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Abstract

We consider the problem of approximating the Pareto set of convex multi-
criteria optimization problems by a discrete set of points and their convex com-
binations. Finding the scalarization parameters that maximize the improve-
ment in bound on the approximation error when generating a single Pareto
optimal solution is a nonconvex optimization problem. This problem is solv-
able by enumerative techniques, but at a cost that increases exponentially with
the number of objectives. The goal of this paper is to present a practical al-
gorithm for solving the Pareto set approximation problem in presence of up
to about ten conflicting objectives, motivated by application to radiation ther-
apy optimization. To this end, an enumerative scheme is proposed that is in
a sense dual to the algorithms in the literature. The proposed technique re-
tains the quality of output of the best previous algorithm while solving fewer
subproblems. A further improvement is provided by a procedure for discarding
subproblems based on reusing information from previous solves. The combined
effect of the proposed enhancements is empirically demonstrated to reduce the
computational expense of solving the Pareto surface approximation problem by
orders of magnitude.

1. Introduction

Multi-criteria optimization (MCO) deals with optimization problems involving mul-
tiple mutually conflicting objectives, see, e.g., the monographs [5,20,36]. For such
problems in general, there is no feasible solution that is optimal with respect to all
objectives simultaneously. Instead, a well-balanced trade-off between objectives is
sought within the Pareto optimal set: the set encompassed by the feasible solutions
such that an improvement in one objective can only be achieved through a sacrifice
in another. One approach to identifying a suitable trade-off between objectives is to
pre-compute a finite number of solutions without human interaction, and then take
these as input to a navigation tool that allows feasible trade-offs to be evaluated in
real-time by forming convex combinations between discrete solutions, see [16,22,38].
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This technique is particularly suited for large-scale problems where a single opti-
mization run is costly, and by design, imposes a restriction to problem formulations
with convex constraints.

We are particularly interested in application of the described technique to treat-
ment planning for intensity modulated radiation therapy (IMRT). There is a rich
literature of methods that recognize IMRT planning as an MCO problem, see,
e.g., [9,12-14, 31, 32]. Clinical evaluations have demonstrated that such methods
have the potential of improving both manual planning time and treatment qual-
ity [15,26,51]. In view of this application, we limit ourselves to generating Pareto
optimal points by replacing the vector-valued objective function of the initial prob-
lem with a convex combination of its components. This weighting method is exten-
sively used throughout the field of MCO [34] and is the de facto standard method for
IMRT optimization [1,28]. We further limit ourselves to consider convex objectives,
so that the Pareto optimal set forms a connected surface in the boundary of a convex
set [44]. Convex criteria that are commonly used in IMRT planning together with
nonconvex criteria that can be reformulated into convex such are surveyed in [44].

Within this context, we consider the problem of generating a discrete set of
Pareto optimal solutions so that the lower boundary of their convex hull provides a
representative approximation of the Pareto surface. We focus on so-called sandwich
algorithms, which maintain inner and outer approximations of the Pareto surface,
see [7,23,45] for algorithms in the plane and [13,30,42,48] for algorithms in general
dimensions. The inner and outer approximations are used to steer generation of
new points towards parts of the Pareto surface that currently lack accurate rep-
resentation, and to provide an approximation guarantee for the current discrete
representation.

The computational expense of a sandwich algorithm increases exponentially with
the number of objectives. This behavior is fundamentally due to what is called “the
curse of dimensionality”: in direct sampling of a distribution of data, the number of
samples required to maintain a given level of accuracy increases exponentially with
the number of variables [2]. As a consequence, application of sandwich algorithms
to problems with more than six objectives has, to the best of our knowledge, previ-
ously not been reported. The number of objectives commonly encountered in IMRT
planning, on the other hand, range up to about ten [11,49]. Current practice for
high-dimensional cases is to sample weights uniformly at random. This technique is
well-known to be inadequate for generating an even distribution of points from all
parts of the Pareto surface [17].

Motivated by these shortcomings, we develop methods for making sandwich al-
gorithms tractable to a wider range of problem formulations. We devote particular
attention to the mathematical programming and computational geometry aspects
of this problem. For many problems within these two fields, primal and dual for-
mulations have equivalent complexity in the general case. However, as noted by
Bremner [6, p. 2] with respect to polytope duality: “for a particular class of poly-
topes and a fixed algorithm, one transformation may be much easier than its dual.”
Arguing that this is the case for sandwich algorithms, we give an algorithm that in a
sense is dual to algorithms in the literature. Our main contribution is a scheme that
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retains the quality of output of the best previous algorithm while achieving a more
benign ratio between computational effort and problem dimension. The presented
algorithm also generalizes sandwich algorithms to be compatible with cone-based
preference models, see e.g., [21,27,37]. For the IMRT application, such models have
proven useful for excluding parts of the Pareto surface that are known a priori to
not be of interest, see [47].

2. Preliminaries
2.1. Notation and terminology

We denote by e the vector of ones with dimension defined by the context. Vector
inequalities are to be understood componentwise. We treat sets of points and ma-
trices interchangeably when convenient; the rows of the matrix are the elements of
the corresponding set. The shorthand (-)+ is used to denote max{-,0}. We denote
the optimal value of an optimization problem P by optval(P). For a function f and
subset S of its domain, we denote by f(S) the image {f(s) : s € S}. For a set 5,
we denote by conv(S) its convex hull. For two sets S and Sa, we denote by S; + So
their Minkowski sum. Minkowski addition between a set S and a singleton set {s} is
denoted by s+.S. A hyperplane {z calz = b} with nonzero normal a and offset b is
denoted by H(a,b). With each hyperplane, we associate a closed positive, a closed
negative, an open positive and an open negative halfspace, defined by substituting
respectively “>” “<)” “>” and “<” for the equality in the hyperplane equation.
The intersection of a finite number of closed halfspaces is called a polyhedron. A
closed and bounded polyhedron is called a polytope. The k-dimensional intersection
between a polyhedron and one of its supporting hyperplanes is called a k-face. A
O-face is called a vertex, a 1-face an edge, an (n — 2)-face a ridge, and an (n — 1)-
face a facet. Unless the contrary is stated, a normal vector to a polyhedral face is
assumed to be oriented inwards.

2.2. Problem formulation

The algorithm to be described applies to a multi-objective optimization problems
on the form

minixmize (fr(z),..., fale))T

(MOP) |
subject to z € X ={z: c(x) <0},

(2.1)

involving n > 2 objective functions f; to be minimized over a feasible region X C IR™
defined by a vector ¢ of constraint functions. We denote by f the n-vector of
objective functions and by Z the image of the feasible region under the objective
function mapping, i.e., Z = f(X). We refer to the m-dimensional space of which
X is a subset as the decision space and to the n-dimensional space of which Z is a
subset as the objective space. Throughout, the feasible region X is assumed to be
nonempty and the functions f and ¢ to be convex and bounded on X. The feasible
region is a convex set by virtue of that all sublevel sets of convex functions are
convex. Since f and X are both convex, MOP is a convex optimization problem.
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2.3. Notion of optimality

The solution set to MOP is the set of nondominated feasible points. Dominance
relations between points in objective space are defined with respect to the partial
order induced by some ordering cone C' which we require to be closed, pointed
(i.e., 0 € C), salient (i.e., C N —C C {0}), convex, and containing IR’} .

Definition 2.1. (Nondominance) Let z* be feasible to MOP. Then, z* is non-
dominated if there exists no  in X such that f(z*) € f(z) + C\ {0}.

In order to distinguish between the decision space and the objective space more
easily, we refer to a nondominated solution z* as efficient whereas the corresponding
objective vector f(z*) is called Pareto optimal. We refer to the set of all efficient
solutions as the efficient set and to the set of all Pareto optimal objective vectors as
the Pareto set.

We restrict ourselves to consider polyhedral ordering cones generated by some
matrix @, i.e., C = {Qu : p > 0}. Instead of specifying @ directly, we prefer to
define the set of admissible trade-off rates between objectives and let this set be
the dual cone C* = {z : yI2 > 0 Vy € C} to C. Let T be the symmetric n x n
matrix with unit diagonal and nonnegative off-diagonal elements ¢;; such that the
reciprocal of ¢;; is the maximum acceptable increase in f; for a unit decrease in f;.
Then, C* is the polyhedral cone generated by 7T, and C the dual cone to C*, i.e.,
C ={z: Tz > 0}, here using that C' = C** by convexity and closedness of C' [50, p.
53]. By construction, C* C IR, so that IR} C C [50, p. 56]. Taking T" and Q to
be the identity matrix, so that C'= C* = IR}, gives dominance in the conventional
Pareto sense.

2.4. The weighting method

A Pareto optimal solution can be computed by introducing an n-vector w of weights
such that w € C* and solving the scalar-valued optimization problem
(SUM(w)) mlfl;mlze Y oiq wifi(x) (2.2)
subject to z e X.

This is a convex optimization problem by virtue of that C* C IRl and since nonneg-
ative linear combinations preserve convexity. The vector w is throughout assumed
to be normalized so that e’w = 1.

Problems MOP and SUM(w) are related as follows. If a point z* is optimal
to SUM(w) for some w in C* such that w > 0, then z* is efficient to MOP [36,
Thm. 3.1.2]. For any z* that is efficient to MOP, there exists w in C* such that
x* is optimal to SUM(w) [36, Thm. 3.1.4]. The second of these results relies on
convexity of MOP. As an immediate consequence, if x* is optimal to SUM(w) for
some w in C*, the hyperplane H(w, f(z*)) supports the feasible objective space Z
at f(x*). To see this, observe that f(z*) € ZNH(w, f(z*)) and that the intersection
between Z and the open negative halfspace associated with H(w, f(z*)) is empty,
or otherwise x* would not be optimal to SUM(w). Finding any point on the Pareto
surface thus reduces to solving SUM(w) with w normal to the Pareto surface at the
sought point.
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3. The sandwich algorithm

3.1. The algorithmic idea

A generic sandwich algorithm is given in Algorithm 3.1. The goal of this algorithm is
to generate a set of points such that their convex hull constitutes an approximation
of the efficient set with approximation error below some tolerance £ > 0, in as few
solves as possible. The algorithm avoids assessing the quality of the approximation
of the efficient set in the typically high-dimensional decision space by a mapping to
the objective space and evaluating the resulting image with respect to the Pareto
surface. An upper bound on the approximation error is calculated as the distance
between polyhedral inner and outer approximations of the Pareto surface. The
weighting vector in the next weighted-sum problem to be solved is taken to be
normal to the inner approximation at the point where the upper bound is attained.
This choice corresponds to the greedy strategy of maximizing the decrease in bound
on the approximation error at each iteration.

The first two steps in Algorithm 3.1 serve to normalize the range of each objective
function, as to avoid bias towards objectives with a large order of magnitude. We
here use the pragmatic approach of normalizing each objective function with respect
to its minimum and maximum objective value during the n initial solves of SUM(w).
We refer to an iteration of the while loop in Algorithm 3.1 as an iteration of the
sandwich algorithm.

Algorithm 3.1. The sandwich algorithm

for i =1,...,n do solve SUM(t;) with respect to the ith extreme ray t; of C*;
normalize f to [0, 1]™;
solve SUM(w) with w = Le;
construct inner and outer approximations Zj, and Z,,; of the Pareto surface;
while not converged do
compute an upper bound on the approximation error;
if the upper bound is below € then converged; break;
solve SUM(w) with w normal to Zi, where the upper bound is attained,;
update Zy, and Zgyt;
end

3.2. Overview of previous general-dimensional sandwich algorithms

Three algorithms are of immediate interest with respect to the algorithm we propose:
those of Solanki et al. [48], Craft et al. [13] and Rennen et al. [42], where the two
latter algorithms can be viewed as enhanced versions of the proceeding one(s). Any
general-dimensional sandwich algorithm must handle the fact that a vector normal
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to the convex hull of a discrete set of Pareto optimal points can have negative com-
ponents in dimension beyond two. Hence, if such a normal vector is used directly
as weighting vector w in solving SUM(w), this vector may not lie in C*, and the
resulting optimal solution may not be efficient to MOP. The algorithm of Solanki et
al. handles this complication by introducing bounds on the allowed deviation from
the Pareto surface. In the algorithm of Craft et al., a heuristic method is instead
used for transforming mixed normals into nonnegative such, as to make better use
of each optimization run. The algorithm of Rennen et al. avoids mixed normals
altogether by augmenting the convex hull representation of the inner approxima-
tion through setwise summation with the nonnegative orthant. Any normal to the
resulting polyhedron is nonnegative [42, Lemma 2]. In [42], the three algorithms
are empirically evaluated on a suite of test problems. This study indicates that the
algorithm of Rennen et al. generates well-distributed points on the Pareto surface
and provide a corresponding rapid improvement in bound on the approximation
error, whereas this is generally not the case for the algorithms of Solanki et al. and
Craft et al. Based on these findings, we use the algorithm of Rennen et al. as a
single benchmark to the algorithm proposed in this paper, both in the theoretical
exposition and the numerical experiments.

In the remainder of this section, we define polyhedral approximations of the
Pareto surface and a quality measure on a discrete representation of the Pareto
set. These definitions generalize those of Rennen et al. to dominance induced by a
general ordering cone. A novel approach for performing the steps encompassing an
iteration of the sandwich algorithm is proposed in Section 4.

3.3. Polyhedral approximations

The key result that makes construction of polyhedral approximations of the Pareto
surface possible is that the set Z, = Z+C'is a convex set whenever MOP is a convex
problem. This result is a generalization of the result that a function is convex if
and only if its epigraph is a convex set to the case of epigraphs induced by convex
cones [40]. Other proofs of this result for the case C' = IR} can be found in [10,44].
Convexity of Z, implies that the convex hull of any discrete set of points in Z, is an
inner approximation of this set, and that the intersection of any set of closed positive
halfspaces associated with supporting hyperplanes to Z, an outer approximation.
In particular, polyhedral approximations of Z, can be constructed as follows.

Definition 3.1. (Inner and outer approximations) Let D be a discrete set of
points that are efficient to MOP and optimal to SUM(w) with respect to some set
W of weighting vectors in C*. Then, Ziy, = {PTA+ QTp : A\p > 0,ef'\ = 1}
where P = f(D) is an inner approximation of Z, and Zoy, = {z: Wz > r} where
r is the vector of pairwise scalar products between elements in P and W an outer
approximation of Z,, in the sense that Zi, C Z, C Zyy.

Shrinking the hypervolume between Zi, and Z,yt provide a means of approximating
the Pareto surface with increased accuracy as this set must confine to the lower
boundary of Z,.
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3.4. Quantifying the approximation error

Quality measures of discrete representations of the Pareto set have been reviewed
in [46]. The definition we give quantifies the coverage of the Pareto set in terms of
a relaxation of the nondomincance criterion.

Definition 3.2. (Approximation error) Let D be a discrete set of feasible points
to MOP. Then, the approximation error of D is the minimum & such that for any
efficient *, there exists  in conv(D) such that f(z*) € f(z) 4+ (C — ee).

Unfortunately, explicit knowledge of the Pareto set is required to compute the above
defined quantity. Since the entire Pareto set in general is not known, we will ex-
clusively work with the upper bound on the approximation error provided by the
minimum ¢ such that Zo,y C (Zi, — €e). This upper bound is equivalent to the
Hausdorff distance
. /
M Zin, Zowt) = max  min d(z,2'),

taken with respect to the one-sided distance function

d(z,2") = ZEglfi)(n}(zzl» — Zi)4-

Computing h(Zin, Zoywt) requires solving the linear bilevel program

minimize 7

A 1
- T T
maximize subject to n; > P A+Q pn—z, (3.1)
z e'A=1,
n, A =0,
subject to Wz >r. (3.2)

Linear bilevel problems have been shown to be NP-hard and inapproximable within
any constant factor in polynomial time [18, Thm. 3.12]. Problems within this class
may be exactly solvable by enumerative techniques in moderate problem dimensions,
see, e.g., [39], whereas finding the optimum to large-scale instances is in general not
tractable.

4. The vertex enumerative algorithm

4.1. Solution by enumerating the vertices of the outer approximation

We propose to solve (3.1) by enumerating the extreme points of its feasible region
and solving a linear programming subproblem for each extreme point found. The
extreme points of the outer approximation are its finitely many vertices by virtue of
that this set is polyhedral. Validity of the proposed method relies on the following
results.

Proposition 4.1. At least one vertex of the outer approximation is an optimal
solution to (3.1).
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Proof. The inner level linear program in (3.1) can be put on standard form by
introducing slack variables for each inequality constraint. Then, since the optimal
value of a linear program on standard form is a convex, piecewise affine and contin-
uous function of its right hand side coefficients [33, Lemma 1-2|, problem (3.1) by
a change of sign in the objective function amounts to minimizing a concave func-
tion over a convex set. Since every global and local minimum value of a concave
function is either attained at an extreme point of its feasible domain or the function
is unbounded from below on a feasible ray [43, Thm. 32.3], the proof reduces to
showing that the objective value of (3.1) is nonincreasing on any ray in Zu. Let z
and p be vectors such that {z + ap : a > 0} is a ray in Zyy, i.e., 2 € Zous, p # 0,
and Wp > 0. Let also (1, A, 1) denote an optimal solution to the inner level linear
program in (3.1) with respect to z. Since every row vector in W lies in C*, we
have that p € C, and therefore, there exists i > 0 such that p = Q. For such f,
(m, A\, b + af1) is feasible to the inner level linear program in (3.1) with respect to
z + ap with objective value 7. The objective value of (3.1) in any point on the ray
is thus bounded from above by the objective value in the point z from which the
ray emanates, and the proof is complete. 1

As a direct consequence of this results, the optimal value of (3.1) is given by
max,cy optval(PLP(v)), where V' denotes the set of vertices of the outer approxi-
mation and where

minimize 7 (4.1a)

A 1
(PLP(v)) subject to  ne > PTA 4+ QT — v, (4.1b)
e =1, (4.1c)

We will for the moment postpone how to enumerate the vertices of Z,; and instead
discuss some properties of this problem.

4.2. Identifying the next weighting vector

Having solved all instances of (4.1), we turn to identifying the weighting vector of
the next weighted-sum problem that is to be solved. Similar lines of reasoning have
previously been applied to a related problem in [10]. The linear programming dual
to PLP(v) takes the form

T

maximize p—ov'mw (4.2a)
™ P
(DLP(v)) subject to P > pe, (4.2b)
Qm >0, (4.2¢)
efn <, (4.2d)
m > 0. (4.2e)

It is straightforward to verify that PLP(v) is feasible and its objective value bounded
from below. Therefore, by linear programming duality, DLP(v) is feasible and its
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objective value bounded from above. Moreover, for any primal-dual optimal solu-
tion (n, \, u, 7, p) to PLP(v) and DLP(v) associated with some v in V such that
optval(PLP(v)) > 0, 7 lies in C* and is normal to the inner approximation at
y = PTX\+ QT . This claim is made precise in Proposition 4.2. The next weighting
vector is thus given by the vector of optimal dual variables 7w to the instance of
DLP(v) with maximum optimal value.

Proposition 4.2. Let (n, A, u, 7, p) denote a primal-dual optimal solution to PLP(v)
and DLP(v) defined by some vertex v in V' such that n > 0. Then, H(w,p) is a sup-
porting hyperplane to Zy, at y = PT X+ QT with normal vector 7 in C* \ {0}.

Proof. Feasibility and boundedness of PLP(v) and DLP(v) by strong duality for
linear programming imply that optval(PLP(v)) = optval(DLP(v)), or equivalently

n=p-—ovlm (4.3)

This result, the assumption that n > 0, (4.2b), and (4.2e) together imply that
m # 0. The set H(m,p) thus forms a hyperplane in objective space with normal
7w in C* \ {0} by feasibility with respect to (4.2c). To show that H(m, p) supports
Zin at y, it remains to show that Zj, is entirely contained in the closed positive
halfspace associated with H (7, p) and that y is contained in H (7, p). Take any y in
Z:, parameterized by some i and X that are feasible to (4.1), i.e., 7 = PTA + Q.
Then,

iy =7 (PTA+ Q") > {(4.2¢), (4.1d)} > 7T PTA >

0 3 4.4
> {(4.2)} > pATe = {(4.1¢)} = p, .

which yields the first part of the statement. Forming the scalar product between 7
and y gives that

aly =7l (PTA+ QT ) < {(4.10)} < nl'(ne +v) <

T (4.5)

<{(d2d)} <n+7mv={(43)}=0p.
Inserting y in (4.4) gives that 77y > p. Therefore, all inequalities in (4.5) are tight,
so that y € H(m,p). 1

4.3. Reducing the number of subproblems to be solved

The number of linear programming subproblems on the form (4.1) that needs to be
solved to compute the optimal value of (3.1) can be reduced by upper-bounding the
optimal value of (4.1). Consider a sequence of solves of PLP(v) over v in V' and
let 5* denote the maximum optimal value obtained so far. Then, any vertex v in
V that is optimal to (3.1) must satisfy optval(PLP(v)) > 8*, and therefore, for any
vertex v in V and scalar 8 such that optval(PLP(v)) < 8 < 8*, the instance PLP(v)
need not be solved. An upper bound on the optimal value of (4.1) is provided by
the following result.
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Proposition 4.3. Let Zoy = {z: Wz > r} denote the outer approximation, V its
set of vertices and PLP(v) an instance of (4.1) defined by some v in'V in an iteration
of the sandwich algorithm, and let the corresponding notation with superscript “+”
apply to the subsequent iteration. Then, for any v in V', it holds that

optval(PLP(v)) if veVvt
maxgep optval(PLP(v))  otherwise

)

optval(PLP™ (v)) = {

where E is extreme point set of the unique edge of Zoyt that contains v.

Proof. First suppose that v € V and let (n, A\, u) be an optimal solution to
PLP(v). Then, (n,(A\T 0)T, 1) is a feasible solution to PLPT(v) with objective
value optval(PLP(v)). Hence, optval(PLP"(v)) < optval(PLP(v)). Now suppose
that v € V. Since v € VT, the system Wtv > rT is satisfied with equality in
exactly n linearly independent rows. Similarly, v & V and Z), C Zou imply
that the system Wov > r is satisfied with equality in at most n — 1 linearly in-
dependent rows. Then, since W+ is W augmented with one additional row, this
system is satisfied with equality in exactly n — 1 linearly independent rows. The
point v is thus contained in an edge of Z,,;. By an argument analogous to that
in Proposition 4.1, the maximum optimal value of the inner level linear program
in (3.1) taken over all points in this edge occurs at one of its extreme points, so that
optval(PLP™ (v)) < maxgep optval(PLP(9)). 1

4.4. Enumerating the vertices of the outer approximation

We enumerate the vertices of the outer approximation by first representing this set
as a polytope and then converting its halfspace representation to a vertex represen-
tation. To perform the latter of these two steps, we use the fact that vertex enumer-
ation is equivalent to a convex hull problem under polar duality between points and
hyperplanes defined by a reciprocation H(a,b) — (a1/b,...,a,/b)T about the unit
sphere [41]. We first define a duality relation between polytopes and then outline
the vertex enumerative scheme.

Definition 4.1. (Polytope duality) Let A be a polytope that contains the origin
in its strict interior. Then, the polytope A* = {z: y’z < 1, ¥y € A} is the polar
dual of A.

Polar duality defines a bijection between the facets of a polytope and the vertices
of its dual. This correspondence is inclusion-reversing in the sense that two facets
that incident on a common ridge are in bijection with two vertices contained in a
common edge [25, Thm. 3.4.4]. Polar duality is moreover a reflexive transformation,
so that twice dualizing a polytope gives back the initial polytope [25, Thm. 3.4.3].

We use the above the theory to enumerate the vertices of the outer approximation
by the following steps: (i) augment the outer approximation with n sufficiently large
upper bounds so that the resulting set is closed and bounded; (ii) identify a point
in the interior of the resulting primal polytope, e.g., the arithmetic mean of the
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vertices of the inner approximation; (iii) translate the coordinate system so that
this point is the origin; (iv) dualize the outwards oriented bounding hyperplanes
of the primal polytope; (v) solve for the convex hull of the resulting points, thus
obtaining a halfspace representation of the dual polytope; (vi) dualize the facet-
inducing hyperplanes of the dual polytope (vii) translate the resulting points back
into the initial coordinate system; (viii) remove any point that satisfy any of the
auxiliary upper bounds with equality. The resulting set of points form the vertices
of the outer approximation.

4.5. Performing the polyhedral computations on-line

The problem that arises in step (v) of the procedure described in the above section
is the so-called on-line convex hull problem: we are given points one point at a
time and after receiving each point, we are to compute the convex hull of the points
received so far. The variant of this problem in which all input points are known in
advance is called the off-line convex hull problem.

We solve the on-line convex hull problem by maintaining a graph representation
of the current convex hull with facets as nodes and ridges between adjacent facets as
edges. We make the mild assumption that the vertices of the dual polytope are in
nondegenerate position, i.e., no (n + 1)-tuple of points lie in a common hyperplane.
By this assumption, any facet of the dual polytope is an (n — 1)-simplex incident
on exactly n ridges, and dually, exactly n edges of the primal polytope are inci-
dent on any common vertex [25]. Nondegeneracy can be simulated using standard
perturbations techniques, see, e.g., [19, p. 185].

The facet graph is updated using a so-called beneath-and-beyond step, see,
e.g., [19,41]. In brief, one such step processes a new point by partitioning the
facets of the current convex hull into disjoint sets of visible and obscured facets.
A facet is visible if it contains the new point in its associated open negative half-
space. Obscured facets are reversibly defined. One visible facet is first identified.
Remaining visible facets then found by depth-first search through adjacent visible
facets, here using that the set of visible facets form a connected subgraph. A cone
of new facets is created from the new point to all ridges on which one visible and
one obscured facet are incident. The visible facets are finally deleted.

Efficiently identifying the first visible facet is non-trivial in the general on-line
version of the convex hull problem. However, since the vertex v of the outer ap-
proximation that in a given iteration was found to be most distant from the inner
approximation cannot be a vertex of the outer approximation in the subsequent it-
eration, a visible facet is for our problem instance immediately available as the facet
dual to v. With an on-line convex hull algorithm, p iterations of the sandwich al-
gorithm requires p number of beneath-and-beyond steps. This should be contrasted
to Y h_ k=p(p+1)/2 steps with the straightforward solution of calling an off-line
algorithm in every iteration.

The upper-bounding technique of Section 4.3 can be incorporated with the de-
scribed convex hull method as follows. With each facet of the dual polytope that
is dual to a vertex v of the outer approximation, we attach the current best upper
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bound on optval(PLP(v)). This upper bound is updated whenever PLP(v) is solved.
At the creation of a new facet, its upper bound is initialized as the maximum over
upper bounds attached to any of the two facets incident on the ridge by which the
new facet is induced. Validity of this update rule follows from that the ridge is
dual to an edge of the outer approximation defined as in Proposition 4.3 by the
incidence-reversing property of polytope duality.

5. Comparison with the facet enumerative algorithm
5.1. Solution by enumerating the facets of the inner approximation

In the algorithm of Rennen et al., problem (3.1) is solved by enumerating the facet-
inducing hyperplanes of the inner approximation. Let [ denote the set of facet-
inducing hyperplanes of Z;,, and take any hyperplane H(a,b) in F. Then, if A\ and
p in (3.1) are restricted to values such that PTX\ + QT € H(a,b), the optimal
value function of the inner level linear program in (3.1) decomposes by algebraic
manipulations into (b—a’z)/(a’e). The optimal value of (3.1) can thus be obtained
by solving a linear program

minimize alz
4

LP(a
(LP(a)) subject to Wz >,

(5.1)

for each hyperplane H(a,b) in F and taking max(qp)er(b— optval(LP(a)))/(a¢).

The normal a of the hyperplane at which the maximum is attained is taken as the
next weighting vector in this approach. The set F' is determined by computing the
convex hull of the union of P and the set {p +60q : p € P, ¢ € Q}, with 0 being
a fixed sufficiently large scalar. The facet enumerative algorithm can be enhanced
with an upper-bounding procedure completely analogous to that outlined for the
vertex enumerative algorithm.

5.2. Correspondence between algorithms

The vertex enumerative and the facet enumerative schemes are both methods for
removing the nonlinearity of (3.1). The two resulting linear programs (5.1) and (4.2)
have closely related geometric interpretations. Consider an instance of (5.1). This
problem is to shift a facet-inducing hyperplane in its negative normal direction until
this hyperplane supports the outer approximation. Take any vertex of the outer
approximation contained in the face induced by the resulting supporting hyper-
plane. Then, if reversibly shifting a hyperplane in its positive normal direction from
this vertex until the hyperplane supports the inner approximation, this corresponds
0 (4.2). It should be noted that the normal of the shifted hyperplane is kept fixed
in (5.1) whereas it is a free variable in (4.2). Also, the hyperplane that is shifted
when solving (5.1) induces an (n — 1)-face of the inner approximation, whereas the
hyperplane that is shifted when solving (4.2) induces a general k-face of the inner
approximation. The dimensionality k here depends on the choice of linear program-
ming algorithm. If (4.1) or (4.2) is solved by the simplex method that converges
at vertex solutions, the solution to (4.2) will satisfy n of the components of (4.2b)
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and (4.2c) with equality, so that & = n — 1. If instead using an interior point
method that converges at the analytic center of the optimal face, the number of
binding constraints and hence the dimensionality £ may be lower. For a given pair
of inner and outer approximation, the vertex enumerative and the facet enumerative
approaches thus provide an identical upper bound on the approximation error, but
the weighting vector returned by the two approaches need not be equal. We make
no conjecture as to the best method with respect to generating weights, except to
observe that the vertex enumerative allows for greater flexibility.

5.3. Computational complexity

Disregarding from the inevitable solves of SUM(w) problems, the computational
cost of an iteration of the vertex enumerative algorithm consists of the cost of
enumerating the vertices of the outer approximation and the cost of solving (3.1)
by a sequence of linear programming subproblems. These two costs are directly
proportional to the number of visible facets of the dual polytope [19] and the number
of subproblems on the form (4.1) that is solved, respectively. Both these figures are
bounded from above by the number of facets of the dual polytope. A tight upper
bound on the number of facets of a convex hull of k& points in an n-dimensional
Euclidian space is given by the upper bound conjecture proved by McMullen [35],

e o(k,n) = <k B Lj{lj) * <k K L_?J) '

Then, since the dual polytope in the kth iteration of the vertex enumerative scheme
is the convex hull of 2n + k + 1 points, the total cost for p iterations in this scheme
is bounded by Zifgzﬁ O(p(k,n)) < O(pp(2n + p+ 1,n)). In the kth iteration
of the facet enumerative scheme, the polytope representation of the inner approx-
imation is the convex hull of (k + 1)(n + 1) points. By analogous reasoning, its
. . . +p+1
total cost for p iterations is thus bounded by > /7" O(p((k + 1)(n +1),n)) <
O(pp((p+1)(n+1),n)). Figure 1 illustrates the worst-case complexity of the ver-
tex and the facet enumerative scheme as a function of problem dimension, at various

fixed number of iterations p.

6. Test problems and numerical results
6.1. Test problems

We evaluate the proposed algorithm with respect to two test problems. Both prob-
lems are constructed to be scalable in the number of objectives and can be made to
comply with the assumptions stated in Section 2.2 by introducing some sufficiently
large upper bounds on the variables.

Problem 6.1. This is a randomly generated extension of test case 1 in [42] on the
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Figure 1: Upper bound on number of beneath-and-beyond steps and number of linear
programming solves as a function of number of objectives and total number of sandwich
algorithm iterations.

form
minimize {x1,...,T,}
x
subject to Z(:p] — aj)2 —2; <0, i=1,...,n,
J#
where a is an n-vector of integers drawn uniformly at random from {1,...,n}. No

bounds on the trade-off rate between objectives were imposed for this problem.

Problem 6.2. This is an example of an IMRT optimization problem for a head and
neck cancer case. Data for this problem was exported from the RayStation treatment
planning system (RaySearch Laboratories, Stockholm, Sweden). The goal of IMRT
is to deliver a highly conformal radiation dose to the tumor volume, as reviewed in,
e.g., [1,3]. Target coverage must be traded against sparing of radiosensitive organs
in its vicinity. We consider the problem of optimizing incident energy fluence. This
problem was posed on the form (2.1) by assigning objectives and constraints to
each anatomical structure. All objective and constraint functions were constructed
as one-sided quadratic penalties of the deviations in voxel dose from a reference
dose level, as made explicit in Appendix A. A bound ¢;; = 1072 on the trade-off
rate between all pairs of objectives (i,j) was introduced as to zoom into the high-
curvature region of the Pareto surface. A representative optimized dose distribution
is illustrated in Figure 2.

6.2. Numerical results

We report the results of applying the vertex and the facet enumerative algorithms
to Problems 6.1 and 6.2, in conjunction with, and without, the proposed upper-
bounding procedure (called bookkeeping for short). Both algorithms were imple-
mented in C++ using identical linear algebra routines and interfaced to Matlab.
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Figure 2: Transversal slice of a dose distribution associated with a Pareto optimal solution
to Problem 6.2. The color table is in relative percent of the prescription level. Contours
indicate borders of anatomical structures.

Nonlinear problems on the form (2.2) were solved using the barrier method of
CPLEX 10.2 (ILOG, Sunnyvale, CA) with default settings. Linear programs on
the form (4.1) were solved using the primal simplex method built into SNOPT
7.2 [24], with problems sorted in descending order with respect to available upper
bounds. These solves are amenable to parallelization, but for ease of comparison, all
computations were run under 64-bit Linux on a single Intel Xeon 3 GHz processor
core with hyperthreading disabled and with 32 GB of memory. A timeout of three
hours was set for all processes as to keep the overall running time reasonable.

The convex hull representation of the inner approximation was empirically ob-
served to be a degenerate polytope, manifesting as multiple faces induced by near-
identical hyperplanes. Since multiple solves over such hyperplanes does not con-
tribute considerable to the solution of (3.1), any hyperplane identified as duplicate
within a tolerance of 107° was disregarded.

For each problem and algorithm, we report the number of beneath-and-beyond
steps, the number of linear programming solves, and CPU time, summed over 50
iterations of the sandwich algorithm. In addition, we report the upper bound on
the approximation error as a function of iteration number. The numerical results
obtained for Problems 6.1 and 6.2 are summarized in Figure 3 and Figure 4, respec-
tively. We stress that our research implementation is not optimized for speed and
the reported running times given only for comparative purposes.

Based on the depicted results, we conclude that the vertex and the facet enu-
merative scheme are equivalent in terms of approximation guarantee. In terms of
computational load, the combined effect of the vertex enumerative scheme and the
proposed upper-bounding procedure results in an improvement that is increasing
with problem dimension. For the two studied problems, the proposed enhance-
ments translates into a reduction in the number of linear programming solves by
one order of magnitude for dimensions beyond two, and a reduction by two orders of
magnitude for dimension beyond five. Correspondingly, the number of dimensions
tractable at computational times within the order of minutes increases from about
six to eleven.
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7. Summary and discussion

We have proposed a sandwich algorithm for approximating the Pareto surface of a
convex multi-objective optimization problem based on enumerating the vertices of
an outer polyhedral approximation of the Pareto surface. The proposed method is
in a sense dual to a previously suggested algorithm based on enumerating the facets
of the inner approximation. The two enumerative schemes were further enhanced
with an upper-bounding procedure for reducing the number of subproblem solves
required to solve a nonconvex optimization problem. This procedure was made
possible by implementing the polyhedral computations in an on-line fashion.

The vertex and the facet enumerative algorithms are both exact methods for
maximizing the improvement in bound on the approximation error when generating
a single Pareto optimal solution. As a result, the two methods are equivalent in
terms of quality of output, as was verified experimentally. The vertex enumerative
scheme was shown to improve upon both worst-case complexity and practical per-
formance of the sandwich algorithm. This improvement can be attributed to the
fact that the vertex enumerative approach handles the normal vectors of the inner
approximation, which is the more structurally complex polyhedron of the inner and
outer approximations, as a free variable in the linear programming subproblems. In
the facet enumerative approach, these normal vectors are instead explicitly given in
the statement of its subproblems, leading to more costly polyhedral computations
and a larger number of subproblems that needs to be solved.

We conclude by summarizing the implications for the IMRT application. There
is yet no widely accepted consensus on acceptable computational time for generating
a discrete representation of the Pareto surface for this application. However, judging
by a recent clinical evaluation [15] where total planning time was in the order of ten
minutes, running times much beyond a number minutes appears unrealistic. Based
on our numerical experience, solving the Pareto surface approximation problem in
presence of the up to about ten problem dimensions that are of interest in IMRT
appears tractable in view of the proposed enhancements. We thus envisage that
sandwich algorithms will allow for better resolved models of the viable treatment
options in the form of more accurately represented Pareto surfaces throughout the
spectrum of problem formulations encountered in IMRT optimization.

A. Formulation of problem 6.2

The patient volume was discretized into 5 x 5 x 5 mm?® volume elements (voxels)
and the beam planes into 1 x 1 cm? surface elements (bixels). Dose kernels for five
coplanar photon beams at equispaced gantry angles were computed using a pencil
beam convolution technique based on singular value decomposition, similar to [4].
The problem was posed on the form (2.1) by taking the elements of x to be the energy
fluence per bixel and introducing a nonnegativity bound x > 0. All objectives and
constraints were modeled by minimum and a maximum dose functions on the form

o) = 3 Av@Gp, ) (pa —a'),
i€S
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where S indexes the voxels included in the anatomical structure to which the func-
tion is assigned, Av; denotes the relative volume of the ith voxel with respect to S,
p; is a pencil beam kernel such that d; = p! z, and where ©(d;, d't) = (d**f—d;), for
minimum dose functions and ©(d;, d*f) = (d; — d*!); for maximum dose functions.

The target structure was assigned with a minimum and a maximum dose ob-
jective with d™f = 70 Gy and a minimum dose constraint with d**f = 63 Gy. A
maximum dose objective was introduced with d**f = 0 Gy for each healthy struc-
ture contained in the projection of the target volume onto the beam planes. The
resulting total number of objectives was 15. A constraint on global maximum dose
at d*f = 77 Gy was introduced by sampling 2 % of all voxels in the patient volume
uniform at random, as to keep running times reasonable. The problem was posed
as an inequality constrained quadratic program with 5416 variables and 6937 linear
constraints by introducing auxiliary variables, see [8].

Scaling in the number of objectives was performed by aggregating positively
correlated objectives. Each objective was first optimized individually. Objectives
for healthy structures where then aggregated into composite functions being the
direct sum of all constituent functions by iteratively grouping together the two
objectives showing maximum degree of mutual monotonocity, as determined by
maximum Spearman rank correlation, see, e.g., [29].
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