at every stationary
point of Mµ,ν(x, λ). Broadly speaking, it is not necessary to compute a direction
of negative curvature for Mµ,ν at every point at which ∇2Mµ,ν is indefinite, but
a direction of negative curvature must always be computed in a neighborhood of a
stationary point at which the Hessian is indefinite.

4. Calculation of the search direction. Based on the discussion of the pre-
vious section, we define the search direction using the primal-dual matrix K such
that

K =

(
H JT

J −D

)
,(4.1)

but use the matrix S such that

S =

(
H + (1 + ν)JTD−1J νJT

νJ νD

)
(4.2)

to measure the approximate curvature of the merit function. In the modified Newton
method of section 3.2 the search direction is given by(

∆x

∆λ

)
=

(
sx

sλ

)
+

(
dx

dλ

)
= s+ d,

where s is a descent direction and d is a direction of negative curvature for the merit
function (see section 3.2). Whenever the Hessian approximation S of (4.2) is suffi-
ciently positive definite, s is computed from the primal-dual equations (2.10), and d
is zero since S is positive definite.

Note that the inertia of S is needed at each step, yet it is the matrix K (4.1) that
is being factorized. This makes it essential that the inertia of S can be deduced from
the inertia of K. The following lemma gives the required relationships.

Lemma 4.1. Let D be a symmetric positive-definite m ×m matrix, let H be a
symmetric n×n matrix, let ν be positive, let K be the primal-dual KKT matrix (4.1),
and let S be the approximate Hessian (4.2). Then

In (S) = In (H + JTD−1J) + (m, 0, 0),

In (K) = In (H + JTD−1J) + (0,m, 0).
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Moreover, if H + JTD−1J has at least one negative eigenvalue, then

ηmin(H + JTD−1J) ≤ ηmin(S).

Proof. Let X be a symmetric block-partitioned matrix of the form

X =

(
A BT

B C

)
.

The basic properties of the inertia give In (X) = In (C) + In (A−BTC−1B); see, e.g.,
Cottle [9, p. 197]. Furthermore, if A−BTC−1B has at least one negative eigenvalue
and C is positive definite, then

ηmin(A−BTC−1B) ≤ ηmin(X)

(see Lemma 2.1 in Forsgren, Gill, and Murray [15]).
The inertia property implies that In (S) = In (νD) + In (H + JTD−1J). Since

νD is a positive diagonal, In (νD) = (m, 0, 0) and the first result follows. Similarly,
In (K) = In (−D) + In (H + JTD−1J). Since In (−D) = (0,m, 0), the second result
also holds. Finally, the eigenvalue relation follows from the above relation with X = S
and C = νD.

4.1. The factorization. We assume that the primal-dual KKT equations are
solved using a variant of the symmetric indefinite factorization (see Bunch and Par-
lett [6], Fletcher [14], and Bunch and Kaufman [4]), which we refer to as the LBLT

factorization. If K denotes the particular primal-dual KKT matrix under considera-
tion, then the LBLT factorization defines a permutation P , a block-diagonal B, and
a unit-lower-triangular L such that

PTKP = LBLT , where B = diag(B1, B2, . . . , Bs).(4.3)

Each Bj is either one-by-one, or is two-by-two and nonsingular. The permutation P
incorporates certain symmetric interchanges that are needed to preserve numerical
stability.

At the start of the `th stage (` ≥ 1) of the LBLT factorization of K we have

K(`) =
(
K

(`)
ij

)
= PT` KP` −

`−1∑
i=1

LiBiL
T
i =

(
0 0

0 K`

)
,(4.4)

where P` is a permutation and Li is either an n × 1 or n × 2 matrix consisting of
the column(s) of L computed at the ith stage. The matrix K` is called the Schur
complement and represents the part of K remaining to be factorized. At the `th
stage, a one-by-one or symmetric two-by-two submatrix of K` is selected as the next
pivot B`. The pivot rows and columns are brought to the leading position of K` using
a symmetric interchange, which must be applied to PT` KP` and the rows of each Li.
The one-by-one or two-by-two pivot is then used to eliminate one or two rows and
columns from the permuted Schur complement. The `th stage is completed by the
computation of L` from B−1

` and the pivot columns of K(`) (for further details, see
Bunch [3]).

Clearly, the permutation P depends on the sequence of pivots. Various pivoting
strategies have been proposed that define a numerically stable factorization (see, e.g.,
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Bunch, Kaufman, and Parlett [5]; Higham [26]). Here we consider pivot strategies
that additionally ensure that B has a specific inertia.

If K is the primal-dual matrix (4.1), potential pivots in the Schur complement can
be labeled to reflect the position of the pivot in the original matrix. For example, a
diagonal of the Schur complement will be a “D pivot” if it is in the position occupied
by an element of −D in the original matrix. Similarly, a two-by-two pivot with
diagonal and off-diagonal positions occupied by elements from H and D will be an
“HD pivot.” With this labeling, all one-by-one pivots are either H or D pivots, and
two-by-two pivots are HH, DD, or HD (DH) pivots.

The key to the calculation of suitable search directions is the use of a sequence
of inertia-controlling pivots. The resulting factorization generalizes the symmetric
indefinite factorization proposed by Forsgren and Murray [17] for linear equality-
constrained minimization.

The inertia-controlling factorization consists of two phases. The first phase contin-
ues until all rows and columns associated with the D block of K have been eliminated
(i.e., until no D pivots or HD pivots remain in the Schur complement). During this
first phase, only certain types of pivots are allowed (see below). When the first phase
is complete, the pivot choice is restricted only by numerical considerations.

In order to describe the first phase it is necessary to further distinguish between
pivot types. Let a superscript “+” or “−” indicate the sign of an eigenvalue of a
potential pivot. For example, H+ denotes a positive one-by-one H pivot; D− denotes
a negative one-by-one D pivot; and HD−+ denotes an HD pivot with one positive
and one negative eigenvalue. The main feature of the first phase of the factorization
is that only H+, D−, HH++, DD−−, and HD−+ pivots are allowed.

Consider the partition of K given by H11 H12 JT1
H21 H22 JT2
J1 J2 −D

 ,

and assume that all pivots from the first phase come from rows and columns associated
with H11, J1, and −D. Without loss of generality, we assume the permutation P to
be such that

PTKP =

 H11 JT1 H21

J1 −D J2

H21 JT2 H22

 ,

i.e., the order of the pivots within the first phase is ignored. The matrix PTKP is
partitioned as

PTKP =

(
K11 K12

K21 K22

)
,

where

K11 =

(
H11 JT1
J1 −D

)
, K21 = KT

12 = ( H21 JT2 ), and K22 = H22.

The sequence of pivots used during the first phase fixes K11 as an n1 ×m matrix for
some n1 (0 ≤ n1 ≤ n) and thereby identifies the blocks K11, K12, and K22 (the value
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of n1 will depend upon the relative number of one-by-one and two-by-two pivots). The
restricted pivot choice ensures that In (K11) = (n1,m, 0). Moreover, on completion
of the first phase, factors L11 and B11 have been computed such that

K11 = L11B11L
T
11 and L21 = K21L

−T
11 B

−1
11 .

During the second phase, the pivot choice is unrestricted, which implies that the
remaining Schur complement K22 − K21K

−1
11 K12 can be factored using a standard

LBLT -factorization. The only restriction is that the choice of pivots gives a factor-
ization for which ‖L‖ is bounded.

On completion of the second phase we have

K22 −K21K
−1
11 K12 = L22B22L

T
22.

This provides the complete factorization(
K11 K12

K21 K22

)
=

(
L11 0

L21 L22

) (
B11 0

0 B22

) (
LT11 LT21

0 LT22

)
.

4.2. Calculation of the descent direction. Given the inertia-controlling LBLT -
factorization of K, the descent direction is now computed from(

L11 0

L21 L22

) (
B11 0

0 B̄22

) (
LT11 LT21

0 LT22

)
s̃ = −PT

(
g − JTλ
D(λ− π)

)
,(4.5)

with (
sx

−sλ

)
= P s̃,

where B̄22 is a sufficiently positive-definite modification of B22. In particular, if B22

is sufficiently positive definite, then B̄22 = B22. It is relatively straightforward to
modify B22 since the diagonal blocks are of size one-by-one or two-by-two and the
eigenvalues of each block can be found explicitly and modified if necessary. A crucial
feature of the factorization is that K22 only includes rows and columns from H. This
ensures that any modification of B22 affects only parts of H in K. Furthermore, (4.5)
can be written as (

H̄ JT

J −D

) (
sx

−sλ

)
= −

(
g − JTλ
D(λ− π)

)
,(4.6)

where H̄ is a symmetric modification of H such that H̄ + JTD−1J is sufficiently pos-
itive definite. Whenever H +JTD−1J is sufficiently positive definite, no modification
takes place and the descent direction s is the primal-dual direction computed from
(2.10). This is analogous to the method of Forsgren and Murray [17].

Alternatively, we may use Theorem 3.2 to establish that (4.6) is equivalent to

S̄s = −∇Mµ,ν(x, λ),

where

S̄ =

(
H̄ + (1 + ν)JTD−1J νJT

νJ νD

)
.(4.7)
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We first establish descent properties of s with respect to the merit function (3.1).
Lemma 4.2. Let s satisfy (4.6), where H̄ is symmetric, D is symmetric and

positive definite, and H̄ + JTD−1J is positive definite. Then

sT∇Mµ,ν(x, λ) = −sTx(H̄ + JTD−1J)sx − ν(λ− π)TD(λ− π),

where ∇Mµ,ν(x, λ) is defined by (3.2a). Moreover, sx = 0 if and only if g − JTπ = 0.
Finally, if sx = 0, then sλ = π − λ.

Proof. Straightforward substitution gives the first result. Elimination of sλ in
(4.6) gives

(H̄ + JTD−1J)sx = −(g − JTπ).

Hence, since H̄+JTD−1J is positive definite, we have sx = 0 if and only if g−JTπ = 0.
Finally, if sx = 0, then g = JTπ, and sλ is given by(

−JT
D

)
sλ = −

(
g − JTλ
D(λ− π)

)
=

(
−JT
D

)
(π − λ),

with unique solution sλ = π − λ.
The positive definiteness of S̄ ensures that sT∇Mµ,ν(x, λ) < 0 unless s = 0 and

∇Mµ,ν(x, λ) = 0. The additional information provided by Lemma 4.2 is that if sx = 0,
then g − JTπ = 0 and sλ = π − λ. This means that if x = x(µ), then one further
Newton step gives the λ variables as λ(µ).

Some further assumptions are required in order to make s a sufficient descent
direction in the sense of (3.4a). This is summarized in the following theorem.

Theorem 4.3. Assume that the sequence of directions {sk}∞k=0 satisfies(
H̄k JTk
Jk −Dk

) (
sx,k

−sλ,k

)
= −

(
gk − JTk λk
Dk(λk − πk)

)
,

where H̄k + JTkD
−1
k Jk � 0 and Dk � 0 for all k. Then, sTk∇Mµ,ν(xk, λk) < 0 unless

sk = 0. Furthermore, assume that lim supk→∞ ‖H̄k‖ < ∞, lim supk→∞ ‖Jk‖ < ∞,
lim infk→∞ ηmin(Dk) > 0, lim supk→∞ ηmax(Dk) < ∞, and lim infk→∞ ηmin(H̄k +
JTkD

−1
k Jk) > 0. Then, if

lim
k→∞

sTk∇Mµ,ν(xk, λk) = 0,

it holds that

lim
k→∞

sk = 0 and lim
k→∞

∇Mµ,ν(xk, λk) = 0.

Proof. Theorem 3.2 gives S̄ksk = −∇Mµ,ν(xk, λk), where

S̄k =

(
H̄k + (1 + ν)JTkD

−1
k Jk νJTk

νJk νDk

)
.

If H̄k + JTkD
−1
k Jk � 0, Dk � 0, and ν > 0, Lemma 4.1 shows that S̄k � 0. Hence,

the identity sTk∇Mµ,ν(xk, λk) = −sTkS̄ksk ensures that sTk∇Mµ,ν(xk, λk) < 0 unless
sk = 0.
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To prove the second part of the theorem, S̄k is written as

S̄k =

(
I JTkD

−1
k

0 I

) (
H̄k + JTkD

−1
k Jk 0

0 νDk

) (
I 0

D−1
k Jk I

)
.(4.8)

It follows from (4.8) and the boundedness assumptions that lim infk→∞ ηmin(S̄k) > 0
and lim supk→∞ ηmax(S̄k) < ∞ (see Lemma 3.1 in Forsgren and Murray [17]). The
proof is completed by combining these results with the modified Newton equation
S̄ksk = −∇Mµ,ν(xk, λk).

4.3. Calculation of the direction of negative curvature. Given the inertia-
controlling LBLT -factorization of K, if B22 has at least one negative eigenvalue, the
direction of negative curvature is computed from(

LT11 LT21

0 LT22

)
d̃ = ±σ

(
0

u

)
,(4.9)

with (
dx

−dλ

)
= P d̃,

where σ =
√−ηmin(B22) and u is an associated eigenvector of unit length. (Note

that σ and u are easily obtained since B22 is symmetric block-diagonal with diagonal
blocks of dimension one-by-one or two-by-two.) The sign of d is chosen such that
dT∇Mµ,ν(x, λ) ≤ 0. Since K22 = H22 it follows from (4.9) that Jdx+Ddλ = 0. Also,
from the definition of d it follows that dTSd = −ηmin(B22)2.

The following lemma establishes the properties of the curvature along a vector d
such that Jdx +Ddλ = 0.

Lemma 4.4. If Jdx +Ddλ = 0 and D is symmetric and nonsingular, then

dTx(H + JTD−1J)dx =
(
dTx −dTλ

) ( H JT

J −D

) (
dx

−dλ

)

=
(
dTx dTλ

) ( H + (1 + ν)JTD−1J νJT

νJ νD

) (
dx

dλ

)
.

Proof. Straightforward substitution using Jdx +Ddλ = 0 gives the result.
Finally, we give a sufficient curvature result for a sequence of iterates.
Theorem 4.5. Assume that each member of the sequence {dk}∞k=0 is computed

using the system (4.9). Assume that this system is associated with the LBLT -factors
of a sequence of Bk-matrices such that for each k, Bk has more than m negative
eigenvalues. Furthermore, assume that the factorization is inertia controlling, with
lim supk→∞ ‖Lk‖ <∞. Then, if

lim
k→∞

dTkSkdk = 0,

it holds that

lim
k→∞

dk = 0 and lim
k→∞

ηmin(Sk) = 0.
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Proof. It follows from (4.9) that dTkSkdk = −ηmin(B22,k)2. Hence, if dk satisfies
limk→∞ dTkSkdk = 0, then it must be the case that limk→∞ ηmin(B22,k) = 0. Now,
the definition (4.9) of dk and the assumption that lim supk→∞ ‖Lk‖ <∞ ensure that
limk→∞ dk = 0. Since In (K11,k) = (n1,k,m, 0), we may view K22,k−K21,kK

−1
11,kK12,k

as being formed by first eliminating −Dk, giving the m negative eigenvalues. The
Schur complement obtained this way is Hk + JTkD

−1
k Jk. Hence, elimination of the

remaining n1,k −m pivots of K11,k must have been done by positive-definite pivots.
Since Kk has more than m negative eigenvalues, we must have ηmin(Hk+JTkD

−1
k Jk) <

0. We conclude that

ηmin(K22,k −K21,kK
−1
11,kK12,k) ≤ ηmin(Hk + JTkD

−1
k Jk) < 0;(4.10)

see Lemma 2.1 in Forsgren, Gill, and Murray [15]. By assumption, the factor-
ization guarantees that lim supk→∞ ‖Lk‖ < ∞. Since Lk is unit-lower-triangular,
this implies that lim supk→∞ ‖L22,k‖ < ∞ and lim supk→∞ ‖L−1

22,k‖ < ∞. Hence, if
limk→∞ ηmin(B22,k) = 0, we must have

lim
k→∞

ηmin(K22,k −K21,kK
−1
11,kK12,k) = 0;(4.11)

see Lemma 3.1 in Forsgren and Murray [17]. A combination of (4.10), (4.11), and
Lemma 4.1 gives limk→∞ ηmin(Sk) = 0, as required.

4.4. Properties of the search direction. The sufficiency properties of Theo-
rems 4.3 and 4.5 for the descent direction and direction of negative curvature require
L and D to be bounded and D to be bounded away from a singular matrix. In addi-
tion, we have to assume that the iterates remain in a compact set for convergence to
be assured. In theory, this can be handled by adding lower and upper bounds on the
variables since the algorithm stays feasible with respect to all inequalities. However,
this is not completely satisfactory. In this paper, the discussion on convergence is
limited to the results of the previous section. A formal convergence proof will be
considered in a future paper.

At any iteration, an alternative to performing a line search with respect to x and λ
is to reset λ to πµ(x) and perform the line search with respect to x only. In this case,
the directions defined by the primal-dual equations (2.8) and the primal equations
(2.9) are identical. This strategy allows the use of a convergence proof for the pure
primal penalty-barrier method. Unfortunately, we know of no published proof for
the nonconvex case that gives limit points that satisfy the second-order necessary
optimality conditions. For line-search barrier-penalty-type methods, Benchakroun,
Dussault, and Mansouri [2], Gould [23], and Dussault [11] discuss convergence to a
first-order point. In a trust-region setting, Byrd, Gilbert, and Nocedal [7] propose a
method that converges to a first-order point.

The properties required of D for the analysis are typical. For an equality con-
straint, dµi (x, λ) is fixed at µ, which is trivially bounded away from zero for µ fixed .
However, this lower bound obviously deteriorates as µ gets small. For inequality
constraints, dµi (x, λ) is ci(x)/λ, and on the trajectory we have dµi (x(µ), λ(µ)) =
ci(x(µ))2/µ. Again, for a fixed µ, we expect dµi (x(µ), λ(µ)) to be both bounded
away from zero and bounded from above. However, further research is required to
show this rigorously and to incorporate a suitable scheme for changing µ.

5. Discussion and further research. We have demonstrated how the primal-
dual search directions (2.8) can be interpreted as modified Newton directions for min-
imizing an augmented penalty-barrier merit function (3.1). The main benefits of this
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approach are twofold: (i) the equations are well conditioned in the limit when strict
complementarity holds; and (ii) the merit function is minimized with respect to both x
and λ. The inertia-controlling factorization provides descent directions for Mµ,ν(x, λ)
and directions of negative curvature for the approximate Hessian Sµ,ν(x, λ). We ob-
serve that the ill-conditioning has been removed from the equations determining the
search direction and is now only present in the merit function.

If the proposed method is to work well, suitable termination criteria must be
determined for the outer iterations. The convergence analysis must be extended to
an algorithm that includes a strategy for reducing µ. In the limit, this algorithm
should require only one inner iteration for each outer iteration. However, although
preliminary numerical results have been encouraging, it is not known at this stage
whether or not the merit function can induce the “Maratos effect,” whereby the merit
function does not accept the unit step as µ is decreased.

Finally, we note that the proposed method is applicable to sparse problems. The
key is the calculation of an efficient sparse inertia-controlling factorization of K (4.1).
Up to now, our experiments have been limited to the use of a dense factorization.
(Implementations of other sparse inertia-controlling factorizations are discussed by
Arioli et al. [1] and Gould [24, 25] in the context of linear equality constrained
optimization.)

Other interesting variations of the proposed method remain to be investigated.
For example, if (2.5b) is replaced by µ+ ci(x)/λi for i ∈ E , then the Jacobian of the
resulting system is well conditioned in the limit if strict complementarity holds. An
advantage of this formulation is that the Jacobian is independent of µ. However, we
have not yet been able to associate these equations with a suitable merit function.
Another possibility is to use different values of µ and ν for each constraint. A zero
value of µ can be assigned to any linear equality constraint once it is satisfied. This
would give a method equivalent to that of Forsgren and Murray [17]. If only equality
constraints are present, a zero value of µ gives the standard sequential quadratic
programming search direction. However, if a constraint is not satisfied exactly, a zero
value of µ is not treated by the analysis of this paper. The introduction of shifts on
the constraints may be helpful in this case (see Powell [39]).

Acknowledgments. We are grateful to Annick Sartenaer, Philippe Toint, and
an anonymous referee for their careful reading of the manuscript and several sugges-
tions that improved the presentation.
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