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Motivation

Higher order Gauss maps describe tangency properties of higher
order relating both to higher fundamental forms in differential
geometry and local positivity in algebraic geometry.



The classical Gauss map

The classical Gauss map is defined as follows:

Definition
Let X ⊂ PN be an irreducible, non-degenerate projective
n-dimensional variety over C. The Gauss map is the rational
morphism

X Gr(n,N)
γ

that assigns to a smooth point x ∈ X the projective tangent space
TX ,x of X at the point x.



Two known facts about the classical Gauss map due to Zak (1993)
are

1. If X is smooth then the Gauss map γ is finite and birational,
unless X is Pn ↪→ Pn.

2. The general fiber of γ is a linear space.



Osculating spaces

Let L be a line bundle on X , k ∈ N and x ∈ X be a point
corresponding to a maximal ideal mx . Then consider the map

jk,x : H0(X ,L )→ H0(X ,L ⊗ OX/m
k+1
x ),

which is defined by evaluating a global section s and its derivatives
of order at most k at the point x .

We call the projectivisation of the image of jk,x the k-th
osculating space, Tk

X ,x of X at x .
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Osculating spaces II

More explicitly for a choice of coordinates x1, x2, . . . , xn around x :

jk,x : H0(X ,L )→H0(X ,L ⊗ OX/m
k+1
x )

s 7→(s(x),
∂s

∂x1
(x), . . . , ,

∂t1+...+tns

∂x t11 ∂x
t2
2 · · · ∂x

tn
n

(x), . . .)

for t = (t1, . . . , tn) and 0 ≤ t1 + . . .+ tn ≤ k .

The line bundle L is said to be k-jet spanned at a point x if the
map jk,x is onto at the point x ∈ X . We say that L is k-jet
spanned if it is k-jet spanned at all points.
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Example: (Pn,O(d))

Around a point x , a basis for the global sections of O(d) on Pn is
given by all monomials of degree at most d in n variables.

By
construction jk,x maps the monomial x t11 · · · x tnn to a vector with
the only non-zero entry corresponding to

∂t1+...+tn

∂x t11 · · · ∂x
tn
n

(x t11 · · · x
tn
n )

∣∣∣∣
x=0

=
n∏

i=1

ti !

Hence jk,x is onto if and only if d ≤ k .
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Higher order Gauss maps

The Gauss map of order k is defined as follows

Definition
Let X ⊂ PN be an irreducible projective n-dimensional variety over
C, that is k-jet spanned at the general point. The Gauss map of
order k is the rational morphism

X Gr(
(n+k

k

)
− 1,N)

γk

that assigns to a general point x ∈ X the k-th osculating space
Tk
X ,x of X at the point x.



Do properties of the Gauss map generalize to higher order?

If X is smooth then the Gauss map is finite and birational, unless
X is Pn ↪→ Pn.

Theorem (Di Rocco, Jabbusch, L. (2014))

If X is smooth and L is k-jet spanned, then the Gauss map of
order k is finite unless X is the k-th Veronese embedding of Pn.

If X furthermore is toric then the Gauss map of order k is
birational.

The general fiber of γ is a linear space

The fiber of the Gauss map of order 2 need not be a
Veronese embedding nor birational when finite. [Franco,
Ilardri (2001)], [Piene (1981)]
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Key points in the proof of the first part of the theorem

1. L is k-jet spanned ⇒ the Gauss map of order k is morphism
defined on all of X .

2. The spaces H0(X ,L ⊗ OX/m
k+1
x ) fit together as the fibers of

a rank
(n+k

k

)
vector bundle Jk(L ) called the k-th jet bundle.

3. The map obtained by composing the Gauss map of order k with
the Plücker embedding is in fact given by the global sections of
det(Jk(L )).

4. ”Some work” shows that if (X ,L ) 6= (Pn,O(k)) then
det(Jk(L )) is in fact ample.

5. If the map given by the global sections of det(Jk(L )) has a
fiber of positive dimension s then (det(Jk(L ))n−s · F = 0,
contradicting the ampleness of det(Jk(L )).
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the Plücker embedding is in fact given by the global sections of
det(Jk(L )).

4. ”Some work” shows that if (X ,L ) 6= (Pn,O(k)) then
det(Jk(L )) is in fact ample.

5. If the map given by the global sections of det(Jk(L )) has a
fiber of positive dimension s then (det(Jk(L ))n−s · F = 0,
contradicting the ampleness of det(Jk(L )).



Key points in the proof of the first part of the theorem

1. L is k-jet spanned ⇒ the Gauss map of order k is morphism
defined on all of X .

2. The spaces H0(X ,L ⊗ OX/m
k+1
x ) fit together as the fibers of

a rank
(n+k

k

)
vector bundle Jk(L ) called the k-th jet bundle.

3. The map obtained by composing the Gauss map of order k with
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One slide on toric geometry

A finite subset A = {u1, . . . ,uN} ⊆ Zn induces the following map

φA : TZn ∼= (C∗)n → PN

x 7→ (xu1 : · · · : xuN)

(C∗)2 → P5

(x , y) 7→ (1 : x : y : xy : x2 : xy2)

Recall that Im(φA) is an algebraic torus T〈A−A〉, where

A− A = {u − u′ ∈ M | u, u′ ∈ A} and Im(φA) is a toric variety,
XA, which has T〈A−A〉 as an open dense subset.
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The combinatorial description of toric varities allows for easy
description of the image and fiber of the Gauss map of order k . To
this end we need to define the following set of lattice points.

Definition
Let A = {u1, . . . ,un} ⊂ Zn be a set of lattice points. Then define

Bk =

ui1 + ui2 + . . .+ ui
(n+k

k )

∣∣∣∣∣∣
{ui1 ,ui2 , . . .ui(n+k

k )
} yeilds

a k-jet spanned embedding.





An example

It is straightforward to see that
any 2-jet spanned subset of the
lattice points to the right must
consist of the three blue and
three of the orange points.

(0, 0) + (0, 1) + (2, 0) + (1, 0) + (1, 1) + (1, 2) = (5, 4)

(0, 0) + (0, 1) + (2, 0) + (1, 0) + (1, 1) + (1, 3) = (5, 5)

(0, 0) + (0, 1) + (2, 0) + (1, 0) + (1, 2) + (1, 3) = (5, 6)

(0, 0) + (0, 1) + (2, 0) + (1, 1) + (1, 2) + (1, 3) = (5, 7)

Thus we have that B2 = {(5, 4), (5, 5), (5, 6), (5, 7)} and
〈B2 − B2〉 = Z〈(0, 1)〉.



An example

It is straightforward to see that
any 2-jet spanned subset of the
lattice points to the right must
consist of the three blue and
three of the orange points.

(0, 0) + (0, 1) + (2, 0) + (1, 0) + (1, 1) + (1, 2) = (5, 4)

(0, 0) + (0, 1) + (2, 0) + (1, 0) + (1, 1) + (1, 3) = (5, 5)

(0, 0) + (0, 1) + (2, 0) + (1, 0) + (1, 2) + (1, 3) = (5, 6)

(0, 0) + (0, 1) + (2, 0) + (1, 1) + (1, 2) + (1, 3) = (5, 7)

Thus we have that B2 = {(5, 4), (5, 5), (5, 6), (5, 7)} and
〈B2 − B2〉 = Z〈(0, 1)〉.



An example

It is straightforward to see that
any 2-jet spanned subset of the
lattice points to the right must
consist of the three blue and
three of the orange points.

(0, 0) + (0, 1) + (2, 0) + (1, 0) + (1, 1) + (1, 2) = (5, 4)

(0, 0) + (0, 1) + (2, 0) + (1, 0) + (1, 1) + (1, 3) = (5, 5)

(0, 0) + (0, 1) + (2, 0) + (1, 0) + (1, 2) + (1, 3) = (5, 6)

(0, 0) + (0, 1) + (2, 0) + (1, 1) + (1, 2) + (1, 3) = (5, 7)

Thus we have that B2 = {(5, 4), (5, 5), (5, 6), (5, 7)} and
〈B2 − B2〉 = Z〈(0, 1)〉.



Theorem (Fukuwara, Ito (2014) when k = 1 ),
(Di Rocco, Jabbusch, L. (2014) when k > 1)

Let A ⊂ Zn, πk : Zn → Zn/(〈Bk − Bk〉R ∩ Zn) be the natural
projection and assume that XA is generically k-jet spanned. Then
the following holds:

1. The closure γk(XA) of the Gauss map of order k is projectively
equivalent to XBk

.

2. Let F be an irreducible component of the general fiber of γk

with the reduced structure. Then the closure F is projectively
equivalent to Xπk (A). In particular the dimension of the general
fiber is n − rank〈Bk − Bk〉.
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The image of γ2 in our example

In our previous example we had
that
B2 = {(5, 4), (5, 5), (5, 6), (5, 7)}.

Thus the image of the Gauss map
of order 2 is projectively equivalent to
the (closure of the) image of the map

φB2 : (C∗)2 → P3

(x , y) 7→ (x5y4 : x5y5 : x5y6 : x5y7)

= (1 : y1 : y2 : y3)

By the toric dictonary the closure of the image of this map
corresponds to a rational normal curve of degree 3.
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The fiber of γ2 in our example

Furthermore 〈B2 − B2〉 = Z〈(0, 1)〉.
Hence
Z2/(〈B2 − B2〉R ∩ Z2) = Z(1, 0)
and π2 is the projection onto the first
coordinate axis.

By our main theorem
every irreducible component of the
fiber is projectively equivalent to the closure of

φπ2(A) : C∗ → P3

x 7→ (1, x , x2).

This is a rational normal curve of degree 2.
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The package LatticePolytopes for Macaulay2
Joint work with Gustav Sædén St̊ahl (KTH). Running the previous
examples in Macaulay2 looks as follows:

The package is part of the latest version of Macaulay2
(released June 10, 2015).
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