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ABSTRACT
We consider a resource-constrained scenario where a cesegre

sach@xt h. se,

skogl und@«t h. se

a fixed quantizer look-up table and a CS reconstruction gfgor
our proposed algorithm strategically employs a two-stagela-

sensing- (CS) based sensor has a low number of measuremefi§M in & closed-loop: (1) the synthesis step uses a spaysal si

which are quantized at a low rate followed by transmissiostor-
age. Applying this scenario, we develop a new quantizergdesi
which aims to attain a high-quality reconstruction perfante of
a sparse source signal based on analysis-by-synthesigviiain
Through simulations, we compare the performance of theqsegp
quantization algorithm vis-a-vis existing quantizatioettrods.

reconstruction technique for measuring the direct efféduanti-
zation of CS measurements on the final sparse signal reaotistr
quality, and (2) the analysis step decides appropriatetpeahval-
ues to maximize the final sparse signal reconstruction tyudlhis
closed-loop strategy is known asalysis-by-synthes{@\bS) which
has been widely used in multi-media coding [16—18]. To th& bé
our knowledge, the AbS approach has not been used for gtiatiza

Index Terms— Quantization, compressed sensing, analysis-bynf ¢S measurements, where we show by exploiting this frarrewo

synthesis, sparsity, mean-square error
1. INTRODUCTION

Using a model of under-determined linear set of equations-c
pressed sensing (CS) [1] aims to reconstruct a high-diroraki
sparse source vector (where most of coefficients are zeyo) fm
under-sampled low-dimensional measurement vector. Witma
ited number of measurements (or a limited resource of sagpli
CS has emerged as a new powerful tool for sparse signal &ouis
compression and reconstruction. In many practical apiics, CS
measurements need to be quantized into a finite resolutpragen-
tation, and then transmitted to a destination point for spaignal
reconstruction followed by other inference tasks. In thapgr, we
consider application scenarios where both measuremergafor
pling) and transmission resources are constrained. FHuosrission
resource, we mean that the available bits to quantize the &8 m
surements are limited. Considering availability of linditeumber
of measurements and quantization bits, we design new gadiofi
algorithms where our goal is to achieve high quality spaigeas
reconstruction from the quantized CS measurements.

a significantly better reconstruction performance is ptedi com-
pared to the schemes which only consider quantization rtlisto
but at the expense of a higher computation. We analyze canput
tional complexity of the proposed algorithm, where it iswhahat
the complexity depends upon the availability of two compi@s re-
sources, i.e., quantization bit rate, and number of CS neasnts.
Notations: Scalar random variables (RV’s) will be denoted by
upper-case letters and their instants by the respectiverioase let-
ters. Random vectors will be represented by boldface ctesac
Further, a set is shown by a calligraphic character and itfircaity
by | - |. We will also denote the transpose of a vector by(by .
We will useE[-] to denote the expectation operator. Thenorm
(p > 0) of a vector will be denoted by - ||,

2. PROBLEM STATEMENT

2.1. Preliminaries of CS Framework

Formally, we let a random sparse (in a fixed basis) sighiak

R be linearly encoded using a known deterministic sensing ma-
trix ® € RV*M (N < M) representing measuring (sampling)

CS with quantized measurements has recently started to gagystem which results in an under-determined set of lineasome-

significant attention in literature, and most commonly, fibeus in
this area is on three main categories: (1) extensions teirxi€S
reconstruction algorithms while quantization schemesaianun-
changed [2-8]. (2) In the second category, trade-offs betvibe
aspects of quantization (e.g., quantization rate) and Gf, (eum-
ber of measurements and loss in sparse reconstruction)tesare
considered [5, 9, 10]. (3) In another important class, theaxman-
centration is on quantizer design for CS measurements \@i$lee-
construction methods are fixed [11-15].

The main contribution of this work is in the third categorymme
tioned above, i.e., quantizer design for CS measuremerits @B

mentsY = ®X e RY. We let X be aK-sparse vector, i.e., it
has at mostX’ (K < N) non-zero coefficients, where the loca-
tion and magnitude of the non-zero coefficients are drawdainty
from known distributions. We also note that the sparsiteldy is
known in advance. We define the support set of the sparservecto
X =[X1,...,Xu|"byS & {m: X, # 0} C {1,..., M} with

S| = [1X]jo < K.

In order to estimate a sparse source vector from underrdeted
linear measurements, several efficient techniques have dmel-
oped based on convex optimization (see e.qg. [2,19]), itergteedy
search (see e.g. [20—-23]) and Bayesian estimation appgedecke

reconstruction methods are fixed. We develop a new framework.g. [24—27]). The results of this paper are generic, and avead

for scalar quantization of CS measurements with the obaif
achieving a lowerend-to-end reconstruction distortiarather than

use a specific CS reconstruction algorithm. Denoting a sparon-
struction function byr, it is defined by a mapping : RN — RY

quantization distortionfor CS measurements. Technically, given which takes a (possibly corrupted) measurement vectofVin



AbS quantizer encoder

Quantizer decoder

dimensional space, and produces an estimate of the spam so
vector inM-dimensional space\ < M).

2.2. Quantization of CS Measurements

We consider scalar quantization of the random CS measutemen Cs encJ CS decoder

Y,'s(n =1,...,N). For this purpose, quantization is divided into
encodingand decodingtasks. We consider a scalguantizer en-
coderwhich maps each measurement to an appropriate index in a
finite integer set in order for guantizer decodeto make an esti-
mate of the measurements based on the received index anava kno
decoding look-up table. We assume that the total bit budgég)
allocated for quantization i&, £ M, bits per vectoiX in which

r. € RT is the assigned quantization rate to a scalar component
of X. Having the observation¥ = ®X, each entry of the mea-
surement vectoy,, (n = 1,..., N), is encoded via, £ Mry/N
bits. For each entry,,, a quantizer encoder is defined by a map-
ping E : R — Z, whereZ denotes the index set defined As=
{0,1,...,2"™ — 1} with |Z| = 2"v. Denoting the quantized in-
dex by the RVI,, (n = 1,...,N), the encoder acts according to
Y, € R = I, = in, where the set§R""}7 2 -1 are called

encoder regions ang)? yilw” =R In words, Whe“Yn be-  Our proposed AbS-based quantization system is illustriateeg-
longs to the regiorR™, the encoder picks the indeéx € Z. Next, ure 1. In order to feasibly solve (1), we consider optimizomge

we define quantizer decoder which is characterized by a mgppi variable by fixing the others, that is, optimizing the indegxoy fix-

D : 7 — C,. The quantizer decoder takes the index and per-  ingthe indexesi,...,in—1,%n+1,...,in USiNg analternating op-
forms according to an available look-up tablg;=i, = Y, = Cin timizationapproach which is potentially suboptimal compared to a
such that when the received indexiis, the decoder outputs the joint optimization method, but provides a feasible solatitn what
codepointc;,, . Note thatY,, is the quantized measurement RV asso-follows, we show how an MSE-minimizing transmission indexc

P

Fig. 1. AbS quantization of CS measurements.

2Mr= codepoints, leading to high complexity. Instead, in thiskyo
we focus on a suboptimal technique for quantization of CSsmea
ments which is computationally efficient and also provideésgg-
quality reconstruction performance.

3. ANALYSIS-BY-SYNTHESIS QUANTIZATION OF CS
MEASUREMENTS

ciated with the entr;Yn, and the set of all reproductiaczodepoints
Cn 2 {ci,}? ﬂ ! associated with this entry is calledcadebook
We denote byX = R ([cr,,. . cry]T) € RM the estimation of the

source from the quantized measurements using a CS reocticatru
functionR.

2.3. Objective and Performance Criterion

In this paper, we are interested in addressing the followjurentizer
design problem: Given a CS measurement vettor ®X € RY,
a CS reconstruction functid and codebook sets, = {c;,, }Z”yjl
(n = 1,...,N) for a fixed bit budgetR,., the objective is to find
encoding indexes!n €Z(n ., N), such that the end-to-
end MSE of the estimated vect® € R, i.e. E[||X — X||3], is
minimum. In other words, we address the optimization pnoble

{if,...,iv} = argmin E[|X - X|[3], @)
{77161-}" 1
where {i; }_, are the optimal encoding indexes (w.r.t. to mini-

mizing the end-to-end MSE given codebook sets) for quatibiza
of the measurement vectdf = [Y1,..., Yn]”. Also, note that the
end-to-end distortioft[|| X — X 3] depends upon CS reconstruction
distortion as well as quantization distortion.

In this paper, our aim is higher than just minimizing theanti-
zation distortionE[|[Y — Y |3] considered in the design okarest-

be chosen by fixing the others.

3.1. Optimizing Encoding Indexes

Let us first rewrite the end-to-end MSE}|| X — X||2], as (3), where
(a) is followed by marginalization ovef, andY. Also, (b) fol-
lows from interchanging the integral and summation and #u f
that P{T, = i,|Y =y} = 1, Yy, € R™, and otherwise the prob-
ability is zero. Moreoverf(y) is the N-fold probability density
function (p d.f.) of the measurement vector. Note that byotiag
X(I) 2 R(leiy, ... cr,,. .. ciy])T, we imply that the recon-
structed signal is dependent onIy upon the index (equitiglende-
point) associated with the'” measurement entry. Now, let denote
theminimum mean square errdMMSE) estimation ofX given the
measurement¥ =y by

x(y) £ E[X|Y =y] € R,

@
then, given the fixed codebooks, (n = 1,...,N), the MSE-
minimizing index (assuming other indexes are fixed) is it
to finding the index that minimizes the term in the braces i th
last expression of (3) sincg(y) is non-negative. The resulting
index denoted by}, € Z is given by (4), wher€a) follows from
the fact thatX is independent off,, conditioned onY, hence,
E [||X[3]Y =y, In=1in] = E [||X][3]Y =y] which is pulled out
of the optimization. Also(b) follows from a similar rationale, i.e.,
X(I,) is independent o given I,,. Further, X andX(I,,) are

neighbor codingvhere each measurement entry is coded to its neaindependent gively” and 7.

est codepoint. The nearest-neighbor coding does not regdgss
guarantee that thend-to-end distortioni.e., E[| X — X||3], is also
minimized subject to fixed codebook sets. This is due to neali
behavior of CS reconstruction algorithms and non-orthagjgnof
the CS system.

Unfortunately, solving (1) jointly for all encoding indexés not
analytically and practically feasible for a generic spaesmnstruc-
tion algorithm since it is performed by searching over akgble

Following (2), the last expression in (4) can be rewritten as

in, = arg min { [(6x) [ - 2%(y) "R(in) } (5)
One method to predict the MSE-minimizing encoding indexois t
find the codepoint which after passing through a sparse stean
tion algorithm reproduces a signal vector that is the begnhasion

to the current input signal vector. Interestingly, (5) ilplsuch an



E[|X — X[3] = E[|X — X(L,)|3] & / Zpr{zn—znw VIE[X = X(L)|EIY =y, In = inf(y)dy

o ®
E(|X - X(I)IEY =y, In = in] | f(¥
/ / ~/Un+1 / Z /1/n€R7” { }
i, = argminE(| X — X(L)IBY =y, In = in] < argmin {E(|X(L)FIY =y, In = in] —2EX" X(L)|Y =y, [ = in] }
in €L in €L (4)

© argmin {E[|R (L) 5|2, = ix] - 2E[X" Y = yIE[R (1) | = in] |

analysis-by-synthesig\bS) method. We use this principle to first and the dummy vectoz. At iteration!, then!® (n = 1,...,N)

find the optimized encoding index for each measurement ey entry of z), denoted bysz), is replaced by alR™ codepoints
arately (while others are fixed given the codepoints), ard tom-  from the setC, (step (3)) while the other entries are fixed, and
bine them in an alternate-iterate procedure which will becdbed  the reconstructed vectors, denoted fb‘)l/)(in) — R(z(”) (in €

in details in the next section. Note that we also assumelteatdde- 7 — {07 Lo, 2M — 1}), are synthesized corresponding to each
book sets are available at the encoder as well as the decoder. vector (step (4)). Then an optimization is carried out blyisg
3.2. Proposed Quantization Algorithm argerglrﬂ%(”(zn)lb %(y)"%" (i) so as to find the wining MSE-

We first describe the framework of the proposed quantizatietnod
summarized in Algorithm 1. Suppose that the codebook Ggts
(n = 1,...,N) are designed offline, and let the quantizer encoder
have access to the sensing matdixand sparsity leveK as well

as the measuremengs(step (1)). In our formulations (e.g. (5)), the % . >°4H I U
MMSE estimator is required, however, in practice, impletimgnthe mission indexi,, gnd the reconstr.ucte('j vect@ff”(zn) as well gs
MMSE estimator may not be feasible. Therefore, in order taioka the updated quantized vectdt) which will be used by the function
locally reconstructed vectok(y), we will approximate the MMSE &t the next iteration of Algorithm 1 (step (9)).

estimator by the output of the low-complexity greedsthogonal . 0

matching pursui{OMP) [20, 21] reconstruction algorithm (step (2)). Subroutine: AbS.seq (C”’ X(y).2 )

minimizing encoding index;, (step (6)). Now, thex!" entry of the
vectorz(") is updated by the codepoint associated with the analyzed
ndex i.e.cix (step (7)). This procedure continues for each entry of

sequentlally, and the subroutine produces the optimizausitr

Now, we define a dummy vectarc RY where at the firstiteration, 1. for n = 1 : N do
its n" component is chosen uniformly at random from the et 2 fori=0:2"v —1do
(Vn) (step (3)). Indeed, the vecterimplies the predicted quantized  3; 2D
measurement which is synthesized at the encoder. Throughou 4: Compute?ﬁ(l)(in) — R(z(l))
ations, the entries of the vectsiare adjusted towards the directions 5.  end for
of the codepoints (in a sequential manner) which give thémim 6: i = argmlrﬂx (Zn)Hg _ 2i(y)T§<l)(in)
reconstruction MSE when retrieved using a CS reconstnuetigo- in€L
rithm. Now, we describe the subroutiddS_seq(-) executed in 7. update: 2 « cix (in)
Algorithm 1. 8: end for
. . -k f i3
Algorithm 1 : AbS-based Quantization o: output: 5, XV (ir) 2"
Linput Cn = {c;, }2 5" (Yn = 1,...,N) and®,y, K, v Algorithm 1 iterates until convergence where the stoppiritg-c
(stopping threshold) rion is that reconstruction improvement at two conseclitemtions
2: compute: X(y) in (2) is smaller than a predefined threshgld- 0. After convergence, the
3: initialize z(® € RN, wherez!” € C,, Vn. algorithm outputs the transmission indexgss and the quantized
4: Setl + 0 (iteration counter) CS measurements,’s, Vn = 1,..., N, (step (9)).
5: repeat Now, we analyze the computational complexity of the progose
6:  [in, XD (%), 2] = AbS seq(Cn, x(y),2") , Vn quantization method. We quantify how many times a CS reconst
70 l+1l+1 tion algorithm is invoked throughout the procedures. Firstall
8: until [||xY(@5))13 — 2x(y)"xO(i%) from (1) that an exhaustive search for the joint optimizatiequires
e 2 | el T2l O(2"7=), or O(2""v) (sinceMr, = Nr,), computations of a CS
=[xV ER) 12 + 2%(y) (i) >, Vn reconstruction algorithm which is not permissible in pieet Next,
9: output: I, =i, Y, = cis ,Vn let us consider the sequential AbS-based quantizationr¢@tibe

AbS_seq) at one iteration of Algorithm 1. The operations for calcu-
Sequential AbS quantizationThe proposed AbS-based quan- lating the transmission indexes increase at most(Dl@EM”/NN).
tization method is summarized in the subrouthieS_seq(-) where  This implies that for a fixed bit budge&®, = Mr., by increasing
the main idea is that each measurement entry is sequengidily the number of measurements, first the complexity decreasegly,
justed towards the direction of its MSE-minimizing coderoat  and then at some point it starts increasing with a small sIdjés
each iteration. Using Algorithm 1, the functiokbS_seq(-) ac- is due to the fact that the complexity depends on the comipress
cepts the codebooks,, Vn, the locally reconstructed vecté(y) resources, i.e., number of measurements through the liegarVv



and quantization rate, through the exponential tergrf*=/~

—6— Nearest-neighbor coding
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4.1. Experimental Setups and Results
We quantify the performance using normalized MSE (NMSE) de-

X112
fined as NMSE2 %. In order to measure level of under-
2

sampling, we define the measurement ratexas N/M (0 <
a < 1). We choosex for given values of sparsity levek and
input vector sizel, and round the number of measuremehtdo
its nearest integer. We randomly generate a sdt afparse vector
X where the support s&t is chosen uniformly at random over the
set{1,2,..., M}. Non-zero coefficients aX are drawn according ‘ ‘ ‘ ‘
to i.i.d. standard Gaussian random variables. We let theeaziés 0.2 0% e ment 3 (@) 0.4 045
of the sensing matrix b@; Y N(0,1/N), and then normalize a2 f . f
the columns of® to unit-norm. We apply the OMP reconstruction Fig. 2. NMSE as a function of measurement raie=t N/M).
algorithm as a realization of the CS reconstruction fumcRo

Using simulation parameter®/ = 512, K = 35 (sparsity ra- % ‘ = Support set coding
tio ~ 6.8%), r. = 0.75 bit per component oX, we have per- -2 S Scuentint AbS uantization |
formed 1000 Monte-Carlo simulations to illustrate the parfance -af
(NMSE). For implementation of Algorithm 1 using the subiioat
AbS_seq, we choose the stopping thresheld= 10~°, where we
have observed that Algorithm 1 converges in at nip#erations.
We have compared our proposed quantization method (latbsied
“sequential AbS quantizationih the figures) with relevant methods
such as’nearest-neighbor coding’of the measurement entries and
“support set coding”[28]. Employing the support set coding, the el |
largest non-zero components f(in estimated support set) can be i
represented by log, M bits, and then their magnitudes are coded “er i
to nearest codepoints usidg, — K log, M bits. Another possible 200 o5 oo 1
scheme is to quantize each component of the reconstruaadl si Quantization rate (rz)
directly using available bit budget. However, our simuas (not Fig. 3. NMSE as a function of quantization ratg.
included here) have shown that this coding scheme providesya
poor performance which is excluded for the comparison.ifeuyive  independent of number of measurements. In the spirit ofoibipd
use the same codebooks for each individual scheme whicheare dCS for practical applications, we are mainly interestechia lbwer
signed by the.loyd algorithm[29, Chapter 6]. Further, we initialize ranges ofa (e.g. o = 0.25), where the AbS-based quantization
Algorithm 1 with the same codebook sets for the nearestabeily  scheme achieves a considerabi@B reduction in MSE.
coding. L_Jsmg tt|1e support set coding, fatl codebooIT(set 'Sm?r Now, we show the performance (NMSE) as a function of quan-
’a\l“\(iglés?anfscaﬁr component, H(ejfea err,1we "?f‘ he a corlwe "ilb bl tization rate per entry oX (i.e., r;) in Figure 3 using parameters

— 1 forthe support set coding scheme if the total available, = _ 512, K = 35 ata = 0.25. It can be observed that at

b't'?ﬁget '?R’” < Klogﬁéw bits. o lqorith f ; low to moderate-high rates, the AbS quantization outparéothe
€ per otrmzzg_ce oft ?%u_nag_zatlonza E]Ot”t r?_s ?S a u_gal ?h other schemes, while at high rates the support set codinnsta
measurement raig IS reported in Figure 2. Let us irst consider the slightly better performance. At very high rates, the perfance of

nearest-neighbor coding and the proposed AbS-based rabot the support set coding is expected to saturate sinee~ab.25, the
distortion due to recovery of the locally reconstructedtoeg, ac-

scheme. From the curves, it can be observed that given avely s
values ofa, the OMP algorithm fails to detect the sparsity patterncOrding to which the quantization is performed, remainsstamt. In
total, the AbS-based quantization outperforms at operaticanges

and reconstruct the source which results in a poor perfocmai
though the quantization rate per entry is high. dcreases to a of measurement and quantization rates where the availedbeirces
(number of sensors and quantization rate) are constrained.

Normalized MSE (dB)

6L

Normalized MSE (dB)
5

certain amount, the reconstruction algorithm succeedsdanstruct
the sparse source precisely out of the measurements smceit
ber of measurements is sufficient, and the quantizatiom ersmall
enough. At this point¢ = 0.25 for Figure 2), the curves reach the
best performance. However, for highes, due to the limited quanti- 5. CONCLUSIONS

zation rater,, the quantization error per entry increases which leads

to a poorer performance. Next, we evaluate the performahtteeo We have developed a new framework of quantizer design for CS
support set coding where the quantization is performedetotally  measurements. We have considered a resource-constraiplécha
reconstructed signal domain. Similarly, at smal, the OMP re-  tion where both measurements and transmission rates atedim
construction algorithm fails to reconstruct the locallasge source, Using this scenario, we have addressed the problem of engQf
where the performance is insignificant. It can be seen thatias measurements where inspired by the AbS framework, a newtiquan
creases and the OMP is able to reconstruct the input sigeabrye zation algorithm has been proposed for coding of linear C&sune-

the performance improves slightly by further increasingasuge-  ments. Numerical results have shown the promising perfocma
ment rate since the allocated quantization bits using tlethod are  gain obtained using this scheme.
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