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Abstract

Complex external beam radiation therapy treatment plans are susceptible to er-
rors. Robust optimization methods that take uncertainties into account during
the optimization can alleviate the effects of the errors. For many robust meth-
ods, the possible error realizations are discretized into scenarios. The methods
then aim at achieving high quality plans in all scenarios simultaneously. The
choice of scenarios has high impact on the quality of the plans: when the op-
timization is aimed at high target coverage in scenarios that are incompatible
with healthy tissue sparing in other scenarios, the plan quality in all scenarios
may suffer. It can then be beneficial to reduce the range of errors the scenarios
represent. To accomplish this, we propose a method that determines how large
errors that can be accounted for in robust optimization of intensity-modulated
photon and proton therapy. It does so by optimizing the scenario positions
along predefined directions simultaneously with the direct machine parameter
optimization, under constraints on target coverage and healthy tissue sparing.
For both modalities, scenario position optimization was applied to a prostate
case and a lung case. The optimization reduced the ranges of errors that were
accounted for compared to the a priori ranges. The determined scenario posi-
tions were used in robust optimization with fixed scenarios. This resulted in
plans that satisfied a substantially larger number of constraints in the deter-
mined scenarios and moreover a larger number of constraints in the a priori
scenarios than the plans optimized with a priori scenario positions.

1. Introduction

In external beam radiation therapy, misalignment of the patient relative to the
beams can lead to large differences between the planned and the delivered dose
distributions. The conventional approach to account for errors is to apply margins
during treatment planning [18]. Planning is then performed towards delivery of high
doses to an enlarged target volume. For complex cases, conventional margins do not
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2 Optimizing the scenario positions for robust radiation therapy

always provide the intended robustness against uncertainties [12]. Methods that uti-
lize information about the uncertainties in the optimization and optimize measures
such as the expected objective value or the worst case objective value appear to
lead to more robust plans in general [5,17]. Unfortunately, these methods too have
their shortcomings: Expected value optimization applied to quadratic penalty func-
tions provides no robustness guarantees against systematic errors [4]. Moreover, the
conservativeness of worst case optimization may lead to unnecessarily compromised
plan quality for some error realizations, since when there is no low penalty solution
for a specific error realization, the method provides little or no incentive to further
improve the penalty for other realizations. The expected value and worst case opti-
mization methods also intensify the conflicts between target coverage and sparing of
organs at risk (OARs), since they do not only accommodate conflicts between goals
in the case of no errors, but also between goals across different error realizations.
When the optimization minimizes a weighted sum of functions quantifying how well
the treatment goals are fulfilled, the multiple conflicts yield the trade-off between
target coverage and OAR sparing more dependent on the weights than convention-
ally, but also make the impact of the weights less intuitive. This renders the robust
treatment planning more difficult than conventional planning.

When target coverage in one scenario is incompatible with OAR sparing in an-
other scenario, it might be beneficial to retract some of the scenarios to positions
in less conflict. In this paper, a method is proposed that determines how large er-
rors that can be accounted for in robust optimizations. The method optimizes the
positions of the scenarios under the constraint that all treatment goals be satisfied.
When the magnitude of the errors that can be accounted for has been determined,
the error positions found are used in worst case optimizations. In a worst case opti-
mization, the objective is minimized in the worst of a number of predefined scenarios.
The presented method is applied to a prostate case and a lung case, both subject
to systematic setup errors and treated with intensity-modulated radiation therapy
(IMRT), i.e., photon therapy, and intensity-modulated proton therapy (IMPT).

Optimization of the expected value of functions penalizing physical quantities
such as the deviation of dose has been performed previously for IMRT by, e.g., Un-
kelbach and Oelfke [17] with respect to random and systematic setup errors and in
IMPT by Unkelbach et al. [16] with respect to systematic range and setup errors.
Pflugfelder et al. [14] also accounted for systematic range and setup errors in IMPT,
but applied the penalty functions to a worst case dose distribution, where each
voxel considered independently received its worst dose from a number of different
scenarios. In a previous paper, we used worst case (or “minimax”) optimization,
in which the penalty of the objective function applied to the dose distribution of
the worst scenario is minimized, for patient cases treated with IMPT subject to
systematic range and setup errors [5]. Such optimization is also the basis for the
robust method used in the present paper. Chen et al. [3] used minimax optimization
for IMPT accounting for systematic range and setup errors in a linear programming
multicriteria optimization framework, which enabled scaling between nominal and
robust solutions to the optimization problem. Generally, the methods that incor-
porate information about the uncertainties into the optimization enable similar or
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more robust target coverage and better sparing of healthy tissues than conventional
methods that use margins to account for uncertainties. However, a comparison of
IMPT treatment planning by expected value minimization, worst case penalty min-
imization, and minimization of the conditional value-at-risk showed that expected
value minimization, while requiring a less complex optimization formulation, may
result in worse target coverage than the more conservative methods [4].

The methods for robustness cited above optimize uncertainty measures with
the ranges of errors accounted for specified prior to the optimization. The method
proposed in the present paper differs from those methods in that it changes the
ranges of errors that are accounted for during the optimization. Changing the size
of the region within which to be robust has similarities to some previous methods.
Gordon and Siebers [8] updated the sizes of the planning margins for IMRT plans
iteratively until a coverage probability was met. Gordon et al. [7] proposed a method
based on dose-coverage histograms, which show coverage probabilities as functions of
dose for the regions of interest (ROIs), similar to how dose-volume histograms show
the volumes as functions of dose. Using dose-coverage histograms, they introduced
optimization functions aimed towards achieving specified target coverage and OAR
sparing probabilities. Moore et al. [13] developed a probabilistic treatment planning
method to account for systematic setup errors, which considered multiple setup error
scenarios and tried to achieve some specified target coverage probability. When
the method was unable to reach the specified probability, the level was iteratively
updated. The method proposed in the present paper differs from these coverage
probability-based methods in that it optimizes on the coverage probability directly.
It can thereby reach the highest coverage probability up to the desired level for
which the treatment goals can be satisfied.

2. Method

A scenario position optimization problem is formulated that is aimed at identifying
the scenarios that are compatible with the treatment goals. In this problem, the
scenario positions are optimized under the constraint that all goals must be satisfied.
The optimal solution provides the compatible scenario positions, which can then be
included in a standard robust optimization with fixed scenario positions. Optimizing
the scenarios can be thought of as isocenter optimization for multiple scenarios
simultaneously.

2.1. Uncertainties and scenarios

Systematic setup errors are considered. These are modeled as translations of the
beam isocenters. During the optimization, the possible error realizations are dis-
cretized into a number of scenarios and dose is computed for each of the included
scenarios.

The main goal of robust radiation therapy treatment plan optimization is to
satisfy all treatment goals in all scenarios. If the goals are formulated as optimization
constraints this becomes a feasibility problem. Sometimes it is not possible to satisfy
all constraints simultaneously in a given scenario. This is however not a reason to
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drop that scenario entirely, for it might still be worthwhile to try to satisfy some of
the constraints in that scenario: Consider, as an example, the geometry depicted in
Figure 1 that has two realizable scenarios. Assume that the ROIs move in a static
dose distribution. Then there cannot exist a dose distribution that simultaneously
achieves full OAR sparing in the first scenario and target coverage in the second
scenario. Therefore, one might decide to drop the aim for OAR sparing in the first
scenario. It would however be detrimental if one simultaneously dropped the aim for
target coverage in the first scenario, since this aim is not in conflict with any other
goal. In order to include the possibility of target coverage in a scenario in which
the OAR sparing is in conflict with some other goal, it is necessary to consider each
structure individually in each scenario.

(a) Scenario 1 (b) Scenario 2

Figure 1. An example case with two scenarios. The target (darkgray) and the OAR
(lightgray) are indicated. OAR sparing in scenario 1 is incompatible with target
coverage in scenario 2, but target coverage in scenario 1 is not in conflict with any
goal, so it is still suitable to aim for target coverage in scenario 1.

2.2. Mathematical formulation

In order to determine the scenario positions where all goals can be simultaneously
satisfied, a scenario position optimization problem is formulated. The random vari-
able picking the realization of the systematic error is denoted by S, which is thus a
random variable vector in R

3. The aim of the scenario position optimization is to
maximize the probability that S falls within the volume in which the criteria for all
ROIs enumerated by the set R are simultaneously satisfied. This volume is modeled
by a discrete set of scenarios.

Consider scenarios corresponding to shifts in the n directions pi ∈ R
3 for index

i = 1, . . . , n, and, for each ROI r ∈ R and each direction i = 1, . . . , n, let the
scalar factor αr,i ∈ [0, 1] determine the position of the scenario for ROI r along the
direction pi. Let αr,0 = 0 for all r ∈ R and let p0 be arbitrary. Note that the set R
could enumerate criteria instead of ROIs, so that different scenario positions were
considered for different criteria of a given ROI. The volume for which the criteria
of ROI r ∈ R are satisfied is parameterized by αr ∈ R

n+1 and p ∈ R
3×(n+1), and is

denoted by C(αr, p) ⊆ R
3. The volume in which the criteria of all ROIs are satisfied
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then becomes
⋂

r∈R C(αr, p), so the objective function to be maximized becomes

P

(

S ∈
⋂

r∈R

C(αr, p)

)

,

where P(A) denotes the probability of the event A occurring.

Besides the main goal to satisfy the criteria of all ROIs simultaneously, it is—as
discussed in Section 2.1 above—beneficial to satisfy the criteria of each ROI also
in scenarios in which the criteria of other ROIs cannot be simultaneously satisfied.
Therefore, terms P(S ∈ C(αr, p)) for r ∈ R encouraging enlarging the volume
covered for each ROI r individually are weighted into the objective by a factor
0 < ρ ≪ 1.

Denote by d(x, q) the dose distribution as a function of the optimization variables
x from the set X of feasible optimization variables and of the displacement q ∈ R

3.
Then, the scenario position optimization problem can then be formulated as

maximize
α,x

P

(

S ∈
⋂

r∈R

C(αr, p)

)

+ ρ
∑

r∈R

P(S ∈ C(αr, p))

subject to fr(d(x, αr,ipi)) ≤ 0, r ∈ R, i = 0, . . . , n,

αr,i ∈ [0, 1], r ∈ R, i = 1, . . . , n,

x ∈ X ,

(2.1)

where fr is a penalty function representing ROI r ∈ R such that fr evaluates to
zero when the criteria of the ROI are satisfied. The constraint on fr for i = 0
enforces the criteria in the nominal scenario, since αr,0p0 = (0 0 0)T . Because
the dose is nonconvex in the scenario positions in general (and, for IMRT, also in
machine parameters such as the multi-leaf collimator leaf positions), this is a non-
convex optimization problem. Common nonlinear programming algorithms aim for
locally optimal solutions. Due to the nonconvexity, the scenario positions resulting
after such an optimization cannot be guaranteed to be globally optimal. While the
problem is nonconvex, it is likely that the partial derivatives of the constraints with
respect to the scenario positions are positive for conformal dose distributions, since
the target coverage and OAR sparing often deteriorates as the distance of a scenario
from the nominal position is increased.

In the above formulation, it is assumed that if a constraint is satisfied in the
nominal scenario and for αr,ipi for i = 1, . . . , n, it is satisfied in the full volume
C(αr, p). If this is not the case, additional constraints for other positions in C(αr, p)
ought to be included in the optimization.

The optimization criteria of the scenario position optimization problem should
represent the worst clinically acceptable criteria, i.e., the criteria such that there is
little meaning in treating the patient unless they are satisfied. These criteria are not
intended to fine tune the trade-offs between conflicting goals, and should be con-
trasted to the conventional optimization goals constituting the objective function,
which reflect the goals that are desirable, but not necessary, to satsify.
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2.3. Probability computation

The setup errors are assumed to be normally distributed with zero mean and co-
variance matrix Σ = σ2I. If there were only a single direction along which to move
(i.e., n = 2, p1, p2 ∈ R, and p1 = −βp2 for some β > 0), the probability density
function would be (σ

√
2π)−1e−t2/(2σ2), so the probability covered by p and αr for a

ROI r ∈ R would be

P(S ∈ [−αr,1|p1|, αr,2|p2|]) =
1

σ
√

2π

∫ αr,2|p2|

−αr,1|p1|
e−t2/(2σ2) dt =

1

2

2
∑

i=1

erf

(

αr,i|pi|
σ
√

2

)

,

where the error function erf(x) is defined by

erf(x) = (2/
√

π)

∫ x

0
e−t2 dt.

For simplicity, the probability covered by the scenarios of ROI r ∈ R when there are
multiple directions is assumed to be the sum of such single direction probabilities,
viz.,

P(S ∈ C(αr, p)) =
1

n

n
∑

i=1

erf

(

αr,i‖pi‖2

σ
√

2

)

,

where the length of pi is measured by the norm instead of the absolute value, since
pi is now in R

3. This assumption says that the different directions contribute inde-
pendently to the coverage probability. The probability covered by the scenarios of
all ROIs in R is then given by

P

(

S ∈
⋂

r∈R

C(αr, p)

)

=
1

n

n
∑

i=1

min
r∈R

erf

(

αr,i‖pi‖2

σ
√

2

)

.

The function erf(x) is concave in x ∈ R+ and the min operator preserves concavity.
Hence, since the objective function is maximized, the objective of problem (2.1)
under this probability computation assumption does not introduce additional non-
convexity to the optimization problem.

If it can be assumed that only one ROI is compromised in each scenario direction
i = 1, . . . , n while each other ROI r ∈ R keeps its corresponding value of αr,i at
its upper bound throughout the optimization (assuming that it is initialized at its
upper bound), the solutions resulting from using the objectives

1

n

n
∑

i=1

min
r∈R

erf

(

αr,i‖pi‖2

σ
√

2

)

and
∑

r∈R

1

n

n
∑

i=1

erf

(

αr,i‖pi‖2

σ
√

2

)

are the same. This is the case for the example geometry in Figure 1, since the
anterior scenario does not compromise the target coverage whereas the posterior
scenario does not compromise the OAR sparing. That this is the case is assumed
subsequently, and therefore only the latter term is used as objective in the scenario
position optimizations.
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2.4. Optimizing margins

The formulation (2.1) that optimizes the scenario positions is intended to be as gen-
eral as possible, and is not restricted to a specific modality or patient geometry. The
generality comes at increased computational cost compared to conventional prob-
lems. Margins are commonly used to account for uncertainties in photon therapy
treatments [10, 15]. For cases when margins can be assumed to be sufficient, the
displacements αr,ipi for i = 1, . . . , n and a given ROI r ∈ R could be used to param-
eterize the margin of the ROI, so that the margins would be optimized instead of
the scenario positions. Since this approach would not require multiple constraints
for each structure nor dose computations in multiple scenarios, it would potentially
be faster than the scenario position optimization.

2.5. Computational study

Scenario position optimization was implemented in the RayStation 2.8 treatment
planning system (RaySearch Laboratories, Stockholm, Sweden). The optimization
in RayStation is performed by a sequential quadratic programming algorithm using
quasi-Newton updates of an approximation of the Hessian of the Lagrangian. A
similar method is described by Gill et al. [6]. The scenario position optimization
was applied to a prostate case and a lung case. Both IMRT and IMPT plans were
optimized for the two cases. For the prostate case, a five-field IMRT treatment with
equispaced beams beginning at 0◦, and a two-field IMPT treatment with beams at
90◦ and 270◦ were optimized. For the lung case, a seven-field IMRT treatment with
equispaced beams beginning at 0◦, and a two-field IMPT treatment with beams
at 35◦ and 250◦ were optimized. For both cases, the dose grid resolutions were
2.5× 2.5× 2.5 mm3 and the standard deviations of the systematic setup errors were
σ = 5 mm. It was assumed that it was desired to account for errors of at most 2σ,
i.e., shifts of up to 1 cm. Transversal slices of the patients are shown in Figure 2.

(a) Prostate case (b) Lung case

Figure 2. Transversal slice of the patient cases. The targets (red) and the main
OARs (blue) are indicated as contours.

When the scenario positions had been determined by the scenario position op-
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timization, plans were optimized with worst case optimization [5] with the scenario
positions fixed at the locations determined by the previous optimization. These
plans were compared to plans optimized with the a priori scenario positions of dis-
tance 2σ from the nominal scenario. Since the different ROIs can have different
scenario positions after the scenario position optimization, the scenarios must be
separated per ROI also in the standard robust optimization. Given the scenario
directions p and the scenario positions αr for ROI r ∈ R, the standard robust
optimization problem is thus formulated as

minimize
x∈X

f(d(x)) +
∑

r∈R

max
i=0,...,n

fr(d(x, αr,ipi))

subject to g(d(x)) ≤ 0,

gr(d(x, αr,ipi)) ≤ 0, r ∈ R, i = 0, . . . , n,

(2.2)

where d(x) denotes the nominal dose distribution d(x, (0 0 0)T ), f is the weighted
sum of nominal objective constituents, fr is the weighted sum of robust objective
constituents for ROI r ∈ R, g represents the nominal constraints, and gr represents
the robust constraints of ROI r ∈ R. The optimization functions constituting
the objectives and constraints used in this paper are defined mathematically in
Appendix A.

During the optimizations, scenario doses for both IMRT and IMPT were calcu-
lated using the nominal mapping from fluence to dose, but with the fluence maps
shifted (and bilinearly interpolated) according to the displacement of the scenarios.
An error along a beam direction was assumed to affect the resulting beam dose only
according to the inverse-square law, so that when the patient moves away from the
treatment unit, the beam dose is scaled downwards. Derivatives with respect to
the scenario positions were approximated by finite differences. Thus, the number of
dose calculations increased by one per iteration for each scenario but the nominal.

The scenario position optimization was initialized from plans reached by opti-
mization with fixed scenario positions for seven iterations. For IMRT, these seven
iterations were fluence map optimization iterations, and the resulting plan was seg-
mented before the scenario positions were optimized in combination with direct
step-and-shoot optimization [9].

The scenario position optimization for IMRT was performed using a fast dose
calculation algorithm based on singular value decomposition of pencil beam ker-
nels [2]. For the optimizations with fixed scenario positions, the same algorithm
was primarily used, but at intermediate iterations accurate dose was computed by a
collapsed cone dose calculation algorithm [1] and the subsequent optimization was
performed on the dose of the fast algorithm incremental from the accurate dose.

For IMPT, the dose was computed using the pencil beam dose calculation al-
gorithm of RayStation, which takes heterogeneities into account, also within the
cross-section of each spot. The line spacing and the energy layer separation (in wa-
ter equivalent media) were both set to 5 mm, but to improve upon the approximate
scenario dose calculation, auxiliary spots were computed for 2.5 mm line spacing.
The additional spots were not included as variables in the optimization. In Unkel-
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bach et al. [16], auxiliary spots were used in a similar way, but nearest neighbor
interpolation was applied to the shifted spots.

In the robustness evaluation, the beam isocenters were shifted before dose was
computed. There was thus a difference in the scenario dose calculation during the
optimization and that in the evaluation, since the shifted fluence used during the
optimization results in slight inaccuracies due to the different divergence.

3. Results

3.1. Prostate case

The prostate case was simplified to resemble to the example shown in Figure 1.
Thus, only setup shifts in the anterior and posterior directions were considered.

3.1.1. Optimization problem

The goals for the target and the rectum of the prostate case were assumed to require
robustness. Other goals were included for the nominal scenario only. Five scenarios
were included for dose calculation: the nominal scenario, and posterior and anterior
shifts for the target and for the rectum, so n = 2. The scenario position vectors
were set to p1 = (0 1 0)T cm and p2 = (0 − 1 0)T cm and the optimization problem
was formulated similar to (2.1). Its minimum robust requirements, as well as its
nominal requirements, are presented in Table 1. The objective was to maximize the
probability covered by the posterior and anterior shifts for the target and for the
rectum.

Table 1. Robust and nominal constraints for the prostate case.

Robust constraints Nominal constraints

Structure Function Dose level [Gy] Structure Function Dose level [Gy]

Target Min dose 70 Bladder Max 20 % DVH 70

Target Min 98 % DVH 74 L. femoral head Max dose 40

Rectum Max 45 % DVH 40 R. femoral head Max dose 40

Rectum Max 20 % DVH 60 External Max dose 82

Rectum Max 5 % DVH 78

3.1.2. Optimized scenarios

The posterior and anterior scenarios for the prostate and the rectum were included as
variables in the IMRT and IMPT optimizations. The optimizations did not result
in changes to the posterior isocenter shift for the target or the anterior isocenter
shift for the rectum, but kept these at their maximum positions of 1 cm. The two
other shifts were modified for both modalities. Figure 3 displays the progress of
the modified scenario positions and the maximum constraint violation during the
optimization.

The optimizations first retract the scenario positions rapidly to improve upon the
feasibility. Plans are considered feasible if the maximum constraint violation is less
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(c) Scenario positions for IMPT
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(d) Maximum constraint violation for IMPT

Figure 3. Progress of the scenario positions and maximum constraint violation
during the prostate case optimizations.
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than 10−6. The IMRT as well as the IMPT plans become feasible after iteration 25.
At the same time, the scenario positions are being slowly pushed outwards, which
improves upon the objective value. For IMRT, the scenario position optimization
resulted in the positions 0.67 cm and 0.68 cm for respectively the target anterior
and the rectum posterior scenarios. For IMPT, it resulted in the positions 0.72 cm
and 0.74 cm.

3.1.3. Feasible scenario positions

In order to determine what could best be expected from a scenario position optimiza-
tion, optimizations with fixed scenario positions were performed for an enumeration
of possible scenario positions for the two ROIs. The posterior isocenter shift for the
target and the anterior isocenter shift for the rectum were always set to 1 cm, while
the anterior shift for the target and the posterior shift for the rectum were considered
for each point in a 8×8 point regular discretization of the [0.5, 0.85]× [0.5, 0.85] cm2

box. For each point in the grid, an optimization was performed for 100 iterations.
The combinations of scenarios that resulted in a feasible solution after standard ro-
bust optimization (with fixed scenario positions during the optimization) are shown
in Figure 4. The nonlinear constraints were considered satisfied if they evaluated to
less than 10−6. Bilinear interpolation was used to approximate the cutoff when it
occurred between points.
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Figure 4. Feasible region (white) for the prostate case after optimization for 100
iterations. The crosses (x) denote the positions found by the scenario position opti-
mization.

For IMRT, the optimized scenario positions came very close to what was deemed
feasible for optimization with fixed scenario positions. For IMPT, the difference was
a few tenth of a millimeter.
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3.1.4. Robust plans with selected scenarios

The optimized scenario positions were used as fixed positions in robust optimizations
with standard robust goals according to the formulation (2.2). The constraints from
Section 3.1.1 were kept, but mean dose objectives of unity weight were introduced
to reduce the doses to all healthy ROIs.

The standard robust optimization can be warm started from the solution to
the scenario position optimization problem. Here, however, the standard robust
optimization was started from scratch to make the plan more comparable to the
reference plan using the a priori scenario positions (1 cm in the posterior as well as
the anterior direction for each ROI requiring robustness), which was also optimized.
Since with the a priori scenarios the constraints could not be satisfied, the target
and rectum goals were relaxed into objective constituents with weights 100 for that
optimization. DVHs in different scenarios for these plans are shown in Figure 5.
The DVHs are based on doses computed with shifted beam isocenters, so there is
a slight difference between these doses and the ones used during the optimization,
which were computed with the nominal isocenters but with shifted fluences. For
IMRT as well as IMPT, the plans with optimized scenarios neglect the 1 cm shift
for the target but are in return able to perform better in the other scenarios than
the optimization with a priori scenarios. The same is true of the −1 cm shift for
the OAR.

To evaluate how well the different methods satisfied the robust constraints, each
robust constraint of Table 1 (with volume level relaxed by 0.5 %) was evaluated in
each of the optimized scenario positions as well as in the a priori scenario positions.
For each of these two scenario groups and each method, the number of satisfied
constraints was summed over the scenarios. The results are shown in Table 2. The
IMRT and IMPT plans optimized with the scenarios determined by the scenario
position optimization satisfied respectively 5 and 3 constraints more in the optimized
scenarios than the plans optimized with a priori constraints. They also satisfied
respectively 3 and 1 constraints more in the a priori scenarios.

Table 2. The number of satisfied constraints for the prostate case over the three
optimized scenarios and over the three a priori scenarios. Five constraints and three
scenarios make the maximum 15.

No. of satisfied constraints

Method Optimized scenarios A priori scenarios

IMRT with optimized scenarios 13 11

IMRT with a priori scenarios 8 8

IMPT with optimized scenarios 12 10

IMPT with a priori scenarios 9 9

3.2. Lung case

For the lung case, not only the anterior and posterior, but also the left, right,
superior, and inferior scenarios were included in the scenario position optimization.
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(c) IMPT plan using optimized scenario posi-
tions
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(d) IMPT plan using a priori scenario positions

Figure 5. Prostate case DVHs for the plans using optimized scenario positions and
the plans using a priori scenario positions. The shifts in the anterior direction are
annotated. Black curves correspond to the optimized scenario positions and gray
curves correspond to the a priori scenario positions (±1 cm in the anterior direction).
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3.2.1. Optimization problem

The target and the heart were considered as the only goals of the lung case requiring
robustness. There were 13 scenarios included for dose calculation: the nominal
scenario, and left, right, posterior, anterior, superior, and inferior scenarios for the
target and for the heart, so n = 6. The scenario vectors were set to p1 = (1 0 0)T cm,
p2 = (−1 0 0)T cm, p3 = (0 1 0)T cm, p4 = (0 − 1 0)T cm, p5 = (0 0 1)T cm,
p6 = (0 0 − 1)T cm and the optimization problem was formulated similar to (2.1).
Its minimum robust requirements, as well as its nominal requirements, are presented
in Table 3. The objective was to maximize the probability covered by the scenarios
for the target and for the heart.

Table 3. Robust and nominal constraints for the lung case.

Robust constraints Nominal constraints

Structure Function Dose level [Gy] Structure Function Dose level [Gy]

Target Min dose 68 Lung Max 37 % DVH 20

Target Min 98 % DVH 70 External Max dose 77

Target Max dose 77

Heart Max 1 % DVH 40

3.2.2. Optimized scenarios

The left, right, posterior, anterior, superior, and inferior scenarios for the target and
the heart were included as variables in the IMRT and IMPT optimizations. The
progress of the scenario positions and the maximum constraint violation during the
optimizations are shown in Figure 6.

As for the prostate case, the optimizations first retract the scenario positions
rapidly to improve upon the feasibility. For both IMRT and IMPT, the maximum
constraint violation drops below 10−6 before iteration 75. At the same time, the
scenario positions are being slowly pushed outwards, which improves upon the ob-
jective function value. The resulting scenario positions are shown in Table 4.

Table 4. Optimized scenario positions for the lung case.

IMRT IMPT

Direction Target scenario [cm] Heart scenario [cm] Target scenario [cm] Heart scenario [cm]

Left 1.0 0.35 0.94 0.65

Right 0.5 1.0 0.81 1.0

Posterior 1.0 1.0 0.87 1.0

Anterior 1.0 1.0 0.73 1.0

Superior 1.0 1.0 0.70 1.0

Inferior 0.92 1.0 1.0 0.75
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(b) Maximum constraint violation for IMRT
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(c) Scenario positions for IMPT
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(d) Maximum constraint violation for IMPT

Figure 6. Progress of the scenario positions and maximum constraint violation
during the lung case optimizations.
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3.2.3. Feasible scenario positions

Due to its multidimensionality, the feasible region of the scenario positions for the
lung case optimization problem cannot be as easily determined as that of the prostate
case problem. To determine whether the scenario position optimizations resulted
in unnecessarily retracted scenario positions, plans with fixed scenario positions
were optimized. First, the scenario positions as determined by the scenario position
optimizations, shown in Table 4, were used. Second, these scenario positions were
pushed 0.1 mm outwards, but to a maximum of 1 cm, and these extended positions
were used. In the first case, the IMRT as well as the IMPT optimization resulted
in feasible plans, with maximum constraint violation less than 10−6. With the
scenarios pushed outwards, neither the IMRT nor the IMPT optimization resulted
in a feasible solution. This indicates that the scenario positions found could not
be much improved upon. It does not, however, prove global optimality, since it is
possible that some of the scenario positions could be pushed outwards, or that the
positions could be redistributed in a way that would improve upon the objective
value while admitting a feasible solution.

3.2.4. Robust plans with selected scenarios

The optimized scenario positions were used as fixed positions in robust optimizations
with standard robust goals according to the formulation (2.2). The constraints from
Section 3.2.1 were kept, but mean dose objectives of unity weight were introduced
to reduce the doses to all healthy ROIs.

As for the prostate case, the standard robust optimization for the lung case was
started from scratch to make the plan more comparable to the reference plan using
the a priori scenario positions (1 cm in the positive and negative axis directions),
which was also optimized. Since with the a priori scenarios the constraints could
not be satisfied, the target and heart goals were relaxed into objective constituents
with weights 100 for that optimization. DVHs in the different scenarios for these
plans are shown in Figure 7. The DVHs are based on doses computed with shifted
beam isocenters, so there is a slight difference between these doses and the ones
used during the optimization, which were computed with the nominal isocenters
but with shifted fluences. They show that the heterogeneous density of the lung
affects the IMPT plan more than the IMRT plan. The 1 cm right shift for IMRT
and the 1 cm superior shift for IMPT resulted in the worst target coverage for the
plans with optimized scenario positions. While the plans with optimized scenario
positions neglect some shifts, they are in return able to improve upon the target
coverage and OAR sparing in other shifts compared to the optimizations with a
priori scenarios.

The number of scenarios in which the robust constraints for the lung case (relaxed
by 0.5 %) are satisfied are shown in Table 5, for the scenario positions determined
by the optimization as well as for the a priori scenario positions. Since the min 98 %
DVH constraint was not satisfied in any scenario for any method other than IMPT
with optimized scenario positions at the 70 Gy level, the dose level was reduced
to 69.5 Gy. The plans with optimized scenario positions satisfy the constraints in
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(b) IMRT plan using a priori scenario positions
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(c) IMPT plan using optimized scenario posi-
tions
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Figure 7. Lung case DVHs for the plans using optimized scenario positions and
the plans using a priori scenario positions. Black curves correspond to the optimized
scenario positions and gray curves correspond to the a priori scenario positions (±1 cm
in all axis directions).
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a larger number of scenarios than the plans with a priori scenario positions for all
constraints but the target max dose constraint.

To evaluate how well the different methods satisfied the robust constraints, each
robust constraint of Table 3 (with volume level relaxed by 0.5 %) was evaluated in
each of the optimized scenario positions as well as in the a priori scenario positions.
Since no method satisfied the target max DVH constraint in any scenario, its dose
level was relaxed from 70 Gy to 69.5 Gy in the evaluation. For each of these two
scenario groups and each method, the number of satisfied constraints was summed
over the scenarios. The results are shown in Table 5. The IMRT and IMPT plans
optimized with the scenarios determined by the scenario position optimization sat-
isfied respectively 13 and 10 constraints more in the optimized scenarios than the
plans optimized with a priori constraints. They also satisfied respectively 12 and 2
constraints more in the a priori scenarios.

Table 5. The number of satisfied constraints for the lung case over the seven op-
timized scenarios and over the seven a priori scenarios. Four constraints and seven
scenarios make the maximum 28.

No. of satisfied constraints

Method Optimized scenarios A priori scenarios

IMRT with optimized scenarios 21 19

IMRT with a priori scenarios 8 7

IMPT with optimized scenarios 20 11

IMPT with a priori scenarios 10 9

4. Discussion

For the simplified goals of the prostate case, the proposed method resulted in the
intuitively correct solution: The posterior isocenter shift for the target and the an-
terior isocenter shift for the rectum did not move from their maximum positions,
as could be expected since these scenarios were not in conflict with other scenarios.
The other two shifts were moved to become compatible. By neglecting the 1 cm
anterior shift for the target and the 1 cm posterior shift for the rectum, the sce-
nario position optimization enabled better solutions with respect to all other shifts
than the solutions of the robust optimization with a priori, incompatible, scenario
positions.

For the lung case, the intuitively correct solution would move the target right
scenario and the heart left scenario. The scenario position optimization did, but
other scenarios were moved as well. As for the prostate case, neglecting the worst
scenario positions in some directions enabled better solutions with respect to the
other positions—even to positions close to the worst ones. That multiple scenarios
were retracted shows that it is hard to determine before the optimization which
scenarios to retract. That they were retracted differently shows that it is hard to
determine how much they should be retracted.

The differences between the robust plans with optimized scenarios and the robust
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plans with a priori scenarios were larger for IMRT than for IMPT. The IMRT plans
with optimized scenarios satisfied a larger number of constraints than the plans with
a priori scenarios, also when evaluated in the a priori scenarios. This shows that
for IMRT, one sometimes gets more than one asks for, which was also the rationale
behind the iterative updates of margins performed by Gordon and Siebers [8]. For
IMPT, the difference between the plans with optimized scenarios and those with a
priori scenarios when they were evaluated in the a priori scenarios were smaller, but
the plans with optimized scenarios still satisfied a larger number of constraints. A
reason for these results could be that IMPT has more degrees of freedom than does
IMRT, so that it has more possibilities to yield solutions that closely comply with
what is requested.

For the prostate case, the enumeration of the scenario positions showed that
the positions determined by the scenario position optimization could not be much
improved upon while maintaining feasibility. For the lung case, enumerating the
positions was deemed too computationally demanding, but when the scenario po-
sitions were simultaneously extended by 0.1 mm, no feasible solution was found.
This shows that although the scenario position optimization problem is nonconvex,
it resulted in solutions close to what could be best achieved for the considered cases.

The assumption that the first term of the objective in (2.1) could be neglected
was true for most studied cases, but for the lung case subject to protons, the left
scenarios for the target and the OAR were strictly below their upper bounds. Since
the target scenario was very close to its upper bound, it is plausible that the differ-
ence would be small between the solutions with both scenarios included and with
only the minimally shifted scenario considered. In a static dose distribution, the
left target scenario would not affect the other scenarios. That it was still retracted
could be due to that IMPT dose distributions in heterogeneous media deform as a
consequence of setup errors, and that the target left scenario thereby was in con-
flict with other scenarios. Alternatively, it could be due to that the scenario was
retracted initially and that the optimization was unable to push it outwards fast
enough. Since the optimization problem is nonconvex, there is no guarantee that
the global optimum is found by the method. However, the solution was only 0.6 mm
from its maximum value.

In this paper, only setup errors were considered. For IMPT, range uncertainty
is another influential error source [11]. If interpolation between the energy layers in
the spot grid can be used to approximate the effects of range errors, doing so would
provide a parameterization of range uncertainty scenarios that could be used in a
scenario position optimization like the one used for setup errors in this paper.

It is important to be aware of the fact that even if it is impossible to be spare an
OAR robustly in a given direction, it might still be beneficial to aim for robust target
coverage in that direction. This was the case for the two studied cases for both
applied modalities. The proposed method achieves this by optimizing individual
scenario positions for different structures.
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5. Conclusion

A method was proposed that determines which scenario positions to incorporate in
robust optimization. The method maximizes the probability that the realized error
will be accounted for by optimizing the scenario positions under the constraints
that some minimum requirements must be satisfied in all of the scenarios. More
specifically, each scenario is given a direction, and the optimization algorithm is
allowed to adjust how far out along the given direction each scenario should be
located: the farther, the better objective value, but also the harder to satisfy the
constraints. The method thus provides a way of determining what can reasonably
be asked for.

For a prostate case and a lung case, the optimized scenario positions enabled
more robust plans than optimization with a priori scenario positions. When the
scenario positions were pushed outwards, the optimization algorithm was unable to
find feasible solutions. This shows that, for the cases studied, the scenario position
optimization did not lead to overly retracted scenario positions.
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A. Optimization functions

Given the optimization variables x ∈ X , let D(v; x) parameterize the DVH of some
considered ROI as a function of the volume v ∈ (0, 1]. A max DVH optimization
function with dose level d̂ and volume parameter v̂ is given by

∫ 1

v̂

(

D(v; x) − d̂
)2

+
dv.

Min DVH functions are defined analogously, but with the signs of D(v; x) and d̂
reversed and with the integration taken over (0, v̂]. Max and min dose functions are
derived from the corresponding DVH functions with v̂ set to respectively 0 and 1.
A mean dose function is given by

(
∫ 1

0
D(v; x) dv

)2

.
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