
ON WEIGHTED LINEAR LEAST-SQUARES PROBLEMS RELATED
TO INTERIOR METHODS FOR CONVEX QUADRATIC

PROGRAMMING∗

ANDERS FORSGREN† AND GÖRAN SPORRE†
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Abstract. It is known that the norm of the solution to a weighted linear least-squares problem
is uniformly bounded for the set of diagonally dominant symmetric positive definite weight matrices.
This result is extended to weight matrices that are nonnegative linear combinations of symmetric
positive semidefinite matrices. Further, results are given concerning the strong connection between
the boundedness of weighted projection onto a subspace and the projection onto its complementary
subspace using the inverse weight matrix. In particular, explicit bounds are given for the Euclidean
norm of the projections. These results are applied to the Newton equations arising in a primal-dual
interior method for convex quadratic programming and boundedness is shown for the corresponding
projection operator.
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1. Introduction. In this paper we study certain properties of the weighted lin-
ear least-squares problem

minimize
π∈Rm

‖W 1/2(ATπ − g)‖2
2,(1.1)

where A is an m× n matrix of full row rank and W is a positive definite symmetric
n × n matrix whose matrix square root is denoted by W 1/2. (See, e.g., Golub and
Van Loan [14, p. 149] for a discussion on matrix square roots.) Linear least-squares
problems are fundamental within linear algebra; see, e.g., Lawson and Hanson [20],
Golub and Van Loan [14, Chapter 5] and Gill, Murray, and Wright [12, Chapter 6].
An individual problem of the form (1.1) can be converted to an unweighted problem

by substituting Ã = AW 1/2 and g̃ = W 1/2g. However, our interest is in sequences
of weighted problems, where the weight matrix W changes and A is constant. The
present paper is a continuation of the paper by Forsgren [10], in which W is assumed
to be diagonally dominant. Our concern is when the weight matrix is of the form

W = (H +D)−1,(1.2)

where H is a constant positive semidefinite symmetric matrix and D is an arbitrary
positive definite diagonal matrix. Such matrices arise in interior methods for convex
quadratic programming. See section 1.1 below for a brief motivation.

The solution of (1.1) is given by the normal equations

AWATπ = AWg(1.3)
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or alternatively as the solution to the augmented system (or Karush–Kuhn–Tucker
(KKT ) system) (

M AT

A 0

)(
r

π

)
=

(
g

0

)
,(1.4)

where M = W−1. In some situations, we will prefer the KKT form (1.4), since we
are interested in the case when M is a positive semidefinite symmetric and singular
matrix. In this situation, W−1 and (1.3) are not defined, but (1.4) is well defined.
This would be the case, for example, in an equality-constrained weighted linear least-
squares problem; see, e.g., Lawson and Hanson [20, Chapter 22]. For convenience, we
will mainly use the form (1.3).

If M = W−1, then, mathematically, (1.3) and (1.4) are equivalent. From a
computational point of view, this need not be the case. There is a large number
of papers giving reasons for solving systems of one type or the other, starting with
Bartels, Golub, and Saunders [1], followed by, e.g., Duff et al. [9], Björck [4], Gulliksson
and Wedin [17], Wright [29, 31], Björck and Paige [5], Vavasis [26], Forsgren, Gill, and
Shinnerl [11], and Gill, Saunders, and Shinnerl [13]. The focus of the present paper
is linear algebra, and we will not discuss these important computational aspects.

If A has full row rank and if W+ is defined as the set of n × n positive definite
symmetric matrices, then for any W ∈ W+, the unique solution of (1.1) is given by

π = (AWAT )−1AWg.(1.5)

In a number of applications, it is of interest to know if the solution remains in a
compact set as the weight matrix changes, i.e., the question is whether

sup
W∈W

‖(AWAT )−1AW‖

remains bounded for a particular subset W of W+. It should be noted that bounded-
ness does not hold for an arbitrary subset W of W+. Take for example A = (0 1) and
let

W (ε) =

(
2
ε 1

1 ε

)

for ε > 0. Then W (ε) ∈ W+ for ε > 0, and

(AW (ε)AT )−1AW (ε) =
(

1
ε 1

)
.

This implies that ‖(AWAT )−1AW‖ is not bounded whenW is allowed to vary in W+.
See Stewart [24] for another example of unboundedness and related discussion. For the
case whereW is the set of positive definite diagonal matrices, Dikin [8] gives an explicit
formula for the optimal π in (1.1) as a convex combination of the basic solutions formed
by satisfying m linearly independent equations. From this result, the boundedness is
obvious. If A does not have full row rank, it is still possible to show boundedness; see
Ben-Israel [2, p. 108]. Later, Wei [28] also studied boundedness in absence of a full row
rank assumption on A and has furthermore given some stability results. Bobrovnikova
and Vavasis [6] have given boundedness results for complex diagonal weight matrices.
The geometry of the set (AWAT )−1AWg when W varies over the set of positive
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definite diagonal matrices has been studied by Hanke and Neumann [18]. Based on
the formula derived by Dikin [8], Forsgren [10] has given boundedness results when
W is the set of positive definite diagonally dominant matrices.

We show boundedness for the set of weight matrices that are arbitrary nonnegative
combinations of a set of fixed positive semidefinite symmetric matrices and the set of
inverses of such matrices. As a special case, we then obtain the set of weight matrices
of the form (1.2), which was our original interest. The boundedness is shown in the
following way. In section 2, we review results for the characterization of π as W
varies over the set of symmetric matrices such that AWAT is nonsingular. Section 3
establishes the boundedness when W is allowed to vary over a set of matrices that are
nonnegative linear combinations of a number of fixed positive semidefinite matrices
such that AWAT is positive definite. In section 4, results that are needed to handle
the projection using the inverse weight matrix are given. In section 5, we combine
results from the previous two sections to show boundedness for the π that solves (1.4)
when M is allowed to vary over the nonnegative linear combinations of a set of fixed
positive semidefinite symmetric matrices.

The research was initiated by a paper by Gonzaga and Lara [15]. The link to
that paper has subsequently been superseded, but we include a discussion relating
our results to the result of Gonzaga and Lara in the appendix.

1.1. Motivation. Our interest in weighted linear least-squares problems is from
interior methods for optimization and in particular for convex quadratic programming.
There is a vast number of papers on interior methods, and here we give only a brief
motivation for the weighted linear least-squares problems that arise. Any convex
quadratic programming problem can be transformed to the form

minimize
x∈Rn

1
2x

THx+ cTx

subject to Ax = b,
x ≥ 0,

(1.6)

where H is a positive semidefinite symmetric n× n matrix and A is an m× n matrix
of full row rank. For x ∈ R

n, π ∈ R
m, and s ∈ R

n such that x > 0 and s > 0, an
iteration of a primal-dual path-following interior method for solving (1.6) typically
takes a Newton step towards the solution of the equations

Hx+ c−ATπ − s = 0,(1.7a)

Ax− b = 0,(1.7b)

Xs− µe = 0,(1.7c)

where µ is a positive barrier parameter; see, e.g., Monteiro and Adler [21, p. 46]. Here,
X = diag(x) and similarly below S = diag(s). Strict positivity of x and s is implicitly
required and typically maintained by limiting the step length. If µ is set equal to zero
in (1.7) and the implicit requirements x > 0 and s > 0 are replaced by x ≥ 0 and s ≥ 0,
the optimality conditions for (1.6) are obtained. Consequently, (1.7) and the implicit
positivity of x and s may be viewed as a perturbation of the optimality conditions
for (1.6). In a primal-dual path-following interior method, the perturbation is driven
to zero to make the method converge to an optimal solution. The equations (1.7)
are often referred to as the primal-dual equations. Forming the Newton equations
associated with (1.7) for the corrections ∆x, ∆π, ∆s and eliminating ∆s gives(

H +X−1S AT

A 0

)(
−∆x
∆π

)
=

(
Hx+ c− µX−1e−ATπ

Ax− b

)
.(1.8)
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If x and s are strictly feasible, i.e., x and s are strictly positive and x satisfies Ax = b,
then a comparison of (1.4) and (1.8) shows that the Newton equations (1.8) can be
associated with a weighted linear least-squares problem with a positive definite weight
matrix (H +X−1S)−1. A sequence of strictly feasible iterates {xk}∞k=0 gives rise to a
sequence of weighted linear least-squares problems, where the weight matrix changes
but A is constant.

In a number of convergence proofs for linear programming, a crucial step is to
ensure boundedness of the step (∆x,∆s); see, e.g., Vavasis and Ye [27, Lemma 4]
and Wright [30, Lemmas 7.2 and A.4]. Since linear programming is the special case
of convex quadratic programming where H = 0, we are interested in extending this
boundedness result to convex quadratic programming. Therefore, the boundedness of

‖(A(H +X−1S)−1AT )−1A(H +X−1S)−1‖(1.9)

as X−1S varies over the set of diagonal positive definite matrices is of interest. This
boundedness property of (1.9) is shown in section 5.

1.2. Notation. When we refer to matrix norms and make no explicit reference
to what type of norm is considered, it can be any matrix norm that is induced from
a vector norm such that ‖(xT 0)T ‖ = ‖x‖ holds for any vector x. To denote the ith
eigenvalue and the ith singular value, we use λi and σi, respectively. For symmetric
matrices A and B of equal dimension, A 	 B means that A−B is positive semidefinite.
Similarly, A 
 B means that A−B is positive definite.

The remainder of this section is given in Forsgren [10]. It is restated here for
completeness. For an m× n matrix A of full row rank, we shall denote by J (A) the
collection of sets of column indices associated with the nonsingularm×m submatrices
of A. For J ∈ J (A), we denote by AJ the m ×m nonsingular submatrix formed by
the columns of A with indices in J . Associated with J ∈ J (A), for a diagonal n× n
matrix D, we denote by DJ the m×m diagonal matrix formed by the elements of D
that have row and column indices in J . Similarly, for a vector g of dimension n, we
denote by gJ the vector of dimension m with the components of g that have indices
in J . The slightly different meanings of AJ , DJ , and gJ are used in order not to
make the notation more complicated than necessary. For an example clarifying the
concepts, see Forsgren [10, p. 766].

The analogous notation is used for an m × n matrix A of full row rank and an
n× r matrix U of full row rank in that we associate J (AU) with the collection of sets
of column indices corresponding to nonsingular m×m submatrices of AU . Associated
with J ∈ J (AU), for a diagonal r×r matrix D, we denote by DJ the m×m diagonal
matrix formed by the elements of D that have row and column indices in J . Similarly,
for a vector g of dimension r, we denote by gJ the vector of dimension m with the
components of g that have indices in J . Since column indices of AU are also column
indices of U , for J ∈ J (AU), we denote by UJ the n ×m submatrix of full column
rank formed by the columns of U with indices in J . Note that each element of J (A)
as well as each element of J (AU) is a collection of m indices.

2. Background. In this section, we review some fundamental results. The fol-
lowing theorem, which states that the solution of a diagonally weighted linear least-
squares problem can be expressed as a certain convex combination, is the basis for our
results. As far as we know, it was originally given by Dikin [8] who used it in the con-
vergence analysis of the interior point method for linear programming he proposed [7].
The proof of the theorem is based on the Cauchy–Binet formula and Cramer’s rule.
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Theorem 2.1 (Dikin [8]). Let A be an m× n matrix of full row rank, let g be a
vector of dimension n, and let D be a positive definite diagonal n× n matrix. Then,

(ADAT )−1ADg =
∑

J∈J (A)

(
det(DJ) det(AJ)

2∑
K∈J (A) det(DK) det(AK)2

)
A−T

J gJ ,

where J (A) is the collection of sets of column indices associated with nonsingular
m×m submatrices of A.

Proof. See, e.g., Ben-Tal and Teboulle [3, Corollary 2.1].
Theorem 2.1 implies that if the weight matrix is diagonal and positive definite,

then the solution to the weighted least-squares problem (1.1) lies in the convex hull of
the basic solutions formed by satisfyingm linearly independent equations. Hence, this
theorem provides an expression on the supremum of ‖(ADAT )−1AD‖ for D diagonal
and positive definite, as the following corollary shows.

Corollary 2.2. Let A be an m× n matrix of full row rank, and let D+ denote
the set of positive definite diagonal n× n matrices. Then,

sup
D∈D+

‖(ADAT )−1AD‖ = max
J∈J (A)

‖A−T
J ‖,

where J (A) is the collection of sets of column indices associated with nonsingular
m×m submatrices of A.

Proof. See, e.g., Forsgren [10, Corollary 2.2].
The boundedness has been discussed by a number of authors over the years; see,

e.g., Ben-Tal and Teboulle [3], O’Leary [22], Stewart [24], and Todd [25]. Theorem 2.1
can be generalized to the case where the weight matrix is an arbitrary symmetric, not
necessarily diagonal, matrix such that AWAT is nonsingular. The details are given
in the following theorem.

Theorem 2.3 (Forsgren [10]). Let A be an m × n matrix of full row rank,
and let W be a symmetric n × n matrix such that AWAT is nonsingular. Suppose
W = UDUT , where D is diagonal. Then,

(AWAT )−1AW =
∑

J∈J (AU)

(
det(DJ) det(AUJ)

2∑
K∈J (AU) det(DK) det(AUK)2

)
(AUJ)

−TUT
J ,

where J (AU) is the collection of sets of column indices associated with nonsingular
m×m submatrices of AU .

Proof. See Forsgren [10, Theorem 3.1].

3. Nonnegative combinations of positive semidefinite matrices. Let A
be an m×n matrix of full row rank and assume that we are given an n×n symmetric
weight matrix W (α), which depends on a vector α ∈ R

t for some t. If W (α) can
be decomposed as W (α) = UD(α)UT , where U does not depend on α and D(α) is
diagonal, Theorem 2.3 can be applied, provided AW (α)AT is nonsingular and the
matrices (AUJ)

−TUT
J involved do not depend on α. If, in addition D(α) 	 0, then the

linear combination of Theorem 2.3 is a convex combination. Consequently, the norm
remains bounded as long as the supremum is taken over a set of values of α for which
AW (α)AT 
 0 and D(α) 	 0. In particular, we are interested in the case where a set
of positive semidefinite and symmetric matrices, Wi, i = 1, . . . , t, are given and W (α)
is defined as W (α) =

∑t
i=1 αiWi. The following two lemmas and associated corollary

concern the decomposition of W (α). The first lemma concerns the set of all possible
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decompositions of a positive semidefinite matrix W as W = UUT and the relation
between different decompositions of this type.

Lemma 3.1. Let W be a symmetric positive semidefinite n× n matrix of rank r,
and let Ū = {U ∈ R

n×r : UUT =W}. Then, Ū is nonempty and compact. Further, if

U and Ũ belong to Ū , then there is an r× r orthogonal matrix Q such that U = ŨQ.
Proof. It is possible to decompose W as W = UUT , where U is an n×r matrix of

full column rank, for example, using a Cholesky factorization with symmetric inter-
changes; see, e.g., Golub and Van Loan [14, section 4.2.9]. Therefore, Ū is nonempty.

If U and ŨT both belong to Ū , then

UTx = 0 ⇔ UUTx = 0 ⇔ Ũ ŨTx = 0 ⇔ ŨTx = 0.

Hence, UT and ŨT have the same null space, which implies that the range spaces of
U and Ũ are the same. Therefore, there is a nonsingular r × r matrix M such that
U = ŨM , from which it follows that Ũ ŨT = ŨMMTŨT. Premultiplying this equation
by ŨT and postmultiplying it by Ũ gives

ŨTŨ ŨTŨ = ŨTŨMMTŨTŨ .(3.1)

Since ŨTŨ is nonsingular, (3.1) gives MMT = I. Compactness is established by
proving boundedness and closedness. Boundedness holds because ‖UTei‖2

2 = Wii,
i = 1, . . . , n, where ei is the ith unit vector. Let {U (i)}∞i=1 be a sequence converging
to U∗ such that U (i) ∈ Ū for all i. From the continuity of matrix multiplication, U∗
belongs to Ū , and the closedness of Ū follows.

A consequence of this lemma is that we can decompose each Wi, i = 1, . . . , t, as
stated in the following corollary.

Corollary 3.2. For i = 1, . . . , t, let Wi be an n×n symmetric positive semidef-
inite matrix of rank ri. Let r =

∑t
i=1 ri. Then

U =
{
U ∈ R

n×r : U =
(
U1 U2 · · · Ut

)
, Ui ∈ R

n×ri , UiU
T
i =Wi, i = 1, . . . , t

}
is a well-defined compact subset of R

n×r. Furthermore, if U and Ũ belong to U , then,
for i = 1, . . . , t, there are orthogonal ri × ri matrices Qi such that Ui = ŨiQi.

Proof. The result follows by applying Lemma 3.1 to each Wi.
It should be noted that U depends on the matrices Wi. This dependence will be

suppressed in order to not make the notation more complicated than necessary. From
Corollary 3.2, we get a decomposition result for matrices that are nonnegative linear
combinations of symmetric positive semidefinite matrices, as is stated in the following
lemma. It shows that if we are given a set of positive semidefinite and symmetric
matrices, Wi, i = 1, . . . , t, and W (α) is defined as W (α) =

∑t
i=1 αiWi, then we can

decompose W (α) into the form W (α) = UD(α)UT , where U does not depend on α
and D(α) is diagonal.

Lemma 3.3. For α ∈ R
t, let W (α) =

∑t
i=1 αiWi, where Wi, i = 1, . . . , t, are

symmetric positive semidefinite n × n matrices. Further, let U be associated with
Wi, i = 1, . . . , t, according to Corollary 3.2, and for each i, let ri denote rank(Wi) and
let Ii be an identity matrix of dimension ri. Then W (α) may be decomposed as

W (α) = UD(α)UT,

where U is any matrix in U and D(α) = diag(α1I1, α2I2, . . . , αtIt).
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Proof. Corollary 3.2 shows that we may write

W (α) =

t∑
i=1

αiWi =

t∑
i=1

αiUiU
T
i = UD(α)UT ,

where U is an arbitrary matrix in U and D(α) = diag(α1I1, α2I2, . . . , αtIt).
Note that D(α) is positive semidefinite if α ≥ 0. An application of Theorem 2.3

to the decomposition of Lemma 3.3 now gives the boundedness result for nonnegative
combinations of positive semidefinite matrices, as stated in the following proposition.

Proposition 3.4. Let A be an m×n matrix of full row rank. For α ∈ R
t, α ≥ 0,

let W (α) =
∑t

i=1 αiWi, where Wi, i = 1, . . . , t, are symmetric positive semidefinite
n×n matrices. IfW (α) is decomposed asW (α) = UD(α)UT, according to Lemma 3.3,
then for α ≥ 0 and AW (α)AT 
 0,

(AW (α)AT )−1AW (α) =
∑

J∈J (AU)

(
det(DJ(α)) det(AUJ)

2∑
K∈J (AU) det(DK(α)) det(AUK)2

)
(AUJ)

−TUT
J .

Furthermore,

sup
α≥0:

AW (α)AT �0

‖(AW (α)AT )−1AW (α)‖ ≤ min
U∈U

max
J∈J (AU)

‖(AUJ)
−TUT

J‖,(3.2)

where J (AU) is the collection of sets of column indices associated with nonsingular
m × m submatrices of AU , and U is associated with Wi, i = 1, . . . , t, according to
Corollary 3.2.

Proof. If AW (α)AT 
 0, Theorem 2.3 immediately gives

(AW (α)AT )−1AW (α) =
∑

J∈J (AU)

(
det(DJ(α)) det(AUJ)

2∑
K∈J (AU) det(DK(α)) det(AUK)2

)
(AUJ)

−TUT
J .

Since α ≥ 0, it follows that D(α) 	 0. Consequently, det(DJ(α)) ≥ 0 for all J ∈
J (AU). Thus, the above expression gives

sup
α≥0:AW (α)AT�0

‖(AW (α)AT )−1AW (α)‖ ≤ max
J∈J (AU)

‖(AUJ)
−TUT

J‖.

Since this result holds for all U ∈ U , it holds when taking the infimum over U ∈ U .
To show that the infimum is attained, let

fJ(U) =

{ ‖(AUJ)
−TUT

J ‖ if det(AUJ) �= 0,
0 otherwise

for every J that is a subset of {1, . . . , n} such that |J | = m. For a fixed J , fJ is

continuous at every Ũ such that det(AŨJ) �= 0. Further, at Ũ such that AŨJ is
singular, fJ is a lower semicontinuous function; see, e.g., Royden [23, p. 51]. Hence,
fJ is lower semicontinuous everywhere. Due to the construction of fJ(U),

max
J∈J (AU)

‖(AUJ)
−TUT

J‖ = max
J:|J|=m

fJ(U).

The maximum of a finite collection of lower semicontinuous functions is lower
semicontinuous; see, e.g., Royden [23, p. 51], and the set U is compact by Corol-
lary 3.2. Therefore, the infimum is attained (see, e.g., Royden [23, p. 195]) and the
proof is complete.
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Note that Proposition 3.4 as special cases includes two known cases: (i) the
diagonal matrices, where W (α) =

∑n
i=1 αieie

T
i ; and (ii) the diagonally dominant

matrices, where

W (α) =

n∑
i=1

αieie
T
i +

n∑
i=1

n∑
j=i+1

(
α+
ij(ei + ej)(ei + ej)

T+ α−
ij(ei − ej)(ei − ej)T

)
.

In both these cases, the supremum bound of (3.2) is sharp. This is because all the
matrices whose nonnegative linear combinations form the weight matrices are of rank
one. In that case, the minimum over U in (3.2) is not necessary since it follows from
Corollary 3.2 that the columns of U are unique up to multiplication by ±1. Hence,
D(α) may be adjusted so as to give weight one to the submatrix AUJ for which the
maximum of the right-hand side of (3.2) is achieved and to give negligible weight to
the other submatrices. In general, when not all matrices whose nonnegative linear
combinations form the weight matrix have rank one, it is an open question if the
supremum bound is sharp.

4. Inversion of the weight matrix. For a constant positive semidefinite ma-
trix H, our goal is to obtain a bound on ‖(A(H + D)−1AT )−1A(H + D)−1‖ when
D is an arbitrary positive definite diagonal matrix. One major obstacle in applying
Theorem 2.3 is the inverse in the weight matrix (H+D)−1. The following proposition
and its subsequent corollary and lemma provide a solution to this problem.

Proposition 4.1. Suppose that an n × n orthogonal matrix Q is partitioned as
Q = (Z Y ), where Z is an n× s matrix and 2s ≤ n. Further, let W be a symmetric
nonsingular n× n matrix such that ZTW−1Z and Y TWY are nonsingular. Then

(Y TWY )−1Y TWZ = −((ZTW−1Z)−1ZTW−1Y )T

and

σ2
i ((Y

TWY )−1Y TW ) = σ2
i ((Z

TW−1Z)−1ZTW−1)

= 1 + σ2
i ((Z

TW−1Z)−1ZTW−1Y )

= 1 + σ2
i ((Y

TWY )−1Y TWZ), i = 1, . . . , s,

σi((Y
TWY )−1Y TW ) = 1, i = s+ 1, . . . , n− s.

Proof. The orthogonality of Q ensures that Y TZ = 0 and ZZT+ Y Y T = I. This
gives

0 = Y TZ = Y TW (ZZT+ Y Y T)W−1Z = Y TWZZTW−1Z + Y TWY Y TW−1Z,

and hence

(Y TWY )−1Y TWZ = −((ZTW−1Z)−1ZTW−1Y )T ,(4.1)

proving the first part of the proposition.
Since ZTW−1Z and Y TWY are nonsingular, we may write

(ZTW−1Z)−1ZTW−1
(
Z Y

)
=
(
I (ZTW−1Z)−1ZTW−1Y

)
,(4.2a)

(Y TWY )−1Y TW
(
Z Y

)
=
(
(Y TWY )−1Y TWZ I

)
.(4.2b)
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The orthogonality of Q ensures that

σi((Z
TW−1Z)−1ZTW−1Q) = σi((Z

TW−1Z)−1ZTW−1), i = 1, . . . , s.(4.3)

We also have

σ2
i

(
I (ZTW−1Z)−1ZTW−1Y

)
= 1 + σ2

i

(
(ZTW−1Z)−1ZTW−1Y

)
,(4.4)

i = 1, . . . , s. A combination of (4.2a), (4.3), and (4.4) gives

σ2
i ((Z

TW−1Z)−1ZTW−1) = 1 + σ2
i ((Z

TW−1Z)−1ZTW−1Y ), i = 1, . . . , s.(4.5)

An analogous argument applied to (4.2b), taking into account that 2s ≤ n, gives
σ2
i ((Y

TWY )−1Y TW ) = 1 + σ2
i ((Y

TWY )−1Y TWZ), i = 1, . . . , s,(4.6a)

σ2
i ((Y

TWY )−1Y TW ) = 1, i = s+ 1, . . . , n− s.(4.6b)

The second part of the proposition follows by a combination of (4.1), (4.5), and
(4.6).

In particular, Proposition 4.1 gives the equivalence between the Euclidean norms
of a projection and the projection onto the complementary space using the inverse
weight matrix, given that the matrices used to represent the spaces are orthogonal.
This is shown in the following corollary.

Corollary 4.2. Suppose that an n × n orthogonal matrix Q is partitioned as
Q = (Z Y ), where Y is an n×m matrix. Further, let W be a symmetric nonsingular
n× n matrix such that ZTW−1Z and Y TWY are nonsingular. Then

‖(Y TWY )−1Y TW‖2 = ‖(ZTW−1Z)−1ZTW−1‖2.

Further, let W+ denote the set of n× n positive definite symmetric matrices, and let
W ⊆ W+. Then,

sup
W∈W

‖(Y TWY )−1Y TW‖2 = sup
W∈W

‖(ZTW−1Z)−1ZTW−1‖2.

Proof. If m ≥ n/2, the first statement follows by letting i = 1 in Proposition 4.1.
The second statement is a direct consequence of the first one. If m < n/2, we may
similarly apply Proposition 4.1 after interchanging the roles of Y and Z, and W and
W−1.

As noted above, Corollary 4.2 states the equality between the Euclidean norms of
two projections, given that the matrices describing the spaces onto which we project
are orthogonal. The following lemma relates the Euclidean norms of the projections
when the matrices are not orthogonal.

Lemma 4.3. Let A be an m × n matrix of full row rank, and let N be a matrix
whose columns form a basis for the null space of A. Further, let W be a symmetric
nonsingular n× n matrix such that NTW−1N and ATWA are nonsingular. Then

σn−m(N)

σ1(A)
≤ ‖(AWAT )−1AW‖2

‖(NTW−1N)−1NTW−1‖2
≤ σ1(N)

σm(A)
.

Proof. Let Q = (Z Y ) be an orthogonal matrix such that the columns of Z form
a basis for the null space of A. Then, there are nonsingular matrices RZ and RY such
that N = ZRZ and AT = Y RY . Since a matrix norm which is induced from a vector
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norm is submultiplicative (see, e.g., Horn and Johnson [19, Theorem 5.6.2]) this gives

1

‖RZ‖ ≤ ‖(NTW−1N)−1NTW−1‖
‖(ZTW−1Z)−1ZTW−1‖ ≤ ‖R−1

Z ‖,(4.7a)

1

‖RY ‖ ≤ ‖(AWAT )−1AW‖
‖(Y TWY )−1Y TW‖ ≤ ‖R−1

Y ‖.(4.7b)

If the Euclidean norm is used, the bounds in (4.7) can be expressed in terms of singular
values of A and N since Y and Z are orthogonal matrices, i.e.,

‖RZ‖2 = σ1(N), ‖R−1
Z ‖2 = 1/σn−m(N),(4.8a)

‖RY ‖2 = σ1(A), ‖R−1
Y ‖2 = 1/σm(A).(4.8b)

A combination of Corollary 4.2, (4.7), and (4.8) gives the stated result.
If the weight matrix is allowed to vary over some subset of the positive definite

symmetric matrices, it follows from Lemma 4.3 that the norm of the projection onto
a subspace is bounded if and only if the norm of the projection onto the orthogonal
complement is bounded when using inverses of the weight matrices. This is made
precise in the following corollary.

Corollary 4.4. Let W+ denote the set of n × n positive definite symmetric
matrices, and let W ⊆ W+. Let A be an m× n matrix of full row rank, and let N be
a matrix whose columns form a basis for the null space of A. Then

sup
W∈W

‖(AWAT )−1AW‖ <∞ if and only if sup
W∈W

‖(NTW−1N)−1NTW−1‖ <∞.

In particular,

σn−m(N)

σ1(A)
sup

W∈W
‖(NTW−1N)−1NTW−1‖2 ≤ sup

W∈W
‖(AWAT )−1AW‖2,

sup
W∈W

‖(AWAT )−1AW‖2 ≤ σ1(N)

σm(A)
sup

W∈W
‖(NTW−1N)−1NTW−1‖2.

Proof. The second statement follows by multiplying the inequalities in Lemma 4.3
by ‖(NTW−1N)−1NTW−1‖2 and then taking the supremum of the three expres-
sions. The first statement of the corollary then follows from the equivalence of matrix
norms that are induced from vector norms; see, e.g., Horn and Johnson [19, Theorem
5.6.18].

5. Inversion and nonnegative combination. Let A be an m × n matrix of
full row rank, and let Z be a matrix whose columns form an orthonormal basis for
the null space of A. Further, let M(α) =

∑t
i=1 αiMi, where Mi, i = 1, . . . , t, are

given symmetric positive semidefinite n× n matrices. In section 3 the weight matrix
was assumed to be the nonnegative combination of symmetric positive semidefinite
matrices. This section concerns weight matrices that are the inverse of such combi-
nations, i.e., where the weight matrix is the inverse of M(α). Further, if the problem
is originally posed as the KKT system, cf. (1.4),(

M(α) AT

A 0

)(
r(α)

π(α)

)
=

(
g

0

)
,(5.1)
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it makes sense to study the problem under the assumption that ZTM(α)Z 
 0 since
in our situation, ZTM(α)Z 
 0 if and only if the matrix of (5.1) is nonsingular;
see Gould [16, Lemma 3.4]. Note that ZTM(α)Z 
 0 is a weaker assumption than
M(α) 
 0, which is necessary if the least-squares formulation is to be valid. A
combination of Proposition 3.4 and Lemma 4.3 shows that π(α) remains bounded
under the above-mentioned assumptions. This is stated in the following theorem,
which is the main result of this paper.

Theorem 5.1. Let A be an m × n matrix of full row rank and let g be an n-
vector. Further, let Z be a matrix whose columns form an orthonormal basis for the
null space of A. For α ∈ R

t, α ≥ 0, let M(α) =
∑t

i=1 αiMi, where Mi, i = 1, . . . , t,
are symmetric positive semidefinite n×n matrices. Further, let r(α) and π(α) satisfy(

M(α) AT

A 0

)(
r(α)

π(α)

)
=

(
g

0

)
.

Then,

sup
α≥0:

ZTM(α)Z�0

‖π(α)‖ <∞.(5.2)

In particular, if ZTM(α)Z 
 0, then

‖π(α)‖2 ≤ 1

σm(A)
‖(ZTM(α)Z)−1ZTM(α)‖2‖g‖2.(5.3)

Finally, if M(α) is decomposed according to Lemma 3.3, then

sup
α≥0:

ZTM(α)Z�0

‖π(α)‖2 ≤ 1

σm(A)
min
U∈U

max
J∈J (ZTU)

‖(ZTUJ)
−TUT

J‖2‖g‖2,(5.4)

where J (ZTU) is the collection of sets of column indices associated with nonsingular
m ×m submatrices of ZTU , and U is associated with Mi, i = 1, . . . , t, according to
Corollary 3.2.

Proof. For α ≥ 0 and ε > 0, M(α) + εI 
 0. Therefore,

π(α, ε) = (A(M(α) + εI)−1AT )−1A(M(α) + εI)−1g

is well defined. By Lemma 4.3 it follows that

‖π(α, ε)‖2 ≤ ‖(A(M(α) + εI)−1AT )−1A(M(α) + εI)−1‖2‖g‖2

≤ 1

σm(A)
‖(ZT(M(α) + εI)Z)−1ZT(M(α) + εI)‖2‖g‖2.(5.5)

For α such that ZTM(α)Z 
 0, the matrix in the system of equations defining π(α)
and r(α) is nonsingular; see Gould [16, Lemma 3.4]. Then, the implicit function
theorem implies that limε→0+ π(α, ε) = π(α). Therefore, letting ε→ 0+ in (5.5) gives
(5.3). Taking the supremum over α such that α ≥ 0 and ZTM(α)Z 
 0 and using
Proposition 3.4 gives (5.4), from which (5.2) follows upon observing that all norms on
a real finite-dimensional vector space are equivalent; see, e.g., Horn and Johnson [19,
Corollary 5.4.5].
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As a consequence of Theorem 5.1, we are now able to prove the boundedness of
the projection operator for the application of primal-dual interior methods to convex
quadratic programming described in section 1.1.

Corollary 5.2. Let H be a positive semidefinite symmetric n×n matrix, let A
be an m× n matrix of full row rank, and let D+ denote the space of positive definite
diagonal n× n matrices. Then,

sup
D∈D+

‖(A(H +D)−1AT )−1A(H +D)−1‖ <∞.

Proof. If M(α) 
 0, then π(α) of Theorem 5.1 satisfies

π(α) = (AM(α)−1AT )−1AM(α)−1g.

Since {α ≥ 0 :M(α) 
 0} ⊆ {α ≥ 0 : ZTM(α)Z 
 0}, Theorem 5.1 implies that π(α)
is bounded. This holds for any vector g, and hence

sup
α≥0:M(α)�0

‖(AM(α)−1AT )−1AM(α)−1‖ <∞.(5.6)

The stated result follows by applying (5.6) withMi = eie
T
i , i = 1, . . . ,m,Mm+1 = H,

and letting αm+1 = 1.
For convenience in notation, it has been assumed that all variables of the convex

quadratic program are subject to bounds. It can be observed that the analogous
results hold when some variables are not subject to bounds. In this situation, M of
(1.4) may be partitioned as

M =

(
H11 H12

HT
12 H22

)
+

(
D11 0

0 0

)
,

where H is symmetric and positive semidefinite and D11 is diagonal and positive
definite. Let A be partitioned conformally with M as A = (A1 A2). Then, (1.4)
has a unique solution as long as there is no nonzero p2 such that A2p2 = 0 and
pT2H22p2 = 0; see Gould [16, Lemma 3.4]. Hence, under this additional assumption,
Theorem 5.1 can be applied to bound ‖π(α)‖ as D11 varies over the set of positive
definite diagonal matrices.

6. Summary. It has been shown that results concerning the boundedness of
(AWAT )−1AW for A of full row rank and W diagonal, or diagonally dominant, and
symmetric positive definite can be extended to a more general case where W is a
nonnegative linear combination of a set of symmetric positive semidefinite matrices
such that AWAT 
 0. Further, boundedness has been shown for the projection onto
the null space of A using as the weight matrix the inverse of a nonnegative linear
combination of a number of symmetric positive semidefinite matrices. This result
has been used to show boundedness of a projection operator arising in a primal-dual
interior method for convex quadratic programming.

The main tools for deriving these results have been the explicit formula for the
solution of a weighted linear least-squares problem given by Dikin [8] and the relation
between a projection onto a subspace with a certain weight matrix and the projection
onto the orthogonal complement using the inverse weight matrix.

An interesting question that is left open is whether or not the explicit bounds
that are given are sharp. In the case where all the matrices whose nonnegative linear
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combination form the weight matrix are of rank one, the bounds are sharp. In the
general case, this is an open question. On a higher level, an interesting question
is whether the results of this paper can be utilized to give new complexity bounds
for quadratic programming, analogous to the case of linear programming; see, e.g.,
Vavasis and Ye [27, section 9].

Appendix. Relationship to partitioned orthogonal matrices. In this
appendix we review a result by Gonzaga and Lara [15] concerning diagonally weighted
projections onto orthogonally complementary subspaces and combine this result with
a result concerning singular values of submatrices of orthogonal matrices. It was these
results in fact which lead to the more general results relating weighted projection onto
a subspace and the projection onto its complementary subspace using the inverse
weight matrix, as described in section 4.

Gonzaga and Lara [15] state that if Y is an n×m orthogonal matrix and Z is a
matrix whose columns form an orthonormal basis for the null space of Y T, then

sup
D∈D+

‖(Y TDY )−1Y TD‖ = sup
D∈D+

‖(ZTDZ)−1ZTD‖,

where D+ is the set of positive definite diagonal n×n matrices. They use a geometric
approach to prove this result. We note that Corollary 4.2, specialized to the case of
diagonal positive definite weight matrices, allows us to state the same result. Fur-
thermore, we obtain an explicit expression for the supremum by Corollary 2.2. The
following corollary summarizes this result.

Corollary A.1. Suppose that an n × n orthogonal matrix Q is partitioned as
Q = (Z Y ), where Y is an n×m matrix. Let D+ denote the set of diagonal positive
definite n× n matrices. Then,

sup
D∈D+

‖(ZTDZ)−1ZTD‖2 = max
J∈J (ZT )

1

σmin(ZJ)

= sup
D∈D+

‖(Y TDY )−1Y TD‖2 = max
J̃∈J (Y T )

1

σmin(YJ̃)
,

where J (ZT ) is the collection of sets of column indices associated with nonsingular
(n−m)× (n−m) submatrices of ZT and J (Y T ) is the collection of sets of column
indices associated with nonsingular m×m submatrices of Y T .

Proof. Since D ∈ D+ if and only if D−1 ∈ D+, Corollary 4.2 shows that

sup
D∈D+

‖(ZTDZ)−1ZTD‖2 = sup
D∈D+

‖(Y TDY )−1Y TD‖2.

The explicit expressions for the two suprema follow from Corollary 2.2.
Hence, in our setting, we would rather state the result of Gonzaga and Lara [15]

in the equivalent form

sup
D∈D+

‖(Y TDY )−1Y TD‖ = sup
D∈D+

‖(ZTD−1Z)−1ZTD−1‖

with the expressions for the suprema stated in Corollary A.1.
Note that an implication of Corollary A.1 is that if an n×n orthogonal matrix Q

is partitioned as Q = (Z Y ) where Y has m columns, there is a certain relationship
between the smallest singular value of all nonsingular (n−m)×(n−m) submatrices of
Z and the smallest singular value of all nonsingular m×m submatrices of Y . This is
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in fact a consequence of a more general result, namely, that if Q is partitioned further
as

Q =

(
Z1 Y1

Z2 Y2

)
,(A.1)

where Z1 is (n − m) × (n − m), then all singular values of Z1 and Y2 that are less
than one are identical. This in turn is a consequence of properties of singular values
of submatrices of orthogonal matrices that can be obtained by the CS-decomposition
of an orthogonal matrix; see, e.g., Golub and Van Loan [14, section 2.6.4].

This result relating the singular values of Z1 and Y2 of (A.1) implies the existence
of J and J̃ , which are complementary subsets of {1, . . . , n}, for which the maxima in
Corollary A.1 are achieved. This observation lead us to the result that

‖(Y TDY )−1Y TD‖2 = ‖(ZTD−1Z)−1ZTD−1‖2

for any positive definite diagonal D. Subsequently, this result was superseded by the
more general analysis presented in section 4.
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