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Abstract

This paper presents a new approach to shaping of the frequency response of
the sensitivity function. In this approach, a desired frequency response is as-
sumed to be specified at a finite number of frequency points. A sensitivity shap-
ing problem is formulated as an approximation problem to the desired frequency
response with a function in a class of sensitivity functions with a degree bound.
The sensitivity shaping problem is reduced to a finite dimensional constrained
nonlinear least-squares optimization problem. The reduction process involves
the diffeomorphism from the set of all denominators for strictly positive-real
functions with degree constraint to the set of Schur polynomials, firstly proven
by Byrnes et al. To solve the optimization problem numerically, standard al-
gorithms for an unconstrained version of nonlinear least-squares problems are
modified to incorporate the constraint. Since the optimization problem is non-
convex, sensible selection of the initial point for the algorithms is crucial. Some
rules of thumb for such selections are suggested. Based on the optimization
problem and the algorithms to solve it, a controller design procedure is pro-
posed. Numerical examples illustrate how these design parameters are tuned
in an intuitive manner, as well as how the design proceeds in actual control
problems.

Key Words: Sensitivity function, shaping, nonlinear least-squares optimiza-
tion, degree bound, Schur polynomial

1 Introduction

It is well-known that the sensitivity function, denoted by S, is one of the essential
factors in determining performances of feedback systems, such as robust stability,
noise/disturbance attenuation, and tracking. It has been recognized since the clas-
sical control era that sensible control design can be accomplished by designing S
appropriately. Thus, it is significant to develop systematic design tools for S.
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Much effort has been made for such development, e.g., classical control method-
ologies such as PID-based control and lead-lag compensations [22], both open-loop
[24] and closed-loop shaping techniques in H∞ control (e.g., [11]), an approach
based on positive polynomials [21, 20], to name a few. However, these previous
tools heavily require designers’ engineering experience, knowledge and intuition in
manual selection of design parameters such as controller parameters and weighting
functions. Even for experienced designers, the manual selection involves trial and
error, which is by no means an easy task.

In [6], a new paradigm is suggested for sensitivity shaping without weighting
functions in an H∞ control framework, and it is further developed in [29, 26]. The
paradigm is based on analytic interpolation theory with degree constraint initiated
in [14, 15] and carried to completion in [9, 7, 6]. In this paradigm, design parame-
ters are spectral zeros (or equivalently, Schur polynomials which will be used in this
paper) and additional interpolation conditions. We have illustrated through numer-
ical examples that the approach in [26] often generates controllers of lower degrees
than conventional H∞ controller design does. (See also [5, 4, 2] for such examples.)
However, only guidelines have been provided for the tuning of spectral zeros in [26],
and it would be convenient to have a method for determining these parameters in a
certain optimal sense. This is the motivation of this paper.

In this paper, for scalar systems, we shall propose a new method to design
S in the frequency domain. We will formulate a sensitivity shaping problem as an
approximation problem, for a function in a class of S with a bounded degree, relative
to a desired frequency response given at a finite number of frequency points. The
problem can be reduced to a finite dimensional constrained nonlinear least-squares
(NLS) optimization problem. To solve the NLS problem numerically, we will use
algorithms which are modifications of standard algorithms originally developed for
unconstrained NLS optimization. Since the optimization problem is nonconvex,
sensible selection of the initial point for the algorithms is crucial. Some rules of
thumb for such selection are suggested. Based on the optimization problem and
the algorithms to solve it, a controller design procedure is proposed, and tunable
design parameters in this procedure are listed. Although trial-and-error process
is necessary for choosing appropriate design parameters even in our approach, we
believe that the way of selecting and tuning design parameters is more intuitive than
that in previous approaches. This point will be illustrated through control design
examples.

In addition to the advantage of intuitive design, another important advantage
of our approach over the conventional H∞ methodology, including the LMI-based
approach [23, 13], is as follows. To shape the frequency response, we will not rely on
weighting functions which typically cause the increase of controller degrees. In fact,
although we will introduce some “weights” which plays a similar role to weighting
functions, the weights do not affect controller degrees. Also, the weights in our
approach do not assume any rationality, while the weighting functions should be
rational in most cases. The lack of rationality requirement increases the design
flexibility.

The method in this paper may seem similar to the method in [19]. In fact, both
methods solve certain optimization problems numerically to shape the frequency
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response of S using the information at discrete frequency points. However, there are
two major differences. The first difference is the way to define the cost function. The
approach in [19] uses the maximal weighted distance from what they call “center of
a tube” as a cost function (see [19, Eqn. (4.11), page 39]), while our approach uses a
weighted squares sum from a desired frequency response (see Eqn. (2) in Section 2).
Our motivation for adopting the squares sum as a cost function is that least-squares
optimization is well-studied (see [30, Chapter 13]), and that there exists efficient
algorithms, such as the Gauss-Newton and the Levenberg-Marquardt methods, that
we can utilize and easily modify for our special problem. The second difference is
that we first bound the degree of S, and thus the degree of controllers, while the
approach in [19] first obtain some optimized frequency response at discrete frequency
points, and then approximate it with S of a specified degree. If necessary, they use
the model reduction technique to lower the controller degree. A disadvantage in
the latter approach is that the approximation/reduction process may degrade the
frequency shape (and thus system performance) in an unpredictable way.

The paper is organized as follows. In Section 2, we formulate a sensitivity shap-
ing problem to be considered in this paper. This problem is reduced to a finite
dimensional constrained nonlinear least-squares optimization problem in Section 3.
In Section 4, we explain properties of the optimization problem, the detailed al-
gorithms to be utilized, and some rules of thumb to select an initial point of the
algorithms. Section 5 sums up the results in this paper as a controller design pro-
cedure. Using the procedure, we give numerical examples to show the usefulness of
our approach, with comparisons to conventional H∞ controller design methods.

For ease of exposition, we deal with only scalar discrete-time systems in this
paper. However, as will be shown in Section 5, our method is applicable even
to continuous-time systems with bilinear transformations. Multivariable cases are
under investigation, but one can expect that a similar idea can be applied to multi-
variable cases, using e.g. the theory in [2].

2 A sensitivity shaping problem

Consider the unity feedback system depicted in Figure 1. Here, P is a given scalar
real rational discrete-time plant and C is a controller to be designed to fulfill both
internal stability of the feedback system and some given performance specifications.
In this paper, we consider only such specifications that can be expressed in terms of
the sensitivity function

S(z) :=
1

1 + P (z)C(z)
, (1)

in the frequency domain. More precisely, we assume that, at a given finite number N
of frequencies θ := {θk}N

k=1 ⊂ [0, π], a “desired” frequency response s := {sk}N
k=1 ⊂

C of S is given, and we try to find a “best-approximate” sensitivity function S from
a class of “allowable” sensitivity functions (see Figure 21). Next, what we mean by
“best-approximate” and “allowable” will be explained.

1The 3-D plot in Figure 2 can be interpreted as a combination of the gain plot and the phase
plot in the Bode diagram.
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Figure 1: The unity feedback system.
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Figure 2: The frequency response of a “best-approximate” sensitivity function S
(solid curve) to data sk (circles) at frequencies θk (black dots on θ-axis).

To clarify the meaning of “best-approximation,” we need to introduce a discrep-
ancy between the desired frequency response data (θ, s) and a sensitivity function
S. In this paper, we use the weighted squares sum2:

dw((θ, s), S) :=
1
2

N∑

k=1

wk

|sk|2
∣∣∣S(eiθk)− sk

∣∣∣
2
, (2)

where the weights w := {wk}N
k=1 are positive scalars to be chosen by the designer;

if one wants a better approximation at the frequency θk, one can choose a large wk

relative to weights at other frequencies. In (2), the term
∣∣S(eiθk)− sk

∣∣ is the distance
of two complex numbers S(eiθk) and sk in the complex plane; see the dashed arrow
in Figure 2. A “best-approximate” sensitivity function S is the one which minimizes
this discrepancy for given (w, θ, s).

In this paper, we call a sensitivity function S “allowable” if it satisfies the fol-
lowing four conditions:

(C1) the internal stability condition,

(C2) ne interpolation conditions S(λj) = ηj , j = 1, . . . , ne, which are specified at
points λj ∈ C, not only outside the unit disc but also different from unstable
poles and zeros of the plant,

(C3) the H∞ norm bound condition ‖S‖∞ < γ, where for a stable rational function
S, ‖S‖∞ := maxθ∈[−π,π]

∣∣S(eiθ)
∣∣, and γ is chosen to be large enough so that

there exists an S which satisfies (C1)–(C3), and

2Division by |sk|2 is for normalization. We assume sk 6= 0.
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(C4) rationality and a degree condition, i.e., S must be real rational and deg S ≤
n := np + nz + ne − 1, where np and nz are the number of unstable poles
and zeros (including infinite zeros and counting multiplicities) of the plant P ,
respectively.

The motivations for these conditions are as follows. (C1) is a standard requirement
for any practical feedback system. (C2)–(C4) are motivated by the work in [6, 26].
(C2) increases the flexibility of the shaping design. (See [26], where we call these
conditions additional interpolation constraints.) We may not need this condition for
achieving required performance, in which case, we just set ne = 0. As for (C3), there
are motivations from both control viewpoint and optimization viewpoint. From
control viewpoint, the constraint (C3) is called the gain-phase margin constraint
(see [19, p. 20]), and (C3) is important to avoid a large peak gain of S for a large
stability margin. From optimization viewpoint, (C3) is useful to avoid choosing an
initial point far from the solution in nonconvex optimization that we need to solve;
see Section 4. (C4) restricts a class to a degree constrained one, which eventually
leads to a restriction on the controller degree, as stated in the following proposition.

Proposition 2.1 [26] If the plant P is real rational and strictly proper, and the
sensitivity function S is real rational and satisfies (C1), (C2) and (C4), then the
controller C = (1− S)/PS is real rational proper and its degree satisfies

deg C ≤ deg P − 1 + ne. (3)

With definitions of the discrepancy dw in (2) and the class of allowable sensitivity
functions

S := {S : S satisfies (C1)–(C4)} , (4)

the sensitivity shaping problem to be considered in this paper is, for given weights
w and data (θ, s), to solve an optimization problem:

inf
S∈S

dw((θ, s), S). (5)

The infimum may not be achieved by any S in S; this point will be discussed in
Section 4. In the next section, we will reduce the problem (5) to a finite dimensional
constrained nonlinear least-squares problem. by expressing the class S in terms of
a finite dimensional parameter vector.

Remark 2.2 The set S is actually the real rational solution set to the Nevanlinna-
Pick interpolation problem with degree constraint, which was studied in, e.g., [6, 17,
16]. The degree bound in (C4) is chosen as n to guarantee the nonemptyness of the
set S.

3 Finite dimensional constrained nonlinear least-squares
problem

In this section, we will show that the sensitivity shaping problem (5) can be reduced
to a finite dimensional constrained nonlinear least-squares (NLS) problem.
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3.1 Reduction to an NLS problem

Suppose that S is a feasible point of the optimization problem (5), i.e., S ∈ S. Then,
since S satisfies (C4), it can be factored as

S(z) =
b(z)
a(z)

, (6)

where a(z) := zT α, b(z) := zT β, α ∈ Rn+1, β ∈ Rn+1 and z := [zn, · · · , z, 1]T . In
addition, since S satisfies (C1) and (C2), S needs to fulfill np + nz + ne(= n + 1)
interpolation/derivative conditions at unstable poles and zeros (including infinite
zeros) of the plant, as well as at points specified by (C2). Due to these (n + 1)
conditions, we can derive a linear relation between β and α as

β = Kα, (7)

for a uniquely determined real matrix K. See [28] for the detail of the construction
of K. Besides, since S satisfies (C3), S must be stable and meet the norm condition
‖S‖∞ < γ. The stability condition can be stated that the denominator vector α
needs to be in the Schur stability region:

S :=
{

α := [α0, · · · , αn]T ∈ Rn+1 : α0 > 0
zT α 6= 0, ∀z ∈ Dc

}
, (8)

with notation Dc := {z ∈ C : |z| ≥ 1}. The norm condition can be expressed as

γ2
∣∣∣a(eiθ)

∣∣∣
2
−

∣∣∣b(eiθ)
∣∣∣
2

> 0, ∀θ,

which leads to spectral factorization

γ2a(z)a(z−1)− b(z)b(z−1) = ρ(z)ρ(z−1), (9)

for a unique3 spectral factor ρ(z) := zT ρ with ρ ∈ S.
So far, we have explained that, for each S ∈ S, there corresponds to some α ∈ A,

where A is an open set in Rn+1 defined by

A :=
{

α ∈ S : γ2
∣∣e(θ)T α

∣∣2 − ∣∣e(θ)T Kα
∣∣2 > 0, ∀θ

}
,

with e(θ) := [einθ, ei(n−1)θ, · · · , 1]T . The converse is trivial; for each α ∈ A, the
function S := (zT Kα)/(zT α) is in S. We have also explained that, for each α ∈ A,
there corresponds to a unique ρ ∈ S. Actually, a much stronger assertion holds for
the map between A and S, as stated in the following theorem taken from [9, 8].

Theorem 3.1 To each ρ ∈ S, there exists a unique α ∈ A such that S(z) =
b(z)/a(z) satisfies β = Kα and (9). The map h : S to A sending ρ to α is a
diffeomorphism.

3Without the positivity condition α0 > 0 in (8), the spectral factor ρ would be determined
uniquely up to sign.
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The proof of Theorem 3.1 is highly nontrivial. To each ρ ∈ S, the existence of
α ∈ A in the theorem was proven by Georgiou in [14, 16, 15]. He also conjectured
the uniqueness of such α. The conjecture was shown to be true by Byrnes et
al. in [9] in the context of rational covariance extensions, and later in [17, 8] for
Nevanlinna-Pick interpolation. It was also established in [9, 8] that the map h is
a diffeomorphism, providing a complete parameterization of the set S in terms of
ρ ∈ S:

S =
{

S(z) =
zT Kh(ρ)
zT h(ρ)

: ρ ∈ S

}
.

Due to this parameterization of S, we can reduce the sensitivity shaping problem
(5) to the following finite dimensional constrained NLS problem:

inf
ρ∈S

1
2

N∑

k=1

wk

|sk|2
∣∣∣∣
eT

k Kh(ρ)
eT

k h(ρ)
− sk

∣∣∣∣
2

, (10)

where ek := e(θk), k = 1, . . . , N . The properties of the optimization problem (10)
and algorithms to solve it will be explained in Section 4.

Remark 3.2 The problem (5) can also be reduced to a finite dimensional con-
strained NLS problem with respect to α:

inf
α∈A

1
2

N∑

k=1

wk

|sk|2
∣∣∣∣
eT

k Kα

eT
k α

− sk

∣∣∣∣
2

. (11)

However, we prefer solving (10) to solving (11). This is because, in many cases, we
obtain a much smaller final cost by solving (10) than by solving (11). This point
will be verified through an example in Section 5.

In Section 3.2, we will present an explicit form of the map h (that appears in
(12)), as well as its Jacobian useful for numerical optimization in Section 4.

3.2 On the map h and its Jacobian

Here, we will introduce a map h from S to A, which is actually a diffeomorphism,
and thus, the map appeared in Theorem 3.1. Let us express a nonlinear map h from
S to A as a composition of three maps:

h := h3 ◦ h2 ◦ h1. (12)

We will explain next what these three maps are.
First, the map h1 is defined in the domain S as

h1(ρ) :=
1
2
T (ρ)ρ, ρ ∈ S. (13)

It was shown in [9] that the map h3 is a diffeomorphism from S to the range

D :=





d := [d0, · · · , dn]T ∈ Rn+1

d0 +
n∑

j=1

dj(zj + z−j) > 0, ∀z ∈ T





, (14)
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where T := {z ∈ C : |z| = 1}.
Next, the map h2 is defined in the domain D as the inverse map of

g2(α̂) := T (α̂)K̂α̂, α̂ ∈ Â, (15)

where, for a vector v := [v0, · · · , vn]T , T (v) is a Hankel + Toeplitz operator defined
by

T (v) :=




v0 · · · vn
... . . .

vn


 +




v0 · · · vn

. . .
...

vn


 . (16)

The domain of g2 is an open set in Rn+1:

Â :=

{
α̂ ∈ S : min

θ∈[−π,π]
Re

[
ê(θ)T K̂α̂

ê(θ)T α̂

]
> 0

}
, (17)

where ê(θ) :=
[
1, eiθ, · · · , einθ

]T and4

K̂ := (γI −K)(γI + K)−1. (18)

The set Â is a set of denominator coefficient vectors for strictly positive real func-
tions. Since the map g2 was proven to be a diffeomorphism in [9, 8], its inverse map
h2 := g−1

2 is well-defined.
Finally, the linear map h3 is defined in the domain Â by

h3(α̂) := (γI + K)−1α̂, α̂ ∈ Â. (19)

Now, we will state that the map h in (12) is actually a map appeared in The-
orem 3.1, by analyzing the properties of the three maps hk, k = 1, 2, 3. Below, we
use the following notation: for a vector-valued differentiable map f : Rn+1 7→ Rn+1,

∂f

∂x
:=

[
∂f

∂x0
, · · · , ∂f

∂xn

]
. (20)

Proposition 3.3 The maps hk, k = 1, 2, 3, are diffeomorphisms from S to D, from
D to Â and from Â to A, respectively. Their derivatives are given by

∂h1

∂ρ
(ρ) = T (ρ),

∂h2

∂d
(d) =


T (h2(d))K̂ +

n∑

j=0

[h2(d)]j T (k̂j)



−1

,

∂h3

∂α̂
(α̂) = (γI + K)−1 ,

where [h2(d)]j is the (j + 1)-th element of the vector h2(d), and k̂j is the (j + 1)-th
column of the matrix K̂.

4We remark that the matrix γI+K is invertible between Euclidean spaces in our problem setting;
see [28].
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Proof. The derivatives are obtained via direct calculations from the definition of
each map. The diffeomorphisms of h1 and h2 are the results in [9, 8]. Thus, we
have only to prove that the map h3 is onto the set A, because if this is the case, the
diffeomorphism of h3 follows from the linearity and invertibility of the map.

To prove that h3 is onto A, suppose that α is in A, i.e.,

α ∈ S, γ2
∣∣e(θ)T α

∣∣2 − ∣∣e(θ)T Kα
∣∣2 > 0, ∀θ. (21)

We want to show that α̂ := (γI + K)α is in Â, i.e,

α̂ ∈ S, min
θ∈[−π,π]

Re

[
ê(θ)T K̂α̂

ê(θ)T α̂

]
> 0. (22)

If we define S(z) := (zT Kα)/(zT α), then S is analytic in Dc and takes the absolute
value less than γ at each point on T due to (21). Using a bilinear transformation,
define

F (z) :=
γ − S(z−1)
γ + S(z−1)

=
ẑT (γI −K)α
ẑT (γI + K)α

,=
ẑT K̂α̂

ẑT α̂
, (23)

where ẑ := [1, z, · · · , zn]T . Then, F is analytic for |z| ≤ 1 and takes a positive real
value at each point on T. In addition, the sign of the first element in α and that in
α̂ are the same for the following reason. Because the function F is positive real, the
first element of α̂ and that of K̂α̂ must have the same sign. This means that the
first element of α̂ and that of α̂ + K̂α̂ = (γI + K)α + (γI −K)α = 2γα have the
same sign, and thus α̂ ∈ S. Therefore, we have established α̂ ∈ Â, and hence the
surjectivity of h3. Q.E.D.

Due to Proposition 3.3, as well as the chain rule, we have arrived at the following
assertion.

Theorem 3.4 The map h in (12) is a diffeomorphism from A to S. Its derivative
is given by

∂h

∂ρ
(ρ) =

∂h3

∂α̂
((h2 ◦ h1)(ρ)) · ∂h2

∂d
(h1(ρ)) · ∂h1

∂ρ
(ρ). (24)

Remark 3.5 One may think that it is beneficial to use d, instead of ρ, as optimiza-
tion variables, since the set D is convex. However, our numerical experience tells
that ρ-parameterization often gives better solutions than d-parameterization.

4 Solving the nonlinear least-squares problems

In order to solve the sensitivity shaping problem formulated Section 2, we need a
reliable and numerically robust algorithm to solve the optimization problem in (10).
The precise meaning of “solving” will become clear in Section 4.1. The problem can
be written

inf
ρ∈S

1
2
F (ρ)T F (ρ), (25)
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where F : S 7→ R2N is the vector-valued residual map

F (ρ) := [Re {f1(ρ)} , · · · , Re {fN (ρ)} ,

Im {f1(ρ)} , · · · , Im {fN (ρ)}]T ,

fk(ρ) :=
√

wk

|sk|
(

eT
k Kh(ρ)
eT

k h(ρ)
− sk

)
, k = 1, . . . , N. (26)

Next, we will discuss properties of the optimization problem (25), present mod-
ifications of two standard algorithms for unconstrained NLS problems dealing with
the constraint ρ ∈ S, and suggest possible initial solutions.

4.1 Properties of the optimization problem

Since the domain S of the problem (25) is open, there is no guarantee that there
exists a minimizer in S. In addition, since the cost functional in (25) is nonconvex
and the domain S in general is a nonconvex set, a global minimizer may not be
unique, and there may even be several local minima. Therefore, by “solving” (25),
we mean either finding a local minimizer in S or an approximation in S of a local
infimizer within a certain tolerance.

A major advantage with the formulated nonlinear least-squares problem is the
smoothness of the cost functional in (25). This smoothness is due to the continu-
ous differentiability of the residual vector F with respect to ρ; see Section 4.3 for
derivative expressions. This enables local search algorithms based on derivative in-
formation, which will be proposed in Section 4.2. For derivative-based algorithms,
nonconvexity means that it will not converge to a global minimizer unless algorithms
are initialized properly. This makes the problem of finding good initial points im-
portant. Some guidelines to select proper initial points will be given in Section 4.4.

4.2 Two modified algorithms

The formulation as a nonlinear least-squares problem also has the advantage that
the problem class is well-studied and that there are several efficient and numerically
robust algorithms for solving the problem available; see e.g. [30]. Especially, two
popular algorithms are the Gauss-Newton and the Levenberg-Marquardt methods,
which were originally developed for unconstrained nonlinear least-squares problems.
Here, we will modify these two algorithms in order to incorporate the constraint
ρ ∈ S. We will treat the constraint implicitly; more precisely, we will enforce a
bound on the step length so that an updated point stays in S. As stopping criteria,
we will either require the gradient to be close to zero or that the norm of the step
is small. Detailed descriptions are shown in Algorithms 4.1 and 4.2, where the
tolerances for the stopping criteria are denoted by ε1 and ε2, the Jacobian of F
is denoted by ∇F , and ‖ · ‖ is the Euclidean norm. These two algorithms will be
numerically compared through an example in Section 5.
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ALGORITHM 4.1 Modified Gauss-Newton

Set ρ ← ρ0 and p with ‖p‖ > ε2

Compute F and ∇F
while ‖∇FF ‖ > ε1(1 + F T F ) & ‖p‖ > ε2

Set H ← ∇F∇F T

Set p ← −(H + 10−6 trace(H))−1(∇FF )
Set µ ← 1
repeat

if ρ + µp /∈ S then
Set µ ← µ/2

else
Compute F̂ and ∇F̂ for ρ + µp

if F̂
T
F̂ ≤ F T F + 0.1µpT∇FF then

Break
else

Set µ ← µ/2
end if

end if
end repeat
Set ρ ← ρ + µp, F ← F̂ and ∇F ← ∇F̂

end while

4.3 Feasibility test and computation of F and ∇F

In the algorithms proposed above, we have two nontrivial steps: to check feasibility
(ρ ∈ S) and to compute F and ∇F . These steps will also constitute a substantial
part of the computational effort.

To check whether ρ ∈ S, we can, e.g., recursively compute the corresponding
partial reflection coefficients and check that they are less or equal to one in modulus,
since ρ is a real polynomial, [32].

Computing the residual vector F for a given point ρ ∈ S involves the computa-
tion of h(ρ) as shown in (26). This computation can be done by the continuation
method developed in [1], which however requires some computational effort. The
Jacobian ∇F is given by

∇F (ρ) :=
[
Re

{
∂f1

∂ρ
(ρ)

}
, · · · , Re

{
∂fN

∂ρ
(ρ)

}
,

Im
{

∂f1

∂ρ
(ρ)

}
, · · · , Im

{
∂fN

∂ρ
(ρ)

}]
,

(27)

where each column is calculated with
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ALGORITHM 4.2 Modified Levenberg-Marquardt

Set ρ ← ρ0, p with ‖p‖ > ε2, ∆ ← 1, µ ← 1/4, and η ← 3/4
Compute F and ∇F
while ‖∇FF ‖ > ε1(1 + F T F ) & ‖p‖ > ε2

Decide p by solving the trust-region subproblem
min
‖p‖≤∆

I(p) := F T F + pT∇FF + pT∇F∇F T p/2,

using the algorithm of [25]
if ρ + p /∈ S then

Set λ ← 0
else

Compute F̂ and ∇F̂ for ρ + p

Set λ = (F T F − F̂
T
F̂ )/(F T F − I(p))

end if
if λ ≤ µ then

Set ∆ ← ∆/2
else

Set ρ ← ρ + p, F ← F̂ , and ∇F ← ∇F̂
Set ∆ ← 2∆ if λ ≥ η

end if
end while

∂fk

∂ρ
(ρ) =

(
∂h

∂ρ
(ρ)

)T

×
√

wk

|sk|
(eT

k h(ρ))KT ek − (eT
k Kh(ρ))ek

(eT
k h(ρ))2

.

(28)

and the term (∂h)/(∂ρ) is computed by (24).

4.4 Determining a good initial point

The initialization of the algorithm is most important since the problem in general
is nonconvex. If we have a controller design to be improved incrementally we can
initialize with that solution. Otherwise we propose to use what we might call the ap-
proximate peak solution. This also serves as the default initial point in the Matlab
implementation [3].

The approximate peak solution is motivated by the tuning rules of [26]. The
most effective tuning rule is to place a complex conjugate pair of roots of ρ close
to the unit circle at the frequency corresponding to a desired peak gain of the
sensitivity function. Approximately knowing a desired peak location we place a
pair of roots correspondingly and the rest in origin. Starting at the maximum
entropy (ME) solution, we can use the continuation method of [1] to determine the
approximate peak solution. The ME solutions can be computed using the formula
[18, Eq. (6.2), p. 2915] for the positive real setting, with bilinear transformations.
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5 Design procedure and examples

The flowchart of our controller design procedure is depicted in Figure 3. In the
flowchart, “NLSsolver” is the nonlinear least-squares optimization solver which re-
alizes the theory in Sections 3 and 4. The NLSsolver can be regarded as a blackbox
whose inputs are a plant transfer function P and design parameters, and whose
output is a sensitivity function S, and thus, a controller C = (1 − S)/PS. As for
inputs, the plant is given and fixed, whereas the design parameters are tunable for
performance improvements. We have developed a user-friendly interface [3] that
realizes this flowchart.

Are specs
satisfied?

Finish

NLSsolver

Plant

Specs

Design
parameters

Controller

No

Yes

<Fixed>
<Tunable>

Figure 3: Flowchart of the design procedure

Our tunable design parameters are listed in Table 1. We briefly explain each
design parameter.

• θ : A vector of frequency points in [0, π] (see Figure 2). One can take the points
densely over some frequency range if one would like to emphasize the sensitivity
approximation over the range, at the expense of increase of computational

Design parameters in (25)
θ : discrete frequency points ek

s : desired frequency response sk

w : weights wk

γ : a uniform bound of |S| h
{(λj , ηj)}ne

j=1 : additional interpolation points and values h,K, S

Table 1: Tunable design parameters: The right column shows which parameters in
the optimization problem (25) are influenced by design parameters.

13



burden.

• s : A vector of desired frequency responses specified at frequencies in θ (see
Figure 2). This may be specified from a “desired” sensitivity function Sd as
s =

{
Sd(eiθk), θk ∈ θ

}
. Also, s can be modified during design iterations to

improve desired performance (such as robust stability), which may result in
actual performance improvement.

• w : A weight vector. One can choose a large wk if one wants a better sensitivity
approximation around θk.

• γ : A uniform gain bound of S. The larger the γ is, the larger the set S
becomes. One should choose γ larger than maxk |sk|. However, unduly large
γ will be undesirable because it becomes difficult to select a good initial point
in optimization.

• {(λj , ηj)}ne

j=1 : Points and values for additional constraints. One can use a
constraint S(λj) = ηj with λj ≈ eiθ0 when one wants to enforce S to have value
ηj around the frequency θ0 rad/sec. However, the introduction of additional
constraints increases the controller degree bound; see (3) in Proposition 2.1.

Although there seems too many design parameters to select, we often fix some
parameters and manipulate a few of them during design iterations.

Next, through a couple of examples from the control literature, we shall explain
how to select and tune these design parameters to satisfy given design specifications.
We will also compare the obtained controllers with ones designed in the literature.
These problems assume the feedback structure depicted in Figure 1. To focus on the
presentation of the selection and tuning strategies, we will skip the exposition of the
physical meanings in each problem, and present it just as a mathematical problem.
Readers interested in detailed problem settings are referred to each book.

Remark 5.1 Recall that our problem is posed in discrete-time in Section 2; if a
control problem is given in continuous-time, we will first transform the plant to
discrete-time correspondence by means of bilinear transformations, input them into
our NSLsolver to design a discrete-time controller, and then transform it back to
a continuous-time controller. (This process is done automatically in the developed
interface.)

5.1 Flexible beam control

Here, we will deal with a control problem in [11, Section 10 & 12] where a desired
sensitivity function is naturally available from the specification.

5.1.1 Problem setting

The continuous-time plant P is given as a transfer function:

P (s) =
−6.4750s2 + 4.0302s + 175.77

s(5s3 + 3.5682s2 + 139.5021s + 0.0929)
. (29)

Our goal in this problem is to design a strictly proper controller C which satisfies,
for a step reference r,

14



• the settling time is less than 8 seconds,

• the overshoot is less than 10 %, and

• the control input fulfills |u(t)| ≤ 0.5 for all t.

Remark 5.2 In our controller design, the specifications must be stated in the fre-
quency domain. Time domain specifications will be translated into frequency do-
main ones in a reasonable manner, and after controller design based on the frequency
domain specifications, we will check if the original time domain specifications are
indeed satisfied.

In [11], the first two requirements in the time domain have been translated into
a requirement in the frequency domain as a desired sensitivity function:

Sd(s) :=
s(s + 1.2)

s2 + 1.2s + 1
.

We also aim at designing a sensitivity function similar to Sd, with extra consideration
of control input constraint.

Remark 5.3 A controller for this problem was designed in [5, 4] by a manual tuning
of our optimization parameter ρ. The design procedure here is more systematic
than the design [5, 4]. In fact, the manual tuning of ρ was quite heuristic for the
achievement of the input constraint.

5.1.2 Initial selection of design parameters

Using Sd, we extract our desired frequency response at a finite number of frequencies.
We take 100 discrete points in the frequency

[
10−3, 103

]
(rad/sec), equally distanced

in the logarithmic scale, as
ω := {ωk}100

k=1 .

With these points, we set our desired frequency response (θ, s) in the discrete-time
setting as

θ :=
{

θk : eiθk =
1 + iωk

1− iωk
, ωk ∈ ω

}
,

s := {sk := Sd(iωk), ωk ∈ ω} .

Since we have initially no information on the frequency emphasis, the weights are
set as

w := {wk := 1, k = 1, . . . , 100} ,

and the uniform upper bound of the sensitivity gain is chosen as

γ := 1.5.

We do not use any additional interpolation condition in this problem. From the gain
plot of Sd, we would like to have a peak gain around 1 rad/sec. Therefore, we always
set the initial point for optimization to a ρ in S that has its roots at ±0.95i, which
corresponds to an approximate peak solution having its peak close to 1 (rad/sec) in
the continuous-time setting.
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5.1.3 Controller design

With the initial selection of design parameters, NLSsolver outputs a controller and
a sensitivity function as

C0(s) :=
75.11s3 + 53.6s2 + 2095s + 1.395

s4 + 10.06s3 + 449.1s2 + 2735s + 3214
, (30)

S0(s) :=
s4 + 5.156s3 + 423.8s2 + 654.8s

s4 + 5.156s3 + 423.8s2 + 557.6s + 537.9
. (31)

Several frequency and time responses are plotted in Fig. 4. The uppermost figure
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Figure 4: Bode plots and response signals by the initial design

shows the Bode plot of S0 with the desired frequency response (θ, s). As can be
seen, NLSsolver indeed generates S0 approximating (θ, s).

Now, we check the original time domain specifications. The lower figures in
Figure 4 show the step response and the input signal. Although the step response
meets the specification, the input signal is too large to fulfill the specification |u(t)| ≤
0.5. Therefore, we need to update some of our design parameters, and redesign a
controller.

To see the cause of large input signal, we draw the Bode plot of the controller
C0 in Fig. 4. From the figure, we see that there is a sharp gain peak around 20

16



rad/sec. In fact, this frequency coincides with the frequency of the input oscillation.
Therefore, one natural way to suppress the input is to lower the gain peak of C.

Now, we update the design parameters. Since C = (1−S)/PS, we need to make
S close to one to decrease the gain of C. Desired frequency response sk is almost
one around frequency 20 rad/sec, and thus, we increase the weight wk around the
frequency to fit S closer to sk. (We do not change other design parameters in this
example.) After some trial and error, we have chosen weights w as in Figure 5, that
results in the following controller and sensitivity function:

C(s) =
2.706s3 + 1.931s2 + 75.51s + 0.05028
s4 + 7.698s3 + 33.59s2 + 126.8s + 143

, (32)

S(s) =
s4 + 2.789s3 + 19.9s2 + 29.13s

s4 + 2.789s3 + 19.9s2 + 25.62s + 19.38
. (33)

The resulting Bode plots and response signals are shown in Figure 6, with response
signals in [11]. The figures show that the sharp peak disappeared in the gain of C,
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Figure 5: Weight w.

which has been done at the price of degradation of sensitivity fitting, and that the
original time domain specifications are indeed satisfied. Also, one can see that we
have obtained a similar performance to that in [11]. We stress that the controller
(32) is half the degree of the one obtained in [11].

Remark 5.4 The role of weights w is similar to that of weighting functions W
in conventional H∞ control, in that they emphasize suppression of gain at some
frequency regions. However, the weights here have two advantages over weighting
functions. One is that w do not assume rationality, and rather arbitrary, while
the weighting functions W must be rational in most cases. This will increase the
flexibility of the design. The other is that w do not increase deg C; it just changes
the cost function to be minimized. On the other hand, W typically increases deg C
by deg W .

5.1.4 Comparisons between different algorithms

Finally, we compare final errors (cost functional values) and computational times to
solve NLS problems, with modified Gauss-Newton (GN) and modified Levenberg-
Marquardt (LM) algorithms proposed in Section 4. We sampled ten cases (i.e., ten
different weights) during the design iterations in Section 5.1.3, and took mean values
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Figure 6: Bode plots and response signals by the new design

and standard deviations of the computational errors and the final errors, as shown
in Table 2. We also made an exactly same examination for the problem (11).

From Table 2, we can see that the LM algorithm applied to the NLS problem (10)
gives much more accurate solutions than other cases in this example. In fact, this is
a general tendency that we have experienced through a number of other examples.
The tendency urged us to use the formulation (10) rather than (11), and we use
NLSsolver for (10) with the LM algorithm as a default setting.

NLS Alg.
Final error Comp. time

mean standard dev. mean

(10)
GN 2.723 2.257 0.1302
LM 0.043286 0.020431 1.7265

(11)
GN 2.1255 1.8231 16.9865
LM 2.8793 2.3877 4.7548

Table 2: Final errors and computational times (sec).
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5.2 Slide drive control

Here, we will deal with a slide drive control problem in the book [19, Chapter 6.2]. In
this control problem, in contrast to the first example, a desired sensitivity function
is not available at the outset. We will explain how to solve such problem with our
approach.

5.2.1 Problem setting

Here, we will deal with a control problem of a slide drive in the book [19, Chapter 6.2].
The plant P is given by

P (s) :=
2s2 + 10s + 100

s4 + 7.01s3 + 110.47s2 + 452.6s + 521
,

which is stable and minimum-phase. The performance specifications for the continuous-
time sensitivity function are given as





|S(iω)| < −20 dB, ω ∈ [0, 0.1] ,
|S(iω)| < −10 dB, ω ∈ [0.1, 1.0] ,
|S(iω)| < 6 dB, ω ∈ [1.0, 5.0] ,
|1− S(iω)| < −20 dB, ω ∈ [5.0, 10.0] ,
|1− S(iω)| < −40 dB, ω ∈ [10.0,∞] .

(34)

5.2.2 Initial selection of design parameters

First of all, since the plant is stable and minimum-phase, we can show that our
allowable set S would be a singleton S = {S : S ≡ 1} without additional constraints
S(λj) = ηj ; see Proposition II.2 in [27]. The case of S ≡ 1 (i.e., C ≡ 0) is obviously
unsatisfactory, and thus we need to introduce at least one additional constraint.
Here, we will initially use two constraints as

S(±0.01i) = 0.1(= −20dB), (35)

in the continuous-time setting to take into account the specification over low fre-
quencies.

Next, we need to construct a desired frequency response from the specification
(34). We take 50 points in [0.01, 1] (rad/sec) and 50 points in [5, 100] (rad/sec),
equally distanced in the logarithmic scale, denoted by ω := {ωk}100

k=1. With these
points, we set our desired frequency response (θ, s) in the discrete-time setting as

θ :=
{

θk : eiθk =
1 + iωk

1− iωk
, ωk ∈ ω

}
, (36)

s :=
{

sk :=
{

0.1, k = 1, . . . , 50
1, k = 51, . . . , 100

}
, (37)

for the specifications over [0, 1] (rad/sec) and [5,∞] (rad/sec). On the other hand,
the specification over the intermediate frequencies [1, 5] (rad/sec) is taken care of by
setting the uniform upper bound to

γ := 2 (≈ 6dB). (38)
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The weights are initially set as

w := {wk := 1, k = 1, . . . , 100} .

Figure 7 shows the initial selection of all design parameters.
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Figure 7: Initial selection of design parameters. The circles correspond to the con-
dition (35) and the horizontal line in the uppermost figure is the uniform bound
(38).

Remark 5.5 Since we have no information to select desired phases, we just set
phases to zero. Even though this selection may not be a best one, it will be one
natural selection. After the first design, we will obtain an idea how the phase should
look like; see the design below.

5.2.3 Controller design

Using the initial selections of design parameters in Figure 7, and by choosing the
initial ρ whose roots locate at 0.99(1± 3i)/(1∓ 3i) (i.e., gain peak around 3 rad/sec
in the continuous-time setting), the NLS solver5 returns the controller and the sen-
sitivity function as

C0(s) =
3498s5 + 104(4.037s4 + 49.75s3 + 333.4s2 + 899.6s + 825.8)

s5 + 4049s4 + 104(2.105s3 + 20.96s2 + 5.648s + 17.61
,

S0(s) =
s3 + 4044s2 + 777.3s + 3523

s3 + 4044s2 + 7773s + 3.522× 104
.

Bode plots of the sensitivity function S0 and complementary sensitivity function
T0 := 1− S0 are shown in Figure 8, in which we can see that some specifications in
(34) are not satisfied.

Now, we will utilize S0 to generate new desired frequency response data (θ, s).
The vector ω is taken at 100 frequencies ω := {ωk}100

k=1, equally distanced in the

5For this example, we used only the modified Levenberg-Marquardt algorithm.
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Figure 8: Bode plots of S0 and T0 := 1− S0

logarithmic scale over [0.01, 100]. Then, θ is obtained by (36), and a vector s is
given by

s := {sk := S0(iωk), k = 1, . . . , 100} . (39)

Our strategy here is to modify this s, as well as (35), and to add other additional
constraints if necessary, after every design iteration so that the specifications in (34)
are fulfilled. More concretely, one design iteration consists of (i) gradually changing,
toward the achievement of specifications, s and/or current additional conditions
S(λk) = ηk, (ii) introducing new additional conditions if necessary, (iii) adopting an
initial point ρ for NLSsolver as the minimizer of the previous design if the design
is not bad, and (iv) designing a new controller and checking the performance in the
Bode plot. After a number of design iterations, with four additional conditions (see
the circles in Figure 9), we have obtained a controller and a sensitivity function as

C(s) =

0.2238s7 + 8.875s6 + 82.58s5 + 965.5s4

+4231s3 + 7977s2 + 8233s + 5493
s7 + 9.281s6 + 85.02s5 + 291.9s4

+741.3s3 + 551.1s2 + 594.1s + 96.21

,

S(s) =
s5 + 4.281s4 + 13.61s3 + 9.814s2 + 11.69s + 1.924
s5 + 4.281s4 + 14.06s3 + 24.43s2 + 24.97s + 23.01

.

The corresponding Bode plots of S and T := 1−S are shown in Figure 10, with the
design result in [19, Chapter 6.2]. Although the complementary sensitivity slightly
violates the requirements over high frequencies, we have obtained much lower gain
in those frequencies than that designed in the book [19]. Note that the degree of
controller is seven, comparable to the controller degree in [19, p. 80], which was
eight.

Finally, we remark that there are many ways to tune our design parameters; for
example, we can also manipulate weights to obtain a satisfactory result.

Remark 5.6 At this point, it is quite heuristic to select (λk, ηk) for additional
constraints, even though we have some guidelines for the selections as was presented
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Figure 9: Design parameters in the final design. The horizontal line in the uppermost
figure is the level γ = 2, and the circles correspond to additional conditions.
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Figure 10: Bode plots of S and T := 1− S

in [26]. How to select these design parameters in a certain optimal sense is still an
open question.

6 Conclusions

In this paper, we have proposed a new approach to design the sensitivity func-
tion in the frequency domain. We have formulated a sensitivity shaping problem,
and reduced it to a finite dimensional constrained nonlinear least-squares optimiza-
tion problem. To solve this problem, we have modified the Gauss-Newton and the
Levenberg-Marquardt methods to incorporate the constraint. Numerical examples
from the control literature have demonstrated the usefulness of the proposed method
in designing relatively low degree controllers. We have developed a user-friendly
software for the sensitivity shaping based on the developed theory. A multivariable

22



extension of the proposed sensitivity shaping method is currently under investiga-
tion.

A Construction of the matrix K

In this appendix, we will derive the matrix K in Equation 7. The derivation is
based on interpolation conditions of a sensitivity function, which are caused by the
internal stability condition, as well as by additional interpolation constraints. See
also [27, Section 2].

Suppose that a real rational plant P has relative degree r, unstable poles pj of
multiplicity `j , j = 1, . . . , Np, and unstable zeros zj of multiplicity mj , j = 1, . . . , Nz.
Then, for the condition (C1) in Section 2 (i.e., internal stability condition), the
sensitivity function must satisfy the following interpolation and derivative conditions
(see e.g., [19, 12]):

S(pj) = S′(pj) = · · · = S(`j−1)(pj) = 0, j = 1, . . . , Np,

S(zj) = 1, S′(zj) = · · · = S(mj−1)(zj) = 0, j = 1, . . . , Nz,

S(∞) = 1, d
dzS(z−1)

∣∣
z=0

= · · · = dr−1

dzr−1 S(z−1)
∣∣∣
z=0

= 0.

(40)

In addition, we assume that the interpolation conditions in (C2) are given as

S(λj) = ηj , j = 1, . . . , ne. (41)

We require that {λj}ne

j=1 is a distinct set, and

{λj}ne

j=1 ∩
[
{pj}Np

j=1 ∪ {zj}Nz

j=1

]
= ∅. (42)

Denoting the total number of the interpolation and derivative conditions in (40) and
(41) by n + 1, our goal here is, by fixing the structure of the sensitivity function as

S(z) =
zT β

zT α
, α ∈ Rn+1, β ∈ Rn+1, z :=

[
zn, zn−1, · · · , 1]T

, (43)

to derive a relation between the vectors α and β so that S in (43) satisfies (40) and
(41).

To express the conditions (40) and (41) in a simpler form, we introduce a function

f(z) := S(z−1) =
ẑT β

ẑT α
, ẑ := [1, z, · · · , zn]T . (44)

Then, using the formula in [4, Appendix] (or chain rules), the conditions (40) and
(41) are translated into the conditions on f as

f(1/pj) = f ′(1/pj) = · · · = f (`j−1)(1/pj) = 0, j = 1, . . . , Np,

f(1/zj) = 1, f ′(1/zj) = · · · = f (mj−1)(1/zj) = 0, j = 1, . . . , Nz,

f(0) = 1, f ′(0) = · · · = f (r−1)(0) = 0,
f(1/λj) = ηj , j = 1, . . . , ne.

(45)

We will present, for more general conditions on f , the relation between α and β in
(44) (or equivalently, in (43)).
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Proposition A.1 Suppose that a function f has a structure in (44) and satisfies
the interpolation and derivative conditions

f (k)(ζj)
k!

= ωjk, k = 0, 1, · · · , Mj , j = 0, 1, . . . , `, (46)

where ζj 6= ζk whenever j 6= k. Here, the degree n in (43) is taken as the total
number of conditions in (46) minus one:

n :=
∑̀

j=0

Mj − 1. (47)

Then, the vectors α and β satisfies the relation

β = Kα, K := Γ−1WΓ, (48)

where Γ and W are defined as follows: Γ is the controllability matrix:

Γ := [B,AB, · · · , AnB] , (49)

for the pair (A,B) defined by

A :=




A0

A1

. . .
A`


 , where Aj :=




ζj

1 ζj

. . . . . .
1 ζj


 ∈ C

Mj×Mj ,

B :=




B0

B1
...

B`


 , where Bj :=




1
0
...
0


 ∈ R

Mj ,

(50)
and W is a block diagonal matrix:

W :=




W0

W1

. . .
W`


 , where Wj :=




ωj0

ωj1 ωj0
...

. . . . . .
ωjMj · · · ωj1 ωj0


 . (51)

Remark A.2 Note that this proposition assumes neither any analyticity of the
interpolant f nor the region that the interpolation points and values lie.

Proof. Since f is supposed to have a structure in (44), we have ẑT β = f(z)ẑT α.
By taking the first (Mj − 1)-derivatives of this equation and by evaluating them at
z = ζj , it is straightforward to obtain

Γjβ = WjΓjα, Γj :=
[
Bj , AjBj , · · · , An

j Bj

]
, (52)
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where Wj is defined in (51). From the structures of Aj and Bj , it is easy to verify
that the matrix Γj is full row rank. By stacking the equation (52) for j = 0, 1, . . . , `,
we can have

Γβ = WΓα, (53)

where Γ and W are defined in (49) and (51), respectively. Since the matrix Γj is full
row rank and {ζj}`

j=0 is assumed to be distinct, the matrix Γ is nonsingular, and
thus we have completed the proof. Q.E.D.

From this proposition, we have an immediate corollary.

Corollary A.3 Suppose that a sensitivity function S satisfies the conditions (C1)–
(C4) in Section 2. Let K be a matrix defined in (48) corresponding to the conditions
(C1) and (C2) (or equivalently, (40) and (41)). Then, the matrices γI + K and
γI −K are invertible.

Proof. Due to the norm condition (C3) in Section 2, the absolute values of the
diagonal elements of the matrix W in (51) are less than γ. Noting that W is
triangular and that the eigenvalues of K coincide with those of W , we conclude that
the matrices γI + K and γI −K are invertible. Q.E.D.
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