
SIAM J. CONTROL
Vol. 11, No. 2, May 1973

ON FEEDBACK CONTROL OF LINEAR STOCHASTIC SYSTEMS*

ANDERS LINDQUISTt

Abstract. Feedback control of linear continuous-time stochastic systems of general type is
discussed. Various types of (classical) information patterns with both complete and partial observations
(white and colored measurement noise) are considered. The cost functional is quadratic. A class of
admissible control laws is defined which includes all linear and nonlinear control policies for which
our problem makes sense, i.e., existence, uniqueness etc. are secured. Then, we determine the optimal
control law by an imbedding procedure which amounts to solving a problem without a feedback loop.
We investigate under what conditions the optimal control law is linear in the data.

1. Introduction. In recent years there has been a considerable interest in
feedback control oflinear continuous-time stochastic systems. However, as pointed
out by Witsenhausen [20], the difficulties created by the feedback loop have
frequently been overlooked, and therefore many results have appeared which as
yet have not been rigorously justified. On the other hand, as one might expect,
many rigorous proofs suffer from undesired technical restrictions.

The most well-known problem of this type is the stochastic linear-quadratic
regulator problem with noisy measurements, for which various versions of the
"separation theorem" hold. These versions usually differ in the way in which the
set of admissible control laws is defined. By confining ourselves to control laws
which are linear in the data, we can easily avoid the difficulties mentioned above.
However, we usually want to compare them with nonlinear control laws even
when such a comparison rules in favor of a linear one. To the author’s knowledge
the first fully rigorous proof along these lines appeared in the book [16] by
Kushner, where only control laws satisfying a uniform Lipschitz condition in a
certain state estimate are admitted. The state estimate is assumed to be generated
by a linear Kalman filter to which the nonlinear feedback loop is added, but it is
shown that this estimate is indeed the expected value of the current state given
past observations, as long as we confine ourselves to admissible control laws. In
the well-known paper [21] by Wonham the class of admissible control laws is
defined in a more straightforward way, first excluding the possibility that the
"information" carried by the observation process is control-dependent by re-
quiring the control to be Lipschitz in this process. Then, the admissible control
laws are defined to be Lipschitz continuousfunctions ofthe conditional expectation
of the state given past observations. Moreover, the separation theorem is general-
ized to hold for nonquadratic cost functionals. (Also see [22] .)

Of course the Lipschitz conditions are imposed to insure that there exist
unique solutions of the feedback equations. Otherwise the problem would not
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make sense. Unfortunately, these conditions exclude many control laws which are
not sufficiently smooth but for other reasons are natural to admit. (See 3.) In
order to get rid of these technical restrictions, Davis and Varaiya 5] defined a
new concept of solution using a theorem of Girsanov [11 to eliminate the control
dependence. For other contributions in this spirit see Bene 2] and Davis and
Varaiya [6]. In a recent paper by Lindquist 17] on optimal control of linear
stochastic systems (primarily devoted to stochastic functional differential equa-
tions) most technical restrictions mentioned above are dispensed with without
renouncing the usual concept of solution. Also in a paper by Bensoussan 3] on
the separation principle for distributed parameter systems the set of control laws
is defined so as to avoid undesirable restrictions. However, contrary to [5] and
[21], in both these papers the cost functional is quadratic.

In this paper we consider feedback control of linear stochastic systems of
general type. Various types of information patterns with both complete and partial
observations are considered. The cost functional is quadratic, but it is of a more
general type than usually encountered in the literature. The approach is the same
as that of [17], but the objective of this paper is somewhat different. In [17] our
prime purpose was to determine explicit feedback solutions for linear stochastic
lime-lag systems. But, since for such systems the conditional expectation of the
current state given past observations is no longer a sufficient statistic, we could
not adhere to the approach of [21]. Thus we had to define our set of admissible
control laws with a minimum of technical restrictions. However, rather than to
discuss the problems of feedback, our main effort was to demonstrate that sto-
chastic time-lag problems of the most general type can be handled in a rigorous
way. Therefore, in this paper we shall present a more detailed discussion of our
feedback approach, and at the same time we shall be able to present some ex-
tensions. In order to avoid obscuring our exposition, we have used technically less
complicated examples than in [17] to illustrate our basic ideas. Nevertheless, in
certain aspects they will be more general.

In 3 we discuss the problems offeedback in a general context. We define the
concepts of stochastic open loop (SOL) problem and feedback (FB) problem. A
SOL problem is usually easy to solve but what we want is a solution of a FB
problem. Therefore, our basic method is to imbed our FB problem in a suitable
SOL problem, and to this end, in 4, we derive an identity for the cost functional.
In 5, we investigate what conditions we have to impose on the system in order
that the optimal control law be linear. This is to simplify the imbedding procedure
and also to enable the practical implementation of the optimal control law. Thus
we define our system so that among all nonlinear control laws which make sense
(conditions of existence, uniqueness, etc. are fulfilled) the optimal one is linear.
For stochastic systems of the type discussed above, this amounts to requiring the
perturbing noise process to be a martingale in the case of complete observations
and a Wiener process for partial observations. We may well be able to solve a
SOL problem without these conditions, but the solution is usually of limited
interest to us, since we do not know of any method to decide whether an arbitrary
nonlinear control law is admissible for our FB problem. Finally, in 6 we give
some simple examples to illustrate our method. For instance, we prove the sepa-
ration theorem for colored measurement noise and for time delay in the control.
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For more explicit control and filtering solutions of systems with delay in the
state process we refer the reader to [17] and [18].

2. Preliminaries. Let Xo(t) be a (fixed) measurable n-dimensional stochastic
process with bounded second order moments, and let K(t, s) be an n m matrix
function such that or IK(t, s)l 2 ds is bounded. (l" is the Euclidean norm.) We shall
define three vector functions taking values in Rm, R and Rk, respectively, namely
the input or control u(t), the state x(t), and the output or observation z(t). These
functions are related to each other in the following way"

(2.1) x(t) Xo(t) + K(t, s)u(s) ds,

(2.2) z(t) gx(t),

where H is a constant k n matrix. In the sequel, we shall often use the following
shorthand notation"

(2.1’) x Xo + Ku,

(2.2’) z Hx.

Therefore whenever u is a measurable stochastic process such that Elu(t)l < o is
integrable, x and z are also measurable processes, and they have bounded second
order moments.

Our object, however, will be to construct a feedback system. At each time t,
u(t) should be formed as a functional of observations received so far" {z(s);
0 _<_ s _<_ t} in such a way as to minimize

(2.3) EVo(x, u),

where

(2.4) V(x, u) x’(t)Q (t)x(t) da(t) + u’(t)Q 2(t)u(t) dr.

Here Q1 and Q2 are bounded matrix functions which are nonnegative definite
and positive definite respectively, denotes transpose and E expectation, and a is
a monotone nondecreasing bounded function which is continuous on the right
and thus defines a finite Borel measure t. Moreover, Q2 has a bounded inverse

In order to facilitate the formulation of this problem in more precise mathe-
matical terms, we shall define a few concepts" Let P be the set of all measurable
k-dimensional stochastic processes, and S the set of m-dimensional stochastic
variables. Then the function

’[0, T] x pk S

is a nonanticipative function of z if (t, z) is a function of {z(s) 0 s N t} only for

In this paper a measurable n-dimensional stochastic process will be a x -measurable function
[0, T] x R", where M and are the sigma fields of Borel sets and events respectively. Then we
have assumed an underlying complete probability space (fl, , P), where as usual fl is the sample
space with elements and P is the probability measure. As usual we shall write Xo(t) instead of
Xo(t, ). All deterministic functions defined in this paper are Borel measurable.
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each and defines an element in pro. The measurable process x is a stochastic
B-solution of the equation

(2.5) x(t) Xo(t) + K(t, s)r(s, Hx) ds

if for each e [0, T] it satisfies (2.5) with probability and EIx(t)l is bounded. In
this paper we shall make no distinction between equivalent processes, i.e.,
processes which for each are equal with probability 1.

Our model (2.1) of the controlled system is sufficiently general to include
linear dynamic systems such as stochastic differential equations and stochastic
functional differential equations. Since our prime interest is in differential systems
of this type, the technical assumptions of boundedness imposed above are natural
and convenient, but it should be pointed out that they are in no way crucial.

3. Feedback in linear stochastic systems. Let { ; 0 =< < T} be a
family of sigma fields and let ’ be the set of all m-dimensional stochastic processes
such that"

(i) u(t, o) is measurable (t,
(ii) j’ E HI 2 dt <
(iii) u(t) is t-measurable for almost all t.

Consider the problem of finding a u* ’ so as to minimize

E Vo(xo + Ku, u).

It will be shown in the Appendix that there indeed exists a unique u* for
which the minimum is attained. Following [17], such a problem will be called a
stochastic open loop (SOL) problem and ’ a SOL class. If all t 0, we have an
open loop (OL) problem, which is essentially an ordinary variational problem, but
in general the SOL problem corresponds to the situation where the available
amount of "information" (given by ,)varies (usually increases)with time but is
unaffected by the choice of u.

However, we are primarily interested in problems where information about
the state process is provided by the observation process

(3.1) z Hx.

The problem is to determine a control law, that is, to design a "black box" in
which the observations received so far are filtered and fed back into the system as
a control signal (Fig. 1). Then we have a feedback (FB) problem. The "black box"
will be described mathematically by a nonanticipative function zr’(t, z)--, u(t)

zr(t, z), and we shall use the shorthand notation"

(3.2) u zrz.

Of course, we have to define the set of admissible in such a way that there exists
a unique solution of the stochastic functional equation created by the feedback
loop. (To this end, Wonham [21] only admitted z for which a certain Lipschitz
condition is fulfilled. However, for technical reasons which will be revealed below
we do not choose to formulate our problem in this way.) To avoid these rather
intricate problems of existence, we could instead of our FB problem solve the
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FIG. 1. The FB problem

z o
o

FIG. 2. A SOL problem

SOL problem (Fig. 2)"

(3.3a) min EVo(Xo + Ku, u),
ea//o

where ’o is the SOL class defined by

(3.3b) , a{Zo(S);0 =< s _< t};

that is, the family of sigma fields generated by

(3.4) Zo Hxo.
Methods along these lines have been proposed [23], [24]. In fact, Zo can be

determined by subtracting HKu from z. However, a control system designed in
this way will not be a proper closed loop system, and it will obviously lack some
desirable properties associated with the concept of feedback. Also, the reader is
warned against exchanging zo for z in (3.3), for then we cannot a priori assume
that {,} is constant with respect to variations of the control, and moreover
questions of existence have to be settled.

Now, we define our class of admissible control laws in the following way"
I-I is the class of all nonanticipative functions

rt’[O, T] x P S

which are measurable in the sense that re(t, y) is a{y(s);O <= s <= t}-measurable for
all (t, y) for which r is defined, and which fulfill the following conditions"

(i) there exists a unique stochastic B-solution x of

(3.5) x Xo + KrcHx"

(ii) u rcHx, ?1o
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Then our problem is to determine a n* H which minimizes

E Vo(x, nHx),

but in general we do not know whether there really exists an optimal n. However,
if we define ’n to be the set of stochastic processes

(3.6) /n {nnx "n e H},
it is clear that n @o and that

inf EVo(x,, nHx,) inf EVo(xo + Ku, u)
(3.7)

n .
>= rain EVo(xo + Ku, u).

ealio

So if we can find an optimal u* for the problem (3.3) so that u* ’n, then we have
found a solution of our FB problem provided that we can also determine a
n* H such that u* n*Hx,.

At first sight it seems quite reasonable to assume that the class H of ad-
missible control laws includes all n for which our problem makes sense. The only
point on which this claim could be questioned is the condition that u(t) n(t, Hx)
be a{Zo(S); 0 < s =< t}-measurable for almost all t. However, it should be noted
that this condition is true whenever the solution x, of (3.5) is such that z Hx
can be constructed as the limit in probability of a sequence of (measurable) non-
anticipative functions of zo. Therefore, for all practical purposes we can safely
ignore all n which do not belong to H.

As an example let us consider the following stochastic functional differential
equation"

dx [A (t)x(t) + A(t)x(t h) + Ao(t, s)x(s) ds
(3.8) -+ Bl(t)u(t + B2(t)u(t h)]dt + C(t)dv fort > 0;

x(t) (t) fort =< 0,
where Ao, A1, A2, B, B2 and C are bounded matrix functions, B2 0for < h,
the delay h > 0, v is a stochastic vector process with orthogonal stationary in-
crement such that

(3.9) Ev(t) 0; E{v(s)v’(t)} I min (s, t)

and is a process with bounded second order moments. The processes and v
are independent.

Problems of this type have been studied under more general conditions in
17], where it was shown that (3.8)can be written in the following equivalent form"

(3.10) x(t) Xo(t + K(t, s)u(s) ds,

where

Xo(t O(t, 0)(0) + O(t, s + h)Az(s + h) + O(t, r)Ao(r, s) dr (s) ds
-h

(3.11)

+ O(t, s)C(s) dr(s),
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(3.12) K(t,s)-= (t,S)Bl(S + (t,s + h)B2(s + h)

and is the transition matrix function:

c(t, s) A (t)(t s) + Aa(t)(t h s) + Ao(t, z)(c s)dr
(3.13) c3t -h

(I)(s,s)= I; (t,s)=0 fort<0.

fort >_0:

Now we have transformed our problem into the type discussed above, and it is
not hard to see that the unique solution x of x Xo + KzrHx (re l-I) is also the
unique solution of the feedback equation obtained when u(t) r(t, Hx) is inserted
in (3.8). In fact, it is demonstrated in [17, Theorem 5.3] that the two equations can
be transformed into each other, so that any (stochastic B-) solution of one is also
a solution of the other.

Now, let yk be the space of all k-dimensional stochastic processes y which
can be represented in the following form:

(3.14) y(t) q(s) ds + D(s) dw(s),

where q is a measurable stochastic process such that EIq(t)l 2 is integrable, D is a
matrix function with square-integrable elements, and w is a stochastic vector
process of type (3.9) with orthogonal increments. Then, putting u 0 in (3.8), it
is clear that xo 6 Y" and zo 6 Yk. Define f to be the class of all functions

o:[0, T] Y-
such that

q)(t, y) f(t) + F(t, s) dy(s),

where f is an L 2 vector function and F is an L 2 matrix kernel (j’j" [F[ 2 ds dt < ).
If there is a stochastic B-solution xo of (3.8) with u qz, we must clearly have

xo Y" and consequently z0 Y.
LEMMA 3.1. For the dynamic system (3.8) we have C I-I.
Proof (cf. [17]). First observe that if O(t) is an L 2 matrix function,

(3.15) g/(s)q(s, y) ds tp(s)f(s) ds + /(s)F(s, ) ds dy(r)

a.s. for all y for which 0 is defined, that is, we can change the order of integration.
In fact, considering (3.14) we can divide the last term of (3.15) into two and apply
the usual Fubini theorem to the first term (for j" [q[2 ds < oe a.s.) and the stochastic
Fubini theorem ([7, p. 431], [10, p. 197]) to the second. Now, inserting

K(t, s)= B(s) + B2(s + h)O(t- s- h)+ F(:, s)dr

(where F is an L 2 matrix kernel such that F(t, s) (c3K/t)(t, s) for va s + h and
0 is the unit step function) into (3.10) and changing the order of integration, we
obtain

(3.16) x(t)= Xo(t) + B(s)u(s) + B(s)u(s h) + F(s, z)u(z)dz ds.
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Then after inserting u(t) (p(t, z) into (3.16), applying (3.15) and multiplying by
H we have an expression of the following type"

(3.17) dz=dzo+IflG(t,s)dz(s)+g(t)]dt,
where G is an L2 matrix kernel and g is an L2 vector function.

Now, let the L2 matrix kernel R be defined by the Volterra resolvent equation

(3.18) G(t, s) R(t, s) R(t, z)G(r, s) dr,

exchange G in (3.17) for the right member of (3.18), and change the order of
integration. Then we obtain

dz dzo + R(t, s) dzo + R(t, s)g(s) ds + g(t) dt

which inserted into (3.16) with u qz yields the unique solution xo. Evidently
q)Hxo e lo. (We consider a measurable version of q(t, z). See [7, p. 430] or [10,
p. 196].) This concludes the proof.

By prescribing some conditions of regularity on the sample functions of z
such as continuity or boundedness, we could define as a function of individual
sample functions of z rather than the whole stochastic process. For example, if z
has continuous sample functions, following Wonham [21] we could define the
class of all functions

0"[0, T] x CR

such that (t, () is a function of {((s) 0 s and satisfies a Lipschitz condition

I(t, 1) (t, 2)1 7111 C2]I,

where denotes the sup norm in the space C of continuous functions on [0, T]
with values in R. Let C be the space of all k-dimensional stochastic processes
with continuous sample functions, and define HL to be the class of all functions

(t, z) e [0, T] C (t, z) e S,
where @ . Then it can be shown that HLIP H. (See [21] and [22].) However,
for the control of systems of type (3.8), is often a very natural class of control
laws. Indeed, below we shall introduce some further conditions so that the op-
timal control law * , but in general we have to impose still further conditions
in order that * HL. In fact, HL, for usually a stochastic integral cannot
be defined samplewise. This is only possible the functions s F(t, s) are of
bounded variation (and z has continuous sample functions). Then we can integrate
by parts to obtain

O(t, z) f(t, t)z(t) F(t, 0)z(0) dsF(, s)z(s).

With a few additional conditions on F this control law will belong to .
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4. An identity. Let w(t) be a p-dimensional martingale2 with finite second
order moments, zero mean (w(0) 0) and incremental covariances"

(4.1) E{dw,(t) dwj(t)} d(t), i,

.0, j :/: i,

where w (i 1, 2, -.., p) are the components of w, and fl are monotone non-
decreasing bounded functions which are continuous from the right. In the Hilbert
space H, with inner product (, q) E{, q}, ofall (real-valued) stochastic variables
with finite second order moments, define H to be the subspace of stochastic
variables which are measurable with respect to

(4.2) , {w(s); 0 s t}
and , to be the closed linear hull of {w(s); 0 N s N t, i= 1,2,--., p} together
with all constants, i.e., the set of all stochastic variables which can be represented
in the following way"

+ f’(s) dw(s),

where is a constant, f is an L2 vector function, and integration is with respect
to the stochastic measure

U((tl, t2] w(t2)- W(t)

(cf. [10, p. 194]). Let Et and t denote the projections of H onto H and, respectively, i.e., the conditional and wide sense conditional expectations of
given {w(s); 0 s t}. Since , H,, we can form the orthogonal complement
Ht t of , in H,. Finally, let w be the SOL class with {t} given by (4.2).

LEMMA 4.1. If U w is given by

(4.3) u(t) (t) + u(, s)dw(s) + (t)
i=1

where I I()1 d < , lug(, s)l dg(s) d < (i 1, 2,..., p) and e is a

stochastic process such that i(t) e H for almost all (i 1, 2, ..., m), then

eVo(Xo + u, u Vo(, + (x (., st, u(., sll B(s + o(, I,
i=1 0

o, xi(’, s) and 2 being d@ned in the following way"

(t) o(t) + K(t, )() dr,

xi(t, s) mi(t, s) + K(t, r)ui(r, s) d,

2(0 2o(0 + K(t, )() d,

E{w(s)lw()’O t} w(t) for < s. Since EIw(t)l < , w(t) has orthogonal increments.
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where3 o(t)= Exo(t), mi(t, s)= (t/ti)E{xo(Ig)wi(s)} and YCo(t Xo(t Xo(t).
Proof(cf. [17]). According to Lemma B.1 (see Appendix),

o(t) o(t) q- mi(t S) dwi(s)
i=1

is (a version of) the wide sense conditional mean Exo(t). Then, inserting Xo(t)
o(t) + o(t) and (4.3) into Xo + Ku, we have"

x(t) o(t) + K(t, )() dr

+ mi(t s) dwi(s + K(t, ) Ui( S) dwi(s) dz
i"

(4.4)

+ 2o(0 + K(t, )() d

(t + x(t, sIw(sI +

where we have used the stochastic Fubini theorem.
Now due to the martingale property, (s)Z for almost all s N t, and

therefore (since 2o(0 2 ), 2(t) 2 . In fact, if

(4.5 f’(s w(sI,

where f is a vector step function, E 0, and therefore

for almost all s N t, for E EE and e. But each e @ can be rep-
resented as the limit in H of a fundamental {} of type (4.5), and therefore (for
almost all s N t) E{(s)} 0 for all such , and consequently (s) 2 @ .
But by definition, (s) 2 and hence (s) 2 , (for almost all s N t).

Since the terms of (4.4) are mutually orthogonal and the same is true for
(4.3) for almost all t, we have

evo(x, u o(, + eVo(Xw, uw + o(,,
where (xiwi)(t) xi(t, s)dwi(s) and uiwi are defined analogously. However,

+ u}(t, s)Q(t)ui(t, s) dBi(s) dt

T

0

where we have used (4.1) and Fubini’s theorem. This concludes the proof.

(/B)E{xo(t)w(s)} [(/)E{Xo(t)w(B? ())};=, (see Appendix).

(s) 2 B, means "all components of a(s) are orthogonal to ,
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Remark. If w is a process of type (3.9), i.e., fli(t) t, we have

mi(t s)= ---E
S {Xo(t)wi(S)}"

If Xo(t) Ht, we have

Xo(t) 2o(t) + i mi(t, s) dwi(s).

5. The imbedding proeelure. In order to exploit the identity derived in the
previous section, we note that for many stochastic systems of interest it is possible
to represent the uncontrolled observation process Zo defined in 3 in the following
way:

(5.1) Zo(t) o(t) / N(t, s) dw(s),

where w is an r-dimensional martingale defined as in 4, o is a bounded deter-
ministic function, and N is a k x r matrix function with columns N such that

f [Ni(t, s)[ 2 dfli(s are bounded. With n, o and w defined as in 3 and 4, we
obtain

(5.2) .ow
and therefore we have imbedded the set n of all control processes generated by
admissible control laws in the SOL class defined by a martingale process. The
following lemma will explain our basic method to construct optimal control laws.

LEMMA 5.1. Let u* be the optimal solution of the SOL problem:

(5.3) min EVo(xo + Ku, u).
u

If there is a * H such that

(5.4) u*(t) n*(t, zo + HKu*),

then there exists an optimal solution of the FB problem

min EVo(x, Hx)

and it is provided by *.
Proof. Let z* Zo + HKu*. Then, according to (5.4), u* *z* and there-

fore z* zo + HK*z*. But then z* must be the unique solution z, of z z0
+ HKg*z, and consequently u* *z,. Now, due to (5.2),

inf EVo(xo + Ku, u) EVo(xo + Ku*, u*);
uen

but since u* e n, equality holds. This concludes the proof of the lemma.
Ofcourse this procedure can only be successful if w is so defined that u* e n.

It is therefore desirable that 41 be as small as possible. If the transformation (5.1)
is causally invertible, i.e., w can be represented as a measurable nonanticipative
function of Zo, we have 0. Then (5.1) is a canonical representation and w
will be called an innovation process. (See, e.g., [4], [12], [13], [9], [14].) However,
in general it is no trivial problem to decide whether u* really belongs to n. Often
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a nonanticipative function expressing u* in terms of z* Zo + HKu* is quite
easily determined (e.g., in the form of conditional expectations), but it still remains
to show that this function belongs to H, i.e., that there exists a unique solution of
the corresponding feedback system. In order to reduce these difficulties and also
to make full use of Lemma 4.1, we shall investigate under what conditions on the
pair (Xo, w), the optimal SOL control u* is linear in w.

THFORFM 5.2. If the pair (Xo, w) fulfills the condition

(5.5) Etxo(t) tXo(t) la-a.e, on [0, T],

i.e., the conditional and wide sense conditional expectations of Xo(t given {w(s);
0 <__ s <__ t} coincide for #-almost all on 0, T], then the optimal solution u* of the
SOL problem (5.3) is given by

(5.6) u*(t) l*(t) -t- U(t, S) dwi(s),
i=1

where * is the optimal L2 solution of the problem

(5.7) min Vo(fo + KO, )

and u’(., s) (i 1, 2, r;0 <= s <__ T) are the optimal L2 solutions of
(5.8) min V(mi( s) + Kui( s), ui( s))

ui( ,s)

subject to the constraints ui(t, s) 0 for < s. Here,

fro(t) Exo(t and --Emi(t s)
i

{x(t)wi(s)}

Moreover, if x* Xo + Ku*, for all (z, t) [0, T] x [0, T] we have

(5.9) x*(t) x*(t) + x.*, (t, s) aw(s),
i=1

where f*= fo + Kft* and x.*, s)= mi( s)+ Ku.*, s).
Proof. Let and 2o be defined as in Lemma 4.1. Then, g(S) H c H for

almost all s < and therefore (K)i(t) Ht. Now, condition (5.5) implies that

EtYco(t) E,{xo(t) /,Xo(t)} Exo(t) ,Xo(t)= 0 p-a.e.,

and consequently 20(t) _1_ Hr #-a.e. Therefore 20(t) and (Kfi)(t) are orthogonal for
g,-almost all on [0, T], and hence

EVo(YC, )= EVo(o, O)+ EVo(K )>= EVo(o, 0),

where equality holds for t7 0. Therefore our assertion (5.6) follows from Lemma
4.1, for problems (5.7) and (5.8) indeed have unique solutions such that u* defined
by (5.6) is a measurable stochastic process (see [17]). To obtain (5.9), insert (5.6)
into x* Xo + Ku*, change the order of integration (stochastic Fubini theorem)
and apply Lemma B. 1. This concludes the proof.

Note that we do not a priori assume that u* is linear in w, but the linearity is
a consequence of condition (5.5) and the martingale property. It should be clear
from the proof of Lemma 4.1 that if we confine our set of admissible controls to
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those which are linear in w, we only need to assume that w have orthogonal
increments to insure that (5.6) is optimal.

COROLLARY 5.2. Either one of the following two conditions is sufficient for
(5.6) to be the optimal solution of problem (5.3):

(i) Xo(t) e fI, on [0, T];
(ii) Xo and w are jointly Gaussian.

When condition (i) holds, x*(t) can be obtained from (5.9) by putting z t, and when
condition (ii) is fulfilled, *(tlz) Ex*(t) is given by (5.9).

Proof. Both conditions are sufficient for (5.5) to hold. As for condition (ii),
see, e.g., [10, pp. 228-229].

Remark. Conditions (i) and (ii) can be weakened so as to exploit the fact that
(5.5) only needs to hold for p-almost all t.

Now, if u* is given by (5.6), we have

(5.10) z* Nw + HKu*,

(5.6’) u*= U’w,

where N and U* denote the affine transformations of (5.1) and (5.6) respectively.
Then, if we can eliminate w from this system to obtain a nonanticipative function
(5.4) expressing u* in terms of z*, there should be no problem in establishing
whether this control law really belongs to l-I, for it is linear in z*. Once the optimal
control law r* has been determined, there remains the problem of implementing
it. We shall refer to this problem as the filtering problem, since it often amounts to
constructing a linear filter whose transfer property is described by

As an example, let us return to the dynamic system defined by (3.8). It is clear
from (3.11) that if is a known (deterministic) function and v is a martingale, we
have a representation of type (5.1). Also, with w v, condition (i) of Corollary 5.2
holds and consequently u* is given by (5.6). Indeed, in 6, we shall use this rep-
resentation for the case with complete state information (H I), but in general
the SOL class @’v is too large. However, if v is a Wiener-process, is Gaussian,
{z(t) _<_ 0} is deterministic, and HC(t) is a square matrix with a bounded inverse,
we have an innovation process

(5.11)

where

(5.12)

dw(t) (HC(t))- l[-d_7o(t) H(t)

wlO) o,

(t)- E{q(t)lZo(S); 0 <_ s <_ t},

(5.13) q(t) A(t)Xo(t) + A(t)Xo(t- h) + Ao(,s)xo(s)ds.
-h

The innovation process w is a Wiener-process, w and zo are related to each
other by invertible and nonanticipative linear transformations, and the families
of sigma fields generated by the two processes are identical. (See, e.g., [14], where
other references are also given, or [17, Lemma 3.2 .) Therefore,

(5.14) O(t) 7:t(0 + Q(t, s) dw,
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where the L 2 vector function g/and L2 matrix kernel Q are given by Lemma A.2,
and hence z0 can be represented in the form (5.1). Moreover, since Xo and w are
jointly Gaussian, condition (ii) of Corollary 5.2 holds, and u* is given by (5.6).
Now, from (3.16) we have

u* + HB2u*(t h) + HF(t s)u*(s)ds dt(5.15) dz* dzo + HB

Then, inserting Zo given by (5.11) and (5.14) and u* given by (5.6) into (5.15) and
changing the order of integration, we obtain an expression of type

(5.16) (HC)- dz* dw + P(t, s) dw dt + p(t)

(where p and P are functions of the same type as ?/and Q). The resolvent technique
previously used for equation (3.17) can now be applied to solve (5.16) for dw,
which inserted into (5.6) yields

u*(t) *(t, z*),

where *5. Therefore, since q is contained in FI (Lemma 3.1), Lemma 5.1
implies that * is the optimal control law of our FB problem. We have not
bothered to determine g* explicitly but have only described how this can be done.
The reason for this is that n* is often more easily implemented by a linear filter
in which w is formed as an intermediate process. Such a filter contains linear
feedback loops, and we may ask whether the existence and uniqueness for the
complete feedback system is preserved. However, this is the case, for mathe-
matically these loops correspond to linear Volterra integral equations of either
ordinary type or type (5.16), and therefore they can be resolved by reformulation
using the resolvent equations. (Note that in this paper we allow no stochastic
processes whose sample functions are not a.s. square integrable.)

6. Examples. In order to illustrate our basic technique, we shall apply the
results of this paper to some simple and well-known problems, all of which will
concern systems of type (3.8). However, we shall not consider delay in the state
process since this would only introduce complications in notation without ex-
posing any new ideas which cannot be found in [17].

Example 1. Complete state information. Consider the system:

(6.1) dx(t) [A(t)x(t) + Bl(t)u(t + B2(t)u(t h)] dt + C(t) dw,

where x(0) a is a deterministic vector, w is a martingale of type (4.1), and the
matrix functions are defined as in 3. The observation z(t) is the state process x(t)
itself, and the problem is to determine a control law z "(t, x) - u(t) re(t, x) in the
class H which minimizes

(6.2) E{fro (x’Qx + u’Q2u)dt + x’(T)Q(T)x(T)}.
Here (6.2) is the cost functional (2.3) with e(t) for < T and e(t) + 1 for
t>T.
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Now, if is defined as in (3.13) with A A and Ao A2 0, we have

(6.3) Xo(t O(t, O)a + O(t, s)C(s) dw(s)

and hence condition (i) of Corollary 5.2 holds. Therefore, (5.6) is the optimal
solution of the SOL problem (5.3). The functions fro, mi and K in Lemma 5.2
are given by

(6.4) o(t) (t, 0)a,

(6.5) mi(t, s) (t, s)ci(s) for >= s,

(3.12’) K(t, s) (t, S)Bl(S + ((t, s + h)B2(s + h),

where ci is the ith column of C, and therefore problems (5.7) and (5.8) belong to the
family of problems

(6.6) min (x’Qx + u’Qu)d + x(r)Q(r)x(r)

when

dx
Ax + Blu(t + B2u(t h) for > s, u(t) 0 for < s,

dt

where for (5.7), s 0 and x(0) a, and for (5.8), x(s) ci(s). Now, according to
Appendix C, we have the following feedback solutions"

o*(t) Po(t)*(t) + Pl(t, "0fl*(’0 d’,
-h

u(t, s) Po(t)x.*, (t, s) + Pl(t, "c)u.*, (’c, s) d’c, >= s,
-h

which inserted into (5.6) yields, after applying the stochastic Fubini theorem,

(6.7) u*(t) Po(t)x*(t) + P(t, z)u*() dz,
-h

for x*(t) is given by (5.9) with r (Corollary 5.2), and u(t, s) =_ 0 for < s. Since

P is an La matrix kernel and almost all sample functions of Pox* are square
integrable, according to standard Volterra theory (see, e.g., [19]) there is an L
resolvent kernel Pa such that

(6.8) u*(t) Po(t)x*(t) + P(t, s)Po(s)x*(s) ds

which defines a nonanticipative function r* "(t, x*) --* u*.
Now we can use a similar argument to show that *e H, and therefore,

according to Lemma 5.1, (6.8) is an optimal FB solution. However, note that the
filter described by (6.7) might prove to be a more suitable implementation of re*.
(See Fig. 6.1.) In fact, (6.7) only requires storing u* on the interval (t h, t), while
in (6.8) we need x* on the whole interval (0, t). It should be clear from the dis-
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cussion above that this implementation preserves the existence and uniqueness
property of

Example 2. Separation theorem; white measurement noise. Consider the
stochastic vector processes y and z defined by

(6.9) dy(t) [A(t)y(t) + B(t)u(t)] dt + C l(t) dv l(t),

(6.10) dz(t) D(t)y(t) dt + d/)2; z(O)-- O,

where v is a vector Wiener-process of type (3.9), y(0) in Gaussian,
v

Ey(O) a, and v and y(0) are independent. All matrix functions are bounded. The
problem is to determine a nonanticipative function r’(t, z)--. u(t) r(t, z) so as
to minimize

(6.11) E{f o (y’Q3y+ u’Q2u) dt},
where Q3 is nonnegative definite and bounded.

Now, this is clearly a problem of the type discussed in 3. In fact, define x

to be () and H to be (O,I). Moreover, in V(x,u) define Qx to oQ3 00) and

put (t) t. Therefore, H will be our class of admissible control laws from which
a r minimizing (6.11) is to be selected.

For this problem we have an innovation process (5.11) given by

(6.12) dw dzo D(t)o(t dt w(O) O,

where Po(t) is defined as in (5.12), and, according to Corollary 5.2 (condition (ii)),
(5.6) is the optimal solution of our basic SOL problem (5.3) to determine a u ’w
so as to minimize (6.11). Now, let 0, *, g and y’ be the subvectors in "y-position"
of fro, *, mi and x’ respectively, and let K be the corresponding submatrix of K.
Then, if is defined as in Example 1, we have

(6.13) Yo(t) O(t, O)a,

(6.14) gi(t, s) d(t, s)P(s) di(s for >= s,

(6.15) K (t, s) (t, s)B(s),
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where di is the ith column of D’, and P is the conditional covariance

(6.16) P(t) E{[yo(t .9o(t)][yo(t)- Po(t)]’}.
In fact, since Yo and v2 are independent, we have

E{Yo(t)w’(s)} E{Yo(t)[Yo(Z .o(Z)]’}O’(z)dr

O(t, r)P(r)D’() dr,

for the two last terms in

yo(t) O(t, z)[yo(z) )o(Z)] + O(t, Z))o(Z) + O(t, )C1() dr,

are orthogonal to yo(Z) 9o(V), and therefore (6.14) follows from the definition
of mi(t, s). Then, (5.7) and (5.8) belong to the family of problems"

min (y’y + u’Qau) dt

(6.17) when
dy

Ay + Bu fort>__s,
dt

where s 0 and y(0) a for (5.7), and y(s) P(s)di(s for (5.8).
Hence, we have the following feedback solutions"

(6.18) a*(t) L(t)y*(t),

(6.19) u.*, (t, s) L(t)y.*, (t, s),

where L can be found in any textbook on the linear-quadratic regulator problem.
This inserted into (5.6) yields

(6.20) u*(t) L(t)9*(t),

where 33*(t) Ety*(t is given by (5.9) (see Corollary 5.2), and therefore satisfies
the stochastic differential equation

d*(t) [A(t)9*(t) + B(t)u*(t)] dt + P(t)D’(t) dw(t),
(6.21)

.9*(0) a.

Now, the innovation process (6.12) can also be written

(6.22) dw dz* D.f* dr,

for the control-dependent terms of z* and p* cancel out. Then, if W is the
transition matrix

(6.23)
--(t, s) A(t) + B(t)L(t) P(t)D’(t)D(t)]uf(t, s),

W(s, s) I,
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we have a nonanticipative function n* :(t, z*) -, u* which is defined by

(6.24) u*(t) L(t)(t, O)a + L(t)(t, s)P(s)D’(s) dz*(s)

and hence belongs to II (Lemma 3.1). Therefore, according to Lemma 5.1, among
all control laws in H, the function n* gives the smallest value to (6.11). However,
it should be clear from the discussion at the end of 5 that n* can safely be im-
plemented by the linear filter defined by (6.20), (6.21) and (6.22). Of course this is
an advantage, for in this way there is no need to store old z*.

Example 3. Separation theorem colored measurement noise. We shall consider
the preceding example (Example 2) modified in the following way: The obser-
vation process z is no longer defined by (6.10), but

(6.25) z(t) Hy(t) + n(t),

where H1 is a constant matrix and n is a colored noise term generated by

(6.26) dn(t) D(t)n(t) dt + dv
with n(0) 0. Also y(0) a is assumed to be deterministic.

Again we have a problem of the type discussed in 3, for define x to be ),
put H (H1, I), and let Q and be defined as in the previous example. There-
fore, the problem is to determine n H so as to minimize (6.11) when u(t) n(t, z).

Since HC I + HCa, we shall further assume that (I + HC1)- exists
and is bounded. Then, we have an innovation process (5.11) given by

(6.27) dw (I + HiC1)-dzo HiAodt Dhdt],

where w(0) 0 and Po(t) and h(t) are defined as in (5.12).
Now, apart from the definition of the innovation process, we have the same

problem as in the preceding example, and the optimal solution u* of our basic
SOL problem is given by (6.20) and (6.21). The innovation process can now be
expressed in terms of z* and 9""
(6.28) dw (I + HC)-l[dz* Dz* dt (HIA -k- HBL DH)9* dt],

for due to (6.20) and h(t)= z*(t) H lP*(t) which is an immediate consequence
of (6.25), we have only added terms which cancel out. Then, because of (6.20),
(6.21) and (6.28), we have

u*(t) L(t)(t, O)a + F(t, s)D(s) dsHa
(6.29)

+ F(t, s) + F(t, z)D(z) dr dz*(s),

where F and the transition matrix q are defined by

--( S) [Z -JI- BE PD’(I nt- n 1C1)- l(nlZ -- n1BE DH 1)klJ(t s)

q(s, s) I,

F(t, s) L(t)tP(t, s)P(s)D’(s)(I + H, C(s))- 1.
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To obtain (6.29) we have used the fact that

z*(t) H la + dz*

and applied the stochastic Fubini theorem. Now, (6.29) clearly defines a function
re* :(t, z*) u* which belongs to 5 = H. Therefore, according to Lemma 5.1,
is an optimal control law in the class H. However, as usual we will find it more
convenient to implement re* by the linear filter defined by (6.20), (6.21) and (6.28).

Appendix A.
LEMMA A.1. The SOL problem posed in the beginning of 3 has an optimal

solution which is unique up to a (t, co)-equivalence.
Proof. We introduce the following notation"

J(u)-- EVo(xo + Ku, u).

Now, there is a sequence u, ’, n 1, 2, 3, .--, such that

lim J(u,)= inf J(u)= p >__ O.

Then, for each e 0 the parallelogram identity yields

EVo(K(um Un), U Un)--- 2J(um) + 2J(u,) 4J( u" +2 u_

for sufficiently large m and n. Therefore {u} is a Cauchy sequence in L([0, T x fL
N x , 2 x P)(with norm I1o II- q El "1 dt)/; 2 is the Lebesgue measure)
defining a limit point u* which, due to completeness, clearly satisfies conditions
(i) and (ii) in the definition of ’. Moreover, since

lim IlUn U*I 0, lim Elu,(t)- u*(t)l 2 0

for almost all t, and hence u* satisfies condition (iii), too. Therefore, u* . It
remains to show that u* is optimal. However this is the case, for it is not hard to
see that IJ(u,) J(u*)l -<_ llu. u*ll, where 7 is a constant, and hence J(u*) p.
Moreover, if u ’ and J(u) -p, the parallelogram identity implies that
Ilu* ull 0, for

J
2

Therefore, u u* 2 x P-a.e., and hence the asserted uniqueness property is true.

Appendix B. Let y(t) be a stochastic vector process with finite second order
moments and mean E{y(t)} (t), and let w(t) be a vector process with zero mean
and orthogonal increments described by (4.1). The inverse functions --, -(t)
are uniquely defined except for at most enumerably many t. Then define

(B.1) hi(t, s) _--E{y(t)wi(-
fl



342 ANDERS LINDQUIST

for which we shall use the shorthand notation

Le(B.2) 1/li(t s)
i

{Y(t)wi(s)}"

Now, we can formulate a lemma which slightly generalizes results which may be
found in [13], [9] and [17], for example.

LEMMA B.1. The wide sense conditional expectation of y(t) with respect to

{w(s)" 0 <= s < z} is given by

(B.3) y(t) (t) + ni(t, s)dwi(s).

Proof (cf. [17, Lemma 2.1]). Since, by definition, y(t) must have a repre-
sentation of type (B.3), it only remains to show that n is given by (B.1). For
s <= r, wi(s and y(t) y(t) are orthogonal, and therefore

E{y(t)wi(s)} ni(t, ) dfli(’c),

or, with a- fli(s),

E{y(t)w(fl[ ())} hi(t, [t[-(0))dO,
(o)

which yields (B. 1).

Appendix C. Problem (6.6) has an optimal feedback solution

(C.1) u*(t) Po(t)x*(t) + Pl(t, s)u*(s) ds,
-h

where

Pl(t, s)= A(t, s + h)B(s + h)- e(t, , t)A(, s + h)dB(s + h),

Po(t) A(t, t) R(t, r, t)A(z, t)dz.

Here,
T

A(t, s) -Q- 1(0 K’(’c, t)Ql(’C)O(’c S)dz + K’(T, t)QI(T)O(T s)

where K is defined by (3.12) and R is the resolvent kernel given by

R(t, , s) P(t, ) P(t, )R(, , s) d

R(t, , s)P(, r) d
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with

P(t, s)= A(t, s)Bl(s + A(t, s + h)B2(s + h).

In fact, by the method used in [17, 4], we have

u*(t) + P(t, r)u*(z) dr A(, s)x*(s) + A(t, r + h)B(z + h)u*(r,) dr
-h

from which (C.1) follows by the same argument as in [17. (Also see [1] and [15
where versions of this problem are discussed in detail.)
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