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Abstract. Newton methods of the linesearch type for large-scale minimization subject to linear
inequality constraints are discussed. The purpose of the paper is twofold: (i) to give an active–set-
type method with the ability to delete multiple constraints simultaneously and (ii) to give a relatively
short general convergence proof for such a method. It is also discussed how multiple constraints can
be added simultaneously. The approach is an extension of a previous work by the same authors for
equality-constrained problems. It is shown how the search directions can be computed without the
need to compute the reduced Hessian of the objective function. The convergence analysis states that
every limit point of a sequence of iterates satisfies the second-order necessary optimality conditions.
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1. Introduction. We consider a method for finding a local minimizer of the
problem

minimize
x∈IRn

f(x)

subject to Ax ≥ b,
(1.1)

where A is an m × n matrix and f ∈ C2. We are interested in the case when n and
possibly m are large and when second derivatives of f are available. The method is
a Newton method of the linesearch type using an active-set strategy to identify the
constraints that are active at the solution, where the active set at each iteration may
change significantly. No assumptions are made about the number of constraints active
at the solution or in the problem. In the approach advocated, it is not necessary to
make any initial transformation of the problem such as transforming it into canonical
form. The method proposed builds on a method we proposed recently for the equality-
constrained problem [11] and requires only a single matrix factorization per iteration.

Linearly constrained optimization has been studied quite extensively over the
years; see, e.g., Gill, Murray, and Wright [17, Chapter 5] and Fletcher [10, Chapter 11].
As mentioned above, our interest is in linesearch methods of the active-set type, i.e.,
methods that solve a sequence of equality-constrained subproblems. Methods of this
type, designed to give limit points that satisfy the first-order optimality conditions,
have been given by, e.g., Rosen [28], Goldfarb [18], Ritter [25, 26, 27], and Byrd and
Shultz [6]. Similarly, linesearch methods designed to give limit points that satisfy the
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second-order necessary optimality conditions have been given by, e.g., McCormick [20]
and Gill and Murray [13]. Methods for large-scale linearly constrained problems
are given by, e.g., Buckley [1] and Murtagh and Saunders [23]. The motivation for
our work is to give a method for large-scale problems together with a concise and
comprehensive convergence analysis. The method proposed here gives limit points
that satisfy the second-order necessary optimality conditions and it is based on a single
matrix factorization per iteration. Although only linesearch methods are considered
in this paper, trust-region methods with similar convergence properties have been
proposed; see, e.g., Gay [12].

2. Notation and assumptions. The method proposed generates a sequence
{xk}∞k=0 of iterates of the form

xk+1 = xk + αkpk,

where pk is a search direction and αk is determined by a linesearch along pk. It is
assumed that fk ≡ f(xk), the gradient gk ≡ ∇f(xk), and the Hessian Hk ≡ ∇2f(xk)
can be evaluated. The definition of pk is given in section 3 and the conditions on αk
are discussed in section 3.5. We denote by aTi the ith row of A and by bi the ith
component of b. At a point xk, a constraint aTi x ≥ bi is said to be active if aTi xk = bi,
inactive if aTi xk > bi, and violated if aTi xk < bi. We denote by Ak a matrix comprising
a subset of the rows of A that correspond to constraints active at xk. Similarly, bk
is the vector of the corresponding elements of b. We denote by Wk ⊆ {1, 2, . . . ,m}
the indices of the rows of A in Ak and refer to Wk as the working set at iteration
k. The notation Wk+1\Wk is used for the set of indices that belong to Wk+1 but
not to Wk. (Note that Wk+1\Wk is defined also when Wk 6⊆ Wk+1.) The matrix Zk

denotes an orthonormal matrix whose columns form a basis for the null space of Ak.
Note that Zk need not be known; our use of this matrix is for theoretical purposes
only. We shall assume that A0 has full row rank. Then, the rules we give in section
3.6 for updating Ak ensure that Ak has full rank for all k. In section 5.1 it is shown
how A0 may be obtained without making any assumptions about A, and in section
5.6 it is shown how Ak may be updated while maintaining the full row rank. For a
symmetric matrix M , we use the notation λmin(M) ≥ 0 for M positive semidefinite
and λmin(M) > 0 for M positive definite but this is just for notational purposes, and
the eigenvalues are not computed. For a sequence I ⊆ {0, 1, . . .}, the abbreviated
notation limk∈I is used for limk→∞,k∈I .

Throughout, the following assumptions are made:
A1. The objective function f is twice continuously differentiable.
A2. The initial feasible point x0 is known, and the level set {x : Ax ≥ b, f(x) ≤

f(x0)} is compact.
A3. The constraint matrix associated with the active constraints has full row rank

at all points that satisfy the second-order necessary optimality conditions if
these constraints are regarded as equalities. Formally, let x̄ denote a feasible
point of (1.1), let AA denote the matrix associated with the active constraints
at x̄, and let ZA denote a matrix whose columns form an orthonormal basis
for the null space of AA. If it holds that

ZT
A∇f(x̄) = 0 and λmin(ZT

A∇2f(x̄)ZA) ≥ 0,

then AA has full row rank.
Assumption A3 states that the problem does not have primal degenerate second-

order constrained stationary points (dual degeneracy may occur). Any algorithm for
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general problems we are familiar with, for which primal nondegeneracy does not need
to be assumed, requires an iteration that in itself has a subiteration. Our purpose
here is to devise algorithms that do not require such subiterations since our primary
concern is to solve large problems. Nonetheless, degeneracy (or near degeneracy) is
possible and needs to be dealt with in any practical implementation. In practice
degeneracy may be dealt with by techniques that allow the standard iteration to be
used; see, e.g., Gill et al. [14]. Such a technique is used within the MINOS code,
see Murtagh and Saunders [24], which has been used to solve thousands of practical
problems. The consequence of using this approach to degeneracy is that the solution
obtained may be infeasible. However, the degree of infeasibility may be set at a level
similar to that which arises due to finite precision. Indeed, even if degeneracy was
not present such techniques are necessary in an endeavor to make the matrix of active
constraints well conditioned. Discussions on theoretical aspects of degeneracy are
given in Burke and Moré [3, 4], Burke [2], and Burke, Moré, and Toraldo [5].

3. Definition of the algorithm. The search direction pk is a sum of three
directions. More specifically,

pk = sk + dk + qk,

where a nonzero sk is a descent direction of bounded norm in the null space of Ak, a
nonzero dk is a direction of negative curvature with bounded norm in the null space of
Ak, and a nonzero qk is a descent direction of bounded norm such that Akqk ≥ 0 and
aTjqk > 0 for some j ∈ Wk. At each iteration, a set of Lagrange multiplier estimates
πk, associated with Ak, is required. In this section, the required properties of sk, dk,
πk, and qk are given, and in section 5 an appropriate way of computing the directions
for large-scale problems is discussed.

3.1. Properties of sk. A nonzero sk has to have bounded norm and be a descent
direction in the null space of Ak, i.e., satisfy gTksk < 0 and Aksk = 0. We also require
that sk be a sufficient descent direction in the following sense:

lim
k∈I

gTksk = 0 ⇒ lim
k∈I

ZT
kgk = 0 and lim

k∈I
sk = 0,(3.1)

where I is any subsequence.

3.2. Properties of dk. We require a nonzero dk to be a nonascent direction
of negative curvature in the null space of the Ak, i.e., gTkdk ≤ 0, dTkHkdk < 0, and
Akdk = 0. Furthermore, the norm of dk has to be bounded and the curvature has to
be sufficient in the sense that

lim
k∈I

dTkHkdk = 0 ⇒ lim inf
k∈I

λmin(ZT
kHkZk) ≥ 0 and lim

k∈I
dk = 0,(3.2)

where I is any subsequence.

3.3. Properties of πk. At each iteration, a vector of Lagrange multiplier esti-
mates, πk, is required. The vector πk must satisfy

lim
k∈I

‖ZT
kgk‖ = 0 ⇒ lim

k∈I
‖gk −AT

kπk‖ = 0,(3.3)

where I is any subsequence. We define πmin,k = mini(πk)i and use this notation
throughout.



METHODS FOR LINEAR INEQUALITY-CONSTRAINED MINIMIZATION 165

3.4. Properties of qk. If πmin,k ≥ 0 or Wk 6⊆ Wk−1, we set qk = 0. This is to
say that we take at least one step towards minimality for a given Ak before considering
deleting constraints. When qk 6= 0 we require it to be a descent direction that moves
off at least one constraint in the working set and remains feasible with respect to the
others, i.e., gTkqk < 0 and 0 6= Akqk ≥ 0. Furthermore, the norm of qk has to be
bounded and it is also required that the qk’s are such that

lim
k∈I

gTkqk = 0 ⇒ lim inf
k∈I

πmin,k ≥ 0 and lim
k∈I

qk = 0,(3.4a)

aTi qk > 0 ⇒ (πk)i ≤ νπmin,k for k ∈ I, i ∈ Wk,(3.4b)

where I is any subsequence such that Wk ⊆ Wk−1 for all k ∈ I and ν is a preassigned
tolerance, (0 < ν ≤ 1).

3.5. Definition of the iterates. We follow Moré and Sorensen [21] and Fors-
gren and Murray [11] in the linesearch and adapt it to cope with inequality constraints.
For the sake of completion, the linesearch is reviewed here, and the properties that
are subsequently required for the linear inequality-constrained case are given in Lem-
mas 4.1, 4.2, and 4.3 below.

Iteration k takes the following form. The search direction is obtained as pk =
sk + dk + qk, where sk, dk, and qk satisfy the conditions of sections 3.1–3.4. Define
φk(α) = f(xk+αpk). Sections 3.1–3.4 give pk = 0 if and only if φ′k(0) = 0 and φ′′k(0) ≥
0. The linesearch is designed to give limk→∞ φ′k(0) = 0 and lim infk→∞ φ′′k(0) ≥ 0.
An upper bound on the steplength is computed as

ᾱk = min

{
αmax, min

i:aT
i
p
k
<0

aTi xk − bi
−aTi pk

}
,

where αmax, (αmax ≥ 1) is a fixed upper bound on the maximum steplength. If ᾱk = 0,
then αk = 0. Otherwise, the steplength αk is determined such that αk ∈ (0, ᾱk]
satisfies

φk(αk) ≤ φk(0) + µ(φ′k(0)αk + 1
2 min{φ′′k(0), 0}α2

k)(3.5)

and at least one of

|φ′k(αk)| ≤ η|φ′k(0) + min{φ′′k(0), 0}αk| or(3.6a)

αk = ᾱk,(3.6b)

where 0 < µ < 0.5 and µ ≤ η < 1. Finally, xk+1 = xk + αkpk. The conditions of
sections 3.1–3.4 give φ′k(0) ≤ 0 for all k, and φ′k(0) = 0 if and only if pk = dk. It
follows from Moré and Sorensen [21, Lemma 5.2] that αk is well defined.

We refer to a step αk as restricted if

αk = min
i:aT

i
p
k
<0

aTi xk − bi
−aTi pk

,

i.e., a constraint is encountered in the linesearch at iteration k. Otherwise, the step
is referred to as unrestricted. Hence, a restricted step always satisfies (3.6b) whereas
an unrestricted step satisfies at least one of αk = αmax or (3.6a).
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3.6. Properties of Ak. The initial working-set matrix A0 is required to have
full row rank and contain constraints active at x0. To give the rule for updating Wk,
define

W0
k = {i ∈ Wk : aTi pk = 0}.

Let Pa
k denote the index set of constraints that are encountered in the linesearch at

iteration k, i.e.,

Pa
k = {i 6∈ Wk : aTi pk < 0, aTi xk+1 = bi}.

Note that either of W0
k and Pa

k may be the empty set. We then define Wk+1 =
W0

k ∪Wa
k , where Wa

k ⊆ Pa
k and the associated Ak+1 are required to satisfy

Pa
k 6= ∅ ⇒ Wa

k 6= ∅ and(3.7a)

Ak+1 has full row rank.(3.7b)

The implication of (3.7a) is that if new constraints are encountered in the linesearch,
at least one of them has to be added. If Ak has full row rank, (3.7b) will trivially hold
if Wa

k = ∅. Otherwise, care has to be taken to ensure that Ak+1 has full row rank.
This is further discussed in section 5.6.

Note that an implication of the above conditions is that a step αk is restricted if
and only if Wk+1\Wk 6= ∅.

4. Convergence results for linear inequality constraints. Lemmas 4.1, 4.2,
and 4.3 below review results from unconstrained optimization originally proposed by
Moré and Sorensen [21]. These give results for unrestricted steps. The remainder of
this section then establishes the convergence results for linear inequality-constrained
problems.

The following lemma gives some properties of the iterates for a sequence generated
by the above linesearch conditions.

Lemma 4.1. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. Then

(i) limk→∞ αkφ
′
k(0) = 0;

(ii) limk→∞ α2
k min{φ′′k(0), 0} = 0;

(iii) limk→∞ ‖xk+1 − xk‖ = 0.
Proof. Rearrangement of (3.5) gives

φk(0)− φk(αk) ≥ −µ(φ′k(0)αk + 1
2 min{φ′′k(0), 0}α2

k).

Since µ > 0, φ′k(0) ≤ 0, and the objective function is bounded from below on the
feasible region, (i) and (ii) follow.

To show (iii), we write xk+1−xk = αkpk and show that limk→∞ ‖αkpk‖ = 0. Since
αk and ‖pk‖ are bounded, if limk→∞ ‖αkpk‖ 6= 0, there must exist a subsequence I
and ε1 > 0 and ε2 > 0 such that αk ≥ ε1 and ‖pk‖ ≥ ε2 for k ∈ I. From the
existence of ε1, (i) implies limk∈I φ′k(0) = 0 and (ii) implies lim infk∈I φ′′k(0) ≥ 0.
Since φ′k(0) = gTkpk = gTk(sk + dk + qk) and it holds that gTksk ≤ 0, gTkdk ≤ 0,
and gTkqk ≤ 0, (3.1) implies limk∈I sk = 0 and (3.4) implies limk∈I qk = 0. Hence,
since φ′′k(0) = pTkHkpk and limk∈I ‖pk − dk‖ = 0, (3.2) implies limk∈I dk = 0. Thus,
limk∈I ‖pk‖ = 0. This contradicts the existence of ε2, thus establishing (iii).

The following lemma relates αk to φ′k(0) for an unrestricted step. The implication
is that αk is bounded away from zero if φ′k(0) is bounded away from zero.
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Lemma 4.2. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. If, at iteration k, an unrestricted step is taken,
then either αk = αmax or there exists a θk, (0 < θk < αk) such that

αk(φ
′′
k(θk) + ηmax{−φ′′k(0), 0}) ≥ −(1− η)φ′k(0).(4.1)

Proof. Since φ′k(0) ≤ 0, it follows from (3.6) that if αk is unrestricted and αk <
αmax, it satisfies

− φ′k(αk) ≤ −ηφ′k(0) + ηmax{−φ′′k(0), 0}αk.(4.2)

Further, since φ′k is a continuously differentiable univariate function, the mean-value
theorem ensures the existence of a θk ∈ (0, αk) such that

φ′k(αk) = φ′k(0) + αkφ
′′
k(θk).(4.3)

A combination of (4.2) and (4.3) now gives (4.1), as required.
Finally, the following lemma gives some properties of subsequences of unrestricted

iterates for a sequence generated by the above linesearch conditions.
Lemma 4.3. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is

generated as outlined in section 3. Let I denote a subsequence of iterations where
unrestricted steps are taken; then

(i) limk∈I φ′k(0) = 0;
(ii) lim infk∈I φ′′k(0) ≥ 0;
(iii) limk∈I ZT

kgk = 0 and lim infk∈I λmin(ZT
kHkZk) ≥ 0.

Proof. To show (i), assume by contradiction there is a subsequence I ′ ⊆ I such
that φ′k(0) ≤ −ε1 < 0 for k ∈ I ′. Lemma 4.2 in conjunction with assumptions A1
and A2 then implies that lim supk∈I′ αk 6= 0, contradicting Lemma 4.1. Hence, the
assumed existence of I ′ is false, and we conclude that (i) holds.

Similarly, to show (ii), assume by contradiction that there is a subsequence I ′′ ⊆ I
such that φ′′k(0) ≤ −ε2 < 0 for k ∈ I ′′. Since αk > 0 and φ′k(0) ≤ 0, Lemma 4.2 implies
that for k ∈ I ′′ there exists θk ∈ (0, αk) such that

φ′′k(θk)− ηφ′′k(0) ≥ 0.(4.4)

Lemma 4.1 gives limk∈I′′ αk = 0, and thus (4.4) cannot hold for k sufficiently large.
Consequently, the assumed existence of I ′′ is false, and (ii) holds.

Finally, we show that (i) and (ii) imply (iii). Since φ′k(0) = gTkpk = gTk(sk+dk+qk)
and it holds that gTksk ≤ 0, gTkdk ≤ 0, and gTkqk ≤ 0, (i) and (3.1) imply limk∈I ZT

kgk =
0 and limk∈I sk = 0. Further, (i) and (3.4a) imply limk∈I qk = 0. Hence, since φ′′k(0) =
pTkHkpk and limk∈I ‖pk − dk‖ = 0, (ii) and (3.2) imply lim infk∈I λmin(ZT

kHkZk) ≥ 0
and, thus, (iii) holds.

We now extend these results to the case of linear inequality constraints. The
first lemma shows that if there exists a subsequence of iterates at which a constraint
is deleted with the smallest multiplier negative and bounded away from zero and
for which no constraints were deleted at the previous iteration, then eventually a
constraint will be added.

Lemma 4.4. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. If there is a subsequence I and an ε > 0 such that
qk−1 = 0, qk 6= 0, and πmin,k < −ε for k ∈ I, then there is an integer K such that
Wk+1\Wk 6= ∅ for all k ∈ I and k ≥ K.
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Proof. Suppose that there is a subsequence I and an ε > 0 such that qk−1 = 0,
qk 6= 0, and πmin,k < −ε for k ∈ I. Now assume that there is a subsequence I ′ ⊆ I such
that an unrestricted step is taken for k ∈ I ′. Lemma 4.3 implies that limk∈I′ φ′k(0) = 0.
On the other hand, (3.4a) ensures the existence of a subsequence I ′′ ⊆ I ′ and a
positive constant ε2 such that gTkqk ≤ −ε2 for all k ∈ I ′′. However, since gTksk ≤ 0
and gTkdk ≤ 0, this implies that φ′k(0) ≤ −ε2 for all k ∈ I ′, which is a contradiction.
Hence, the assumed existence of the subsequence I ′ is false, and there must exist a K
such that for k ∈ I and k ≥ K a restricted step is taken, i.e., Wk+1\Wk 6= ∅ for all
k ∈ I and k ≥ K.

Assumption A3 can now be used to show that for a subsequence of iterates where
constraints are deleted, but no constraints were deleted at the previous iteration, the
smallest multiplier is nonnegative in the limit.

Lemma 4.5. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. If there is a subsequence I such that qk−1 = 0 and
qk 6= 0 for k ∈ I, then lim infk∈I πmin,k ≥ 0.

Proof. Assume that there exists a subsequence I and an ε > 0 such that qk−1 = 0,
qk 6= 0, and πmin,k < −ε for k ∈ I. For each k ∈ I, let lk denote the following
iteration with least index such that Wlk = Wlk−1; i.e., an unrestricted step is taken
at iteration lk − 1 and qlk−1 = 0. Lemma 4.4 implies that there is an integer K such
that Wk+1\Wk 6= ∅ for all k ∈ I and k ≥ K. The properties of qk from section 3.4
imply that qk+1 = 0 for k ∈ I, k ≥ K. Consequently, for k ≥ K, lk is the iteration
with least index following k where no constraint is added in the linesearch. Since
there can be at most min{m,n} consecutive iterations where a constraint is added, it
follows from (iii) of Lemma 4.1 that limk∈I ‖xk − xlk‖ = 0. Consequently, there must
exist a point x̄, which is a common limit point to {xk}k∈I and {xlk}k∈I . By taking
appropriate subsequences, there exists a subsequence I ′ ⊆ I such that limk∈I′ xk = x̄
and limk∈I′ xlk = x̄. Again, by taking appropriate subsequences, there must exist a
subsequence I ′′ ⊆ I ′ such that Wk is identical for every k ∈ I ′′ and Wlk is identical
for every lk ∈ J , where J denotes the subsequence {lk}k∈I′′ . Define WI ≡ Wk for
any k ∈ I ′′ and WJ ≡ Wlk for any lk ∈ J .

Since all constraints corresponding to WI are active at x̄ and an infinite number
of unrestricted steps are taken where the working set is constant, it follows from
assumptions A1 and A2 in conjunction with (iii) of Lemma 4.1 and (iii) of Lemma 4.3
that limk∈I′′ ZT

I gk = 0 and lim infk∈I′′ λmin(ZT
IHkZI) ≥ 0, where ZI denotes a matrix

whose columns form an orthonormal basis for the null space of AI , the constraint
matrix associated with WI . Consequently, (3.3) and the full row rank of AI imply
that limk∈I′′ πk = πI , where πI satisfies

∇f(x̄) = AT
Iπ

I =
∑
i∈WI

aiπ
I
i .(4.5)

By a similar reasoning and notation for ZJ and AJ we have limk∈I′′ ZT
J glk = 0,

lim infk∈I′′ λmin(ZT
JHlkZJ) ≥ 0, and limk∈I′′ πlk = πJ , where πJ satisfies

∇f(x̄) = AT
Jπ

J =
∑
i∈WJ

aiπ
J
i .(4.6)

Combining (4.5) and (4.6), we obtain∑
i∈WI\WJ

aiπ
I
i +

∑
i∈WI∩WJ

ai
(
πIi − πJi

)− ∑
i∈WJ\WI

aiπ
J
i = 0.(4.7)
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By assumption A3, the vectors ai, i ∈ WI ∪WJ are linearly independent. Hence, it
follows from (4.7) that

πIi = 0 for i ∈ WI\WJ ,(4.8a)

πIi = πJi for i ∈ WI ∩WJ ,(4.8b)

πJi = 0 for i ∈ WJ\WI .(4.8c)

Since Lemma 4.4 implies that there is an integer K such that Wk+1\Wk 6= ∅ for all
k ∈ I and k ≥ K, we conclude that WJ\WI 6= ∅. Since no constraints have been
deleted between iterations k and lk for k ∈ I ′′, any constraints whose index is in the
set WI\W J must have been deleted in an iteration k ∈ I ′′. Since I ′′ ⊆ I, it follows
that πmin,k ≤ −ε for k ∈ I ′′. From the rule for moving off a constraint, (3.4b), we
can deduce that (πk)i ≤ −νε for k ∈ I ′′ and i ∈ WI\W J , where ν ∈ (0, 1). Since
limk∈I′′ πk = πI , we conclude that πIi ≤ −νε for i ∈ WI\W J . Hence, (4.8a) implies
that WI\WJ = ∅. Consequently, it must hold that |WJ | ≥ |WI | + 1 and, by (4.8c),
πJ has at least one component zero.

We can conclude from (4.8b) that πmin,lk < −0.5ε for k ∈ I ′′ and k sufficiently
large. The rules for computing qk, (3.4a), ensure that there is a subsequence I ′′′ ⊆ I ′′

such that qlk 6= 0 for all k ∈ I ′′′. From the definition of lk, it holds that qlk−1 = 0
for all k ∈ I ′′′. Therefore, if J ′ = {lk : k ∈ I ′′′}, we may replace I by J ′ and
repeat the argument. Since |WJ | ≥ |WI |+ 1 and |Wk| ≤ min{m,n} for any k, after
having repeated the argument at most min{m,n} times we have a contradiction to
assumption A3, implying that the assumed existence of a subsequence I such that
qk−1 = 0 and qk 6= 0 and πmin,k < −ε for k ∈ I is false. Thus, the result of the lemma
follows.

We are now in the position to give the main convergence result. In addition to
the global convergence established here, we also add a well-known rate-of-convergence
result from Moré and Sorensen [22].

Theorem 4.6. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. Then, any limit point x∗ satisfies the second-order
necessary optimality conditions ; i.e., if the constraint matrix associated with the active
constraints at x∗ is denoted by AA, there is a vector πA such that

∇f(x∗) = AT
AπA, πA ≥ 0,

and it holds that

λmin(ZT
A∇2f(x∗)ZA) ≥ 0,

where ZA denotes a matrix whose columns form an orthonormal basis for the null
space of AA.

If, in addition, λmin(ZT
A∇2f(x∗)ZA) > 0 and πA > 0 hold, then limk→∞ xk = x∗.

Further, for k sufficiently large, it follows that if sk = −ZA(ZT
AHkZA)−1ZT

Agk then
sk is sufficient in the sense of (3.1), pk = sk, and αk = 1 satisfies (3.5) and (3.6).
Moreover, for this choice of sk and αk, the rate of convergence is at least q-quadratic,
provided the second-derivative matrix is Lipschitz continuous in a neighborhood of x∗.

Proof. Let x∗ denote a limit point of a generated sequence of iterates. By as-
sumption A2, there is a subsequence I such that limk∈I xk = x∗. We claim that this
implies the existence of a subsequence I ′ such that limk∈I′ xk = x∗, qk−1 = 0 and
Ak−1 = Ak = Â for each k ∈ I ′, where Â denotes a matrix which is identical for
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each k ∈ I ′. For k ∈ I, an iterate lk is defined as follows. If qk 6= 0, let lk be the
iteration with largest index that does not exceed k for which qlk−1 = 0. Since no
constraints are deleted immediately upon adding constraints, we obtain qlk−1 = 0,
qlk 6= 0, Wlk−1 = Wlk , and k − m ≤ lk ≤ k. If qk = 0, let lk denote the follow-
ing iteration with least index such that Wlk = Wlk−1. If qlk−1 6= 0, the properties
of qlk−1 and the rules for updating the working set give Wlk 6= Wlk−1. Hence, for
this case, we must have qlk−1 = 0. Since no constraints are deleted immediately
upon adding constraints, it follows that lk is the following iteration with least index
when no constraint is added. For this case, we obtain qlk−1 = 0, Wlk−1 = Wlk , and
k + 1 ≤ lk ≤ k + m. It follows from (iii) of Lemma 4.1 that limk∈I ‖xk − xlk‖ → 0,
and hence limk∈I xlk = x∗. With {lk}k∈I defined this way, since there is only a finite
number of different active-set matrices, the required subsequence I ′ can be obtained
as a subsequence of {lk}k∈I .

Since, for each k ∈ I ′, an unrestricted step is taken at iteration k−1, assumptions
A1 and A2 in conjunction with property (iii) of Lemma 4.3 give

ẐT∇f(x∗) = 0 and λmin(ẐT∇2f(x∗)Ẑ) ≥ 0,(4.9)

where Ẑ denotes an orthonormal matrix whose columns form a basis for the null space
of Â. Since limk∈I′ ẐT gk = 0 and Â has full row rank, it follows from (3.3) and (4.9)
that

∇f(x∗) = ÂTπ̂ for π̂ = lim
k∈I′

πk.(4.10)

It remains to show that mini π̂i ≥ 0. Assume that there is a subsequence I ′′ ⊆ I ′

and an ε > 0 such that πmin,k < −ε for k ∈ I ′′. Lemma 4.5 shows that there exists
a K such that qk = 0 for k ∈ I ′′ and k ≥ K. But this contradicts (3.4a), and since
π̂ = limk∈I′ πk, we conclude that

min
i
π̂i ≥ 0.(4.11)

A combination of (4.9), (4.10), and (4.11) now ensures that x∗ satisfies the second-
order necessary optimality conditions. If there are constraints in AA that are not in
Â, the associated Lagrange multipliers are zero, i.e., πA equals π̂ possibly extended
by zeros. Also, in this situation, the range space of ZA is contained in the range space
of Ẑ. Hence, λmin(ẐT∇2f(x∗)Ẑ) ≥ 0 implies λmin(ZT

A∇2f(x∗)ZA) ≥ 0.
To show the second half of the theorem, note that if πA > 0, then we must have

π̂ = πA, and it follows from (4.10) that there cannot exist a subsequence Ĩ ′ ⊆ I ′ such
that πmin,k < 0 for k ∈ Ĩ ′. This implies that there is an iteration K̃ such that Ak = Â

and qk = 0 for k ≥ K̃. Then the problem may be written as an equality-constrained
problem in the null space of Â, namely

minimize
x∈IRn

f(x)

subject to Âx = b̂,
(4.12)

where b̂ denotes the corresponding subvector of b. If ẐT∇2f(x∗)Ẑ is now positive
definite, then (iii) of Lemma 4.1 and (3.5) ensure that the limit point is unique, i.e.,
limk→∞ xk = x∗. From the continuity of f , it follows that ẐTHkẐ is positive def-
inite for k sufficiently large. Hence, it must hold that dk = 0 and pk = sk for k
sufficiently large. If sk = −ZA(ZT

AHkZA)−1ZT
Agk, then sk is sufficient in the sense of
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(3.1) provided that k ≥ K and xk is sufficiently close to x∗. Also, this choice of sk is
the Newton step for solving (4.12), and it follows from Moré and Sorensen [22, p. 53]
that αk = 1 eventually satisfies (3.5) and (3.6). Moreover, Moré and Sorensen [22,
Theorem 2.3] show that under these assumptions limk→∞ xk = x∗ and the rate of con-
vergence is q-quadratic provided the second-derivative matrix is Lipschitz continuous
in a neighborhood of x∗ [22, Theorem 2.8].

5. Computation of the search direction for large-scale problems. We
now show how to compute sk, dk, πk, and qk that satisfy the properties of sections
3.1, 3.2, 3.3, and 3.4, respectively. A way of updating Ak to satisfy the properties of
section 3.6 is also given. Our particular interest is large-scale problems for which no
prior assumptions are made about the number of constraints in the problem or the
number of constraints active at the solution. This precludes the use of the reduced
Hessian.

Forsgren and Murray [11] describe how suitable search directions can be com-
puted for large-scale linear equality-constrained problems without the need to form
the reduced Hessian. The technique they describe can be utilized also in the current
context for computing a suitable descent direction sk, a suitable Lagrange multiplier
vector πk, and a suitable direction of negative curvature dk. We briefly review this
approach here. The key procedure is an indefinite symmetric factorization of the
Karush–Kuhn–Tucker (KKT) matrix Kk, where

Kk =

(
Hk AT

k

Ak 0

)
.(5.1)

The factorization is an LBLT factorization, i.e., a factorization of the form

ΠT
kKkΠk = LkBkL

T
k,

where Πk is a permutation matrix, Lk is a unit lower-triangular matrix, and Bk is
a symmetric block-diagonal matrix whose diagonal blocks are of size 1 × 1 or 2 ×
2. For a general LBLT factorization, the permutations are performed in order to
obtain a matrix Lk that is sparse and well conditioned; see, e.g., Duff and Reid [8],
[9]. It is shown in Forsgren and Murray [11] that by potentially requiring additional
permutations, suitable sk and dk can be computed from one single factorization of Kk.
We demonstrate below that the additional quantities πk and qk can also be computed
from the same factors. In the discussion below, the inertia of ZT

kHkZk is required.
Note that this inertia can be deduced from the inertia of Kk; see Gould [19, Lemma
3.4]. First we show how to choose A0.

5.1. Finding an A with full row rank. It is required that A0 has full row
rank. Let Ā0 denote the matrix composed of all the rows of A corresponding to the
active set at x0. A straightforward way to determine A0 is to form an LU -factorization
of ĀT

0 . An alternative approach, which fits well with the discussion of section 5, is
to form the symmetric factorization of K0 described in Forsgren and Murray [11],
with A0 = Ā0. In forming the factorization a redundant constraint is identified if its
associated pivot is zero. The factorization may then be terminated prematurely when
only redundant rows are left.
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5.2. Computation of sk and πk. The computation of sk and πk is identical
to the computation of sk in Forsgren and Murray [11]. We solve(

H̄k AT
k

Ak 0

)(
sk

−πk

)
=

(
−gk

0

)
,(5.2)

and H̄k = Hk when ZT
kHkZk is sufficiently positive definite; otherwise, H̄k is a mod-

ification of Hk such that ZT
kH̄kZk is sufficiently positive definite and has bounded

norm. It is shown in Forsgren and Murray [11] how the factors of K̄k may be ob-
tained directly from those of Kk, where K̄k denotes the modified matrix of (5.2) and
Kk is given by (5.1). The matrix K̄k is bounded away from a singular matrix, H̄k

is bounded, and ZT
kH̄kZk is positive definite with bounded condition number and

smallest eigenvalue bounded away from zero. It is straightforward to verify that sk
from (5.2) can be written as

sk = −Zk(Z
T
kH̄kZk)

−1ZT
kgk,(5.3)

and it follows that sk is sufficient in the sense of (3.1). Moreover, assumptions A1 and
A2 ensure that sk has bounded norm if evaluated in the set {x : Ax ≥ b, f(x) ≤ f(x0)}.

A combination of (5.2) and (5.3) gives

gk −AT
kπk = H̄kZk(Z

T
kH̄kZk)

−1ZT
kgk,

and it follows that πk satisfies (3.3).

5.3. Computation of dk. The computation of dk is identical to the computa-
tion of dk in Forsgren and Murray [11]. If ZT

kHkZk is positive definite then dk = 0;
otherwise, we may define a suitable dk as the solution of a system of the form(

Hk AT
k

Ak 0

)(
dk

−µk

)
=

(
uk

0

)

for some suitable vector uk. Forsgren and Murray [11] show how to compute dk by a
single solve with the triangular factor Lk without the need to form uk explicitly. They
also show that dk is sufficient in the sense of (3.2) and that it has bounded norm.

5.4. Computation of qk. We may compute a suitable qk using the matrix K̄k

and the vector πk from (5.2). As was mentioned when describing the computation of
sk and πk, the factors of K̄k may be obtained directly from those of Kk. For a positive
tolerance ν, (0 < ν ≤ 1), we first compute a vector vk such that (vk)i = −(πk)i if
(πk)i ≤ νπmin,k and (vk)i = 0 if (πk)i > νπmin,k. The direction qk is then obtained
from the system (

H̄k AT
k

Ak 0

)(
qk

−ηk

)
=

(
0

vk

)
.(5.4)

The following lemma shows that a nonzero qk is a descent direction such that
Akqk ≥ 0.

Lemma 5.1. Let sk and πk be defined from (5.2). If πmin,k < 0 and qk and ηk
are defined from (5.4), then qTkgk = πTkvk ≤ −π2

min,k and Akqk = vk ≥ 0.
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Proof. Premultiplication of both sides of (5.4) by the vector (sTk −πTk ) from (5.2)
yields

(
sTk −πTk

)( H̄k AT
k

Ak 0

)(
qk

−ηk

)
=
(
sTk −πTk

)( 0

vk

)
.(5.5)

Utilization of (5.2) and the symmetry of H̄k in the left-hand side of (5.5) yields

(
−gTk 0

)( qk

−ηk

)
=
(
sTk −πTk

)( 0

vk

)
.(5.6)

Simplification of (5.6) gives qTkgk = πTkvk. The definition of vk yields

πTkvk = −
∑

i:(πk)i≤νπmin,k

(πk)
2
i ≤ −π2

min,k.

Moreover, it follows from the definition of vk that vk ≥ 0, and (5.4) implies Akqk =
vk ≥ 0, as required.

The norm of πk is bounded because of the properties of K̄k and assumptions A1
and A2. Hence, since ZT

kH̄kZk is positive definite and has bounded norm, we conclude
that qk computed from (5.4) has bounded norm. It follows from (5.4) that aTi qk = 0
if (πk)i > νπmin,k for i ∈ Wk, and hence (3.4b) holds. Lemma 5.1 implies that

lim
k∈I

gTkqk = 0 ⇒ lim inf
k∈I

πmin,k ≥ 0,(5.7)

where I is any subsequence such that qk is computed from (5.4) for k ∈ I and hence
(3.4a) holds.

5.5. Combination of the search direction. It is not specified in sections 3.1–
3.4 exactly how to choose sk, dk, πk, and qk. Sections 5.2–5.4 give suitable ways of
computing these quantities. In certain situations these components are necessarily
zero; if ZT

kgk = 0 then sk = 0, if ZT
kHkZk is positive semidefinite then dk = 0, and

if πmin,k ≥ 0 or Wk 6⊆ Wk−1 then qk = 0. However, it may be desirable occasionally
to let some components be zero even when it is not necessary. For example, having
a nonzero qk whenever possible may not be the most efficient strategy. If the current
reduced Hessian has many negative eigenvalues this suggests more constraints should
be active rather than less. It is possible to impose a rule that only considers deleting
constraints when to do so significantly impacts pk. The property (3.4a) required of
qk suggests having an additional condition saying that qk = 0 if

πmin,k ≥ β
(
gTksk + dTkHkdk

)
,

where β is a positive constant. Since Lemma 4.3 implies that limk→∞ gTksk = 0
and limk→∞ dTkHkdk = 0 for unrestricted steps, such a condition does not impact on
(3.4a), and hence it does not alter the convergence analysis. Similar conditions can
be imposed to set sk = 0 or dk = 0 at certain iterations.

5.6. The update of Ak. The working-set matrix Ak is required to have full row
rank. A straightforward way to ensure this property is to add at most one constraint
at every iteration, as the following lemma shows.
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Lemma 5.2. Given assumptions A1–A3, assume that a sequence {xk}∞k=0 is
generated as outlined in section 3. If A0 has full row rank, |Wk+1| ≤ |W0

k | + 1,

aTi pk < 0 for all k ≥ 0, and i ∈ Wk+1\Wk, then each Ak has full row rank.

Proof. See, e.g., Gill et al. [16, Lemma 2.1].

Although the computed search directions described in sections 5.2–5.4 are not
designed specifically to add more than one constraint per iteration, the convergence
analysis presented gives room for defining algorithms that add any number of active
constraints, as long as the working-set matrix has full row rank. The issue would
be twofold: (i) to modify the definitions of the search directions, so as to make
more than one new constraint become active in the linesearch, while still maintaining
the required properties of these directions, and (ii) to maintain the full rank of the
working-set matrix. This approach may be advantageous for certain problems, e.g.,
problems where all constraints are simple bounds. In this situation, it is known a
priori that any working-set matrix will have full row rank. Techniques similar to
gradient projection, see, e.g., Calamai and Moré [7], might prove useful for altering
the search direction.

6. Primal degeneracy. Assumptions A1 and A2 ensure that the objective func-
tion is sufficiently smooth and the iterates remain in a feasible region. Assumption A3
implies that no primal degenerate second-order constrained stationary points exist.
Although for nonlinear problems degeneracy is not as common in practice as it is for
linear programming problems, there are problems for which A3 does not hold. Con-
sequently, in a practical implementation of our algorithm some technique to handle
degeneracy is necessary. The nature of degeneracy is different for nonlinear problems.
In linear programming the main concern is degenerate vertices. In effect the iterate
is at the degenerate stationary point. In a nonlinear problem we may never be at
the stationary point. Moreover it is likely not to be a vertex. What we are likely to
encounter is rank deficient active-set matrices for which the number of rows is less
than n, and we are not at a constrained stationary point. We need only be concerned
if we plan to delete constraints. In exact arithmetic we could define a subiteration to
search for a suitable active set. A method of implementing this strategy that makes
use of the known factorization of the KKT matrix is described in Gill et al. [15].
Such an approach is an improvement over algorithms based on sequential quadratic
programming where a subiteration may be necessary at each iteration of the quadratic
programming subproblem. The difficulty with this strategy is the need to define the
active set. In inexact arithmetic precisely what is the active set is not clear. We
prefer therefore to rely on the approach adopted by Gill et al. [14]. This technique
allows infeasibility tolerances on the constraints that are altered at each iteration.
The impact on the algorithm is that a zero step is never taken. The consequences of
allowing infeasibility tolerances is that the solution obtained may be infeasible. How-
ever, the maximum degree of infeasibility may be specified. In practice the maximum
infeasibility allowed when solving nonlinear problems is unlikely to be attained and
is in any event consistent with the infeasibility that results from the impact of finite
precision operations. An advantage of this approach is that it is equally useful for
handling near degeneracy. This is likely to be common on problems where the linearly
constrained problem being solved is an approximation to a nonlinearly constrained
problem whose Jacobian is rank deficient at the solution. The use of a procedure
similar to that in [14] is in any event essential in practice for the purpose of trying to
introduce a choice in the definition of Ak in an attempt to ensure that the condition
number of Ak is not too large. For example, if infeasibilities are allowed then nearly
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dependent active constraints need not be included in the working set. The search
direction will not be exactly orthogonal to the constraint normals of the constraints
ignored but it will be close, hence the next iterate will not be too infeasible.

7. Discussion. A convergence analysis for an algorithm to solve linear inequality-
constrained optimization problems has been presented. The algorithm is described
in broad terms by assuming the availability at each iteration of three directions with
certain properties. It has also been shown how to compute all the required search
directions from a single symmetric indefinite factorization of the KKT matrix. Such
an algorithm is well suited to solving large-scale problems. Unlike some alternatives
the efficiency of the method is not dependent on either the active set or the null space
of the active set being small.

For convenience of notation, the problem is stated in all-inequality form (1.1),
but we emphasize that the analysis can be modified in a straightforward manner to
cover the case with a mixture of inequality and equality constraints. A particularly
attractive feature of the algorithm described is that the problem does not have to be
transformed into a specific form.

Acknowledgments. We thank the referees for their helpful comments and crit-
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