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A common way to solve intensity-modulated radiation therapy �IMRT� optimization problems is to
use a beamlet-based approach. The approach is usually employed in a three-step manner: first a
beamlet-weight optimization problem is solved, then the fluence profiles are converted into step-
and-shoot segments, and finally postoptimization of the segment weights is performed. A drawback
of beamlet-based approaches is that beamlet-weight optimization problems are ill-conditioned and
have to be regularized in order to produce smooth fluence profiles that are suitable for conversion.
The purpose of this paper is twofold: first, to explain the suitability of solving beamlet-based IMRT
problems by a BFGS quasi-Newton sequential quadratic programming method with diagonal initial
Hessian estimate, and second, to empirically show that beamlet-weight optimization problems
should be solved in relatively few iterations when using this optimization method. The explanation
of the suitability is based on viewing the optimization method as an iterative regularization method.
In iterative regularization, the optimization problem is solved approximately by iterating long
enough to obtain a solution close to the optimal one, but terminating before too much noise occurs.
Iterative regularization requires an optimization method that initially proceeds in smooth directions
and makes rapid initial progress. Solving ten beamlet-based IMRT problems with dose-volume
objectives and bounds on the beamlet-weights, we find that the considered optimization method
fulfills the requirements for performing iterative regularization. After segment-weight optimization,
the treatments obtained using 35 beamlet-weight iterations outperform the treatments obtained
using 100 beamlet-weight iterations, both in terms of objective value and of target uniformity. We
conclude that iterating too long may in fact deteriorate the quality of the deliverable plan. © 2006
American Association of Physicists in Medicine. �DOI: 10.1118/1.2148918�
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I. INTRODUCTION

Inverse treatment planning aims at satisfying certain user-
specified criteria by choosing the machine settings. In prac-
tice, an optimization problem is formulated and the machine
settings are given by the optimal solution to this optimization
problem, either directly or after a conversion process. In a
direct approach, the physical restrictions of the delivery sys-
tem are incorporated as constraints in the optimization prob-
lem and the solution can be delivered directly.1–4 Although
not as straightforward, currently most IMRT plans are cre-
ated after a conversion process via a beamlet-based
approach.5,6 In this study we solely focus on a beamlet-based
approach and employ it by a three-step procedure. In the first
step, a beamlet-weight optimization problem is solved. Then
the fluence profiles are converted, via an in-house leaf-
sequencing algorithm, into step-and-shoot segments. Finally,
segment-weight optimization is performed to improve the
deliverable plan.

In Ref. 7, it was observed that beamlet-weight IMRT op-
timization problems are degenerate in the sense that the Hes-

sian of their objective function has a large number of small
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eigenvalues and rather few large eigenvalues. The Hessian
thus has a large condition number and the problem is ill-
conditioned. This leads to numerical instabilities and solu-
tions sensitive to high-frequency perturbations. The optimal
fluence profiles are therefore, in general, very jagged.

Even though the leaf-sequencing process is complex, one
could in general say that smooth profiles are easier to convert
into step-and-shoot segments than jagged profiles. The deg-
radation of the treatment quality will therefore be larger
when converting jagged profiles than smooth ones. Further-
more, jagged profiles produce plans that are more sensitive
to geometric uncertainties8 and tend to increase the contribu-
tion of scattered radiation.9

Apparently, there is a conflict between solving the
beamlet-weight problem to optimum and keeping the degra-
dation in plan quality small in the conversion step. To solve
this conflict we need to find smooth profiles that produce a
high-quality, but not necessarily optimal, dose distribution
before conversion. This can be done by regularizing the
beamlet-weight problem. For a regularization approach to be

viable for clinical use, some requirements have to be met. It
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should not be computationally heavy and it should be inte-
grated into the iterative process. Further, the regularization
scheme should be functional for problems with nonlinear
objective functions and bounds.

For ill-conditioned large-scale problems a well-known
regularization technique fulfilling these requirements is it-
erative regularization.10–12 This regularization scheme re-
quires an optimization method that initially proceeds in
smooth directions and makes rapid initial progress, e.g., a
conjugate gradient �CG� method. The regularization is per-
formed by optimizing long enough to obtain high-quality
profiles, but terminating the optimization before high-
frequency amplification occurs.

It has been observed that a quasi-Newton �QN� method
with a diagonal matrix as initial Hessian estimate often gives
solutions to the beamlet-weight optimization problem that
are smooth and of high quality in relatively few iterations.
Although very widely spread, for simplicity, we refer to this
optimization method as our QN approach in this paper. Our
key observation is that such an approach has properties suit-
able for performing iterative regularization when applied to
beamlet-weight optimization problems. We demonstrate its
appealing properties by solving two problem sets. First, a
beamlet-weight problem of a simplified prostate case formu-
lated as an unconstrained quadratic programming �QP� prob-
lem is solved. Then, ten real IMRT cases are solved to illus-
trate the importance of not “over-optimizing” the beamlet-
weight problem when using our QN approach, i.e., to avoid
performing too many beamlet-weight iterations prior to con-
version.

This paper is organized as follows. In Sec. II we formu-
late the inverse treatment planning problem in continuous
and discrete form, and discuss the ill-conditioning of the
problem. Section III gives an introduction to QN and CG
methods applied to unconstrained quadratic programming
problems. The general IMRT problem is formulated and the
considered optimization functions are introduced in Sec. IV.
In Sec. V, various regularization techniques for IMRT prob-
lems are discussed. The optimization and conversion meth-
ods used in this study are introduced in Sec. VI. The patient
cases are described in Sec. VII and numerical results, for a
simplified and ten clinical cases, appear in Sec. VIII.

II. A MATHEMATICAL FORMULATION
OF TREATMENT PLANNING PROBLEMS

The calculation of delivered dose d�r� at a point r in the
patient volume V is performed by integrating the irradiation
density x��� over the isocenter planes of the beams S with the
elementary pencil beam kernel p�r ,��. The elementary pencil
beam kernel, describing how the dose is spread in the patient
volume due to interactions between the incident particles and
the tissue, is calculated through Monte Carlo simulations.13

For a certain irradiation density x���, the dose d in r�V is

given by
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d�r� = �
S

x���p�r,��d� . �2.1�

Calculating d for a given x is a forward problem encountered
in conventional treatment planning. Conversely, in inverse

treatment planning, the desired dose distribution d̂�r� is given
and the task is to find the non-negative irradiation density
x��� that solves

d̂�r� = �
S

x���p�r,��d� , �2.2�

which is a Fredholm equation of the first kind. The inverse
problem in �2.2� is inherently ill-posed since it in general has
no solution. The ill-posedness is associated with the smooth-
ing effect the kernels have on x in the sense that high-
frequency components in x are removed by the integration.

Computing x from d̂ will tend to amplify high-frequency

components in d̂, e.g., jumps in the prescribed dose at the
boundaries between the planning target volume �PTV� and
the healthy tissue.14

The natural approach to solve �2.2� is to discretize and
formulate the problem as a least-squares problem.15 We dis-
cretize V into m voxels and S into n beamlets. The goal is to

minimize the discrepancy between d= Px and d̂, where P is
the m�n dose kernel matrix corresponding to p�r ,��, d is
the m-dimensional calculated dose vector, x is the

n-dimensional beamlet weight vector, and d̂ is the
m-dimensional prescribed dose vector. This can be formu-
lated as

minimize
x�Rn

1
2 �Px − d̂�2

2

subject to x � 0. �2.3�

The ill-posedness of �2.2� is inherited in the discretized form
�2.3� in that the singular values of P quickly decay to zero,
i.e., the condition number of P is very large. The result is a
degenerate problem, where many solutions produce almost
identical objective values.7 In opposition to �2.2�, �2.3� al-
ways has a solution, but it is susceptible to high-frequency
perturbations originating from the jagged singular vectors
corresponding to the small singular values of P. The result is
a very jagged optimal x.

Inverse problems and Fredholm equations of the first kind
are encountered in many applications. One example is image
reconstruction, where the true image is to be reconstructed
given the received data and a model for how the light is
spread between the source and the detector. The inverse
treatment planning problem has many similarities to the im-
age reconstruction problem and much knowledge can be
gained by studying the methods from this field.16,17 For ex-
ample, iterative regularization approaches incorporating
bounds, similar to the approach we are considering, have

10,18
been studied in astronomic image reconstruction.
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III. SOLUTION APPROACHES
FOR UNCONSTRAINED QUADRATIC
PROGRAMMING

To demonstrate some properties of our QN approach, we
consider an unconstrained QP problem. We assume that P
has full column rank, which is reasonable as long as the
beamlet grid is not much finer than the voxel grid. Neglect-

ing the constant term 1
2 d̂Td̂ and the bounds on x, �2.3� can be

rewritten as

minimize
x�Rn

1
2xTHx + cTx , �3.1�

where H= PTP is the symmetric, positive definite Hessian

and c=−PTd̂.
The formulation in �3.1�, where each voxel of the patient

is given identical importance and negative fluence is al-
lowed, has no clinical meaning. However, studying and solv-
ing �3.1� is of interest since it turns out that the solution to
this problem has many similarities to solutions for real IMRT
problems.

The solution to problem �3.1� is given by the single linear
system x=−H−1c. For large-scale problems, e.g., real IMRT
problems, this method is impractical since it is too time con-
suming to calculate H. In addition, the solution is too jagged
and of no practical interest due to the ill-conditioning of the
problem. Instead, we want to use a method where H does not
need to be explicitly known and where the solver tends to
generate smooth iterates as the optimal solution is ap-
proached. Two methods fulfilling these requirements are CG
methods and QN methods. They only access the matrix H
through matrix-vector products on the form Hv, where v is
any n-dimensional vector. These methods are equivalent
when solving �3.1� with exact line-search.19

Both CG and QN methods try to accelerate the slow con-
vergence of steepest descent while avoiding the information
requirements associated with the Hessian in Newton’s
method. The CG methods proceed in conjugate directions,
i.e., pk

THpl=0 for k� l, where pk denotes the search direction
in iteration k. Furthermore, both the gradient gk and the
search direction pk lie in the Krylov subspace Kk+1�H ,g0�
= �g0 ,Hg0 , . . . ,Hkg0�, where the brackets mean linear span of
the given columns. This means that the number of iterations
in exact arithmetic to reach optimum always is finite and
equals the number of distinct eigenvalues of the Hessian.

A key feature of CG methods is that the initial iterations
tend to proceed in directions corresponding to the smooth
dominant singular vectors, see, e.g., Ref. 20. This results in
fast decrease of the objective and smooth profiles during the
first iterations. This is the basis for our regularization ap-
proach.

IV. FORMULATION OF IMRT PROBLEMS

In order to model the treatment goals more accurately, we
extend �2.3� by allowing a nonquadratic objective function
F�d�x��, where d�x�= Px. The objective function is a com-
posite of nonquadratic optimization functions, where each

optimization function is defined for a subset of the patient
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volume where similar treatment goals are present. These sub-
volumes are denoted by regions of interests �ROIs� and we
allow more than one optimization function to be defined for
each ROI.

The optimization functions often have conflicting goals.
One way of dealing with this is to use a multi-criteria solu-
tion scheme, see, e.g., Ref. 21. We have chosen to formulate
the problem as a scalar-valued problem with the objective
function being a weighted sum of the optimization functions,
with weights set to reflect their significance to the treatment
outcome.

In this study, we use the optimization functions uniform
dose, min (max) dose, and min (max) dose-volume. They all
penalize deviation from the prescribed dose level quadrati-
cally, but differ in how the penalized voxels are chosen. The
dose-volume function is handled by forming a penalty func-
tion at each iteration to avoid introducing integer variables.
Although this heuristic handling of dose-volume functions
may lead to nonsmooth functions, it has proven successful in
practice. For a description of these optimization functions
and for mathematical expressions, see Ref. 22.

The IMRT optimization problem is given by

minimize
x�Rn

F�d�x��

subject to x � 0. �4.1�

With our choice of optimization functions, the objective
function F has continuous first derivatives and diagonal
�dd

2 F�d�, i.e., F�d� is separable in voxels. The structure of the
Hessian to �4.1�, �xx

2 F�d�x��= PT�dd
2 F�d�P, has similar struc-

ture to PTP since �dd
2 F�d� is diagonal. The Hessian to �4.1�

therefore has large condition number and �4.1� is ill-
conditioned. Often, �dd

2 F�d� has many zeros along its diago-
nal, which may increase the condition number of the Hessian
to �4.1� even more, see Ref. 22 for details. In general,
�dd

2 F�d� is discontinuous, which implies that the Hessian to
�4.1� is discontinuous.

V. REGULARIZATION APPROACHES

Several approaches to generate smooth profiles when
solving IMRT optimization problems have been proposed.
Their common goal is to filter out the high-frequency com-
ponents associated with the small singular values. All ap-
proaches require a regularization parameter that specifies the
trade-off between complexity in the intensity patterns and
quality in the solution. This parameter is in practice chosen
a priori since it in general is very costly to tune the regular-
ization parameter during the optimization process.11,23

Many of the regularization approaches belong to the fol-
lowing three categories; variational methods, filtering meth-
ods, and iterative methods. The regularization parameter for
these approaches is the weight of the stabilizing functional,
the cutoff of the filter, and the number of iterations, respec-
tively.

The variational methods are based on adding a term to the
objective function penalizing nonsmooth intensity patterns.

A well-known approach among these is Tikhonov



228 F. Carlsson and A. Forsgren: Iterative regularization in IMRT optimization 228
regularization,24 which has been applied to the beamlet-
weight optimization problem in Ref. 14. An approach to cal-
culate the regularization parameter in Tikhonov regulariza-
tion by using an L-curve method is discussed in Ref. 25.
Variational methods incorporating terms different from the
Tikhonov stabilizing functional in the objective function are
studied in Refs. 26 and 27.

The filtering methods solve the original problem and fil-
ters out the high-frequency elements in the profiles, either
during the optimization,27,28 or when the optimal profiles are
found.29,30

Other regularization approaches include an algorithm with
inherent smoothing effects, which was proposed in Ref. 8,
and the introduction of upper limits on the beamlet intensi-
ties, which was studied in Ref. 31.

The idea of iterative regularization is to solve the original
problem directly, iterating long enough to find a solution
with objective value close to the optimal objective value, but
terminating the optimization process before the profiles get
too jagged. This approach requires an optimization method
that initially proceeds in the dominant singular values, e.g., a
CG method. When the optimization problem is ill-
conditioned, we expect to find a suitable solution in a num-
ber of iterations which is very small compared to the prob-
lem size. Iterative regularization is therefore often
appropriate for large-scale problems.

VI. METHOD

To illustrate the properties of our QN approach and to
verify the equivalence with a CG method, we begin with
solving a simplified IMRT problem formulated as an uncon-
strained QP �3.1� using exact line-search. We then consider
ten realistic IMRT problems, with nonquadratic objectives
and bounds on the variables �4.1�, to empirically show that
our QN approach has suitable properties for iterative regu-
larization on IMRT problems.

Each real IMRT problem is solved by a three-step proce-
dure. First, the beamlet-weights are optimized, generating a
treatment denoted by �x, where x denotes the number of
completed iterations. This is where we perform iterative
regularization with our QN approach, i.e., we terminate this
optimization before reaching optimum. Then a leaf-
sequencing is performed to convert the intensity patterns into
segments. Finally, the segment-weights are optimized for 25
iterations to improve the treatment and hopefully obtain a
dose distribution close to the one obtained in the beamlet-
weight optimization. The segment-weight optimization prob-
lem has the form �4.1�, where the variables are the segment
weights. Having performed the segment-weight optimiza-
tion, we have determined the final machine settings and the
treatment, denoted by �x, can be delivered. As above, x de-
notes the number of beamlet-weight iterations carried out
prior to the conversion.

The real IMRT problems are solved by ORBIT �ORBIT is
a product of RaySearch Laboratories�,1 coupled to the se-
quential quadratic programming solver NPSOL �NPSOL is a

32
registered trademark of Stanford University�. More pre-
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cisely, NPSOL is a BFGS QN method �see e.g., Ref. 33
Chap. 8.1�, which we initialize with a diagonal matrix as
initial Hessian estimate in the beamlet-weight and the
segment-weight optimization problems. We envisage that
similar behavior might be obtained using CG methods for
solving IMRT problems with bounds �see Ref. 34�.

The in-house leaf-sequencing algorithm can be used in
two ways, either by specifying the number of intensity levels
that the beamlet intensities should be discretized into or by
specifying the total number of segments over all beams. We
performed tests using both approaches and obtained very
similar results with regard to the performance of our QN
approach as an iterative regularization scheme. For concise-
ness, we choose to display only the results obtained with a
fixed total number of segments.

VII. PATIENT CASES

Our simplified IMRT problem is a simplified prostate
case, which is generated by discretizing a prostate patient
with a coarse voxel-grid �1�1�1 cm3� and a coarse
beamlet-grid �1�1 cm2�. The problem is formulated accord-
ing to �3.1� by applying uniform dose optimization functions
to the PTV �with prescribed dose of 75 Gy�, bladder
�40 Gy�, rectum �40 Gy�, and the femoral heads �50 Gy�. All
other voxels in the patient are neglected. The starting point is
chosen as uniform fluence with intensity level such that the
mean dose in the PTV equals the prescribed dose, i.e.,
75 Gy. In total, the three beams have 214 beamlets. The
calculation of eigenvectors and optimization of this case are
performed in Matlab.

The ten clinical patient cases consists of five prostate
cases �denoted by Prostate A,B,C,D,E�, two tonsil cases
�Tonsil A,B�, one head-and-neck case, one meningioma case,
and one spinal case. They are modeled on the form �4.1� with
F as described in Sec. IV. The patients are treated with a
6 MV Varian linear accelerator together with a 120 leaf
Varian collimator with 0.5 and 1.0 cm leaf widths. They all
have 5 mm cubic voxels and 5 mm square beamlets. The
number of beams and segments differ between the cases,
since the cases have been created at different clinics. As for

TABLE I. The number of beams, the predefined total number of segments, the
number of voxels �m�, and the number of beamlets �n� for the considered
patient cases.

Patient case No. of beams No. of segments m n

Head-and-neck 9 90 163 800 6387
Meningioma 5 50 246 738 494
Prostate A 9 90 531 852 3665
Prostate B 5 40 299 811 1736
Prostate C 7 50 320 682 2521
Prostate D 6 60 553 656 1637
Prostate E 5 50 248 320 1894

Spinal 6 60 340 470 1556
Tonsil A 7 70 173 420 3502
Tonsil B 9 100 173 420 4490
the simplified prostate case, we use uniform fluence as the
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starting point. Table I shows the number of beams, together
with the predefined total number of segments, the number of
voxels, and the number of beamlets for the ten patient cases.
Since we show more detailed results for the Prostate A case
in Sec. VIII, we list the details of the objective function for
this case in Table II. Note that no optimization functions are
applied to the PTV directly. Instead, the planner has chosen
to address the clinical target volume �CTV�, the PTV-CTV
�voxels in the PTV outside the CTV�, and the PTV+-CTV+

�voxels in a slightly extended PTV outside a slightly ex-
tended CTV�.

VIII. RESULTS

Starting with the simplified prostate case, we study the
spectral decomposition of the Hessian and the performance
of our QN method when solving �3.1�. Using our QN ap-
proach on an ill-conditioned unconstrained QP, we expect
that nonjagged profiles producing a dose distribution close to

TABLE II. The objective function for the Prostate A case.

ROI Function Prescription Weight

CTV max dose 78 Gy 100
min dose-volume 76 Gy in 99 % 100

PVT-CTV max dose 76 Gy 80
min dose 50 Gy 80

max dose-volume 75 Gy in 50 % 10
PTV+-CTV+ max dose-volume 60 Gy in 60 % 60

Rectum max dose-volume 64 Gy in 85 % 60
max dose-volume 40 Gy in 65% 60

Bladder max dose-volume 65 Gy in 90 % 70
max dose-volume 40 Gy in 50 % 70

Femoral heads max dose 50 Gy 1
Normal tissue max dose 45 Gy 50

FIG. 1. Left: Eigenvectors to the Hessian of the QP. Right: Steps expressed

method with the identity matrix as initial Hessian estimate.
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the optimal one should be obtained after a significantly
smaller number of iterations than the problem size of 214.

The left part of Fig. 1 shows four eigenvectors, where
eigenvector k corresponds to the kth largest eigenvalue. The
jaggedness of the eigenvectors increases with increasing ei-
genvector number. Proceeding in search directions where the
nondominant eigenvectors are included will therefore in-
crease the jaggedness of the fluence profiles. We express the
search directions as linear combinations of the eigenvectors
to the Hessian. The right part of Fig. 1 shows the coefficients
of the eigenvectors for such linear combinations after four
different number of iterations. In iteration 1 and, to a large
extent, in iteration 3, the method proceeds in dominant di-
rections, meaning that the smoothness associated with the
given starting point is preserved. After 10 and, in particular,
100 iterations, the method proceeds in directions that mainly
are spanned by the eigenvectors corresponding to small ei-
genvalues. Such a direction is undesirable since it will add
noise to the profiles without improving the objective value
significantly.

Studying the dose distributions in the PTV, it is impos-
sible to, by eye, distinguish the dose distribution obtained
after 20 iterations with the optimal dose distribution. Com-
paring these dose distributions numerically, the mean doses
to the PTV are identical to four digits, while the max dose
and the min dose in the PTV are slightly different �less than
1 Gy�. The difference between these dose distributions is, by
our judgment, negligible, meaning that it is a waste of effort
to optimize for more than 20 iterations.

Turning to the real IMRT problems, we want to assess
how suitable our QN approach is for performing iterative
regularization on clinical cases. We hope to see that high-
quality deliverable plans �after segment-weight optimization�
can be obtained without having to perform many beamlet-
weight iterations. To do this, we study how the complexity of
the intensity patterns changes with iteration number and how

linear combination of eigenvectors when solving the QP with a BFGS QN
as a
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the treatment quality after beamlet-weight optimization, after
conversion, and after segment-weight optimization varies
with beamlet-weight iteration number. We will assess the
treatment quality in terms of objective value, dose-volume
histograms �DVHs�, and 2D dose distributions.

Figure 2 shows the fluence profiles of one of the beams
after different numbers of iterations for the Prostate A and
the Spinal cases. The jaggedness increases with iteration
number and, to avoid jagged profiles, the optimization has to
be terminated before reaching the optimal solution. Note that
the main shapes of the profiles are obtained after 25 itera-
tions. Reaching 100 iterations and beyond, the dose distribu-
tion is “fine-tuned” and high-frequency components are in-
troduced into the profiles.

FIG. 2. The fluence profiles for one beam after different num

FIG. 3. The normalized objective value versus beamlet-weight iterations for
respect to the initial beamlet-weight objective function value. The center fi

optimization. Center: After leaf-sequencing �prior to segment-weight optimizatio
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Figure 3 shows the objective values for the Prostate A and
Spinal cases versus beamlet-weight iterations, for beamlet-
weight optimization �left�, after leaf-sequencing �center�, and
after segment-weight optimization �right�. The objective val-
ues in the left and the right figures are normalized with re-
spect to the initial beamlet-weight objective value. The cen-
ter figure contains intermediate values, and hence it has been
normalized with respect to its initial value.

Starting from the left with the beamlet-weight optimiza-
tion, we see that the objective values decrease rapidly during
the initial iterations. For both cases, the improvement in ob-
jective function value decays relatively rapidly and the dif-

of beamlet-weight iterations. Left: Prostate A. Right: Spinal.

Prostate A and Spinal cases. The left and right figures are normalized with
is normalized with respect to its initial value. Left: With beamlet-weight
the
gure
n�. Right: After segment-weight optimization.
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ference in objective value between iteration 50 and iteration
100 is very small compared to the objective value at the
starting point.

Moving to the center part of Fig. 3, we see that the ob-
jective value after leaf-sequencing attains a minimum after
45 and 35 iterations for the Prostate A and Spinal cases,
respectively. Note that no segment-weight optimization has
been performed. Gradually, as the number of iterations in-
creases, the profiles get jagged, and the conversion algorithm
runs into difficulties reconstructing them without adding
more segments. This leads to a deterioration of the dose dis-
tribution and an increase in the objective value.

The right part of Fig. 3 shows the objective values after
segment-weight optimization, i.e., the objective values of the
final plans. The objective values again tend to increase after
a certain number of beamlet-weight iterations, although the
curves are slightly flatter after segment-weight optimization
than after leaf-sequencing. For the two cases, terminating the
beamlet-weight optimization anywhere between 20 and 60
iterations seems to produce final plans with equal quality in
terms of objective value. This is an important observation,
since it indicates that it is not crucial to identify the optimal
number of beamlet-weight iterations. Comparing with the
objective values obtained with beamlet-weight optimization,
we see that the best solution after segment-weight optimiza-
tion, about 0.02, is obtained after only 10–15 iterations of
beamlet-weight optimization. This can be explained by com-
paring the number of variables in these problems; it is easier
to obtain a conform dose-distribution when using thousands
of beamlets than when using less than 100 segments.

We want to compare plan quality of a treatment obtained
by terminating the beamlet-weight optimization at an early
stage with a treatment that has been “over-optimized.” To
produce the former, an estimation of the regularization pa-
rameter to our QN approach is made by finding the minimum
in the objective value curve after the leaf-sequencing step for

TABLE III. Comparison of regularized and “over-opt
after segment-weight optimization ��x� in terms of ob
x is the number of beamlet-weight iterations.

Patient case F��35�

F��100�

F��35�

F��100�

Head-and-neck 9.55 0.86
Meningioma 1.42 0.71
Prostate A 5.24 0.69
Prostate B 1.30 0.65
Prostate C 2.54 0.40
Prostate D 1.80 0.78
Prostate E 1.22 0.83

Spinal 2.07 1.00
Tonsil A 4.96 1.05
Tonsil B 6.26 0.64

Mean 3.64 0.76
Std 2.78 0.19
each patient case. We then set the number of iterations for
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early termination for all cases to the mean of these values,
which is calculated to 35. The standard deviation is relatively
large, 18, which will be commented on in the next paragraph.
In comparison to the problem sizes, 35 iterations are very
few, indicating a fast initial decrease in objective value for
our QN approach. The “over-optimized” plan is produced by
performing the leaf-sequencing after 100 beamlet-weight it-
erations. We argue that performing 100 iterations captures
the features of “over-optimization,” since no plans are opti-
mized for this long using our QN approach in practice.

We thus compare the treatments obtained after 35 and 100
iterations of beamlet-weight optimization �denoted by �35

and �100�, with the treatments obtained after conversion and
segment-weight optimization of �35 and �100 �denoted by �35

and �100�. Table III compares these treatments in terms of
objective value F, total optimization time T, and amount of
monitor units �MUs� for the clinical cases. The objective
value of a single plan might not be a valid measure of the
treatment quality. However, if an approach consistently finds
lower objective values for given plans, it is preferable. Al-
though the relative objective value is significantly larger with
�35 than with �100, the leaf-sequencing and segment-weight
optimization change the situation so that the mean objective
value for the �35 plans is 24% lower than the mean objective
value for the �100 plans. This is obtained with half the opti-
mization time and without increasing the amount of MUs,
indicating that 100 beamlet-weight iterations are far too
many. As mentioned above, the standard deviation of the
regularization parameter is 18, which is relatively large.
From the above observation that the final objective value of
the right part of Fig. 3 has a flat minimum, we argue that it is
not necessary to determine the regularization parameter pre-
cisely for each individual plan. To support this claim, we add
two columns to Table III, showing the relative objective
value for treatments obtained using 25 and 45 beamlet-
weight iterations, respectively. We see that, in terms of mean

d” plans after beamlet-weight optimization ��x� and
e value F, total optimization time T and MUs, where

35�

00�

MU��35�

MU��100�

F��25�

F��100�

F��45�

F��100�

5 1.01 0.60 0.96
5 0.93 0.81 0.73
0 1.09 0.82 0.55
2 0.91 0.53 0.67
2 0.91 0.42 0.50
2 1.00 0.75 0.74
5 1.03 0.99 0.92
3 0.98 0.92 0.91
4 0.97 1.41 1.08
6 0.97 1.03 0.64

8 0.98 0.83 0.77
4 0.06 0.28 0.19
imize
jectiv

T��

T��1

0.4
0.4
0.5
0.5
0.5
0.5
0.4
0.5
0.4
0.4

0.4
0.0
objective value, the �35 treatment is similar to, but slightly
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better than, both the �25 and �45 treatments. Hence, terminat-
ing the beamlet-weight problem in a relatively large interval
around 35 is reasonable. If optimizing longer, the optimiza-
tion time will increase without improving the objective
value, and, if terminating earlier, the objective value will
increase.

As a further measure of plan quality, we study DVHs and
2D dose distributions of the Prostate A case. The left part of
Fig. 4 shows DVHs for �35 �dashed� and �100 �solid� for the
CTV, PTV, bladder, and rectum. The uniformity in the CTV
is very good for both treatments and, if any difference, it is
slightly better with �100. There are very small differences
between the DVHs of �35 and �100 for the bladder and rec-
tum, especially above 40 Gy, which is the region the objec-
tive function will consider for these ROIs �see Table II�. For
the voxels outside the CTV but in the PTV, the minimum
dose is allowed to be 50 Gy. This can be seen in the DVH
for the PTV.

FIG. 5. Dose distribution for the Prostate A case, showing the CTV �inner

Contours at 20, 40, 64, and 74 Gy. Upper left: �35. Upper right: �100. Lower left:
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The right part of Fig. 4 shows the DVHs for the �35

�dashed� and �100 �solid� treatments for the same ROIs. The
differences between the DVHs of �35 and �100 for the risk
organs are very small, at least above 40 Gy. The maximum
dose to the bladder is the same for both treatments, while the
maximum dose to rectum is 0.7 Gy higher with �35 than with
�100. For the CTV, �35 seems to give slightly better unifor-
mity than �100. This is verified by the following comparisons.
The percentage of the voxels in the CTV receiving more than
76 Gy is 1.9% higher with �35 than with �100. The maximum
dose to the CTV is 1.1 Gy lower and the minimum dose to
the CTV is 1.3 Gy higher with �35 than with �100. For the
PTV, the maximum dose is 1.2 Gy lower and the minimum
dose is 3.8 Gy lower with �35 compared to �100.

Comparing all of the DVHs in Fig. 4, we see that the
uniformity to the CTV is significantly better for the � treat-
ments than for the � treatments, while the DVHs for the risk
organs are relatively similar.

�, PTV �outer solid�, bladder �upper dashed�, and rectum �lower dashed�.

FIG. 4. Dose-volume histogram for the Prostate A case.
Left+Dashed: �35. Left+Solid: �100. Right+Dashed:
�35. Right+Solid: �100.
solid

�35. Lower right: �100.
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Figure 5 shows the dose distributions for the four treat-
ments, together with the outline of the CTV �inner solid�,
PTV �outer solid�, bladder �upper dashed�, and rectum �lower
dashed�. The contours are placed at 20, 40, 64, and 74 Gy,
which are dose levels that are relevant to the objective func-
tion �see Table II�. Both �35 �upper left� and �100 �upper right�
seem to produce very conform dose distributions, with sharp
dose gradients outside the CTV. As expected, the conformity
is slightly better for �100, which is reflected in the DVHs and
the objective value �see Table III�. Comparing the dose dis-
tribution of �35 �lower left� with �100 �lower right�, the most
obvious difference is the larger fraction of cold spots in the
CTV with �100. The differences are bigger when comparing
the � treatments �top figures� with the � treatments �bottom
figures�. The dose gradient around the CTV is smaller for the
latter, indicating that it is harder to obtain a conform dose
distribution when using segments than when using beamlets.
We also see smoother contours in the bottom figures, more
degrees of freedom introduce more jagged fluence profiles,
and therefore more jagged isodose curves in the outer re-
gions of the patient.

The results for the other nine clinical cases were very
similar to the one reported above. Terminating the beamlet-
weight problem early resulted in a slightly increased target
uniformity of the deliverable plan. The other observed dif-
ferences in the dose distributions of the �35 and �100 treat-
ments were small.

IX. DISCUSSION AND CONCLUSION

We have discussed the suitability of a BFGS QN approach
for solving beamlet-based IMRT problems with dose-volume
objective functions in terms of iterative regularization. Em-
pirically, the iterates tend to proceed along directions that
initially solve the main conflicts in the plan, while keeping
the intensity patterns smooth. Both these properties of the
optimization method are crucial when performing iterative
regularization. As with other regularization approaches, there
is a regularization parameter to be determined. Our opinion
is that the determination of our regularization parameter, the
number of iterations, should be based on experience. We
believe that it is not crucial to know the value of this param-
eter exactly since segment-weight optimization tends to di-
minish the differences in treatment quality between different
beamlet-weight optimization iterates. This has been demon-
strated on a set of clinical cases. Instead, we want to stress
the importance of not “over-optimizing” the beamlet-weight
optimization. An “over-optimization” effect can easily be ob-
tained by warm-starting the plan over and over again, but
utilizing a QN or CG method in this way will undoubtedly
lead to jagged intensity patterns and deterioration of the final
plan quality.

In Refs. 10 and 18, where the image reconstruction prob-
lem is considered, a preconditioner for the CG method is
proposed that improves the progress of optimization without
increasing the high-frequency elements in the solution. Such
preconditioning might be useful also in IMRT optimization

to reduce the optimization time.
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One way of avoiding the necessity of regularizing IMRT
problems is to abandon the beamlet-based approach. By op-
timizing directly on the machine parameters and including
the delivery constraints, each iterate can be delivered without
any postprocessing and the ill-conditioning of the problem
may be less problematic. Our future research will therefore
focus on studying advanced aspects of already existing direct
machine parameter optimization methods, e.g., including de-
livery time as a variable. Although this problem does not
include beamlets explicitly, we believe that good understand-
ing of the beamlet-based approach is of fundamental impor-
tance.
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