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What i1s the talk about

A classical problem — the moment problem — with
a decidedly non-classical twist motivated by

ap]
Wi

vlications to systems and control.

hat 1s new are certain rationality constraints

imposed by applications that alter the mathematical
problem and make it nonlinear.

A global-analysis approach that studies the class of
solutions as a whole.

A powerful paradigm for smoothly parametrizing,
comparing, and shaping solutions to specifications.
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The moment problem

Given cg,cq,...,Cp,
find dp such that

b
/ a(t)dp=ck, k=0,1,...,n

e Power moment problem: oy (t) = t*
e Trigonometric moment problem: ay(t) = e***, [a,b] = [—7, ]

e Nevanlinna-Pick interpolation: ay(t)

i
A0 ¥

Chebyshev Markov Lyapunov




Where do we find moment
problems in systems and control?

e spectral estimation
e speech synthesis ol
e system identification |

-40

* 1mage processing

e optimal control

e r1obust contro] |generator|, coupling | load

A 4

e model reduction

 model matching problems .

e simultaneous stabilization - K
e optimal power transfer




Moment problems don’t always
look like moment problems

Let us look at a few that don’t, and
return to them throughout the lecture



Ex. 1: Covariance extension

e ¢, = E{y(t+ k)y(t)}, where y stationary stochastic process

Co C1 Cn
PROBLEM: Given -
C1 Co "t Cp—1
co,C1,- .., Cn such that In= 1| . . . >0
Cn Cn-1 Co
Chb C1 C2
Find infinite extension _
C1 Co C1 ¢ o
C'n-{—l, c'n-.|.-2, ¢ o o SUCh that TOO — _ _ > O
02 c]. CO e o o

spectral estimation, speech synthesis, system identification



Ex 2: Circulant covariance extension

o ¢, = E{y(t+ k)y(t)}, where y periodic stochastic process on [0, 2]

CoN—k — Ck,

k=0,1,...,N

reciprocal process
(Jamison, Krener, Levy, Frezza,
Ferrante, Picci, Pavon, Carli)

PROBLEM: Given n < N and ¢y, cy,...,c, such that
T, > 0, find extension ¢, 1, ¢, 12,...,cn such that

Ton—1 =

Ch C1 C1
C1 Co C2
C1 C2 Co

circulant matix

Image processing
(in vector case)

(Carli, Ferrante,
Pavon, Picci)




Ex. 3: Robust control

|
IN

u d y PROBLEM: Find an internally
1G(2) stabilizing controller K such that
_ ~1
K(z) S = (I —-GK)

q has low degree and satisfies

—1S(2) -, the design specifications

sensitivity function o

S TR wl R

o
o
(4]
-
Y
[&)]
N
N
[&)]
w

Frequency (rad/s)



What do we want to achieve?

e A basic paradigm for smooth
parameterization of the whole class of
solutions 1n a systems-theoretical language

 Methods for determining solutions by
convex optimization

NB. This 1s a systematic design
methodology that 1s still in progress



Moment problem in the style of Krein

B finite-dimensional subspace of C|a, b

(g, 1,...,0q,) basisin P

Given c := (cg,c1,...,c,) € C*T,

find positive measure du such that

b
/ a(t)dp =c, k=0,1,...,n

B :={peP|P(t) :=Re(p) >0 Vtecla,b]} positive cone
closed convex

Suppose ‘P has a nonempty interior 3,



b
W:M+—>Cn+1, dur—c=|: ck:/ ag(t)du

space of positive measures

peP, pt) =37 prax(t) P(t) = Re{p(t)}

n

b
(c,p) :== Re {Z ckpk} = / P(t)dp >0 Vpe P,

k=0
‘ c € €, positive sequence ‘ M(M) C Ty

dual cone

¢ i={ceC"|(p) >0 VpePi}=(P)'

closed convex

THEOREM (Krein-Nudelman) (M) = €,

The moment problem is solvable if and only if c € €




Dual cones

Br={p=> prox € P
k=0
P(t) =Re{p(t)} 20, a<t<b}

positive cone

¢ ={ceC"™ |(c,p) >0 VpePi}

= (P)T positive sequences

(¢,p) :=Re {i Ckpk}
k=0



Trlgonometrlc moment problem

P = span{l,e’,..., "} ag(t) = etk
la,b] = [_W’W] _ ]
Co C1 R Cn
C1 Cp o Cp
C € €+ ” Tn — : . . . 2 0
_571 Cpn—1 - €0 i

Equivalent formulation:

~~
Given ¢ := (cp,c1,...,¢,) € C*1, find an
infinite extension ¢, 1,¢,19,... such that
f(z) =co+crz+coz? +c32 +--- analytic in D

is positive real (Carathéodory function) Re{f(2)} >0in D



Spectral estimation as a
trigonometric moment problem

y stationary process
w(z) [  with spectral density

. : \%
white noise —»

E{v(s)v(t)} = dst (I)(ew) _ ‘w(ew)‘2
Gp = % _7; e (eVdh = E{y(t + k)y(t)}
= lim ;Nz—:kyt LYt Yo, Y1,Y25-- - YN
Mo N LS ' where observed data
For small £ we can use Hence we can only estimate
the ergodic estimate C0sC15C2y vy Cpy NN

5 N
Ck = N+1 Z Yt+kYt / o)~ =cp, k=0,1,...,n

- 21




Ex: Modeling speech

; — ] |

AN B R A n |
excitation speech MMNW\WNM N

signal
on each (30 ms) subinterval observation: yo,¥1,...,YN
w(z) constant, y stationary N =~ 250

N—k
T 1
/ ezkeduzckizN—szHk?Jt, k=0,1,...,.n n=10
—® t=0

B consists of trigonometric polynomials

P(6) = Re{p(0)}

B iov12 A0 P(0) — Re
=N =0 meenaes

rational positive measure



Cellular telephone:

Pn
du = —dt ‘
o (e¥)]*

¢n(z) mn:th Szegb polynomial

orthogonal on the unit circle

Pt)=pn Q) = |pn(e)|”

o(z) stable polynomial spectral

factor: |a(eit)|2 = P(t) ‘ 0(2) = \/Pn2" /'\\

Is there a solution dy for each

choice of spectral zeros? 5 “
YES (Georgiou 1983) & j

FFT in blue envelope in purple

spectral zeros \ /

Unique? (Georgiou’s conjecture)
Well-posed?

YES (Byrnes, Lindquist
Gusev, Matveev 1993)




A w(z) with other
spectral zeros, but
with the same degree

zeros/poles

envelope




The moment problem for
rational measuresS  Byres- L

DEF. PE€P, p=>_oPrax polynomial in P
P = Re(p)
P/Q, where p,q € 3 real rational function for

P(t)
Q(t)

rational positive measure

R+={dﬂ|dﬂ— ——~dt, P,q€m+}CM+

b
/ukdﬂzck; k=0,1,...,n (T)

Find dy € M satisfying (1) linear problem
Find dp € R+ satisfying (1) nonlinear problem



€, interior of €, c € €4 strictly positive
sequence

From now on we assume that all p € %3 are Lipschitz continuous.

THEOREM. M(R4) = QOZ+. In other words, the moment problem
for rational measures is solvable if and only if ¢ is strictly positive.

For each p € ‘i?_,_ , define
Py(p) ={dp € Ry | p € P4 fixed}

THEOREM. For each p € ‘3034_, M(P+(p)) = Qoi+. In other words,

the moment problem for rational measures with fixed p €
is solvable if and only if ¢ is strictly positive.

We want to show that there is a unique solution for each p € P .



A Dirichlet principle

For fixed p € B, consider the moment equations

> P
f,f(q) ::ck—/ O{kédtZO, k:O,l,...,n,

where f? : ‘ih_ — Qol_|_.

Dirichlet Principle: | fz (¢) =0, k=0,1,...,n|are the critical

point equations for some smooth function J, : P — R,

which has a unique minimum and no other critical points.

Define a 1-form on ‘,]34_: w = Re {Z f;f(Q)ko}
k=0




n b
P o
w = Rez crdqr — / édet B open

k=0 and convex

b
dw = /a éd@ A dQdt =0 ‘ w closed ‘ w exact

By the Poincaré Lemma, we can integrate along any curve:

Jp(q1) : /qo (Rechqu—/ gd@dt) ‘

(modulo a constant

b
Jp(q) = (¢, q) —/ Plog Qdt

of integration)

* This 1s a strictly convex functional



strictly convex function

b
qua.u(q)=<c,q>—/ PlogQdt| ;. ¢ R

Moment equations:

o3, _

b p
— =Ci — up,—=dt=0, k=0,1,...,n
g " /a “Q (1)

We have already shown that the moment equations (1) have

a solution ¢ € ’13+ for all (¢, p) € Qﬁ.,. X ‘}3+ Since J,, is strictly
convex, ¢ is a unique minimum. Hence (f) has a unique solution.

THEOREM. Let (¢,p) € €4 X B4+, and set P := Re{p}. Then
the functional J, has a unique minimizer ¢ € B;: the unique

solution of the moment equations (1). If p € ‘33+, then ¢ € ‘,'Eh_.




A global analysis approach

Object: Finding a solution that best satisfies additional
design specifications (without increasing the complexity)

Complete class of
solutions satisfying a |«

smooth

bijection

rationality constraint

one-to one

Q

e Why is bijection important?

e How do we choose P?

» parameters:

Set of tuning

spectral zeros (P)

I

For a given P,
find unique solution
by optimization




EXAMPLE. B = span{l,e%,...,e"t}

The solutions du € R4 form a manifold of dimension 2n.

A foliation with one leaf for each
choice of p € P, (Kalman filtering)

2/ 1\ \‘\\\
7/ / DN
A foliation wi'gh one leaf for each - < ( ( ) ) > -

choice of ¢ € €, (normalized)

N [ [/
N\ | [/

THEOREM. The two foliations

min J(g)
intersect transversely so that each qeP+ ‘
leaf in one meets each leaf in the

unique solution dy = =dt

Vil
Q

other in exactly one point.




spectral

Primal problem

ZEeros

b
(P) I,(d)= / Plog ®dt — max
b ¢ Lagrange
subject to / up®dt = ¢y, - multipliers

THEOREM. (P)

®— o Qi=Refd), min J,(0)

Dual problem:

where ¢ € ‘B is the unique minimizer of J,.

maximum entropy

Alternative cost function: soliitioffor Pr— 1

b .
D(P||®) = / Ku -
(P @) / Plog —dt — min lIback-Leibler
- 1 divergence




Circulant covariance extension

C2N -k — Ck, kSN

Br(N)={peP|P(*/N)>0, k=0,1,...,2N} D P,

C(N)=P+(N)' CCy C(N) — &y as N — oo
P sum of Dirac
R(N) ={dp e My | du= édv, P,a € P+(N)| | oocires
v
PROBLEM. Given cg,cq,...,Cn I
(n < N) find dp € R(N) such that —
/ eiktdu:ck,kzo,l,...,n (1) _—_ "
For each (¢,p) € €. (N) x P4 (N), there is N 27

a unique q € P, (N) such that (1) -
holds. It is the unique minimizer of |J,(q) = (c,q) — / Plog @ dv.

— T




Image processing

2N
y(t) reciprocal m-vector process
cr = E{y(t+k)y®)"} mxm m
C2N—-k = CkTa k < N
For scalar P there is a matrix version of v(0) (1) y(@N —1)
= — Pl dv.
Ip(9) = {e.0) /_,r 0g @ dv original below

Francesca Carli, Augusto Ferrante, ‘ -
Michele Pavon, and Giorgio Picci

reconstructions with P =1

(maximum entropy) and n = 1
(m =125, 2N — 1 = 175)




Nevanlinna-Pick interpolation

it
ak(t)zeit_'_zk, k=0,1,...,n 20,21y--+52n €D
€~ %k ) (distinct)
C; + Ck
ce ” P = llj—zﬂk]-k 020 Pick matrix
Js K=
/
T~

Given zg, 21,..., 2, € D (distinct), find a

Carathéodory function f such that
f(zk)zck, kZO,l,...,’I’L

analytic in D
i I Re{f(2)} >0in D
/ ap(t)Re{f(e)}dt =cx, k=0,1,...,n

— T

dp = Re{f(e"}dt € R, “ deg f <n




A tunable high resolution
spectral estimator (THREE)

Zoom into a selected spectral band > Byrnes-
by moving interpolation points from {3 Georgiou-
the origin closer to the unit circle. 2 L
—G@ [T X o)
- -
_y_, GZ(Z) X o e 2 9
o f(zk) = wi == (1 — i) E{zj}
observed ;
PRI e T % E{z(t)2(t)} = rluk tw;]
T *k<L | k=0

Two sets of tuning parameters: e filter bank poles
e spectral zeros (P)



Estimation of spectral
lines 1n colored noise

separation between - N&M

spectral lines = 0.11

five runs superimposed -

f)eriodogram (FFT) THREE (default setting)

separation between w % SQJ K

spectral lines = 0.02 -




Loop shaping in robust control

u 5 d y © Internal stability requires
1642) S analytic in D¢ := {z | 2| > 1}
K(z) S(zx) = 0 at all unstable poles of G
S(z;) =1 at all zeros of G in D¢
i. S(z) A e Disturbance attenuation requires
S=(1-GK)! 1Slloo <
Sensitivity function e We want deg S to be small
ya

There is a minimum bound 7, but we
choose 7 > 7opt and define f(z) := %S(z‘l)



Nevanlinna-Pick interpolation
for Schur functions

f(zx) =wg, k=0,1,...,n

class of Schur functions &

The interpolants of degree at most n are
parameterized by the p € PB4 in a 1 — 1 fashion

I??é‘ Ky (f) has unique

(P) solutionf
subject to f(zx) =ck, k=0,1,...,n 5
F:p—f

where K,(f) =

n PG’B+~
/

Plog (1 —|f(e")|?) dt deg f <n

— T




1
z—2

S(2) = 0, S(c0) = 1

Example G(z) =

Find all § of degree at most n = 1.

— 9 _nesp
‘ S(z):z , - 1<a<1l £,

Z — Qa g

¥ = 2.5 > Yopt = min ||S||cc = 2

There is exactly one solution for each

p € B represented by its (spectral) zero.s-

None of these solutions satisfies
the design specifications /
Enlarge the family of parameters 3,
B :={p=pip2 [ 1 € P,
degp2 < m,Re{p} > 0}

Bode Diagram

c
(@]
©

=

Magnitude (db)

0

O_

5+

10'

Anéle (6)



Shaping by model reduction

F: p+— f unique interpolant maximizing of K, Karlsson -
Georgiou - L
interpolant of high or -1
infinite degree but with g > mE Ly
|g| of desired shape
diffcult approxu'natlon
: : by quasi-convex
approximation .
optimization
problem ! - !
interpolant of degree f < p € Pm

at most n +m with a
shape close to that of g P € Pm ‘ degf <n+m



Example G(z) =

z—2

For internal stability:
f = 8/~ satisfies

f(0) =0.4 and f(0.5) =0

Magnitude (db)

Find interpolant g with

. . 0 05 1 15 2 25 3
|g| as 1n ﬁgure (not ratlonal) Frequency (rad/s)

10

II = Re{n} := (|g|_2 - 1) € F1(g) °

L=
-
|-
L -
, -

6,

Use quasi-convex optimization
to find p € P, (m=0, 2 and 4)
such that P is close to II

Caoo e S1 u
_27”\‘”" ---83
Sensitivity functions SRt —S |
-6 . ! ‘ . .

SN
T

Magnitude (db)
N

of degrees 1, 3 and 5 o o5 1 15 2 25 3

Frequency (rad/s)



A generalization of THREE

stationary process Y X
o —1 Gz [— Ele@®z®)}=3

G(z)=(I—-2zA)"'B

spectral density @

T

(P)  min D(P|®) subject to GPG*df = X
PecCy

—T

A P Kullback-Leibler
where D(P|®) :/ Plog —dt

o ) divergence

(D) min Jp(A)| where J,(A) =tx(EA) — [ PlogG*AGdf

— T

Ly={A€c€rangel | Q :=G"AG >0} where I': &+ ¥



Multi-variable case

D(P||®) = / i (PliogP—log®))dy  O-ISUmANEE
g generalization of
works well in the multi-variable Kullback-Leibler
case for scalar P divergence

Ferrante, Pavon and Ramponi have suggested
replacing D(P||®) by the Hellinger distance:
dH((I),P) = inf{”Wp — Wq)”g ‘ WPW;S — P, W@Wq’; = (I)}

x10
2*

—— Error norm, Hellinger

1:3 EBA —— Error norm, PEM
0.5]] /‘—/\’\'\\N
L | \ ] J ~ ; S\ S — —

0 0.5 1 1.5 2 2.5 3

x 10*

25LM — Error norm, Hellinger
1: — Error norm, N4SID

1

05 | | N L

0 0.5 1 1.5 2 2.5 3




Some other problems

e Prediction-error approximation / " (®Q — log Q) df — min
\

Given spectral density @, find = Y )
approximant ® in the model J1(q) = (¢, q) — / log Qd#
class @ = Q~1, where g € P..

where ¢, = [ e 9®df

Blomqvist - Wahlberg prefiltering for nontrivial P

e Covariance and cepstral matching = -
eikoEdB =c
Given ¢g,¢1,...,¢, and o1, ...0,, . Q k
find p, q € B such that ~ x p
- : e*¥log —df = o
Byrnes - Enqvist - L, Enqvist, o & O k

Georgiou - L, Avventi - Enqvist -

e Operator Theory = Byrnes - Georgiou - Lindquist - Megretski



Conclusions

An enhanced theory for generalized moment problems
that incorporates rationality constraints prescribed
by applications.

* Complete parameterizations of solutions with
smooth tuning strategies.

* A global analysis approach that studies the class of
solutions as a whole.

* Convex optimization for determining solutions.






