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Abstract. The trigonometric moment problem is a classical moment problem with numerous applica-
tions in mathematics, physics, and engineering. The rational covariance extension problem
is a constrained version of this problem, with the constraints arising from the physical re-
alizability of the corresponding solutions. Although the maximum entropy method gives
one well-known solution, in several applications a wider class of solutions is desired. In a
seminal paper, Georgiou derived an existence result for a broad class of models. In this
paper, we review the history of this problem, going back to Carathéodory, as well as ap-
plications to stochastic systems and signal processing. In particular, we present a convex
optimization problem for solving the rational covariance extension problem with degree
constraint. Given a partial covariance sequence and the desired zeros of the shaping filter,
the poles are uniquely determined from the unique minimum of the corresponding opti-
mization problem. In this way we obtain an algorithm for solving the covariance extension
problem, as well as a constructive proof of Georgiou’s existence result and his conjecture,
a generalized version of which we have recently resolved using geometric methods. We also
survey recent related results on constrained Nevanlinna–Pick interpolation in the context
of a variational formulation of the general moment problem.
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1. Introduction. In [16] a solution to the problem of parameterizing all rational
extensions of a given window of covariance data was given. This problem has a long
history, with antecedents going back to potential theory in the work of Carathéodory
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[19, 20], Toeplitz [72], and Schur [69] and continuing in the work of Kalman [43],
Georgiou [28], Kimura [46], and others. It has been of more recent interest due
to its significant interface with problems in signal processing and speech processing
[24, 18, 56, 44] and in stochastic realization theory and system identification [4, 73, 53].
Indeed, the recent geometric solution to this problem extends a result by Georgiou
and confirms one of his conjectures [27, 28] in a stronger form, viz. that the solution
exists, is unique, and depends smoothly on the problem data. In other words, the main
result of [16] is that the problem of determining a shaping filter from its zeros and a
covariance window is well-posed, in the sense of Hadamard. This result has also shed
some light on the stochastic (partial) realization problem through the development
of an associated Riccati-type equation, whose unique positive semidefinite solution
has as its rank the minimum dimension of a stochastic linear realization of the given
rational covariance extension [13]. In both its form as a complete parameterization of
rational extensions to a given covariance sequence and as an indefinite Riccati-type
equation, one of the principal problems which remained open was that of developing
effective computational methods for the approximate solution of this problem. In [10],
motivated by the effectiveness of interior point methods for solving nonlinear convex
optimization problems, we recast the fundamental problem as such an optimization
problem. That paper forms the basis of the current paper, which we have expanded
to survey recent results and to be more accessible to a wider audience.

In section 2 we describe the history and the principal results for the rational co-
variance extension problem. We also set the notation we shall need throughout. The
only solution to this problem for which there have been simple computational proce-
dures is the so-called maximum entropy solution, which is the particular solution that
maximizes the entropy gain. In section 3, motivated by ideas from signal processing,
we give a recent generalization [6] of the maximal entropy gain to a form that will
generate all solutions, and we demonstrate that the infinite-dimensional optimization
problem for determining such a solution has a simple finite-dimensional dual. This
motivates the introduction in section 4 of a nonlinear, strictly convex functional de-
fined on a closed convex set and naturally related to the covariance extension problem.
We first show that any solution of the rational covariance extension problem lies in
the interior of this convex set and that, conversely, an interior minimum of this convex
functional will correspond to the unique solution of the covariance extension problem.

Concerning the existence of a minimum, we show that this functional is proper
and bounded from below, i.e., that the sublevel sets are compact. From this, it follows
that there exists a minimum. Since uniqueness of the minimum follows from strict
convexity of the functional, the central issue which needs to be addressed in order to
solve the rational covariance extension problem is whether, in fact, this minimum is
an interior point. Indeed, our formulation of the convex functional, which contains
a barrier-like term, was inspired by interior point methods. However, in contrast
to interior point methods, the barrier function we have introduced does not become
infinite on the boundary of our closed convex set. Nonetheless, we are able to show
that the gradient, rather than the value, of the convex functional becomes infinite on
the boundary. The existence of an interior point which minimizes the functional then
follows from this observation.

Our interest in this convex optimization problem is, in fact, twofold: as a starting
point for the computation of an explicit solution and as a means of providing an
alternative proof of the rational covariance extension theorem. In section 5, we include
a new construction [15] of a closed 1-form from the geometric formulation of the
rational covariance extension problem and show that it must be exact. We then
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use the resulting path integral to give an alternative derivation of the dual of the
primal problem given by the generalization of the maximal entropy gain in section 3.
We thereby prove that the convex minimization problem is well-posed in the sense
of Hadamard and then apply these convex minimization techniques to obtain well-
posedness of the rational covariance extension problem.

In section 6, we report some computational results and present some simulations.
In section 2, we note that the rational covariance extension problem is a classical
moment problem, with some complexity constraints. In section 7, motivated by [10]
and the recent convex optimization results [8] for Nevanlinna–Pick interpolation with
degree constraints, we show how to obtain a convex functional for the generalized
moment problem. Following [15], the functional is constructed as a path integral of
an exact 1-form derived from the general moment problem, specializing to the 1-form
in section 5 in the case of the trigonometric moment problem. We conclude with a
discussion of the results and applications of [8, 9] on the constrained Nevanlinna–Pick
interpolation problem.

2. TheRational Covariance Extension Problem. It is well known that the spec-
tral density Φ of a purely nondeterministic, second-order, stationary random process
{y(t)} with zero mean is given by the Fourier expansion

(2.1) Φ(eiθ) =
∞∑

−∞
cke

ikθ

on the unit circle, where the covariance lags

(2.2) ck = E{yt+kyt}, k = 0, 1, 2, . . . ,

are the Fourier coefficients

(2.3) ck =
1
2π

∫ π

−π

eikθΦ(eiθ)dθ.

In spectral estimation [18], identification [4, 53, 73, 22, 57], speech processing
[24, 56, 58, 66], and several other applications in signal processing and systems and
control, we are faced with the inverse problem of finding a spectral density which is
coercive, i.e., positive on the unit circle, given only

(2.4) c = (c0, c1, . . . , cn),

which is a partial covariance sequence positive in the sense that the Toeplitz matrix

(2.5) Tn =



c0 c1 · · · cn

c1 c0 · · · cn−1
...

...
. . .

...
cn cn−1 · · · c0




is positive definite.
In fact, the covariance lags (2.2) are usually estimated from an approximation

1
N − k + 1

N−k∑
t=0

yt+kyt
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of the ergodic limit

ck = lim
T→∞

1
T + 1

T∑
t=0

yt+kyt,

since only a finite string

(2.6) y0, y1, y2, y3, . . . , yN

of observations of the process {y(t)} is available, and therefore we can only estimate
a finite partial covariance (2.4), where n << N .

The corresponding inverse problem is a version of the trigonometric moment prob-
lem [1, 34]: Given a sequence (2.4) of real numbers satisfying the positivity con-
dition Tn > 0, find a coercive spectral density Φ such that (2.3) is satisfied for
k = 0, 1, 2, . . . , n. Of course there are infinitely many such solutions, and we shall
shortly specify some additional properties which we would like the solution to have.

The trigonometric moment problem, as stated above, is equivalent to the
Carathéodory extension problem to determine an extension

(2.7) cn+1, cn+2, cn+3, . . .

with the property that the function

(2.8) f(z) =
1
2
c0 + c1z

−1 + c2z
−2 + · · ·

is strictly positive real, i.e., is analytic in the complement of the open unit disc (so
that the Laurent expansion (2.8) holds for all |z| ≥ 1) and satisfies

(2.9) f(z) + f(z−1) > 0 on the unit circle.

In fact, given such an f ,

(2.10) Φ(z) = f(z) + f(z−1)

is a solution to the trigonometric moment problem. Conversely, any coercive spectral
density Φ uniquely defines a strictly positive real function f via (2.10). For later
reference, we note that a rational strictly positive real function is always stable and
minimum-phase, i.e., both its poles and its zeros are located in the open unit disc. In
fact, if f is strictly positive real, then so is 1/f .

These problems are classical and go back to Carathéodory [19, 20], Toeplitz [72],
and Schur [69] at the beginning of the 20th century. In fact, Schur parameterized
all solutions in terms of what are now known as the Schur parameters or, more com-
monly in the circuits and systems literature, as the reflection coefficients, and which
are easily determined from the covariance lags via the Levinson algorithm [65]. More
precisely, modulo the choice of c0, there is a one-to-one correspondence between infi-
nite covariance sequences c0, c1, c2, . . . and Schur parameters γ0, γ1, . . . such that

(2.11) |γt| < 1 for t = 0, 1, 2, . . . ,

under which partial sequences (2.4) correspond to partial sequences γ0, γ1, . . . , γn−1 of
Schur parameters. Therefore, covariance extension (2.7) amounts precisely to finding
a continuation

(2.12) γn, γn+1, γn+2, . . .
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of Schur parameters satisfying (2.11). Each such solution is only guaranteed to yield
an f which is meromorphic.

In the first half of the 20th century, positive real functions were also intensively
studied in circuit theory as the driving point impedance of RLC circuits [36] where,
however, these functions are rational with degree equal to the number of active com-
ponents, i.e., inductors and capacitors. Generalizing these observations, rationality
of a transfer function became a key concept in the development of finite-dimensional
models (or realizations) in systems theory in the 1950s and 1960s. By 1968, Kalman
[40] formulated the (deterministic) partial realization problem, which was to describe
all rational functions of a bounded (or of minimal) degree which match a given window
of Laurent coefficients.

In contrast, the rational covariance extension problem asks for a rational solution,
of bounded degree, which is also positive real. Indeed, suppressing the rationality leads
to the classically solved Carathéodory extension problem, while suppressing positivity
leads to the deterministic partial realization problem, a now classical solved problem
in mathematical systems theory [40, 41, 42, 67, 33]. The simultaneous imposition of
rationality and positivity leads to a nontrivial and highly nonlinear problem, since
generally there is no method to see which choices of free Schur parameters will yield
rational solutions of at most degree n. Indeed, this amounts to explicitly describing
a 2n-dimensional submanifold of the Hilbert cube!

In a seminal paper in 1980, Kalman [43] formulated the problem of parameterizing
all such filters in terms of finding solutions of the partial stochastic realization problem.
Indeed, a choice of a rational positive real function f of at most degree n is equivalent
to a choice of a rational spectral density Φ of at most degree 2n. If f matches
the covariance window, then the unique rational, stable, minimum-phase function w
having the same degree as f and satisfying

(2.13) w(z)w(z−1) = Φ(z)

in some annulus containing the unit circle is the transfer function of a shaping fil-
ter, which shapes white noise into a random process with the first n + 1 covariance
lags given by (2.4); see, e.g., [16, 13] for more details. In this way, the problem of
parameterizing all such shaping filters yields all solutions of the partial stochastic re-
alization problem. In 1982, it was recognized [24] that existing methods of designing
such shaping filters correspond to certain choices in the classical moment problem of
Carathéodory.

One such choice leads to a particular solution which is ubiquitous because of its
simplicity and ease of computation. Setting all free Schur parameters (2.12) equal to
zero, which clearly satisfies the positivity condition (2.11), yields a rational solution

(2.14) Φ(z) =
1

a(z)a(z−1)
,

where a(z) is a polynomial given by

(2.15) a(z) = a0z
n + a1z

n−1 + · · · + an (a0 > 0),

which is easily computed via the Levinson algorithm [65]. This so-called maximum
entropy solution is an all-pole or AR solution, and the corresponding shaping filter

(2.16) w(z) =
zn

a(z)
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Fig. 2.1 Spectral envelope of a maximum entropy solution corresponding to n = 6.

has all its zeros at the origin. The term “maximum entropy” will be explained in
section 3.

However, in many applications a wider variety in the choice of zeros in the spec-
tral density Φ is required. To illustrate this point, consider in Figure 2.1 a spectral
density in the form of a periodogram determined from a speech signal sampled over
30 milliseconds (in which time interval it represents a stationary process) together
with a maximum entropy solution corresponding to n = 6. As can be seen, the lat-
ter yields a rather flat spectrum which is unable to approximate the valleys, or the
“notches,” in the speech spectrum. For this reason, in speech synthesis the maxi-
mum entropy solution is known to result in “machine” speech which can sound flat.
This is a manifestation of the fact that all the zeros of the maximum entropy filter
(2.16) are located at the origin and thus do not give rise to a frequency where the
power spectrum is small. For this reason, by the 1970s it was widely appreciated in
the signal and speech processing community that very high quality regeneration of
human speech required the design of filters having nontrivial zeros [5, p. 1726], [58,
pp. 271–272], [66, pp. 76–78]. Indeed, while all-pole filters can reproduce many human
speech sounds, the acoustic theory teaches that nasals and fricatives require both ze-
ros and poles [58, pp. 271–272], [66, p. 105]. In fact, the 30 ms speech segment used
in producing Figure 2.1 is acquired during the formation of the voiced nasal [ng]. For
such a signal, even a maximum entropy solution of degree as high as 20 will fail to
model the deep valley in the spectrum, as seen in Figure 2.2.

Therefore, one is interested in shaping filters

(2.17) w(z) =
σ(z)
a(z)

,

for which (2.15) and

(2.18) σ(z) = zn + σ1z
n−1 + · · · + σn

are Schur polynomials, i.e., polynomials with all roots in the open unit disc. While
the maximum entropy solution corresponds to the default choice σ(z) = zn, we are
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Fig. 2.2 Spectral envelope of a maximum entropy solution corresponding to n = 20.

particularly interested in how much flexibility there is in the choice of zeros and poles
while matching the covariance window.

Not surprisingly, the first breakthrough, after the maximum entropy method,
used nonlinear methods. In 1983, using degree theory [27] (see also [28]), Georgiou
proved that for any prescribed zero polynomial σ(z) there exists a shaping filter w
and conjectured that this correspondence would yield a complete parameterization of
all rational solutions of at most degree n, i.e., that the correspondence between f and
a choice of positive sequence (2.4) and a choice of Schur polynomial (2.18) would be
a bijection.

A decade later, this long-standing conjecture was generalized and resolved in [16].
The conjecture was generalized by insisting, following Hadamard, that the problem
be well-posed; i.e., that for each σ a shaping filter w exists, is unique, and depends
smoothly on the coefficients of σ(z) and on the covariance window. This conjecture
was then verified by proving the following theorem as a corollary of a more general
theorem asserting that fixing σ and fixing the covariance window, respectively, define
the leaves of two foliations on the space of all rational positive real functions of degree
at most n, and that these foliations are complementary. This enables one to refine
the degree theoretic calculations to see that the correspondence between σ and w is
an analytic diffeomorphism.

Theorem 2.1 (see [16]). Given any partial covariance sequence (2.4) and Schur
polynomial (2.18), there exists a unique Schur polynomial (2.15) such that (2.17) is
a minimum-phase spectral factor of a spectral density Φ satisfying

Φ(z) = f0 +
∞∑

k=1

fk(zk + z−k)

in some annulus containing the unit circle, where

fk = ck for i = 0, 1, . . . , n.

In particular, the solutions of the rational positive extension problem are in one-to-one
correspondence with self-conjugate sets of n points (counted with multiplicity) lying in
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the open unit disc, i.e., with all possible zero structures of shaping filters. Moreover,
this correspondence is bianalytic.

Since this “zero-assignability” theorem appeared, there have been several en-
hancements and simplifications. In [13] we connected this solution to a certain Riccati-
type matrix equation that sheds further light on the structure of the partial stochastic
realization problem. An alternative proof of the theorem, based on Hadamard’s global
inverse function theorem, was given in [12]. A simplified proof that this correspon-
dence is a homeomorphism was developed in [11].

All these proofs are nonconstructive. The first constructive algorithm which,
given the partial covariance sequence (2.4) and the desired zero polynomial (2.18),
computes the unique pole polynomial (2.15) was given in [10], on which this paper
is based. Since then, several applications of convex optimization were developed
for problems involving interpolation by classes of rational functions with a degree
constraint [6, 8]. Extensions of both the geometric and the optimization approaches
to the rational Nevanlinna–Pick interpolation problem will be discussed in section 7
in the context of the general moment problem.

In [10] the convex optimization problem was to minimize the value of the function
ϕ : R

n+1 → R ∪ {∞}, defined by

ϕ(q0, q1, . . . , qn) = c0q0 + c1q1 + · · · + cnqn

− 1
2π

∫ π

−π

logQ(eiθ)|σ(eiθ)|2dθ(2.19)

over all q0, q1, . . . , qn such that

(2.20) Q(eiθ) = q0 + q1 cos θ + q2 cos 2θ + · · · + qn cosnθ ≥ 0 for all θ.

Using this convex optimization problem, a sixth-degree shaping filter with zeros at
the appropriate frequencies can be constructed for the speech segment represented by
the periodogram of Figure 2.1. In fact, Figure 2.3 illustrates the same periodogram
together with the spectral density of such a filter. As can be seen, this filter yields a
much better description of the notches than does the maximum entropy filter.

3. The Generalized Maximum Entropy Problem. Before turning to the main
topic of this paper, the convex optimization problem for solving the rational covariance
extension problem for arbitrarily assigned zeros, we shall provide a motivation for this
approach in terms of entropy maximization.

This circle of ideas is closely connected to prediction theory. Given the stationary
random process {y(t)} defined above, let ŷ(t) be the one-step predictor, i.e., the linear
least-squares estimate of y(t) given y(0), y(1), . . . , y(t−1). It is well known and follows
from the derivation of the Levinson algorithm that the square of the prediction error,
i.e., rt = E{|y(t)− ŷ(t)|2}, can be expressed in terms of the Schur parameters via the
recursion

rk+1 = rk(1 − γ2
k), r0 = c0.

Here we shall be interested in the steady-state prediction error

(3.1) r∞ = c0

∞∏
k=0

(1 − γ2
k).
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Fig. 2.3 Spectral envelope of degree n = 6 obtained with appropriate choice of zeros.

On the other hand, it is well known (see, e.g., [35, p. 74]) that this prediction error
can also be expressed by the Szegö formula

(3.2) r∞ = exp
{

1
2π

∫ π

−π

log Φ(eiθ)dθ
}

.

In this context, the maximum entropy extension discussed in section 2 is the “most
random” solution to the covariance extension problem in the sense that it maximizes
the prediction error r∞. In fact, from (3.1) we see that

log r∞ = log c0 + log
n−1∏
k=0

(1 − γ2
k) + log

∞∏
k=n

(1 − γ2
k),

where the first two terms are fixed, and the last term will depend on the particular
choice of extension (2.12). This variable term is always nonpositive and attains its
maximal value zero when choosing the free Schur parameter equal to zero. Hence the
maximum entropy solution is the extension which maximizes log r∞ or, equivalently,

(3.3)
1
2π

∫ π

−π

log Φ(eiθ)dθ,

as can be seen from (3.2).
More generally, by Theorem 2.1 there is exactly one solution for each choice

of numerator polynomial σ(z). We claim that this solution can be determined by
maximizing the functional

(3.4)
1
2π

∫ π

−π

log Φ(eiθ)
∣∣σ(eiθ)

∣∣2 dθ.

As it turns out, there are compelling reasons for this choice from a signal process-
ing perspective. Indeed, another way of representing the distribution of the stationary
process is via the so-called cepstrum

(3.5) log Φ(eiθ) = v0 +
∞∑

k=1

vk

(
eikθ + e−ikθ

)
.
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Fig. 3.1 Cepstrum of voice speech signal.

The Fourier coefficients

(3.6) vk =
1
2π

∫ π

−π

eikθ log Φ(eiθ)dθ

are known as the cepstral coefficients [64]. The basic observation which motivates
this construct is the nature of the frequency response of a shaping filter driven by an
excitation signal. As the Fourier transform of a convolution, the contributions of the
shaping filter and the excitation signal to the spectral estimate are multiplicative. On
the other hand, if we consider the cepstrum, the contribution of the excitation signal
is additively superimposed on that of the shaping filter.

For example, Figure 3.1 shows the estimated cepstral coefficients of a frame of
voiced speech. A contribution of the excitation signal is seen as spikes at multiples of
the pitch period, corresponding to approximately n0 = 57 in Figure 3.1. The spectral
envelope can be estimated from a finite window

(3.7) v0, v1, . . . , vn

of cepstral coefficients, where n < n0.
In this context, the entropy gain (3.3) is precisely the zeroth cepstral coefficient

v0 =
1
2π

∫ π

−π

log Φ(eiθ)dθ.

However, in cepstral analysis, one is interested not only in v0 but in a finite window
(3.7) of cepstral coefficients. It is therefore natural to maximize instead a “positive”
linear combination

(3.8) p0v0 + p1v1 + · · · + pnvn

of the cepstral coefficients in the window (3.7). In view of (3.6), this may be written
as a generalized entropy gain

(3.9)
1
2π

∫ π

−π

P (eiθ) log Φ(eiθ)dθ,
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where P is the symmetric pseudopolynomial

(3.10) P (z) = p0 +
1
2
p1(z + z−1) + · · · + 1

2
pn(zn + z−n),

which we take to be positive definite on the unit circle, following [6, 7]. In particular,
we see that if we take P to be

(3.11) P (z) = σ(z)σ(z−1),

we obtain (3.4). We note that for σ(z) = zn, the numerator polynomial of the
maximum entropy solution, the generalized entropy gain (3.4) reduces to the entropy
gain (3.3).

To formulate a constrained optimization problem, we begin by setting up the
appropriate spaces. To this end, first recall that

(3.12) Φ(eiθ) =
1
2

[
f(eiθ) + f(e−iθ)

]
= Re{f(eiθ)},

where the (proper, rational) positive real function

f(z) =
1
2
f0 + f1z

−1 + f2z
−2 + · · ·

is analytic and bounded in the complement of the open unit disc and hence belongs to
the Hardy space H∞ with respect to this region. We denote by C the Carathéodory
class of real functions in H∞ that take values with a nonnegative real part in the
complement of the closed unit disc. Let C+ be the subclass of all f ∈ C that are
coercive in the sense that, for some ε > 0, Re{f(eiθ)} ≥ ε for all θ ∈ [−π, π]. Then
f ∈ C+ if and only if f−1 ∈ C+.

Then introducing the functional ψ : C+ → R, defined by

(3.13) ψ(f) =
1
2π

∫ π

−π

log
[
Re f(eiθ)

] ∣∣σ(eiθ)
∣∣2 dθ,

we consider the relaxed constrained optimization problem

(3.14) max
f∈C+

ψ(f)

subject to the constraints

(3.15)
1
2π

∫ π

−π

eikθRe
{
f(eiθ)

}
dθ = ck for i = 0, 1, . . . , n.

This optimization problem is relaxed in that the class C+ contains not only rational
functions of degree at most n, but also rational functions of higher degree as well as
nonrational functions. As it turns out, by analyzing the dual problem, one can see
that the optimal solution is rational of degree at most n. In fact, we have the following
theorem, which implies the result reported in [10] and is a variation of more recent
applications of convex optimization to interpolation problems. (See [6, Theorem 3.3]
and [8, Theorem 4.1].)

Theorem 3.1. The optimization problem to maximize (3.13) over C+ subject
to the constraints (3.15) has a unique optimal solution f̂ ∈ C+, and it is rational of
degree less than or equal to n. The corresponding shaping filter is given by

w(z) =
σ(z)
a(z)

,
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where

(3.16) a(z) = a0z
n + a1z

n−1 + · · · + an (a0 > 0)

is the unique stable polynomial (all roots in the open unit disc) satisfying

(3.17) Re f̂(eiθ) =

∣∣σ(eiθ)
∣∣2

|a(eiθ)|2
.

This is an optimization problem in an infinite-dimensional space. The number
of constraints, however, is finite, namely n + 1, so the dual problem (in the sense
of mathematical programming) should be a convex optimization problem with n+ 1
variables [59]. The dual problem will also be the key to proving Theorem 3.1. The
following construction is a generalization of that in [10].

Duality theory amounts to forming the Lagrangian

L(f, q) = ψ(f) +
n∑

k=0

qk

[
ck − 1

2π

∫ π

−π

eikθRe
{
f(eiθ)

}
dθ

]

and determining the Lagrange multipliers q ∈ R
n+1 by minimizing the dual functional

ρ(q) = sup
f∈C+

L(f, q).

Introducing the pseudopolynomial

(3.18) Q(z) = q0 +
1
2
q1(z + z−1) + · · · + 1

2
qn(zn + z−n),

we can write the Lagrangian as
(3.19)

L(f, q) =
1
2π

∫ π

−π

log
[
Re f(eiθ)

] ∣∣σ(eiθ)
∣∣2 dθ + cTq − 1

2π

∫ π

−π

Q(eiθ)
[
Re f(eiθ)

]
dθ.

Clearly, ρ(q) < ∞ only if

(3.20) Q(eiθ) > 0 for all θ ∈ [−π, π].

We shall denote by D+
n the class of all q ∈ R

n+1 satisfying the positivity condition
(3.20). If the function f 
→ L(f, q) has a maximum in the open subset C+ of H∞,
then

∂L

∂fk
= 0, k = 0, 1, 2, . . . ,

in the maximizing point. This stationarity condition can be written

1
2π

∫ π

−π

eikθ

[ ∣∣σ(eiθ)
∣∣2

Re {f(eiθ)} − Q(eiθ)

]
dθ = 0, k = 0, 1, 2, . . . ,

which is satisfied if and only if

(3.21) Re f(eiθ) =

∣∣σ(eiθ)
∣∣2

Q(eiθ)
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Fig. 3.2 A typical cost function ϕ(q) in the case n = 1.

or, equivalently,

(3.22) fk =
1
2π

∫ π

−π

eikθ

∣∣σ(eiθ)
∣∣2

Q(eiθ)
dθ

holds. Inserting this into (3.19) yields the dual functional

(3.23) ρ(q) = ϕ(q) +
1
2π

∫ π

−π

∣∣σ(eiθ)
∣∣2 [

log
∣∣σ(eiθ)

∣∣2 − 1
]
dθ,

where

(3.24) ϕ(q) = c0q0 + c1q1 + · · · + cnqn − 1
2π

∫ π

−π

∣∣σ(eiθ)
∣∣2 logQ(eiθ)dθ.

Since the last term in (3.23) does not depend on q, we shall call the optimization
problem to minimize ϕ(q) over all q in the closure D+

n of D+
n , i.e.,

(3.25) min
q∈D+

n

ϕ(q),

the dual problem. The functional (3.24) is strictly convex, and therefore the mini-
mum is unique, provided one exists. The dual problem is a finite-dimensional convex
optimization problem, which is simpler than the original (primal) problem. Figure
3.2 depicts a typical cost function ϕ in the case n = 1. As can be seen, it attains its
optimum in an interior point. In fact, the following theorem will be proven in section
4.

Theorem 3.2. The dual problem has a unique solution, and it belongs to D+
n .

Given Theorem 3.2, we are now in a position to prove Theorem 3.1. To this end,
let q̂ ∈ D+

n be the unique solution to the dual problem, let Q̂ be the corresponding
pseudopolynomial (3.18), and let

f̂k =
1
2π

∫ π

−π

eikθ

∣∣σ(eiθ)
∣∣2

Q̂(eiθ)
dθ.
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Moreover, let a(z) be the unique stable polynomial (3.16) satisfying

(3.26) a(z)a(z−1) = Q̂(z).

Then

Re f̂(eiθ) = f̂0 +
∞∑

k=1

f̂k

(
eikθ + e−ikθ

)
=

∣∣σ(eiθ)
∣∣2

|a(eiθ)|2
,

which is precisely (3.17). Clearly, f̂ ∈ C+. Since q̂ is an interior point,

(3.27)
∂ϕ

∂qk
= ck − 1

2π

∫ π

−π

eikθ

∣∣σ(eiθ)
∣∣2

Q(eiθ)
dθ

equals zero at Q = Q̂ for k = 0, 1, . . . , n. Consequently, the covariance matching
condition (3.15) is fulfilled for f = f̂ , and therefore ψ(f̂) = L(f̂ , q̂). However, by the
construction above,

L(f̂ , q̂) = sup
f∈C+

L(f, q̂) ≥ L(f, q̂)

for all f ∈ C+. Then, for any f ∈ C+ which satisfies the covariance matching condition
(3.15),

ψ(f) = L(f, q̂) ≤ ψ(f̂),

which establishes the optimality of f̂ .

4. Interior Critical Points and Solutions of the Rational Covariance Extension
Problem. Consider the dual functional ϕ : R

n+1 → R ∪ {∞} defined by

(4.1) ϕ(q) = cTq − 1
2π

∫ π

−π

logQ(eiθ)|σ(eiθ)|2dθ.

An interesting aspect of the functional comes in part from a barrier-like integral,
which is analogous to the barrier terms arising in interior point methods. As it turns
out, by a theorem of Szegö the logarithmic integrand is in fact integrable for nonzero
Q having zeros on the boundary of the unit circle, so that ϕ(q) does not become
infinite on the boundary of the convex set D+

n . However, its gradient is infinite on the
boundary. As we shall see, from this property it follows that minimizing (4.1) yields
precisely, via

(4.2) Q(z) = a(z)a(z−1),

the unique a(z) which corresponds to σ(z). We begin with the existence and unique-
ness of a minimum.

Proposition 4.1. For each partial covariance sequence c and each Schur poly-
nomial σ(z), the functional ϕ has a unique minimum on D+

n .
Proof. We shall show that ϕ has compact sublevel sets in D+

n , so that ϕ achieves a
minimum. Since ϕ is strictly convex and D+

n is convex, it follows that such a minimum
is unique.
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It is clear that if q ∈ D+
n , then ϕ(q) is finite. Moreover, ϕ(q) is also finite when Q

has finitely many zeros on the unit circle, as can be seen from the following lemma.
Lemma 4.2. The functional ϕ is finite and continuous at any q ∈ D+

n except
at zero. The functional is infinite, but continuous, at q = 0. Moreover, ϕ is a C∞

function on D+
n .

Proof. We want to prove that ϕ(q) is finite when q �= 0. Then the rest follows by
inspection. Clearly, ϕ(q) cannot take the value −∞; hence, it remains to prove that
ϕ(q) < ∞. Since q �= 0,

µ := max
θ

Q(eiθ) > 0.

Then setting R(z) := µ−1Q(z),

(4.3) logR(eiθ) ≤ 0

and

ϕ(q) = cTq − 1
2π

logµ

∫ π

−π

|σ(eiθ)|2dθ − 1
2π

∫ π

−π

logR(eiθ)|σ(eiθ)|2dθ,

and hence the question of whether ϕ(q) < ∞ is reduced to determining whether

−
∫ π

−π

logR(eiθ)|σ(eiθ)|2dθ < ∞.

However, since |σ(eiθ)|2 ≤ M for some bound M , this follows from

(4.4)
∫ π

−π

logR(eiθ)dθ > −∞,

which is the well-known Szegö condition: (4.4) is a necessary and sufficient condition
for R to have a stable spectral factor [35]. However, since P is a symmetric pseu-
dopolynomial which is nonnegative on the unit circle, there is a polynomial π(z) such
that π(z)π(z−1) = R(z). But then w(z) = π(z)

zn is a stable spectral factor, and hence
(4.4) holds.

Lemma 4.3. The functional ϕ is strictly convex and defined on a closed, convex
domain.

Proof. We first note that q = 0 is an extreme point, but it can never be a minimum
of ϕ since ϕ(0) is infinite. In particular, in order to check the strict inequality

(4.5) ϕ(λq(1) + (1 − λ)q(2)) < λϕ(q(1)) + (1 − λ)ϕ(q(2)),

where one of the arguments is zero, we need only consider the case that either q(1)

or q(2) is zero, in which case the strict inequality holds. We can now assume that
none of the arguments is zero, in which case the strict inequality in (4.5) follows from
the strict concavity of the logarithm. Finally, it is clear that D+

n is a closed convex
subset.

Lemma 4.4. Let q ∈ D+
n , and suppose q �= 0. Then cTq > 0.

Proof. Consider an arbitrary covariance extension of c such as, for example, the
maximum entropy extension, and let Φ be the corresponding spectral density (2.10).
Then c is given by (2.3), which may also be written

ck =
1
2π

∫ π

−π

1
2
(eikθ + e−ikθ)Φ(eiθ)dθ, k = 0, 1, . . . , n.
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Therefore, in view of (3.18),

(4.6) cTq =
1
2π

∫ π

−π

Q(eikθ)Φ(eiθ)dθ,

which is positive whenever Q(z) ≥ 0 on the unit circle and q �= 0.
Remark 4.5. The condition cTq > 0 is a direct consequence of the fact that the

Toeplitz matrix Tn, defined by (2.5), is positive definite. In fact,

cTq = aTTna,

where a := (a0, a1, . . . , an)T is the vector of coefficients of the stable polynomial factor
(3.16) in (4.2). To see this, merely replace Q(z) by a(z)a(z−1) in (4.6).

Proposition 4.6. For all r ∈ R, ϕ−1(−∞, r] is compact. Thus ϕ is proper (i.e.,
ϕ−1(K) is compact whenever K is compact) and bounded from below.

Proof. Suppose q(k) is a sequence in Mr := ϕ−1(−∞, r]. It suffices to show that
q(k) has a convergent subsequence. Each Q(k) may be factored as

Q(k)(z) = λkā
(k)(z)ā(k)(z−1) = λkQ̄

(k)(z),

where λk is positive and ā(k)(z) is a monic polynomial, all of whose roots lie in the
closed unit disc. The corresponding sequence of the (unordered) set of n roots of each
ā(k)(z) has a convergent subsequence, since all (unordered) sets of roots lie in the
closed unit disc. Denote by ā(z) the monic polynomial of degree n which vanishes
at this limit set of roots. By reordering the sequence if necessary, we may assume
the sequence a(k)(z) tends to ā(z). Therefore, the sequence q(k) has a convergent
subsequence if and only if the sequence λk does, which will be the case provided the
sequence λk is bounded from above and from below away from zero. Before proving
this, we note that the sequences cTq̄(k), where q̄(k) is the vector corresponding to the
pseudopolynomial Q̄(k), and

(4.7)
1
2π

∫ π

−π

log Q̄(k)(eiθ)|σ(eiθ)|2dθ

are both bounded from above and from below, respectively, away from zero and −∞.
The upper bounds come from the fact that {ā(k)(z)} are Schur polynomials and
hence have their coefficients in the bounded Schur region. As for the lower bound
of cTq̄(k), note that cTq̄(k) > 0 for all k (Lemma 4.4) and cTq̄(k) → α > 0. In fact,
Q̄(k)(eiθ) → |ā(eiθ)|2, where ā(z) has all its zeros in the closed unit disc, and hence
it follows from (4.6) that α > 0. Then, since ϕ(q) < ∞ for all q ∈ D+

n except q = 0
(Lemma 4.2), (4.7) is bounded away from −∞. Next, observe that

ϕ(q(k)) = λkc
Tq̄(k) − 1

2π
log λk

∫ π

−π

|σ(eiθ)|2dθ − 1
2π

∫ π

−π

log Q̄(k)(eiθ)|σ(eiθ)|2dθ.

From this we can see that if a subsequence of λk were to tend to zero, then ϕ(q(k))
would exceed r. Likewise, if a subsequence of λk were to tend to infinity, ϕ would
exceed r, since linear growth dominates logarithmic growth.

This concludes the proof of existence and uniqueness.
We now turn to the existence of interior minimizers. The next result describes an

interesting systems-theoretic consequence of the existence of such interior minima.
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Theorem 4.7. Fix a partial covariance sequence c and a Schur polynomial σ(z).
If q̂ ∈ D+

n is a minimum for ϕ, then

(4.8) Q̂(z) = a(z)a(z−1),

where a(z) is the solution of the rational covariance extension problem.
Proof. Suppose that q̂ ∈ D+

n is a minimum for ϕ. Then

(4.9)
∂ϕ

∂qk
(q̂) = 0 for k = 0, 1, 2, . . . , n,

which, in view of (3.27), is equivalent to

(4.10) ck =
1
2π

∫ π

−π

eikθ |σ(eiθ)|2

Q̂(eiθ)
dθ for k = 0, 1, . . . , n,

where Q̂ is the pseudopolynomial (3.18) corresponding to q̂. But, in view of (2.13)
and (2.17), this is precisely the interpolation condition

1
2π

∫ π

−π

eikθΦ(eiθ)dθ = ck for i = 0, 1, . . . , n,

provided (4.8) holds.
We now state the converse result, underscoring our interest in this particular

convex optimization problem.
Theorem 4.8. For each partial covariance sequence c and each Schur polynomial

σ(z), suppose that a(z) gives a solution to the rational covariance extension problem.
If

(4.11) Q̂(z) = a(z)a(z−1),

then the corresponding (n+ 1)-vector q̂ lies in D+
n and is a unique minimum for ϕ.

Proof. Let a(z) be the solution of the rational covariance extension problem
corresponding to c and σ(z), and let Q̂ be given by (4.11). Then c satisfies the
interpolation condition (4.10), which is equivalent to (4.9), as seen from the proof of
Theorem 4.7. However, since a(z) is a Schur polynomial, Q̂(z) > 0 on the unit circle,
and thus q̂ ∈ D+

n . Since ϕ is strictly convex on D+
n , (4.10) implies that q̂ is a unique

minimum for ϕ.
Since the existence of a solution to the rational covariance extension problem was

established in [28] (see also [16]), we do in fact know the existence of interior minima
for this convex optimization problem. On the other hand, we know from Proposition
4.1 that ϕ has a minimum for some q̂ ∈ D+

n , so to show that ϕ has a minimum in the
interior D+

n it remains to prove the following lemma.
Lemma 4.9. The functional ϕ never attains a minimum on the boundary ∂D+

n .
Proof. Denoting by Drϕ(q) the directional derivative of ϕ at q in the direction r,

it is easy to see that

Drϕ(q) := lim
ε→0

ϕ(q + εr) − ϕ(q)
ε

(4.12)

= cTp − 1
2π

∫ π

−π

R(eiθ)
Q(eiθ)

|σ(eiθ)|2dθ,(4.13)
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where R is the pseudopolynomial

R(z) = r0 +
1
2
r1(z + z−1) +

1
2
r2(z2 + z−2) + · · · + 1

2
rn(zn + z−n)

corresponding to the vector r ∈ R
n+1. In fact,

log(Q+ εR) − logQ

ε
=

R

Q
log

[(
1 + ε

R

Q

) 1
ε

Q
R

]
→ R

Q

as ε → +0, and hence (4.12) follows by dominated convergence.
Now, let q ∈ D+

n and q̄ ∈ ∂D+
n be arbitrary. Then the corresponding pseudopoly-

nomials Q and Q̄ have the properties

Q(eiθ) > 0 for all θ ∈ [−π, π]

and

Q̄(eiθ) ≥ 0 for all θ and Q̄(eiθ0) = 0 for some θ0.

Since qλ := q̄ + λ(q − q̄) ∈ D+
n for λ ∈ (0, 1], we also have for λ ∈ (0, 1] that

Qλ(eiθ) := Q̄(eiθ) + λ[Q(eiθ) − Q̄(eiθ)] > 0 for all θ ∈ [−π, π],

and we may form the directional derivative

(4.14) Dq̄−qϕ(qλ) = cT(q̄ − q) +
1
2π

∫ π

−π

hλ(θ)dθ,

where

hλ(θ) =
Q(eiθ) − Q̄(eiθ)

Qλ(eiθ)
|σ(eiθ)|2.

Now,

d

dλ
hλ(θ) =

[Q(eiθ) − Q̄(eiθ)]2

Qλ(eiθ)2
|σ(eiθ)|2 ≥ 0,

and hence hλ(θ) is a monotonically nondecreasing function of λ for all θ ∈ [−π, π].
Consequently, hλ tends pointwise to h0 as λ → 0. Therefore,

(4.15)
∫ π

−π

hλ(θ)dθ → +∞ as λ → 0.

In fact, if

(4.16)
∫ π

−π

hλ(θ)dθ → α < ∞ as λ → 0,

then {hλ} is a Cauchy sequence in L1(−π, π) and hence has a limit in L1(−π, π)
which must equal h0 almost everywhere. However, h0, having poles in [−π, π], is not
summable and hence, as claimed, (4.16) cannot hold.
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Consequently, by virtue of (4.14),

Dq−q̄ϕ(qλ) → +∞ as λ → 0

for all q ∈ D+
n and q̄ ∈ ∂D+

n , and hence, in view of Lemma 26.2 in [68], ϕ is essentially
smooth. Then it follows from Theorem 26.3 in [68] that the subdifferential of ϕ is
empty on the boundary of D+

n , and therefore ϕ cannot have a minimum there.
Thus we have proven the following result.
Theorem 4.10. For each partial covariance sequence c and each Schur polyno-

mial σ(z), there exists an (n + 1)-vector q̂ in D+
n which is a minimizing point for

ϕ.
Consequently, by virtue of Theorem 4.7, there does exist a solution to the rational

covariance extension problem for each partial covariance sequence and zero polynomial
σ(z), and, in view of Theorem 4.8, this solution is unique. These theorems have the
following corollary.

Corollary 4.11 (Georgiou’s conjecture). For each partial covariance sequence
c and each Schur polynomial σ(z), there is a unique Schur polynomial a(z) such that

1
2π

∫ π

−π

eikθ

∣∣∣∣σ(eiθ)
a(eiθ)

∣∣∣∣
2

dθ = ck for k = 0, 1, . . . , n.

5. Well-Posedness of the Optimization Problem. We wish to show that, for
σ(z) fixed, the convex minimization problem (3.25) is well-posed with respect to
c = (c0, c1, . . . , cn), in the sense of Hadamard. That is, a minimum exists for each
c, is unique, and varies with c in a smooth (or continuous) way. Geometrically, well-
posedness for a smooth map F : R

n → R
n is characterized by Hadamard’s global

inverse function theorem [37, 38].
Theorem 5.1 (Hadamard). Suppose F : R

n → R
n is Ck for k ≥ 1. Then F

is a Ck-diffeomorphism if and only if F is proper and det{(JacF )(x)} is nonzero for
each x ∈ R

n.
For the convex optimization problem presented here, we have already established

the existence and uniqueness of a minimizer in the previous section. Following [15],
to see that the third property holds it is useful to ask the question: Why should there
be a variational formulation of the rational covariance extension problem?

For σ(z) fixed, we can express the rational covariance extension problem in terms
of a map F : D+

n → T +
n , where T +

n is the space of sequences c = (c0, c1, . . . , cn) for
which the Toeplitz matrix (2.5) is positive definite and where F is defined component
wise via

Fk(q) =
1
2π

∫ π

−π

eikθ

∣∣σ(eiθ)
∣∣2

Q(eiθ)
dθ, k = 0, 1, . . . , n.

Both D+
n and T +

n are convex, and hence connected. Since both are open in R
n+1,

each is diffeomorphic to R
n+1.

We would like to solve the equation

(5.1) F (q) = c, where c = (c0, c1, . . . , cn) ∈ T +
n ,

using a variational approach in which the functional is defined by the path integral

ϕ(q̄) =
∫ q̄

e0

ω, where ω =
n∑

k=0

[ck − Fk(q)]dqk,
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and where e0 is the unit vector (1, 0, . . . , 0)T in R
n+1.

For this expression to be well defined we need to know that the 1-form ω is closed.
To say that dω = 0 is to say that

∂Fk

∂qj
=

∂Fj

∂qk
,

which, in turn, follows from

∂Fk

∂qj
= − 1

2π

∫ π

−π

(eikθ + e−ikθ)(eijθ + e−ijθ)
|σ|2
Q2 dθ.

Therefore, by the Poincaré lemma [50, p. 137], the path integral of ω depends only
on the end points.

We now compute the path integral:

∫ q̄

e0

n∑
k=0

[
ck − 1

2π

∫ π

−π

eikθ

∣∣σ(eiθ)
∣∣2

Q(eiθ)
dθ

]
dqk

=
n∑

k=0

[
ck(q̄k − δk0) − 1

2π

∫ π

−π

∫ q̄

e0

eikθ 1
Q(eiθ)

dqk

∣∣σ(eiθ)
∣∣2 dθ

]

= cTq̄ − c0 − 1
2π

∫ π

−π

[∫ Q̄

1
d(logQ)

] ∣∣σ(eiθ)
∣∣2 dθ

= cTq̄ − c0 − 1
2π

∫ π

−π

logQ

∣∣∣∣
Q̄

1

∣∣σ(eiθ)
∣∣2 dθ

and consequently, modulo a constant of integration,

ϕ(q) = cTq − 1
2π

∫ π

−π

|σ|2 logQdθ.

Since the exterior differential is invariant under a change of coordinates, this
gives an intrinsic explanation for why a variational formulation of the problem exists.
Moreover, since the functional ϕ is strictly convex, the Jacobian matrix of F , which
is symmetric, is positive definite and therefore everywhere invertible. In section 4, we
established that the gradient of ϕ, viz. F , tends to infinity on the boundary of D+

n

and therefore F is proper. By Hadamard’s theorem, F is a diffeomorphism: Since an
analytic diffeomorphism has an analytic inverse, by the inverse function theorem, the
change of coordinates from (σ, a) to (σ, c) is bianalytic on the space of shaping filters,
thereby proving Theorem 2.1.

6. Computational Methods. One of the neat consequences of the well-posedness
of the rational covariance extension problem, as developed in the previous section, is
that, fixing σ(z), the function F : D+

n → T +
n is a proper map with no branch points

and therefore the method of homotopy continuation yields a computational method
for continuing the solution to F (q0) = c0 to the solution of F (q) = c for any c ∈ T +

n .
This was observed by Enqvist and is fully developed in [25] for the case in which σ(z)
varies. In this section, we shall describe an algorithm based on Newton’s method.

In either case, one first needs to find an estimate for σ(z) from the data. As it
turns out, the cepstrum and the cepstral coefficients, introduced in section 3, provide
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an efficient method—known as cepstral windowing—for the estimation of the zeros of
the shaping filter.

More precisely, in [6, 7] it is shown that there is a one-to-one correspondence
between the 2n+ 1 coefficients c1, c2, . . . , cn, v0, v1, . . . , vn and the 2n+ 1 coefficients
a0, a1, . . . , an, σ1, σ2, . . . , σn of the denominator polynomial a(z) and numerator poly-
nomial σ(z) of the corresponding modeling filter (2.17), provided w has exactly degree
n.

Theorem 6.1 (see [6]). Each modeling filter (2.17) of degree n determines and
is uniquely determined by its window c0, c1, . . . , cn of covariance lags and its window
v1, v2, . . . , vn of cepstral coefficients.

It is, of course, clear that c0, c1, c2, . . . , cn, v1, . . . , vn is determined by a modeling
filter (2.17) of degree n. Conversely, given such a covariance-cepstral window, in [6]
it was proposed to minimize the convex functional

J(s, q) = c0q0 + c1q1 + · · · + cnqn − v1p1 − v2p2 − · · · − vnpn

+
1
2π

∫ π

−π

P (eiθ) log
P (eiθ)
Q(eiθ)

dθ(6.1)

with the pseudopolynomials (3.10) and (3.18), given by (3.11) and (4.2), respectively,
ranging over the closed convex region in R

2n+1 of variables p1, p2, . . . , pn, q0, q1, . . . , qn

such that the pseudopolynomials P and Q are nonnegative on the unit circle.
As before, J always has a minimum since it is a convex function defined on a

closed convex set and any interior minimum of J must define a modeling filter that
matches the covariance and the cepstral window. Moreover, when a(z) and σ(z) are
coprime polynomials, i.e., when the filter is of degree precisely n, the modeling filter
is uniquely determined either by the spectral density

Φ(z) =
P (z)
Q(z)

or by the covariance and the cepstral windows. It follows, by similar arguments to
those in the previous section, that the covariance and the cepstral windows form a
globally defined set of functions which form a local coordinate system about each
shaping filter having degree precisely n.

Remark 6.2. One might also consider fixing a covariance window and a window
of Markov parameters of w, as is done in [54, 48, 3] for w a rational filter with stable
poles but arbitrary zeros. As it turns out, for shaping filters, there is a close rela-
tion between the cepstral coefficients and the Markov parameters of the corresponding
shaping filter w. To establish these relations, using both the stability and minimum
phase properties of the shaping filter we form a subset Ω of the complex plane, which
is the intersection between an annulus containing the unit circle but none of the zeros
of w(z) or w(z−1) and a sector containing the positive real axis. The corresponding
Laurent expansions for

log Φ(z) = logw(z) + logw(z−1)

on Ω yield a bianalytic change of coordinates between the cepstral coefficients and
the Markov parameters. In particular [7], for the shaping filters considered here the
leaves of the foliation defined by the Markov parameters coincide with the leaves of
the foliation defined by the cepstral windows. In [7] it was also shown that both the
covariance windows and the Markov windows define foliations of the space of stable
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rational filters w of degree less than or equal to n. From the geometry of these foliations
it is shown that the covariance and the Markov windows form a globally defined set of
functions which form a local coordinate system about each shaping filter having degree
precisely n. In particular, there is at most one stable filter having given covariance
and Markov windows.

Since the cepstral window and the covariance window characterize the shaping
filter, one can expect to estimate the zeros of the shaping filter in terms of the cepstral
window. We now proceed to describe the method for zero estimation proposed in [6].
Recall (see Figure 3.1) that the cepstrum is the additive superposition of the (lower
frequency) effect of the shaping filter and the (higher frequency) effect of the driving
signal. Windowing the cepstrum so as to neglect higher frequencies and smooth lower
frequency contributions, i.e., cepstral smoothing, provides an estimate of the cepstrum
at given frequencies [64, pp. 494–495]:

Φ̂(eiθk), k = 1, . . . , N.

Given these estimates, find pseudopolynomials P and Q such that

max
k

|Q(eiθk)Φ̂(eiθk) − P (eiθk)|

is minimized. This leads to a standard linear programming problem in the 2n + 2
variables δ, p1, . . . , pn, q0, q1, . . . , qn, namely, to find δ, P,Q that minimize δ subject to
the 4N constraints that

Q(eiθk)Φ̂(eiθk) − P (eiθk) − δ ≤ 0,
−Q(eiθk)Φ̂(eiθk) + P (eiθk) − δ ≤ 0,

P (eiθk) ≥ ε,

Q(eiθk) ≥ ε

hold for k = 1, 2, . . . , N . Here the design parameter ε > 0 must be chosen large
enough to ensure that P and Q are positive on the unit circle. The corresponding
numerator polynomial, σ(z), and the denominator polynomial, a(z), can be obtained
from P and Q by spectral factorization. However, the resulting shaping filter does not
necessarily match the desired covariance window. For this reason, we use the method
for finding a σ(z) and initializing Newton’s method with a(z).

Given an arbitrary partial covariance sequence c0, c1, . . . , cn and an arbitrary zero
polynomial σ(z), we compute the gradient of the cost functional ϕ, which, as we saw
in section 4, is given by

(6.2)
∂ϕ

∂qk
(q0, q1, . . . , qn) = ck − c̄k,

where

(6.3) c̄k =
1
2π

∫ π

−π

eikθ |σ(eiθ)|2
Q(eiθ)

dθ for k = 0, 1, 2, . . . , n

are the covariances corresponding to a process with spectral density

(6.4)
|σ(eiθ)|2
Q(eiθ)

= c̄0 + 2
∞∑

k=1

c̄k cos(kθ).
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Fig. 6.1 Spectral envelope and pole/zero locations for a maximum entropy solution (n = 10).

The gradient is thus the difference between the given partial covariance sequence
c0, c1, . . . , cn and the partial covariance sequence corresponding to the choice of vari-
ables q0, q1, . . . , qn at which the gradient is calculated. The minimum is attained when
this difference is zero.

The following simulations were done by Enqvist using Newton’s method (see,
e.g., [55, 59]), which of course also requires computing the Hessian (second-derivative
matrix) in each iteration. A straightforward calculation shows that the Hessian is the
sum of a Toeplitz and a Hankel matrix. More precisely,

(6.5) Hij(q0, q1, . . . , qn) =
1
2
(di+j + di−j), i, j = 0, 1, 2, . . . , n,

where

(6.6) dk =
1
2π

∫ π

−π

eikθ |σ(eiθ)|2
Q(eiθ)2

dθ for k = 0, 1, 2, . . . , 2n

and d−k = dk. Moreover, d0, d1, d2, . . . , d2n are the 2n+ 1 first Fourier coefficients of
the spectral representation

(6.7)
|σ(eiθ)|2
Q(eiθ)2

= d0 + 2
∞∑

k=1

dk cos(kθ).

The gradient and the Hessian can be determined from (6.2) and (6.5), respectively, by
applying the inverse Levinson algorithm (see, e.g., [65]) to the appropriate polynomial
spectral factors of Q(z) and Q(z)2, respectively, and then solving the resulting linear
equations for c̄0, c̄1, . . . , c̄n and d0, d1, d2, . . . , d2n.

To illustrate the procedure, let us consider two tenth-order spectral envelopes
for the same signal as in Figures 2.1 and 2.3 together with the corresponding zeros
and poles. Hence, Figure 6.1 illustrates the periodogram for a section of speech data
together with the corresponding tenth-order maximum entropy spectrum, which, since
it lacks finite zeros, becomes rather “flat.” The locations of the corresponding poles
(marked by ×) in the unit circle are shown next to it. The zeros (marked by ◦) of
course all lie at the origin.

Now, using cepstral smoothing we obtain the zeros indicated to the right in Figure
6.2, and using Newton’s method we obtain the poles as marked, and the corresponding
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Fig. 6.2 Spectral envelope and pole/zero locations for a solution of degree n = 10.

tenth-order shaping filter produces the spectral envelope to the left in Figure 6.2. We
see that the second solution has a spectral density that is less flat and would seem to
provide a better approximation, reflecting the fact that the filter was designed so that
its transmission zeros are influenced by the cepstral window and indeed are located
near the minima of the periodogram. In general, in [6, 7] this method was compared
with some existing system identification algorithms using three different lengths of
Monte Carlo runs to generate data, and a quantitative improvement in the design
of a shaping filter matching the desired covariances and cepstral windows has been
observed.

7. Conclusions and Further Directions. In [27, 28] Georgiou proved that to
each choice of partial covariance sequence and numerator polynomial of the shaping
filter there exists a rational covariance extension yielding a pole polynomial for the
shaping filter. He also conjectured that this extension is unique so that it provides
a complete parameterization of all rational covariance extensions. In [16] we proved
this long-standing conjecture in the more general context of a duality between filtering
and interpolation.

In [10] we presented a constructive proof of Georgiou’s conjecture, which for the
first time provided an algorithm for solving the problem of determining the unique
pole polynomial corresponding to the given partial covariance sequence and the de-
sired zeros. In the present paper, following [15], this minimization problem is shown to
be well-posed in the sense of Hadamard. Indeed, combining the strictly convex min-
imization problem, the existence of interior points, and Hadamard’s global inverse
function theorem yields an alternative geometric approach to the proof of Georgiou’s
conjecture given in [16].

The interior point argument involves a constrained convex optimization problem,
which can be solved without explicitly computing the values of the cost function and
which has the interesting property that the cost function is finite on the boundary but
the gradient is not. In this context, Georgiou’s conjecture is equivalent to establishing
that there is a unique minimum in the interior of the feasible region. This optimization
problem is shown to be a dual in the sense of mathematical programming to a primal
problem motivated by cepstral analysis of speech. This primal problem amounts to
maximizing a generalized entropy gain subject to covariance matching constraints.

As pointed out in section 2 (also see [24]), the rational covariance extension prob-
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lem is a classical moment problem with a complexity constraint (a bound on the degree
of the interpolant). As has recently been observed in [15], the methods developed in
this paper and its predecessors can be applied to the general moment problem with a
complexity constraint.

Briefly, in the general moment problem, one is given a sequence of complex num-
bers c0, c1, . . . , cn and a sequence of continuous, linearly independent complex-valued
functions α0, α1, . . . , αn defined on the real interval [a, b]. The moment problem is
then to find all monotone, nondecreasing functions µ of bounded variation such that

(7.1)
∫ b

a

αk(t)dµ(t) = ck, k = 0, 1, . . . , n,

where the sequence c0, c1, . . . , cn is positive in the following sense. Assuming that α0
is real-valued, let P be the subspace of C[a, b] spanned by the functions

α−n, . . . , α−1, α0, α1, . . . , αn,

where α−k = αk, and let P+ be the subset of p ∈ P that are positive on [a, b]. It is
typically assumed that P+ is nonempty. Then the sequence c0, c1, . . . , cn is positive if
and only if

(7.2) 〈c, q〉 := Re
n∑

k=0

qkck > 0

for all q := (q0, q1, . . . , qn) ∈ C
n+1 such that

(7.3) Re
n∑

k=0

qkαk ∈ P+.

There is a vast literature on this subject (see, e.g., [1, 2, 49, 34]), in part because
so many problems and theorems in pure and applied mathematics, physics, and engi-
neering can be formulated as moment problems. For example, if [a, b] = [−π, π] and
αk(θ) = eikθ, we obtain the trigonometric moment problem. It is important to note
that in this case (7.2) is precisely the linear term in the objective function (3.24) and,
as noted in Remark 4.5, we have

〈c, q〉 = aTTna,

where Tn is the Toeplitz matrix (2.5) and a := (a0, a1, . . . , an)T is the vector of coeffi-
cients of the stable polynomial factor (3.16) in (4.2). This term will play a fundamental
role in a variational formulation of the general moment problem.

In [15] it is assumed that P+ is also open. Moreover, we introduce the complexity
constraint

(7.4)
dµ

dt
= Φ(t) =

P (t)
Q(t)

, P,Q ∈ P+.

Generalizing the rational covariance extension problem, in our paper [15] all solutions
of constrained complexity can be parameterized by the choice of P ∈ P+. Indeed,
setting

Fk(µ) =
∫ b

a

αk(t)dµ(t)
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and constructing the 1-form

ωc =
n∑

k=0

[ck − Fk(µ)]dqk,

we observed that ωc is closed. Therefore, by the Poincaré lemma, there exists a
smooth function J such that

J =
∫

ωc,

with the integral being independent of the path between two end points. Computing
the path integral along the lines in section 5, one finds [15] that

(7.5) J(Q) = 〈c, q〉 −
∫ b

a

P logQ dt,

which is strictly convex and bounded from below for positive sequences c0, c1, . . . , cn.
This approach to the general moment problem was inspired by the application

of convex analysis to both the rational covariance extension problem [10] and the
Nevanlinna–Pick interpolation problem with degree constraint [8]. The Nevanlinna–
Pick interpolation problem is a moment problem for the choice αk = Ck, where
C0, C1, . . . , Cn are Cauchy kernels. In this case, a sequence c0, c1, . . . , cn is positive if
and only if the Pick matrix is positive definite. Imposing the complexity constraint
amounts to imposing a degree constraint on a rational interpolant. Given the syn-
thesis of a positive real rational function as the impedance of a circuit with finitely
many active components, it is not surprising that important problems involving in-
terpolation by positive real functions at points in the finite complex plane emerged
in circuit theory [74, 23, 39]. They also abound in robust stabilization and control,
as we will discuss below. Georgiou [29] published the first result toward developing a
parameterization of all solutions of the Nevanlinna–Pick interpolation problem with a
degree constraint, again showing that there exists at least one positive real interpolant
for which the shaping filter would have a prespecified numerator. In [30], Georgiou
adopted the method of proof in [11] to prove that this parameterization is also injec-
tive. In [14], geometric methods are used to verify that this problem is well-posed. A
constructive proof was given in [8] in terms of minimizing a convex objective function,
to which (6.1) specializes in the case of Nevanlinna–Pick interpolation.

One of our interests in Nevanlinna–Pick interpolation is a new approach to spec-
tral estimation, introduced in [8] and fully developed in [9], based on passing an
observed signal through a bank of one-dimensional, stable filters with transfer func-
tions

Gk(z) =
1

z − pk
, k = 0, 1, . . . , n,

as depicted in Figure 7.1. The basic idea is to estimate the spectral density Φ of the
input process y, or, equivalently, the positive real function f satisfying

Re f(eiθ) = Φ(eiθ),

from output data. In fact, denoting by u0, u1, . . . , un the corresponding output pro-
cesses, it was shown in [9] that

f(p−1
k ) = (1 − p2

k)E{u2
k}, k = 0, 1, . . . , n.
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Fig. 7.2 A feedback system.

Since zeroth-order covariances c0(uk) := E{u2
k}, k = 0, 1, . . . , n, can be determined

via ergodic estimates, the zeroth-order covariance data for the outputs of the filter
bank supply the interpolation constraints for f . An advantage of this approach is
that interpolation of the spectrum can be chosen closer to the unit circle in precisely
the frequency band where higher resolution is desired (see [9] for more details and
examples). The choice of numerator P in (7.4) provides an additional set of tuning
parameters.

Another of our interests is in robust control. Indeed, during the last two decades
it has been discovered that analytic interpolation theory is closely related to several
robust control problems, for example, the gain-margin maximization problem [70,
71, 45], the robust stabilization problem [47], sensitivity shaping in feedback control,
simultaneous stabilization [32], the robust regulation problem [21], and the general
H∞ control problem [26].

To illustrate this point, let us consider the following example taken from [8].
Figure 7.2 depicts a feedback system with u denoting the control input to the plant
G(z) to be controlled, d representing a disturbance, and y being the resulting output,
which is fed back through a compensator K(z) to be designed.

Internal stability and the robustness of the output with respect to input distur-
bances can be characterized in terms of the sensitivity function

S(z) = [1 − G(z)K(z)]−1.

In fact, the feedback system is internally stable if and only if S(z) has all its poles
inside the unit disc and satisfies the interpolation conditions

S(zj) = 1, j = 1, 2, . . . , r, S(pk) = 0, k = 1, 2, . . . , :,

where z1, z2, . . . , zr and p1, p2, . . . , p� are the zeros and poles, respectively, of the
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Fig. 7.3 The graphs of |S| for different choices of P .

plant G(z) outside the unit disc. Moreover, for disturbance attenuation, S needs to
be bounded. The lowest bound,

(7.6) αopt = inf
S(zi)=1,S(pj)=0

‖S‖∞,

is attained for an S such that |S(eiθ)| = αopt for all θ ∈ [−π, π].
However, in practice one wants to achieve lower sensitivity |S(eiθ)| in selected

frequency bands. To satisfy such design specifications, a standard approach has been
to solve a weighted optimization problem, a procedure that typically increases the
dimension of the sensitivity function and hence of the compensator. The optimiza-
tion approach of [8] provides a new procedure of satisfying the design specifications
while bounding the degree of the sensitivity function by one less than the number of
interpolation conditions. Indeed, allowing a higher upper bound α > αopt, we obtain
a complete parameterization of all such S in terms of the numerator function P in
(7.4). In fact, the admissible sensitivity functions S are such that 1

αS maps the exte-
rior of the disc into the unit disc. Therefore, f = (α+ S)(α − S)−1 is a positive real
function, of the same degree as S, satisfying the interpolation conditions

f(zj) =
α+ 1
α − 1

, j = 1, 2, . . . , r, f(pk) = 1, k = 1, 2, . . . , :.

Again following [8], we consider the simple example for which G(z) = 1
z−2 . This

system has one pole and one zero outside the unit disc, and hence the bound on
the degree of S is one. Figure 7.3 depicts the corresponding one-parameter family
of sensitivity functions. By choosing P appropriately, we can determine the most
suitable compensator. Selection rules for making this choice have been developed by
Nagamune, who is also applying the techniques of [8] to many of the robust control
problems mentioned above [60]; also see [61, 62, 63].

Finally, one might ask why should the choice of spectral zeros play such a central
and crucial role? For example, why not parameterize solutions to these interpolation
problems by the choice of spectral poles? The short answer to the second question is
that counterexamples to that approach exist in great profusion [12, p. 125], but this
does not explain the intrinsic importance of the spectral zeros as parameters.



FROM COVARIANCE WINDOWS TO MODELING FILTERS 673

In fact, the foliation of the space of positive real functions of degree less than
or equal to n by the leaves of those systems with fixed spectral zeros actually has a
longer history and an intrinsic meaning beyond the scope of this problem. As it turns
out, it is possible to reformulate the Kalman filtering equations as a “fast filtering
algorithm” [51, 52] that evolves as a nonlinear dynamical system on this space of
positive real functions [17] in such a way that the stable manifolds of the (manifold
of) equilibria foliate this space and coincide with the leaves obtained by fixing the
spectral zeros. Indeed, the geometric verification of well-posedness given in [14] uses
this dynamical systems interpretation in a crucial way.
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