Local positivity of line bundles on smooth toric varieties and Cayley polytopes

Anders Lundman
Department of Mathematics, KTH Royal Institute of Technology, Sweden

Introduction
For a smooth projective variety X and a line bundle L on X there are various notions for measuring the local positivity of L at a point $x \in X$. Two such measures are the dimension of the k-osculating space at x and the Seshadri constant at x. The precise nature of the interplay between these two notions is in general an open question. Our main result gives a partial answer to this question for smooth toric varieties, by showing that these notions characterize Cayley sums.

Osculating Spaces
Let L be a line bundle on a smooth variety X and $x \in X$ a point with maximal ideal $m_x \subseteq O_x$. Consider the natural map
$$j_k^*: H^0(X, L) \to H^0(X, L \otimes (O_x/m_x^{k+1})).$$
The space $T_k^X(X, L) = \text{P}(\text{im}(j_k^*))$ is called the osculating space of order k at $x \in X$. If j_k^* is onto we say that L is k-jet spanned at $x \in X$. The largest k such that X is k-jet spanned at $x \in X$ is denoted by $s(L, x)$.

Seshadri Constants
Let L be a nef line bundle on a smooth projective variety X. The Seshadri constant of L at a point $x \in X$ is the number
$$\varepsilon(L, x) := \inf_{C \subseteq X} \frac{L \cdot C}{m_x(C)}$$
where the infimum is taken over all irreducible curves C passing through x and $m_x(C)$ is the multiplicity of C at x.

Cayley Polytopes
Let $P_0, \ldots, P_r \subseteq \mathbb{R}^k$ be polytopes. We define the Cayley sum
$$[P_0 \times \cdots \times P_r]^s := \text{Conv}\{(P_0 \times 0) \cup (P_1 \times \{0\}) \cup \cdots \cup (P_r \times \{0\})\} \subseteq \mathbb{R}^k \times \mathbb{R}^l$$
where e_1, \ldots, e_l is the standard basis for \mathbb{R}^l. A polytope $P \subseteq \mathbb{R}^k$ is called a Cayley polytope of order s and length $r + 1$ if there exist some lower dimensional polytopes P_0, \ldots, P_r such that $P \cong [P_0 \times \cdots \times P_r]^s$. When P_0, \ldots, P_r are normally equivalent then the associated toric variety is a projective fiber bundle $P(L_0 \oplus \cdots \oplus L_r)$.

Examples of Cayley Polytopes

Figure: Three Cayley polytopes in \mathbb{R}^3.

Existing Characterizations
Seshadri constants and osculating spaces have been shown to characterize certain polarized smooth toric varieties given by Cayley sums.

- In [3] D. Perkinson showed the following: Let X be a smooth toric variety of dimension ≤ 3 polarized by a complete linear series $|L|$. Then $s(L, x) = k$ at every point $x \in X$, for any fixed $k \in \mathbb{N}$, if and only if X is a projective fiber bundle, i.e. if the associated polytope is a Cayley polytope.

- In [1] A. Ito proved that $\varepsilon(X, L, x) = 1$ at a very general point if and only if $L \cong [P_0 \times P_1]^1$.

Example
The following example shows that a direct generalization of Ito’s result in [1] is not true.

Figure: $(X, L) = (\text{Bl}_0(P^3), X)$

Here $\varepsilon(X, L, x) = 2$ at the general point and $\varepsilon(X, L, x) = 1$ at any point x in the complement of the torus. But the polytope is not a Cayley sum.

Our Results
Our main results, in [2], generalize the characterizations of Perkinson and Ito.

Theorem 1
Let (X, L) be a smooth polarized toric variety and let P_L be the polytope associated to the complete linear series $|L|$. Then L is k-jet spanned, but not $(k+1)$-jet spanned, at every point if and only if $P_L \cong [P_0 \times P_1]^k$ for some lower dimensional polytopes P_0 and P_1 and every edge of P contains at least $k+1$ lattice points.

Theorem 2
Let (X, L) be a smooth polarized toric variety and let P_L be the polytope associated to the complete linear series $|L|$. Then $\varepsilon(X, L, x) = k$ at the fixpoints and at the general point if and only if $P_L \cong [P_0 \times P_1]^k$ for some lower dimensional polytopes P_0 and P_1 and every edge of P contains at least $k+1$ lattice points.

As a corollary of our results we establish the equality between the integers $\varepsilon(X, L, x)$ and $s(L, x)$ under our assumptions. The exact relationship between these two quantities is in general an open and interesting question.

References