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OPTIMAL FILTERING OF CONTINUOUS-TIME STATIONARY
PROCESSES BY MEANS OF THE BACKWARD

INNOVATION PROCESS*

ANDERS LINDQUIST]"

Abstract. A new approach to linear least squares estimation of continuous-time (wide sense)
stationary stochastic processes is presented. The basic idea is that the relevant estimates can be ex-
pressed not only in terms of the usual (forward) innovation process but also in terms of a backward
innovation process. The functions determining the optimal filter as well as the error covariance
functions are seen to satisfy some differential equations. As an important example the Kalman-Bucy
filter is considered. It is demonstrated that the optimal gain matrix can be determined from 2ran
equations (where n is the dimension of the system and m of the output) rather than 1/2n(n + 1) as in the
conventional theory. This is an advantage when, as is usually the case, m << n. These equations were
first derived by Kailath, who used a different method. Also they are the continuous-time versions of
some equations previously obtained (independently of Kailath) by the author.

1. Introduction. In this paper we consider linear least squares filtering of
wide sense stationary stochastic vector processes, where the estimation is based
on past observations of the process on an ncreasing but finite time interval.
Since therefore the filtering estimate will be a nonstationary process, the weighting
function of the filter will be a function of two time variables rather than one as in
classical Wiener theory, where observations from the infinite past are assumed to
be available. This weighting function satisfies a generalized Wiener-Hopf equation
for which no general method of solution is known. Since this is also the case
when the process to be estimated is nonstationary, it may seem unnecessarily
restrictive to assume stationarity. However, it turns out that this assumption will
enable us to give simple differential equations for the weighting function and the
error covariance function. These equations are completely characterized by the
covariance between the estimation error process and the initial value of the
estimated process, and therefore, at least in theory, we have reduced the problem
to determining this function of one variable.

The usefulness of our results becomes apparent when applying them to
Kalman-Bucy filtering [4] of wide sense stationary processes. It is well known
that the computation of the "gain matrix" for such a filter requires the solution
of an n x n matrix Riccati differential equation, where n is the dimension of the
system. The number n is usually much larger than the dimension m of the ob-
served process. Our approach will yield 2ran nonlinear differential equations
instead of the 1/2n(n + 1) of the Riccati equation and therefore will supply a more
effective algorithm for the gain matrix whenever m << n. The same equations were
recently presented by Kailath [3], who derived them directly from the Riccati
equation. However, our approach helps to reveal the fact that the property of the
error covariance matrix which makes Kailath’s method work holds for wide
sense stationary stochastic processes in general, and not only for those realized
by a finite-dimensional linear stochastic system.
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In order to obtain our results, in 3 we define the backward innovation
processes. This is in the spirit of a previous paper [6] by the author on filtering
of discrete-time processes, and we shall find some similarities in the structures of
analogous equations, but also some important differences. So, for example, the
equations for the "Kalman gain" are somewhat more complicated in the discrete-
time case in that an equation for the "backward error covariance" is required.
The reason for this, of course, is that in the continuous-time case the innovation
processes can be defined (as we have done) to have constant incremental co-
variances, while in the discrete-time case they are identical to the error processes,
for which no such constancy holds. (Hence the discrete-time counterpart of (4.7)
also contains the backward error covariance matrix.)

2. Preliminaries. Let z(t) be the m-dimensional stochastic process

(2.) z(t) () cl + w(t)

defined on [0, T], where y(t) is a zero mean vector process such that

T"Ely(t)[
2 dt < c,

and w(t) is a process with zero mean and covariance function

(2.2) E{w(s)w(t)’} I min (s, t)

(prime denotes transpose), which implies that w(t) has orthogonal increments.
If H is the Hilbert space of all second order stochastic variables (of course,

we have tacitly assumed an underlying probability space (f, B, P)) with inner
product (, r/) E{r/}, then define Ht(z) to be the closed linear hull in H of the
stochastic variables {zi(s); 0 < s __< t, 1, 2,..., m}. Furthermore, for any

H, let/ denote the projection of onto Ht(z), i.e., the wide sense conditional
mean of given {z(s); 0 __< s _<_ t}. If x is a vector with components xi H, we
shall take/x to mean the vector with components xi.

We shall need a few results from linear filtering theory which in the present
form are essentially due to Kailath. Denote y(t) by)(t) and define the innovation
process

(2.3) v(t) z(t) 3(r) dr,

for which we have the following lemmas.
LEMMA 2.1. The process v(t) has zero mean and covariance function (2.2) and

hence orthogonal increments. Moreover,

(2.4) H,(v) H,(z), 0 -< <= T.

LEMMA 2.2. Let x be a stochastic vector with components in H, and let v(t)
be a zero mean vector process with orthogonal increments and covariance function

In order to take full advantage of integration theory, we assume that all stochastic processes
defined are measurable in (t, o).
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(2.2). Then

;i cl e xvls)’ } dyes)(2.5) E’x

Informal versions of these lemmas have appeared in a series of papers by
Kailath on the "innovation method". For rigorous proofs see Kailath [2] or
Lindquist [5].

3. The backward innovation processes. For the moment assuming that
[0, T] is fixed, define the following stochastic processes for s [0, t]"

(3.) y,(s) y(t- s),

(3.2) z(s) z(t)- z(t- s),

(3.3) wds) w(t)- w(t- s),

where y, x and w are the processes defined in 2. Then equation (2.1) gives us

(3.4) zt(s y(r) dr + w(s),

which is an equation of the same type as (2.1), for it is immediately clear that

(3.5) E{w(s)w(-c)’} I min (s, r).

Therefore wds) has orthogonal increments for each fixed t. Also it is clear that

(3.6) z(s) zt(t)- zdt- s)

and therefore

(3.7) Ht(z,) Ht(z).

Now, introducing the notation Pt(s)= ’yt(s), we consider the innovation
process corresponding to (3.4)"

(3.8) vt(s) zt(s) )9,(r) dr,

which we shall call the backward innovation process for {z(s); 0 =< s __< t}. Clearly
we have one such process for each e [0, T]. The following lemma is then an
immediate consequence of Lemma 2.1 and equation (3.7).

LEMMA 3.1. For each fixed t, vds) has zero mean and covariance function (3.5),
and hence orthogonal increments. Moreover,

(3.9) Hs(v,) Hs(zt), 0 <= s <= t,

and, in particular,

(3.10) Hdv,) H,(zt)= H,(z)= H,(v).

Therefore, whenever we wish to determine a linear least squares estimate
based on the data {z(s); 0 __< s < t}, we can also express it in terms of z, v or vt,
whichever we find appropriate.
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4. An equation for the error covariance. Let z(t) be the m-dimensional data
process defined by (2.1) and x(t) a related n-dimensional zero mean stochastic
process such that the compound process (x(t), y(t)) is wide sense stationary with
E(x(t)x(t)’} Po. Also, to simplify matters, assume that (x,y) and w are un-
correlated.

Now, our problem is to determine the linear least squares estimate
(t) =/x(t), and in the process of doing so we are interested in the estimation
error covariance function

(4.i) P(t) E{Y(t)Yc(t)’},
where )?(t)= x(t)- 2c(t).

To this end, we recall the well-known fact that (for a fixed t) the filtering
estimate .9t(s) of yt(s) given the data {z#:); 0 =< r _< s} is

(4.2) .9,(s) G(s, r) dz,(r),

where G is a function (defined through a generalized Wiener-Hopf equation)
only of C, where Ct(z,s)= E{y(r)y(s)’}. However, due to the stationarity,
C(r, s)= E{y(s)y(r)’} does not depend on the parameter t, and hence G is good
for all e [0, T]. Therefore we have

E{x(t)p,(s)’} E{x(t)If] G(s r)drl’ }
E dr[’(4.3) {x(s)[f a(s r)y(s z) }

where we have used the fact that (x, y) is wide sense stationary and x and w are
uncorrelated.

We are now in a position to apply Lemmas 2.2 and 3.1 to see that

(4.4) 2(t) Q(t, s) dvt(s),

where

(4.5)

Q(t, s)= E{x(t)[y,(s)

E{x(s) [ys(S)

E{ff(s)y(0)’ },

where again we have exploited the stationarity and uncorrelatedness properties
mentioned above, relation (4.3), and also the fact that 2(s) and y(s) 9s(s) are
orthogonal and that the same is true for if(s) and ps(s). Hence Q(t, s) does not
depend on t, and we shall therefore call it Q(s):

(4.6) (t) Q(s) ,lv,(s).
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Then we have the error covariance

PIO {x0x0’} {))’}
(4.7) flPo O(s)Q(s)’ ds,

which concludes the proof of the following theorem.
THEOREM 4. l. With the conditions imposed in the beginning of this section, the

error covariance (4.1) satisfies the matrix differential equation

P(t) -Q(t)Q(t)’,
(4.8)

P(O) Po,
where

(4.9) Q(t) E{Yc(t)y(O)’}.

Here the dynamics of the n m matrix function Q is essentially that of the
error signal if, so to proceed we have to impose further conditions on the process
x(t). We choose to illustrate this by applying Theorem 4.1 to the Kalman-Bucy
filter.

Assume that the n-dimensional wide sense stationary process x(t) is given by
the stochastic differential equation

(4.10) dx Ax dt + B dr, x(0) Xo,

and the m-dimensional data process by

dz Hx dt + dw, z(O) O,

so that y(t) is in fact equal to Hx(t). Here v(t) is a vector process of type (2.2), Xo
is a zero mean stochastic variable, and Xo, v and w are pairwise uncorrelated. The
matrices A, B and H are constant.

Now, it is well known [4] that the filtering estimate (t) is generated by

(4.11) d A dt + K(dz- H dt), (0) O,

where the "gain-matrix" function K is given by

(4.12) K(t) P(t)H’.

The n n matrix function P is usually determined from a matrix Riccati equation,
which amounts to solving 1/2n(n + 1) nonlinear differential equations, in order to
obtain the nm functions in the gain matrix K. Our procedure yields 2ran
equations, which is a major advantage whenever, as is often the case, m << n. To
see this, first observe that the error process .(t) is given by

(4.13) d (A KH) dt + B dv dw

with initial condition .(0)= xo. Moreover, y(0)= Hxo, which is uncorrelated
with v and w. It is then easy to see that

Q =(A- KH)Q, Q(o) Poll’,
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and that we therefore have the following 2mn equations to determine the optimal
gain:

(4.14)
(t) -Q(t)O(t)’H’,

Q(t) (A K(t)H)Q(t),

with initial conditions K(0) Q(0) Poll’. Clearly, there exists a unique solution
of the system (4.14). Indeed, establishing this is a standard exercise in the use of
the contraction mapping principle.

Equations (4.14) have also been obtained by Kailath [3] by differentiating
the Riccati equation. However, unlike Kailath’s method, ours completely avoids
the Riccati equation. It also demonstrates the fact that the low rank property (in
the interesting case m << n) of/5 is not only a property of "lumped" stationary
processes (4.10) but is one of stationary processes in general.

5. Differential equations for the weighting function. Consider the problem to
determine the linear least squares estimate .9(t) y(t), where as before the data
process z(t) is given by (2.1):

(5.1) z(t) y(r) dr + w(t).

We assume that y is wide sense stationary and that y and w are uncorrelated.
Then as we pointed out in 4, we have

(5.2) )5(t) F(t, s) dz(s),

where F is the weighting function to be determined. This function is known to
satisfy a Fredholm integral equation (a generalized Wiener-Hopf equation), but
we shall demonstrate that it also satisfies a system of differential equations.

Now it is easily seen that we can rewrite (5.2) in terms of the backward data
process (3.2) to obtain

(5.3) )5(t) F(t, s) dz,(s).

Also we define the backward weighting function F* by the equation

(5.4) )),(s) F*(s, s z) dz,(z).

As we pointed out in 4, the stationarity insures that F* is the same for all values
of the parameter t. Moreover,

(5.5) )5,(t) F*(t, )dz().

We can also express ,9 and Pt in terms of the innovation processes v and vt.
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In fact, equation (4.6) yields for the case x y:

(5.6)

where

(5.9)

r(t)

or, introducing the notation

(5.8) F(t)- E{y(t),9,(t)’}.

Also, a straightforward application of Lemma 2.2 (with v v) yields

.9,(t) F(s)’ dv(s).

Hence, by (3.8),

and, by (2.3),

,9(t) F(s) dzt(s) F*(s, s z) dz,(z) ds

F(s) F(z)F*(z, z s) dr dz(s)

33,(t) r(s)’ dz(s) F(s, s r) dz(r) ds

F(s)’ F(’c)’F(’c, r s) dr dz(s).

(The change of the order of integration is permitted due to a Fubini-type theorem
for stochastic integrals. See, e.g., [1, p. 197].) It is clear from these expressions
that

(5.10) F(t, s) F(s) F(r)f*(r, r s) d:,

(5.11) F*(t, s) F(s)’ F(r)’F(r, s) d’c.

Now, the following theorem is a continuous-time analogue of Lemmas 3.1
and 3.2 in [6.

TnEOREM 5.1. The weighting functions F and F* satisfy the following differ-
ential equations:

(5.12)
cF

OF*
ct

--(t, s) F(t)F*(t, s),

(t, s) F(t)’F(t, s)
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for >= s, with initial conditions F(s, s) F(s) and F*(s, s) F(s)’, where F is defined
by (5.7)or (5.8). The error covariances R(t) E{(t)(t)’} and R*(t) E {37,(037,(0’}
satisfy"

(5.14) /(t) F(t)F(t)’,

(5.15) /*(t) F(t)’F(t),

with initial conditions R(0) R*(0) E{y(t)y(t)’}.
Moreover, if x is the process of Theorem 4.1 and N is the weighting function

defined by

(5.16)

then N satisfies

(5.17)
c3N

c(t) N(t, s) dz(s),

--(t, s) -Q.tt)F*(t, s)

for >= s, with initial condition N(s, s) Q(s), where Q is given by (4.9).
Proof. Equations (5.12) and (5.13) follow from (5.10) and (5.11), and (5.17) is

derived in the same way as (5.12) only exchanging (5.6) for (4.6). Finally, (5.14) and
(5.15) are consequences of Theorem 4.1. To obtain (5.14), put x y, and to obtain
(5.15), put x Yt and exchange y for

As an example, we can now apply equations (5.12) and (5.13) to obtain an
alternative derivation of equations (4.14). In fact, by (5.2) and (5.5), K(t)

E{x(t)(t)’} and Q(t)= E{x(t)t(t)’} can be expressed in terms of F and F*
respectively. Also observe that E{x(t)y(s)’} eat-s)PoH’ and finally that F(t)

HQ(t).
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