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MULTIDIMENSIONAL RATIONAL COVARIANCE EXTENSION
WITH APPLICATIONS TO SPECTRAL ESTIMATION

AND IMAGE COMPRESSION∗

AXEL RINGH† , JOHAN KARLSSON† , AND ANDERS LINDQUIST‡

Abstract. The rational covariance extension problem (RCEP) is an important problem in sys-
tems and control occurring in such diverse fields as control, estimation, system identification, and
signal and image processing, leading to many fundamental theoretical questions. In fact, this in-
verse problem is a key component in many identification and signal processing techniques and plays
a fundamental role in prediction, analysis, and modeling of systems and signals. It is well known
that the RCEP can be reformulated as a (truncated) trigonometric moment problem subject to a
rationality condition. In this paper we consider the more general multidimensional trigonometric mo-
ment problem with a similar rationality constraint. This generalization creates many interesting new
mathematical questions and also provides new insights into the original one-dimensional problem.
A key concept in this approach is the complete smooth parameterization of all solutions, allowing
solutions to be tuned to satisfy additional design specifications without violating the complexity con-
straints. As an illustration of the potential of this approach we apply our results to multidimensional
spectral estimation and image compression. This is just a first step in this direction, and we expect
that more elaborate tuning strategies will enhance our procedures in the future.
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1. Introduction. In this paper we consider the (truncated) multidimensional
trigonometric moment problem with a certain complexity constraint. Many problems
in multidimensional systems theory including realization, control, and identification
problems, can be cast in this framework [3]. Other applications of this type are image
processing [22] and spectral estimation in radar, sonar, and medical imaging [72].

More precisely, given a set of complex numbers ck, k ∈ Λ, where k := (k1, . . . , kd)
is a vector-valued index belonging to a specified index set Λ ⊂ Zd, find a nonnegative
bounded measure dµ such that

(1.1) ck =

∫
Td

ei(k,θ)dµ(θ) for all k ∈ Λ,

where T := (−π, π], θ := (θ1, . . . , θd) ∈ Td, and (k,θ) :=
∑d
j=1 kjθj is the scalar

product in Rd. Moreover, let eiθ := (eiθ1 , . . . , eiθd). By the Lebesgue decomposition
[68, p. 121], the measure dµ can be decomposed in a unique fashion as

(1.2a) dµ(θ) = Φ(eiθ)dm(θ) + dµ̂(θ)
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with an absolutely continuous part Φdm with spectral density Φ and Lebesgue mea-
sure

dm(θ) := (1/2π)d
d∏
j=1

dθj

and a singular part dµ̂ containing, e.g., spectral lines. This is an inverse problem,
which in general has infinitely many solutions if one exists. A first problem of interest
to us in this paper is how to smoothly parameterize the family of all solutions that
satisfy the rational complexity constraint

(1.2b) Φ(eiθ) =
P (eiθ)

Q(eiθ)
, where P,Q ∈ P̄+\{0},

where P+ is the convex cone of positive trigonometric polynomials

(1.3) P (eiθ) =
∑
k∈Λ

pke
−i(k,θ)

that are positive for all θ ∈ Td, and P̄+ is its closure; P+ will be called the positive
cone. Moreover, we use the notation ∂P+ := P̄+\P+ for its boundary, i.e., the subset
of P ∈ P̄+ that is zero in at least one point. In this paper we develop a theory based
on convex optimization for this problem.

For d = 1 and Λ = {0, 1, . . . , n} this trigonometric moment problem with com-
plexity constraints is well understood, and it has a solution with dµ̂ = 0 if and only
if the Toeplitz matrix

T (c) =


c0 c−1 . . . c−n
c1 c0 c−n+1

...
. . .

...
cn cn−1 . . . c0


is positive definite [50]. Such a sequence, c0, . . . , cn, will therefore be called a positive
sequence in this paper.

In his pioneering work on spectral estimation, Burg observed that among all
spectral densities Φ satisfying the moment constraints

(1.4a) ck =

∫
T
eikθΦ(eiθ)

dθ

2π
, k = 0, 1, . . . , n,

the one with maximal entropy

(1.4b)

∫
T

log Φ(eiθ)
dθ

2π

is of the form Φ(eiθ) = 1/Q(eiθ), where Q(eiθ) is a positive trigonometric polyno-
mial [4, 5]. Later, in 1981, Kalman posed the rational covariance extension problem
(RCEP) [38]: given a finite covariance sequence c0, . . . , cn, determine all infinite ex-
tensions cn+1, cn+2, . . ., such that

Φ(eiθ) =

∞∑
k=−∞

cke
−ikθ



1952 AXEL RINGH, JOHAN KARLSSON, AND ANDERS LINDQUIST

is a positive rational function of degree bounded by 2n. This problem, which is
important in systems theory [50], is precisely a (one-dimensional) trigonometric mo-
ment problem with the complexity constraint (1.2b). The designation “covariance”
emanates from the fact that c0, c1, c2, . . . , can be interpreted as the covariance lags
E{y(t + k)y(t)} = ck of a wide-sense stationary stochastic process y with spectral
density Φ.

In 1983, Georgiou [29] (also see [30]) proved that to each positive covariance se-
quence and positive numerator polynomial P , there exists a rational covariance exten-
sion of the sought form (1.2b). He also conjectured that this extension is unique and
hence gives a complete parameterization of all rational extensions of degree bounded
by 2n. This conjecture was first proven in [16], where it was also shown that the
complete parameterization is smooth, allowing for tuning. The proofs in [16, 29, 30]
were nonconstructive, using topological methods. Later a constructive proof was given
in [11, 12], leading to an approach based on convex optimization. Here Φ is obtained
as the maximizer of a generalized entropy functional

(1.5)

∫
T
P (eiθ) log Φ(eiθ)

dθ

2π

subject to the moment conditions (1.4a), and the problem is reduced to solving a
dual convex optimization problem. Since then, this approach have been extensively
studied [6, 7, 8, 12, 24, 25, 31, 49, 56, 58, 64, 66, 76], and the approach has also been
generalized to a quite complete theory for scalar moment problems [9, 10, 13, 14, 34].
Moreover a number of multivariate counterparts, i.e., when Φ is matrix valued, have
also been solved [1, 2, 28, 33, 48, 59, 60, 75].

A considerable amount of research has also been done in the area of multidi-
mensional spectral estimation; for example, Woods [74], Ekstrom and Woods [23],
Dickinson [20], and Lev-Ari, Parker, and Kailath [46] to mention a few. Of special
interest are also results by Lang and McClellan [42, 43, 44, 45, 53, 54], as they con-
sider a similar entropy functional. In many of these areas it seems natural to consider
rational models. Nevertheless, the multidimensional version of the RCEP has only
been considered at a few instances, for the two-dimensional case in [32, 33] and in the
more general setting of moment problems with arbitrary basis functions in our recent
paper [41].

The purpose of this paper is to extend the theory of rational covariance extension
from the one-dimensional to the general d-dimensional case and to develop methods for
multidimensional spectral estimation. In section 2 we summarize the main theoretical
results of the paper. This includes the main theorem characterizing the optimal
solutions to the weighted entropy functional, which is then proved in section 3. In
section 4 we prove that under certain assumptions the problem is well-posed in the
sense of Hadamard and provide comments and examples related to these assumptions.
In section 5 we consider simultaneous matching of covariance lags and logarithmic
moments, and section 6 is devoted to a discrete version of the problem, where the
measure dµ consists of discrete point masses placed equidistantly in a discrete grid
in Td. This is a generalization to the multidimensional case of recent results in [49]
and is motivated by computational considerations. In fact, these discrete solutions
provide approximations to solutions to moment problems with absolutely continuous
measures and allow for fast arithmetics based on the fast Fourier transform (FFT)
(cf. [64]). Finally, sections 7 and 8 are devoted to two examples of how the theory can
be applied; the first in system identification and the second in image compression.
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2. Main results. Given the moments {ck}k∈Λ, the problem under considera-
tion is to find a positive measure (1.2) of bounded variation satisfying the moment
constraint (1.1). Let us pause to pin down the structure of the index set Λ. In view
of (1.1), we have c−k = c̄k, where ¯ denotes complex conjugation. Revisiting the one-
dimensional result [13, 14, 15] for moment problems with arbitrary basis functions,
we observe that the theory holds also for sequences with “gaps,” e.g., for a sequence
c0, . . . , ck−1, ck+1, . . . , cn. As seen in [41] this observation equally applies to the mul-
tidimensional case. Therefore, we shall consider covariance sequences {ck}k∈Λ, where
Λ ⊂ Zd is any finite index set such that 0 ∈ Λ and −Λ = Λ. We will denote the
cardinality of Λ by |Λ|. Further, let nj = max{kj |k ∈ Λ} denote the maximum range
of Λ in dimension j.

Next, given the inner product

〈c, p〉 =
∑
k∈Λ

ckp̄k,

we define the open convex cone

C+ :=
{
c | 〈c, p〉 > 0 for all P ∈ P̄+ \ {0}

}
,

the closure of which, C̄+, is the dual cone of P̄+, with boundary ∂C+.
We now extend the domain of the generalized entropy functional in (1.5) to mul-

tidimensional nonnegative measures of the type (1.2) and consider functionals

(2.1) IP (dµ) =

∫
Td

P (eiθ) log Φ(eiθ) dm(θ),

where Φ is the absolutely continuous part of dµ.1 This functional is concave, but not
strictly concave since the singular part of the measure does not influence the value.
This leads to the optimization problem to maximize (2.1) subject to the moment
constraints (1.1). Since the constraints are linear, this is a convex problem. However,
as it is an infinite-dimensional optimization problem, it is more convenient to work
with the dual problem, which has a finite number of variables but an infinite number
of constraints. In fact, the dual problem amounts to minimizing

(2.2) JP (Q) = 〈c, q〉 −
∫
Td

P (eiθ) logQ(eiθ)dm

over all Q ∈ P̄+, and hence Q(eiθ) ≥ 0 for all θ ∈ Td. Note that (2.2) takes an
infinite value for Q ≡ 0.

Theorem 2.1. For every c ∈ C+ and P ∈ P̄+ \ {0} the functional (2.2) is
strictly convex and has a unique minimizer Q̂ ∈ P̄+ \ {0}. Moreover, there exists a
unique ĉ ∈ ∂C+ and a nonnegative singular measure dµ̂ which has support supp(dµ̂) ⊆
{θ ∈ Td | Q̂(eiθ) = 0} such that

ck =

∫
Td

ei(k,θ)

(
P

Q̂
dm+ dµ̂

)
for all k ∈ Λ

1Note that the absolutely continuous part is uniquely defined by the Lebesgue decomposition, and
hence the function IP (dµ) is uniquely defined. Moreover, this definition of IP (dµ) can be motivated
by the fact that limn→∞

∫
Td log(Φ(eiθ)+fn(θ))dm(θ) =

∫
Td log(Φ(eiθ))dm(θ) for any log-integrable

Φ and nonnegative “good kernel” fn(θ) (see, e.g., [71, p. 48]). See also the discussion in section 3.2.
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and

ĉk =

∫
Td

ei(k,θ)dµ̂, for all k ∈ Λ.

For any such dµ̂, the measure dµ(θ) = (P (eiθ)/Q̂(eiθ))dm(θ) + dµ̂(θ) is an optimal
solution to the problem to maximize (2.1) subject to the moment constraints (1.1).
Moreover, dµ̂ can be chosen with support in at most |Λ| − 1 points.

Corollary 2.2. Let c ∈ C+. Then, for any

dµ =
P

Q
dm, P,Q ∈ P̄+\{0}

satisfying the moment condition (1.1), Q is the unique minimizer over P̄+ of the dual
functional (2.2).

This corollary implies that, for any c ∈ C+, any measure dµ with only absolutely
continuous rational part matching c can be obtained by solving (2.2) for a suitable
P . However, although c ∈ C+, not all P result in an absolutely continuous solution
dµ = (P/Q)dm that satisfies (1.1). Nevertheless, the case when this happens is of
particular interest.

Corollary 2.3. Suppose that d ≤ 2. Then, for any c ∈ C+ and P ∈ P+

there exists a Q ∈ P+ such that dµ = (P/Q)dm satisfies (1.1). Moreover this Q is
the unique solution to the strictly convex optimization problem to minimize the dual
functional (2.2) over all Q ∈ P+.

This result can be deduced from the early work of Lang and McClellan [44],
although they do not consider rational solutions explicitly, nor parameterizations of
them. Note that Corollary 2.3 is only valid for P ∈ P+, while Theorem 2.1 holds
for all P ∈ P̄+ \ {0}. This will be further discussed in section 4, where the proof of
Corollary 2.3 will also be concluded.

2.1. Covariance and cepstral matching. It follows from Theorem 2.1 and
Corollary 2.3 that Q is completely determined by the pair (c, P ). For d = 1 the choice
P ≡ 1 leads to Burg’s formulation (1.4), which has been termed the maximum-entropy
(ME) solution. On the other hand, better dynamical range of the spectrum can be
obtained by taking advantage of the extra degrees of freedom in P . Several methods
for selecting P have been suggested in the one-dimensional setting. Examples are
methods based on inverse problems as in [26, 39, 40], a linear-programming approach
as in [6, 7], and simultaneous matching of covariances and cepstral coefficients as in [55]
and independently in [6, 7, 24, 49]. Here, in the multivariate setting, we consider the
selection of P based on the simultaneous matching of logarithmic moments.

We define the (real) cepstrum of a multidimensional spectrum as the (real) loga-
rithm of its absolutely continuous part. The cepstral coefficients are the corresponding
Fourier coefficients

(2.3) γk =

∫
Td

ei(k,θ) log Φ(eiθ)dm(θ) for k ∈ Λ \ {0}.

For spectra that only have an absolutely continuous part this agrees with earlier
definitions in the literature (see, e.g., [57, pp. 500–507] or [19, Chapter 6]).

Given a set of cepstral coefficients we now also enforce cepstral matching of the
sought family of spectra. This means that we look for Φ = P/Q that also satisfies
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(2.3). Note that the index k = 0 is not included in (2.3). In fact, for technical reasons,
we shall set γ0 = 1. Also to avoid trivial cancelations of constants in P/Q, we need
to introduce the set

P+,◦ := {P ∈ P+ | p0 = 1}.

Theorem 2.4. Let γk, k ∈ Λ \ {0}, be any sequence of complex numbers such
that γ−k = γ̄k, and set γ = {γk}k∈Λ, where γ0 = 1. Then, for c ∈ C+, the convex
optimization problem (D) to minimize

(2.4) J(P,Q) = 〈c, q〉 − 〈γ, p〉+

∫
Td

P log

(
P

Q

)
dm

subject to (P,Q) ∈ P̄+,◦ × P̄+ has an optimal solution (P̂ , Q̂). If such a solution

belongs to P+,◦ × P+, then Φ̂ = P̂ /Q̂ satisfies the logarithmic moment condition

(2.3) and dµ = Φ̂dm the moment condition (1.1). Moreover, Φ̂ is also an optimal
solution to the problem (P) to maximize

(2.5) I(Φ) =

∫
Td

log Φ dm

subject to (1.1) and (2.3) for dµ = Φdm. Finally, if d ≤ 2, then P̂ ∈ P+,◦ implies

that Q̂ ∈ P+.

For reasons to become clear in section 5, the optimization problems (P) and
(D) will be referred to as the primal and dual problems, respectively. A drawback
with Theorem 2.4 is that even when d ≤ 2, a solution to the dual problem can be
guaranteed to have a rational spectrum that satisfies (1.1) and (2.3) only if P̂ ∈ P+,◦.

In fact, as we shall see in section 5, for a solution with P̂ ∈ ∂P+,◦ we might have

Q̂ ∈ ∂P+ and hence covariance mismatch. A remedy in the case d ≤ 2 is to use
the Enqvist regularization, introduced in the one-dimensional setting in [24]. This
makes the optimization problem strictly convex and forces the solution P̂ into the set
P+,◦. In this way we obtain strict covariance matching and approximative cepstral
matching. This statement will be made precise in Theorem 5.7 in section 5.1.

2.2. The circulant covariance extension problem. In the recent paper [49],
Lindquist and Picci studied, for the case d = 1, the situation when the underlying
stochastic process y(t) is periodic. For the N -periodic case, the covariance sequence
must satisfy the extra condition cN−k = c̄k, i.e., the N × N Toeplitz matrix of one
period is Hermitan circulant. In this case, the spectral measure must be discrete with

point masses at ζ` = ei`
2π
N , ` = 0, 1, . . . , N −1, on the discrete unit circle, and instead

of the moment condition (1.1) we have

(2.6) ck =
1

N

N−1∑
`=0

Φ(ζ`)ζ
k
` ,

which is the inverse discrete Fourier transform of the sequence (Φ(ζ`)).
This was generalized to the multidimensional case in [65], where a circulant version

of Theorem 2.1 and Corollary 2.3 was derived. For N := (N1, . . . , Nd), consider the
discretization of the d-dimensional torus

ζ` :=

(
e
i`1

2π
N1 , . . . , e

i`d
2π
Nd

)
,
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where
ZdN := {` = (`1, . . . , `d) | 0 ≤ `j ≤ Nj − 1, j = 1, . . . , d},

and define ζk` =
∏d
j=1 ζ

kj
`j

. Next, let P+(N) be the positive cone of all trigonometric

polynomials (1.3) such that P (ζ`) > 0 for all ` ∈ ZdN. Moreover, define the interior
C+(N) of the dual cone as the set of all {ck}k∈Λ such that 〈c, p〉 > 0 for all P ∈
P̄+(N) \ {0}. Clearly P+(N) ⊃ P+, and hence C+(N) ⊂ C+. Then Theorem 2 and
Corollary 3 in [65] can be combined in the following theorem.

Theorem 2.5 (see [65]). Suppose that 2nj < Nj for j = 1, . . . , d, and let c ∈
C+(N) and P ∈ P̄+(N) \ {0}. Then, there exists a Q̂ ∈ P̄+(N) \ {0} such that Q̂ is
a solution to the convex problem to minimize2

JNP (Q) = 〈c, q〉 − 1∏d
j=1Nj

∑
`∈Zd

N

P (ζ`) logQ(ζ`)

over all Q ∈ P̄+(N). Moreover, there exists a nonnegative function µ̂ with support
supp(µ̂) = {ζ` | Q̂(ζ`) = 0, ` ∈ ZdN} such that

(2.7) ck =
1∏d

j=1Nj

∑
`∈Zd

N

ζk`

(
P (ζ`)

Q̂(ζ`)
+ µ̂(ζ`)

)
,

and the number of mass points for µ̂ can be chosen so that at most |Λ|−1 points µ̂(ζ`)
are nonzero. Finally, if P ∈ P+(N) then Q̂ ∈ P+(N), which is then also unique, and
hence Φ = P/Q̂ satisfies (2.7) with µ̂ ≡ 0.

In [49] it was shown in the one-dimensional case that as N → ∞ the solution
of the discrete problem, call it Q̂N , converges to the solution to the corresponding
continuous problem, call it Q̂. This gives a natural way to compute an approximate
solution to the continuous problem using the fast computations of the discrete Fourier
transform. The same also holds in higher dimensions, as seen in the following result.

Theorem 2.6. Suppose that P ∈ P̄+ \ {0} and c ∈ C+, and let Q̂ and Q̂N be the
optimal solutions of Theorems 2.1 and 2.5, respectively. Then

lim
min(N)→∞

Q̂N = Q̂

uniformly.

3. The multidimensional RCEP. Most of this section will be devoted to prov-
ing Theorem 2.1. Some technical details are deferred to the appendix. Possible inter-
pretations of P will be discussed in the end of the section together with an example
showing the nonuniqueness of the measure dµ̂.

3.1. Proof of Theorem 2.1.

3.1.1. Deriving the dual problem. For a given P ∈ P̄+ \ {0} and c ∈ C+,
consider the primal problem to maximize (2.1) subject to the moment constraints
(1.1) over the set of nonnegative bounded measures, i.e., over dµ = Φdm+ dµ̂, where

2Note that limits such as P log(Q) and P/Q may not be well-defined in the multidimensional
case, and therefore we define the expressions P log(Q) and P/Q to be zero whenever P = 0. This is
not needed in the continuous case as the set where P is zero is of measure zero.
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Φ is a nonnegative L1(Td) function and dµ̂ is a nonnegative singular measure. The
Lagrangian of this problem becomes

LP (Φ, dµ̂, Q) =

∫
Td

P log Φdm+
∑
k∈Λ

q̄k

(
ck −

∫
Td

ei(k,θ)(Φdm+ dµ̂)

)
,

where q̄k, k ∈ Λ, are Lagrange multipliers. Identifying
∑

k∈Λ q̄ke
i(k,θ) with the

trigonometric polynomial Q, this can be simplified to

LP (Φ, dµ̂, Q) =

∫
Td

P log Φ dm+ 〈c, q〉 −
∫
Td

QΦdm−
∫
Td

Qdµ̂.

The dual function supdµ≥0 LP (Φ, dµ̂, Q) is finite only if Q ∈ P̄+ \ {0}. To see this,

let Q 6∈ P̄+, i.e., suppose there is θ0 ∈ Td for which Q(θ0) < 0. Then, by letting
µ̂(θ0) → ∞ in the singular part dµ̂, we get that LP (Φ, dµ̂, Q) → ∞. Moreover, if
Q ≡ 0 then since P is continuous and P 6≡ 0 there is a small neighborhood where
P > 0. Letting Φ→∞ in this neighborhood we again have that LP (Φ, dµ̂, Q)→∞.
Hence we can restrict the multipliers to P̄+ \ {0}.

Now note that any pair (Φ, dµ̂) maximizing LP (Φ, dµ̂, Q) must satisfy
∫
Td Qdµ̂ =

0, or equivalently, the support of dµ̂ is contained in {θ ∈ Td |Q(eiθ) = 0}. Otherwise
letting dµ̂ = 0 would result in a larger value of the Lagrangian.

Note that the value of the Lagrangian becomes −∞ for any Φ that vanishes on a
set of positive measure, and hence such a Φ cannot be optimal. Now, for any direction
δΦ such that Φ + εδΦ is a nonnegative L1(Td) function for sufficiently small ε > 0,
consider the directional derivative

δLP (Φ, dµ̂, Q; δΦ) = lim
ε→0

1

ε
(LP (Φ+δΦ,dµ̂,Q)−LP (Φ,dµ̂,Q)) =

∫
Td

(
P

Φ
−Q

)
δΦdm.

For a stationary point this must be nonpositive for all feasible directions δΦ, and in
particular this holds for δΦ = Φ sign(P − QΦ) which by construction is a feasible
direction. For this direction, the constraint becomes

∫
Td |P − QΦ|dm ≤ 0, requiring

that Φ = P/Q a.e., which inserted into the dual function yields

(3.1) sup
dµ≥0

LP (Φ, dµ̂, Q) = JP (Q) +

∫
Td

P (logP − 1)dm,

where the last term in (3.1) does not depend on Q and

(3.2) JP (Q) = 〈c, q〉 −
∫
Td

P logQdm.

Hence the dual problem is equivalent to minimizing JP over P̄+ \ {0}.
3.1.2. Lower semicontinuity of the dual functional. For any Q ∈ P+,

JP (Q) is clearly continuous. However, for Q ∈ ∂P+, logQ will approach −∞ in
the points where Q(eiθ) = 0, and hence we need to consider the behavior of the
integral term in (3.2). Since P is a fixed nonnegative trigonometric polynomial, it
suffices to consider the integral

∫
Td logQdm. However, this integral is known as the

(logarithmic) Mahler measure of the Laurent polynomial Q [52], and it is finite for all
Q ∈ P̄+ \ {0} [69, Lemma 2, p. 223]. This leads to the following lemma, the proof of
which is deferred to the appendix.

Lemma 3.1. For any P ∈ P̄+ \{0} and c ∈ C+, the functional JP : P̄+ \{0} → R
is lower semicontinuous.
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3.1.3. The uniqueness of a solution. From the first directional derivative

δJP (Q; δQ) = 〈c, δq〉 −
∫
Td

P

Q
δQdm

of the dual functional (3.2), we readily derive the second

δ2JP (Q; δQ) =

∫
Td

P

Q2
(δQ)2dm,

which is clearly nonnegative for all variations δQ. Therefore, since, in addition, the
constraint set P̄+ is convex, the dual problem is a convex optimization problem. To
see that JP is actually strictly convex, note that since P is positive a.e., so is P/Q2.
Therefore, for δ2JP (Q; δQ) to be zero we must have δQ = 0 a.e., which implies that it
is zero everywhere since it is continuous. This implies that if there exists a solution,
this solution is unique.

3.1.4. The existence of a solution. If we can show that JP has compact sub-
level sets, then JP must have a minimum since it is lower semicontinuous (Lemma 3.1).

Lemma 3.2. The sublevel sets J−1
P (−∞, r] are compact for all r ∈ R.

For the proof of Lemma 3.2 we need the following lemma modifying Proposition
2.1 in [14] to the present setting.

Lemma 3.3. For a fixed c ∈ C+, there exists an ε > 0 such that for every (P,Q) ∈
(P̄+ \ {0})× (P̄+ \ {0})

(3.3) JP (Q) ≥ ε‖Q‖∞ −
∫
Td

Pdm log ‖Q‖∞.

Proof. Since 〈c, q〉 is a continuous function, it achieves a minimum on the compact
set {Q ∈ P̄+ \ {0} | ‖q‖∞ = 1}, where ‖q‖∞ := maxk∈Λ |qk|. The minimum value κc
must be positive since c ∈ C+ and hence 〈c, q〉 > 0 for any Q ∈ P̄+ \ {0}. For any
Q ∈ P̄+ \ {0} we thus have

(3.4) 〈c, q〉 =

〈
c,

q

‖q‖∞

〉
‖q‖∞ ≥ κc‖q‖∞.

By Lemma A.1, ‖Q‖∞ ≤ |Λ|‖q‖∞ , and hence by choosing ε ≤ κc/|Λ| we get

(3.5) 〈c, q〉 ≥ κc‖q‖∞ ≥
κc
|Λ|
‖Q‖∞ ≥ ε‖Q‖∞.

To obtain a bound on the second term in (3.2), we observe that∫
Td

P logQdm =

∫
Td

P log

[
Q

‖Q‖∞

]
dm+

∫
Td

Pdm log ‖Q‖∞ ≤
∫
Td

Pdm log ‖Q‖∞,

since Q/‖Q‖∞ ≤ 1. Hence (3.3) follows.

Proof of Lemma 3.2. For any r ∈ R, which is large enough for the sublevel set
{Q ∈ P̄+ \ {0} | r ≥ JP (Q)} to be nonempty,

r ≥ JP (Q) ≥ ε‖Q‖∞ −
∫
Td

Pdm log ‖Q‖∞
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for some ε > 0 (Lemma 3.3). Comparing linear and logarithmic growth we see that
the sublevel set is bounded both from above and from below. Moreover, since JP
is lower semicontinuous (Lemma 3.1), the sublevel sets are also closed [68, p. 37].
Therefore they are compact.

3.1.5. Existence of a singular measure. It remains to show that there exists
a measure dµ̂ prescribed by the theorem and that dµ = (P/Q̂)dm + dµ̂ is in fact
an optimal solution to the primal problem to maximize (2.1) subject to the moment
constraints (1.1). Note that JP is a closed proper, strictly convex function with
nonempty effective domain. With a slight misuse of notation, we shall here (for
convenience and only temporarily) regard JP as a function of the coefficients q rather
than Q. Let q̂ be the unique minimum of JP , hence the zero vector is a subgradient
of JP at q̂. By Theorem 25.6 in [67] the set of subgradients of JP at q̂ can be written
as

(3.6) 0 ∈ ∂JP (q̂) = closure(convS(q̂)) +K(q̂),

where K(q̂) = {−ĉK | 〈ĉK , q−q̂〉 ≥ 0 for all Q ∈ P̄+\{0}} is the normal cone, and S(q̂)
is the set of limit points of sequences of the form (∇JP (q`))`∈Z+ for which Q` ∈ P+

and q` converges to q̂ as ` → ∞. Let v = (vk)k∈Λ ∈ S(q̂). Then there is a sequence
(Q`)`∈Z+

⊂ P+ such that q` → q̂ and ∇q̄`,kJP (q`) = ck −
∫
Td e

i(k,θ)(P/Q`)dm → vk
for k ∈ Λ.3 In particular the sequence

∫
Td(P/Q`)dm is bounded, hence there is a

subsequence of (P/Q`)dm that converges to a nonnegative measure in weak∗ [51, p.
128]. Since the corresponding nonnegative polynomials Q` → Q̂ converge uniformly,
the weak∗ limit of the subsequence of (P/Q`)dm is of the form (P/Q̂)dm + dµ̂S,
where µ̂S is a nonnegative measure with support in null(Q̂). The linear maps dµ 7→∫
Td e

i(k,θ)dµ are closed for k ∈ Λ, and consequently

S(q̂) ⊂
{
v

∣∣∣∣ vk = ck −
∫
Td

ei(k,θ)

(
P

Q̂
dm+ dµ̂S

)
for k ∈ Λ,

and where µ̂S ≥ 0 and supp(µ̂S) ⊂ null(Q̂)

}
,(3.7)

which is closed and convex. Next, note that K(q̂) = {−ĉK | 〈ĉK , q̂〉 = 0, ĉK ∈ C̄+}.
Inserting this and (3.7) into (3.6) yields

(3.8) 0 = ck −
∫
Td

ei(k,θ)P

Q̂
dm−

(∫
Td

ei(k,θ)dµ̂S + ĉK,k

)
︸ ︷︷ ︸

=:ĉk

for k ∈ Λ

for some ĉ ∈ C̄+ with 〈ĉ, q̂〉 = 0. Moreover, it is shown in [43] that for any ĉ ∈ ∂C+

there exists a discrete nonnegative representation dµ̂ with support in |Λ| − 1 points
that satisfies

∫
Td e

i(k,θ)dµ̂ = ĉk for k ∈ Λ. To show that the solution is optimal also
for the primal problem we observe that, for all dµ = Φdm+ dµ̂,

IP (Φ) ≤ LP (Φ, dµ̂, Q) ≤ JP (Q) +

∫
Td

P (logP − 1)dm.

Since equality holds for the feasible point dµ = (P/Q̂)dm + dµ̂, optimality follows.
This completes the proof of Theorem 2.1.

3Here ∇z denotes the Wirtinger derivatives, ∇z = (∂/∂x−i∂/∂y)/2 and ∇z̄ = (∂/∂x+i∂/∂y)/2,
where z = x+ i y is a complex variable [62, pp. 66–69].
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An alternative proof of the results in sections 3.1.2–3.1.4 can be constructed
along the lines of [27, section 5]. In the proof of that paper they use the existence of
a coercive spectral density, which in our case follows from the existence of a spectral
density in the exponential family [33]. Also compare this with the proofs of Theorems
5.1 and 5.2 in [41], which deals with a more general setting.

3.2. Comments and an example. In the one-dimensional case it has already
been observed that P need not be confined to the cone P̄+ \ {0} but could be a
general nonnegative integrable function with zero locus of measure zero [13, 14]. This
fact was implemented in [34] to interpret the functional (1.5) as a Kullback–Leibler
pseudodistance between P and Φ and hence with P as a Kullback–Leibler prior. In
fact, maximizing (1.5) is equivalent to minimizing the Kullback–Leibler divergence

D(P‖Φ) :=

∫
T
P log

(
P

Φ

)
dm,

which is nonnegative for functions with the same total mass and equal to zero only
when the functions are equal. In our present more general setting, P could be any
absolutely integrable, nonnegative function for which the set {θ ∈ Td | P (eiθ) = 0}
has measure zero. In this context it is also possible to interpret the functional (2.1)
as a Kullback–Leibler distance, not only between the two functions P and Φ, but
between the two measures dp := Pdm and dµ. Since dp is absolutely continuous with
respect to dµ we obtain [63, (3.1) in particular]∫

Td

P log

(
P

Φ

)
dm =

∫
Td

log

(
dp

dµ

)
dp,

where (dp/dµ) = P/Φ is the Radon–Nikodym derivative.
Except in the one-dimensional case, the singular part of the measure is in gen-

eral not unique. To illustrate this fact, we consider the following example in two
dimensions, similar to Example 5.4 in [41], where Q has zeros along a line.

Example 3.4. Given

Λ = {(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1), (−1,−1), (1, 1), (−1, 1), (1,−1)},

consider

P (eiθ1 , eiθ2) = (1− cos θ1),

Q̂(eiθ1 , eiθ2) = (1− cos θ1)(2− cos θ2).

Let c be the covariances of the spectrum Φ = P/Q̂, i.e., c0,0 = 1/
√

3, c1,0 = 0, c0,1 =
−1 + 2/

√
3, c1,1 = 0, and c−1,1 = 0, the remaining covariances being uniquely deter-

mined by the conjugate symmetry c−k = c̄k. Moreover, let ĉ be given by

ĉk =

∫
T2

ei(k,θ)δ(θ1)dθ1
dθ2

2π

so that ĉ0,0 = 1, ĉ1,0 = 1, ĉ0,1 = 0, ĉ1,1 = 0, and ĉ−1,1 = 0. Clearly P, Q̂ ∈ P̄+, and
thus c ∈ C+ since

〈c, r〉 =
∑
k∈Λ

ckr̄k =

∫
T2

R(eiθ)
P (eiθ)

Q̂(eiθ)
dm(θ) > 0
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for any R ∈ P̄+ \ {0}. In the same way,

〈ĉ, q̂〉 =

∫
T2

Q̂(eiθ)δ(θ1)dm(θ) =

∫ π

−π
(1− cos θ1)δ(θ1)dθ1

∫ π

−π
(2− cos θ2)

dθ2

2π
= 0,

and thus ĉ ∈ ∂C+. Hence, (Q̂, ĉ) is the unique pair prescribed by Theorem 2.1 for the
covariance sequence c+ ĉ and the numerator polynomial P . However, since Q̂ is zero
for θ1 = 0, any measure dµ̂ with support constrained to the line θ1 = 0 and mass 1
such that

∫
T2 cos θ2dµ̂ = 0 is a solution.

4. Well-posedness and counter examples. The intuition behind Corollary
2.3 is that the optimal solution Q̂ is repelled from the boundary by the following
assumption (Assumption 4.1) whenever P ∈ P+. Then, since the measure dµ̂ can
only have mass in the zeros of Q, we must have dµ̂ = 0.

Assumption 4.1. The cone P̄+ has the property∫
Td

1

Q
dm(θ) =∞ for all Q ∈ ∂P+.

As noted in [14], Assumption 4.1 always holds in the one-dimensional case (d = 1),
since the trigonometric functions are Lipschitz continuous. Using results by Georgiou
[32, p. 819] it can be shown that this assumption is also valid for d = 2. However, Lang
and McClellan [44] note that Assumption 4.1 does not hold in general for dimensions

d ≥ 3. To see this, they consider the polynomial Q(eiθ) =
∑d
`=1(1 − cos θ`) ∈ ∂P+

and show that
∫
Td

1
Qdx < ∞ for d ≥ 3. In fact, we have the following amplification

of this fact, the proof of which we defer to the appendix.

Proposition 4.2. For d ≥ 3, Assumption 4.1 does not hold if the index set Λ
contains at least three linearly independent vector-valued indices.

Observe that a problem of dimension d ≥ 3 for which Λ contains less than three
linearly independent vector-valued indices trivially reduces to a problem in one or
two dimensions. Hence in general we identify Assumption 4.1 with the case d ≤ 2.
Corollary 2.3 now follows directly from the following lemma.

Lemma 4.3. Let P ∈ P+, and suppose that Assumption 4.1 holds. Then the
optimal solution Q̂ to the problem to minimize (2.2) over all Q ∈ P̄+ belongs to P+.

Proof. Let Q ∈ ∂P+ be arbitrary. Then, for any ρ > 0, Q(eiθ) + ρ > 0 for all
θ ∈ Td. Hence the functional JP is also differentiable in Q + ρ, and the directional
derivative in the direction 1 is

δJP (Q+ ρ; 1) = 〈c, 1〉 −
∫
Td

P

Q+ ρ
dm.

Now note that P/(Q + ρ) is nonnegative in all points, that it is pointwise monotone
increasing for decreasing values of ρ, and that it converges pointwise in an extended
real-valued sense4 to P/Q. Hence by Lebesgue’s monotone convergence theorem [68,
p. 21] we have, as ρ→ 0, ∫

Td

P

Q+ ρ
dm −→

∫
Td

P

Q
dm,

4In this case, the limit may be ∞.
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which, since P ∈ P+, is infinite by Assumption 4.1. Therefore 1 is a descent direction
from the point Q, and hence the optimal solution is not obtained there. Since Q ∈
∂P+ is arbitrary, this means that the optimal solution is not attained on the boundary,
i.e., we have Q̂ ∈ P+.

It turns out that the multidimensional rational covariance extension problem for
d ≤ 2 is in fact well-posed in the sense of Hadamard, i.e., the solution depends
smoothly on c and P , which is an important property when it comes to tuning of
solutions to design specifications. This follows from the following generalizations to
the multidimensional case of Theorems 1.3 and 1.4 in [14], proved in the appendix.

Theorem 4.4. Let fp : P+ → C+ be the map from Q to c, given componentwise
by

ck =

∫
Td

ei(k,θ)P

Q
dm

for a fixed P ∈ P+. If d ≤ 2, fp is a diffeomorphism.

Theorem 4.5. Suppose that d ≤ 2. Let fp be as in Theorem 4.4, and let c ∈
C+ be fixed. Then the function gc : P+ → P+ mapping P to Q = (fp)−1(c) is a
diffeomorphism onto its image Q+.

By Corollary 2.3, the unique solution Q̂ of the dual problem belongs to the interior
P+ for every pair (c, P ) ∈ C+ × P+ if Assumption 4.1 holds. Note that, while the
more general Theorem 2.1 holds for all P ∈ P̄+ \ {0}, Corollary 2.3 is only valid for
P ∈ P+. The reason for this is that if P ∈ P+ the directional derivative of JP tends
to −∞ on the boundary by Assumption 4.1, so a minimum is not attained there, as
we just saw in the proof of Lemma 4.3. On the other hand, if P ∈ ∂P+, we have∫
Td(P/Q)dm < ∞ for some Q ∈ ∂P+; take, for example, Q = P . More generally,

the integral may not diverge if the zeros of Q belong to a subset of the zeros of P .
In this case, there is no guarantee that the optimal solution is an interior point. The
following simple one-dimension example illustrates this.

Example 4.6. Consider a one-dimensional problem of degree one, i.e., with Λ =
{−1, 0, 1}. Fix c = (1, c1), where c1 ∈ (−1, 0) is arbitrary. Clearly the Toeplitz matrix
T (c) = [ck−`]

n
k,`=0 is positive definite, and hence c ∈ C+. We fix P (eiθ) = 2+eiθ+e−iθ,

which belongs to ∂P+ since P (eiπ) = 0. We want to find a Q ∈ P+ of degree at most
one so that Φ = P/Q matches the covariance sequence c, i.e,

(4.1) ck =

∫
T
eikθ

P

Q
dm, k = 0, 1.

Any such Q must have the form Q(eiθ) = λ(1− ρeiθ)(1− ρ̄e−iθ) for some λ > 0 and
|ρ| < 1. Now, clearly

Φ(eiθ) = λ−1 2 + eiθ + e−iθ

1− |ρ|2
1− |ρ|2

(1− ρeiθ)(1− ρ̄e−iθ)
,

where the second factor takes the form

1

1− ρeiθ
+

1

1− ρ̄e−iθ
− 1 = · · ·+ ρ̄2e−2iθ + ρ̄e−iθ + 1 + ρeiθ + ρ2e2iθ + · · · ,

which implies that c0 = λ−1(2 + ρ+ ρ̄)(1− |ρ|2)−1 and c1 = λ−1(1 + ρ)2(1− |ρ|2)−1.
Since c0 = 1, we have c1 = (1+ρ)2(2+ρ+ ρ̄)−1, which has positive, real denominator.
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Then, since c1 < 0, 1 + ρ is purely imaginary, which is impossible since 1 + ρ has a
positive real part. Hence, there is no Q ∈ P+ of degree at most one satisfying (4.1).
However, for a certain Q ∈ ∂P+, namely, Q(eiθ) = (2+eiθ+e−iθ)/(1+c1), we obtain
dµ = (P/Q)dm− c1δ(θ − π)dθ, i.e.,

dµ = (1 + c1)dm− c1δ(θ − π)dθ,

which matches c with −1 < c1 < 0. Now Φ = 1 + c1 and the singular measure
dµ̂ = δ(θ − π)dθ has all its mass at the zero of Q, as required by Theorem 2.1.

In this context it is interesting to note that the covariance extension problem is
usually formulated as a partial realization problem where one wants to determine an
extension of the partial covariance sequence c so that

Φ+(z) =
1

2
c0 +

∞∑
k=1

ckz
−k

is positive real, i.e., Φ+ maps the unit disc to the right half of the complex plane; see,
e.g., [50]. Then Φ+(eiθ) + Φ+(eiθ)∗ is the corresponding spectral density Φ(eiθ). In
our example such a solution is provided by

Φ+(z) =
1

2

(
1 + c1 − c1

1− z
1 + z

)
=

1

2
+ c1z − c1z2 + · · · ,

yielding precisely Φ = 1+c1. The singular measure never appears in this framework.

5. Logarithmic moments and cepstral matching. Given c ∈ C+, Corollary
2.3 and Theorem 4.5 together provide a complete smooth parameterization in terms
of P ∈ P+ of all Φ = P/Q such that dµ = Φdm satisfies the moment equations
(1.1). Therefore the solution can be tuned to satisfy additional design specification by
adjusting P . How to determine the best P is, however, a separate problem. Theorem
2.4, to be proved next, extends results from the one-dimensional case to simultaneously
estimate P using the cepstral coefficients and logarithmic moment matching.

Proof of Theorem 2.4. The proof follows along the same lines as that of Theorem
2.1. By relaxing the primal problem (P) we get the Lagrangian

L(Φ, P,Q) =

∫
Td

log Φ dm+
∑
k∈Λ

q̄k

(
ck −

∫
Td

ei(k,θ)Φ dm

)
(5.1)

+
∑

k∈Λ\{0}

p̄k

(∫
Td

ei(k,θ) log Φ dm− γk
)
,

where q̄k and p̄k are Lagrangian multipliers. Setting p0 = γ0 = 1 and rearranging
terms, this can be written as

(5.2) L(Φ, P,Q) = 〈c, q〉 −
∫
Td

QΦ dm− 〈γ, p〉+ 1 +

∫
Td

P log Φ dm,

where the first term in (5.1) has been incorporated in the last term of (5.2). As
before, supΦ≥0 L(Φ, P,Q) is only finite if we restrict Q to P̄+, and similarly we need

to restrict P to P̄+,◦. Taking the directional derivative of (5.2) in any direction δΦ
such that Φ + εδΦ is a nonnegative L1(Td) function for all ε ∈ (0, a) for a sufficiently
small a > 0, we obtain

δL(Φ, P,Q; δΦ) =

∫
Td

(
P

1

Φ
−Q

)
δΦdm.
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For the directional derivative to be nonpositive for all feasible directions δΦ we need
Φ = P/Q a.e. (cf. section 3.1.1), which inserted into (5.2) yields

(5.3) sup
Φ
L(Φ, P,Q) = J(P,Q) + 1−

∫
Td

Pdm

with J(P,Q) given by (2.4). A closer look at the last term in (5.3) shows that∫
Td

Pdm =

∫
Td

∑
k∈Λ

pke
i(k,θ)dm =

∑
k∈Λ

pk

d∏
j=1

∫ π

−π
eikjθj

dθj
2π

= 1,

since all integrals vanish except those for k1 = · · · = kd = 0. Consequently, J is
precisely the dual functional (5.3).

Using the Wirtinger derivative to form the gradient of J (see, e.g., [62, pp. 66–69]),
we obtain

(5.4a)
∂J(P,Q)

∂q̄k
= ck −

∫
Td

ei(k,θ)P

Q
dm, k ∈ Λ,

(5.4b)
∂J(P,Q)

∂p̄k
=

∫
Td

ei(k,θ) log

(
P

Q

)
dm− γk, k ∈ Λ \ {0}.

In deriving (5.4b) we used the fact that

(5.5)

∫
Td

ei(k,θ)dm =

d∏
j=1

∫ π

−π
eikjθj

dθj
2π

= 0, k 6= 0.

Therefore, if P̂ ∈ P+,◦ and Q̂ ∈ P+, and hence the optimal solution is a stationary

point of J, then the spectrum Φ = P̂ /Q̂ fulfills both covariance matching (1.1) and
cepstral matching (2.3).

The following three lemmas ensure the existence of a solution and show that
the problem is in fact convex. The arguments are similar to those in the proof of
Theorem 2.1, and are given in the appendix.

Lemma 5.1. Given c ∈ C+ and a sequence γ = {γk}k∈Λ with γ0 = 1 and γ−k =
γ̄k, the functional (P,Q) 7→ J(P,Q) is lower semicontinuous on P̄+,◦ × (P̄+ \ {0}).

Lemma 5.2. The sublevel sets J−1(−∞, r] are compact.

Lemma 5.3. The dual problem (D) in Theorem 2.4 is convex on the domain

P̄
(n1,...,nd)
+,◦ × P̄

(n1,...,nd)
+ .

Next we show that if Q̂ ∈ P+ and P̂ ∈ P+,◦ then Φ̂ = P̂ /Q̂ is also optimal for the

primal problem of Theorem 2.4. This follows by observing that Φ̂ is a primal feasible
point and that the primal functional (2.5) takes the same values as the Lagrangian
(5.1) in this point, since we have covariance and cepstral matching (cf. the proof of
Theorem 2.1). Finally, if d ≤ 2 then Q̂ ∈ P+ whenever P̂ ∈ P+,◦, which follows
directly from Lemma 4.3. This concludes the proof of Theorem 2.4.

From this proof we see that the stationarity of J(P,Q) in Q ensures covariance
matching and the stationarity in P provides cepstral matching. Therefore we can only
guarantee matching for a solution in the interior P+,◦ × P+. This subtle fact was
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overlooked in [7, 24], where it is claimed that we also have covariance matching for
P̂ ∈ ∂P+,◦. However, even when d ≤ 2, we cannot guarantee that there is a solution

Q̂ belonging to the interior P+ if P̂ ∈ ∂P+,◦. The following example illustrates this.
Example 5.4. Consider the one-dimensional problem with c0 = 2, c−1 = c1 = 1,

and γ1 = −1. Set

P (eiθ) = 1− (eiθ + e−iθ)/2 = 1− cos θ

and Q = P . Clearly P and Q belong to the boundary, since P (ei0) = Q(ei0) = 0.
Moreover Φ = P/Q = 1, so there is neither covariance matching nor cepstral matching.
A simple calculation shows that ∂J/∂q0 = ∂J/∂q1 = ∂J/∂p1 = 1. However, for any
feasible direction (δq0, δq1, δp1) in (P,Q) we have Re{δp1} ≥ 0 and Re{δq0+2δq1} ≥ 0,
and hence there is no feasible descent direction from this point. Therefore we have a
local minimum, which, by convexity, is also a global minimum. Consequently, we have
an optimal solution on the boundary where we have neither covariance nor cepstral
matching.

Remark 5.5. From Theorem 2.1 we know that it is possible to achieve covariance
matching in this example by adding a nonnegative singular measure dµ̂, represent-
ing spectral lines. In fact, a similar statement can be proved for cepstral match-
ing, namely, that that there exists a nonpositive measure dµ̃ such that supp(dµ̃) ⊆
{θ ∈ Td | P̂ (θ) = 0} and

γk =

∫
Td

ei(k,θ)
(

log(P̂ /Q̂)dm(θ)− dµ̃(θ)
)

for all k ∈ Λ \ {0}. However, while the physical interpretation of dµ̂ in Theorem 2.1
is clear, in this case it is not obvious what dµ̃ represents in terms of the spectrum.

Note that the optimization problem is convex but in general not strictly convex,
and hence the solution might not be unique. This is illustrated in the following
example [50, p. 504].

Example 5.6. Again consider a one-dimensional problem, this time with c0 = 1,
c−1 = c1 = 0, and γ1 = 0. Choosing

P (eiθ) = Q(eiθ) = 1− ρ cos θ, |ρ| ≤ 1,

we obtain Φ = 1, which matches the given covariances and cepstral coefficients. There-
fore all P and Q of this form are stationary points of J and are thus optimal for the
dual problem in Theorem 2.4.

In one dimension there is strict convexity, and thus a unique solution, if and only
if there is an optimal solution for which P̂ and Q̂ are coprime [7].

5.1. Regularizing the problem. A motivation for simultaneous covariance
and cepstral matching is to obtain a rational spectrum Φ = P/Q that matches the
covariances without having to provide a prior P . However, even if d ≤ 2, the dual
problem in Theorem 2.4 cannot be guaranteed to produce such a spectrum that sat-
isfies the covariance constraints (1.1). To remedy this we consider the regularization
proposed by Enqvist [24], which has the objective function

Jλ(P,Q) = J(P,Q)− λ
∫
Td

logP dm,

where λ ∈ (0,∞) is the regularization parameter.
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The partial derivative with respect to q̄k is identical to (5.4a), whereas the partial
derivative with respect to p̄k becomes

∂Jλ(P,Q)

∂p̄k
=

∫
Td

ei(k,θ)

(
log

(
P

Q

)
− λ

P

)
dm− γk.

By Assumption 4.1, this gradient will be infinite for P ∈ ∂P+, and hence the optimal
solution is not on the boundary. Moreover, with this regularization, the optimization
problem becomes strictly convex and we thus have a unique solution.

Theorem 5.7. Suppose that d ≤ 2, and let γk, k ∈ Λ \ {0}, be any sequence
of complex numbers such that γ−k = γ̄k. Set γ = {γk}k∈Λ, where γ0 = 1, and let
c ∈ C+. Then for any λ > 0 there exists a unique solution (P̂ , Q̂) to the strictly convex
optimization problem to minimize

Jλ(P,Q) = 〈c, q〉 − 〈γ, p〉+

∫
Td

P log

(
P

Q

)
dm− λ

∫
Td

logP dm

subject to P ∈ P+,◦ and Q ∈ P+. Moreover, Φ = P̂ /Q̂ fulfills the covariance matching
(1.1) and approximately fulfills the cepstral matching (2.3) via

γk + εk =

∫
Td

ei(k,θ) log Φ dm, where εk = λ

∫
Td

ei(k,θ)P̂−1dm.

Proof. In view of what has been said, all of the results follow from Theorem
2.4 except the strict convexity. To prove this, we note that the second directional
derivative of Jλ is given by

δ2Jλ(P,Q; δP, δQ) =

∫
Td

P

(
δP

1

P
− δQ 1

Q

)2

dm+

∫
Td

δP 2 λ

P 2
dm

(cf. the proof of Lemma 5.3 in the appendix). Since both integrands are nonnegative,
they both need to be zero almost everywhere in order for the derivative to vanish.
However, since P > 0, this implies that δP ≡ 0 by continuity. Then the first inte-
grand becomes δQ2P/Q2 and in the same way we must thus have δQ ≡ 0. Hence
δ2Jλ(P,Q; δP, δQ) > 0, implying uniqueness.

6. The circulant problem. Theorem 2.5 in section 2.2 can be viewed as a
periodic version of Theorem 2.1 and Corollary 2.3, as can be seen by following the
lines of [49], where the one-dimensional problem was first introduced. To this end, we
introduce the discrete measure dνN, i.e.,

(6.1) dνN(θ) =
∑
`∈Zd

N

δ
(
θ1 − φ1(`1), . . . , θd − φd(`d)

) d∏
j=1

dθj
Nj

,

where φj(`) := 2π`/Nj and δ is the multidimensional Dirac delta function. Then the
moment matching condition (2.7) takes the form

ck =
1∏d

j=1Nj

∑
`∈Zd

N

ζk`Φ(ζ`) =

∫
Td

ei(k,θ)Φ(eiθ)dνN,

which is similar to (1.1), but where dνN and dm have different mass distributions
(discrete versus continuous). In fact, the main difference in the statements of Theorem
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2.5 and Theorem 2.1 together with Corollary 2.3 is that different measures and cones
are used. In the same way, versions of Theorems 2.4 and 5.7 also hold in the circulant
case; see [65] for details.

In connection to this it is also interesting to observe that the discrete counterpart
of Assumption 4.1,

(6.2)

∫
Td

1

Q
dνN =∞ for all Q ∈ ∂P+(N),

holds for any measure dνN with discrete mass distribution (see also [44]). How-
ever, if P ∈ ∂P+(N) we may still obtain solutions without covariance matching,
because for any Q that is zero only in a subset of points where P is zero we will have∫
Td(P/Q)dνN <∞ and hence the optimal solution may occur on the boundary.

Remark 6.1. Although the measure (6.1) has mass in points placed in the roots
of unity on the d-dimensional torus, one could also consider other mass distributions.
One could place the mass points in the odd points of the roots of unity, i.e., in the
points {ei(2kj−1)π/N`}N`

kj=1, a situation which has been studied in the one-dimensional

case and which corresponds to spectra of skew-periodic processes [66]. The same holds
in the multidimensional setting. Also note that all dimensions do not need to have
mass distributions of the same type. For example, the approach in this paper works
even if the process is periodic in some of the dimensions, while nonperiodic in others.

6.1. Convergence of discrete to continuous. In [49] Lindquist and Picci
proved for the one-dimensional case that when the number of mass points in the
discrete measure dνN in (6.1) goes to infinity, the solution converges to the solution of
the problem with the continuous measure dm. The same is true in higher dimensions,
and the formal result is given in Theorem 2.6 in section 2.2. In this subsection we
will prove this statement. Note that we use the notation

JP (Q) = 〈c, q〉 −
∫
Td

P logQdm,(6.3a)

JNP (Q) = 〈c, q〉 −
∫
Td

P logQdνN,(6.3b)

to explicitly distinguish the objective functions using the continuous and the discrete
measure. Moreover let Q̂ be the minimizer of (6.3a), subject to Q ∈ P̄+, and Q̂N be
a minimizer of (6.3b), subject to Q ∈ P̄+(N). Before proving the theorem, we make
some clarifying observations.

Remark 6.2. We have already noted that the singular measure dµ̂ is not unique.
However, the corresponding “rest covariance” ĉ, which dµ̂ matches, is unique (cf.
(3.8)). In connection with this it is interesting to note that although this is the case,
and although Q̂N → Q̂, in general ĉN 6→ ĉ. To see this, note that for a P which is
positive in all points except for some irrational frequency5 where P = 0, we will have
P ∈ P+(N) for all N, since this point will never belong to the grid. Thus we will have
Q̂N ∈ P+(N) and therefore ĉN = 0. However P ∈ ∂P+, and therefore we can have
Q̂ ∈ ∂P+ and hence ĉ 6= 0. One can construct such an example based on Example 4.6
by shifting the spectral line to an irrational frequency point.

Remark 6.3. In connection to the previous remark, we note that in two dimensions
we have Q̂ ∈ P+ whenever P 6∈ ∂P+, since Assumption 4.1 is valid for d = 2. Hence

5An irrational frequency is an angle λπ for which λ is an irrational number.
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there will be no singular measure. Moreover, since Q̂N → Q̂ as min(N) goes to
infinity, for large enough value of min(N) we must have Q̂N > 0, i.e., Q̂N ∈ P+.
Therefore (P/Q̂N)dνN tends to (P/Q̂)dm in weak∗.

The first thing we need to show is that Q̂N is in fact well-defined. That this is
not evident from the statement of the theorem becomes apparent when noting the
following relationship among the cones of trigonometric polynomials:

P̄+(N) ⊃ P̄+(2N) ⊃ · · · ⊃ P̄+.

For the dual cones we therefore have [51, pp. 157–158]

C̄+(N) ⊂ C̄+(2N) ⊂ · · · ⊂ C̄+,

and thus it is not guaranteed that minimizing (6.3b) over Q ∈ P̄+(N) has a solution
for c ∈ C+. However note that when Nl →∞ the corresponding set {eikl2π/Nl}kl∈ZNl

will become dense on the unit circle. Therefore P̄+ =
⋂

N∈Zd
+
P̄+(N). Using this we

have the following lemma, proved in the appendix, which is a generalization to the
multivariable case of Proposition 6 in [49].

Lemma 6.4. For any c ∈ C+ there exists an N0 such that c ∈ C+(N) for all
min(N) ≥ N0.

This shows that for each c ∈ C+, the problem of minimizing (6.3b) over Q ∈
P̄+(N) does in fact have a solution for large enough values of N. Interestingly, the
lemma is equivalent to limmin(N)→∞ C+(N) = C+.

Proof of Theorem 2.6. Let Q̂ and Q̂N be as in the statement of the theorem.
Choose a c ∈ C+ and a P ∈ P̄+ \ {0} and fix N0 in accordance with Lemma 6.4.
Throughout the rest of this proof we only consider min(N) ≥ N0, which means that
an optimal solution Q̂N exists. Moreover, in the proof we need the following result,
which is proved in the appendix.

Lemma 6.5. The sequence (Q̂N) is bounded in L∞(Td).

Since (Q̂N) is bounded, there is a convergent subsequence, call it (Q̂N) for con-
venience, converging in the L∞(Td) norm to some function Q̂∞. Since (Q̂N) is a set
of continuous functions, this means that the convergence is in fact uniform and hence
Q̂∞ is a continuous function. Now since (i) the convergence is uniform, (ii) Q̂∞ is
continuous, and (iii) the grid points become dense on Td as min(N) goes to infinity,
we obtain Q̂∞(eiθ) ≥ 0 for all θ, and hence Q̂∞ belongs to P̄+ \ {0}.

It remains to show that Q̂∞ = Q̂. This will be done by proving that ‖Q̂∞−Q̂‖∞ ≤
ε for all ε > 0. To do this, fix a Q̃ ∈ P+ and consider Q̂+ ηQ̃, which belongs to P+

for all η > 0. By simply adding and subtracting ηQ̃, the triangle inequality gives

(6.4) ‖Q̂∞ − Q̂‖∞ ≤ η‖Q̃‖∞ + ‖(Q̂∞ + ηQ̃)− Q̂‖∞.

We want to bound the second term. To this end, note that

JP (Q̂+ ηQ̃)− JP (Q̂) = 〈c, ηq̃〉 −
∫
Td

P log

(
1 +

ηQ̃

Q̂

)
dm,

and, since the integral is nonnegative, we obtain

(6.5) JP (Q̂+ ηQ̃) ≤ JP (Q̂) + η〈c, q̃〉.
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The same holds for JNP , i.e., JNP (Q̂N + ηQ̃) ≤ JNP (Q̂N) + η〈c, q̃〉. By optimality we also

have JNP (Q̂N) ≤ JNP (Q̂+ ηQ̃) <∞ for all η > 0, and hence

(6.6) JNP (Q̂N + ηQ̃) ≤ JNP (Q̂+ ηQ̃) + η〈c, q̃〉.

Now, since Q̂N + ηQ̃ → Q̂∞ + ηQ̃ ∈ P+, we know that, for large enough values of
min(N), we have Q̂N + ηQ̃ ∈ P+. Therefore, the left-hand side of (6.6) is guaranteed
to be well-defined for all values of min(N) larger than this value. We can thus take
the limit on both sides of (6.6) to obtain

JP (Q̂∞ + ηQ̃) ≤ JP (Q̂+ ηQ̃) + η〈c, q̃〉,

which together with (6.5) yields

(6.7) JP (Q̂∞ + ηQ̃) ≤ JP (Q̂) + 2η〈c, q̃〉.

Now consider the sets Dδ = {Q ∈ P̄+ | JP (Q) ≤ JP (Q̂) + δ}. Since the Hessian at
the optimal solution is positive definite we have

⋂
δ>0Dδ = {Q̂}. Therefore, it follows

from (6.7) that η > 0 can be chosen so that ‖(Q̂∞ + ηQ̃) − Q̂‖∞ < ε̃ for any ε̃ > 0.
Consequently, by selecting η sufficiently small, we may bound (6.4) by an arbitrary
small positive number. Hence Q̂∞ = Q̂.

7. Application to system identification. The power spectrum of a signal
represents the energy distribution across frequencies of the signal. For a multidimen-
sional, discrete-time, zero-mean, and homogeneous6 stochastic process {y(t)}, defined
for t ∈ Zd, the power spectrum is defined as the nonnegative measure dµ on Td whose
Fourier coefficients are the covariances

ck =

∫
Td

ei(k,θ)dµ.

In one dimension the singular part of the measure represents spectral lines, and if the
absolutely continuous part is also rational, Φ = P/Q, one can use spectral factoriza-
tion to determine the filter coefficients for an autoregressive moving average (ARMA)
model which, when fed with white noise input, reproduces a stochastic signal with
the same power distribution as Φ. Therefore the one-dimensional rational covariance
extension problem can be used for system identification [50].

With the theory developed in this paper we can estimate rational spectra in
higher dimensions. However spectral factorization is not in general possible when
d > 1 [21]. For d = 2, Geronimo and Woerdeman have established conditions for
when it is possible to factorize a given trigonometric polynomial as a sum-of-one-
square [35, Theorem 1.1.1]. These include a nontrivial rank condition on a reduced
matrix of Fourier coefficients, which we shall call Γred, but also gives an explicit
algorithm for obtaining the factors in cases when it is possible. Nevertheless, in the
following example we will illustrate how the theory could be used in the case when
covariances and cepstral coefficients come from a rational, factorizable spectrum.

We consider a two-dimensional recursive filter with transfer function

b(eiθ1 , eiθ2)

a(eiθ1 , eiθ2)
=

∑
k∈Λ+

bke
−i(k,θ)∑

k∈Λ+
ake−i(k,θ)

,

6Homogeneity implies that covariances ck := E{y(t + k)y(t)} are invariant with “time” t ∈ Zd.
From this it is also easy to see that c−k = c̄k.
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Fig. 1. The true spectrum.

(a) The true polynomial P . (b) The true polynomial Q.

Fig. 2. The spectrum of the system.

where Λ+ = {(k1, k2) ∈ Z2 | 0 ≤ k1 ≤ 2, 0 ≤ k2 ≤ 2} and the coefficients are given by
b(k1,k2) = Bk1+1,k2+1 and a(k1,k2) = Ak1+1,k2+1, where

B =

 0.9589 −0.0479 0.0959
0.0959 0.0479 0.0959
−0.0959 0.0479 0.1918

 , A =

 1.0000 0.1000 0.0500
−0.1000 0.0500 −0.0500
0.2000 −0.0500 −0.1000

 .
Then the corresponding spectrum is given by

Φ(eiθ) = Φ(eiθ1 , eiθ2) =
P (eiθ1 , eiθ2)

Q(eiθ1 , eiθ2)
=

∣∣∣∣ b(eiθ1 , eiθ2)

a(eiθ1 , eiθ2)

∣∣∣∣2 ,
and hence the index set Λ of the coefficients of the trigonometric polynomials P and
Q is given by Λ = {(k1, k2) ∈ Z2 | |k1| ≤ 2, |k2| ≤ 2}.

We approximate the continuous problem with a discrete one in accordance with
Theorem 2.6. The two-dimensional spectrum Φ is evaluated on a grid of size 30× 30,
and shown in Figure 1. The trigonometric polynomials corresponding to the true
spectrum are shown in Figure 2. Its covariances and cepstral coefficients are computed,
and a spectrum is then estimated by (unregularized) covariance and cepstral matching
along the lines of Theorem 2.4. The problem is solved numerically using CVX, a
Matlab package for solving disciplined convex programming problems [36, 37], and the
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(a) Estimated spectrum. (b) Relative error.

Fig. 3. Spectrum estimated with covariance and cepstral matching.

(a) ME spectrum. (b) Relative error.

Fig. 4. The ME estimation and relative error to true spectrum.

resulting spectrum is shown in Figure 3(a). The relative error7 is shown in Figure 3(b).
As seen from the relative error, we recover the true spectrum with good accuracy. For
the ME solution, the resulting spectrum and relative error are shown in Figure 4.

For system identification we are now interested in factorizing the two rational
spectra as a sum-of-one-square, if possible. To check factorizability for the two solu-
tions, we apply the rank condition from [35, Theorem 1.1.1], which requires that the
corresponding submatrix Γred ∈ C6×6 should be of rank four in both cases. However,
such a matrix is generically full rank and we have to study the singular values in order
to determine the numerical rank.

To illustrate this issue, in Figure 5 we plot the singular values of Γred for the
respective polynomials. Figure 5(b) also shows the singular values corresponding to
the solution Qtrue P computed with the true polynomial P as prior (cf. Theorem 2.1
and section 3.2). This solution, as well as the solution obtained by covariance and
cepstral matching, gives the exact spectrum back, up to numerical errors, and hence
should be factorizable. For both these solutions we can also observe a significant
decrease in size between the fourth and the fifth singular values in Figure 5(b). This
indicates that the matrices in fact have numerical rank four, and spectral factorization

7Let the relative error between two functions Φtrue and Φest be the pointwise evaluation of
|Φtrue − Φest|/Φtrue.
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(a) Singular values of Γred for different P . (b) Singular values of Γred for different Q.

Fig. 5. The singular values of the reduced covariance matrix.

is thus possible. Performing the spectral factorization on the solution with covariance
and cepstral matching gives polynomials with coefficients

Best =

 0.9589 −0.0479 0.0959
0.0959 0.0479 0.0959
−0.0959 0.0479 0.1918

 , Aest =

 1.0000 0.1000 0.0500
−0.1000 0.0500 −0.0500
0.2000 −0.0500 −0.1000

 ,
which agree completely with the true coefficients.

For the ME spectrum on the other hand there is no guarantee that it will be
factorizable. In general there is a priori no reason why spectral factorization should
be possible. However, in Figure 5(b) we observe a decrease in size between the fourth
and the fifth singular values also for the ME solution ΦME = 1/QME, although this
decrease is significantly smaller than for the other polynomials. If for the moment
we assume that the rank condition on Γred is actually (approximately) satisfied and
apply the factorization algorithm of [35], we obtain the coefficients

AME =

 1.0317 0.1423 −0.0251
−0.1881 −0.0173 −0.1252
0.2872 −0.0570 −0.2597


for the possible spectral factor aME of QME. Forming the corresponding true Q,
namely, |aME|2, and comparing it with QME, we obtain a relative error of up to 10%
with respect to QME. We leave the question whether this is a reasonable approxima-
tion to a future study. Note also that if the ME spectrum is factorizable, the factors
are given directly from the covariances by the Geronimo and Woerdeman algorithm.
However if this is not the case, rational covariance extension will still give a rational
spectrum. An important open question related to this, and suggested by the above
analysis, is whether the solution can be tuned by an appropriate choice of P so that
the rank condition is satisfied, and hence factorization is possible.

8. Application to image compression. Since the expression (1.2b) is deter-
mined by a limited number of parameters, this approach enables compression of data.
Moreover, the smoothness of the parameterization will facilitate tuning to specifica-
tions. Therefore we apply the two-dimensional circulant RCEP to compression of
black-and-white images. Compression is achieved by approximating the image with a
rational spectrum, thereby using fewer parameters. We compare the ME spectrum to
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Fig. 6. A simplistic test image. Each black or white square is 128× 128 pixels.

the solution resulting from regularized covariance and cepstral matching. By choosing
n1 � N1, n2 � N2, where N1 and N2 are the dimensions of the image, we obtain a
significant reduction in the number of parameters describing the image.

A seemingly straightforward way is to compute the covariances and cepstral coeffi-
cients directly from the image, and then use these to compute the spectrum. However,
if the discrete spectrum is zero in one of the grid points, the (discrete) cepstrum is
not well-defined. Hence simultaneous covariance and cepstral matching cannot be
applied. Therefore we transform the image, denoted by Ψ, using Φ = eΨ. Since Ψ
is real, Φ is guaranteed to be real and positive for all discrete frequencies, and Ψ is
obtained as Ψ = log Φ. We then compute (1.1) and (2.3) and obtain the approximant
Φ̂ from Theorem 5.7. Here we use the real sequences of covariances and cepstral
coefficients obtained by extending the image by symmetric mirroring (i.e., using the
discrete cosine transform [61, section 4.2]). However, the covariances and cepstral
coefficients of Φ can also be computed as the inverse two dimensional FFT of eΨ and
Ψ, respectively.

Moreover, note that an ME solution of the same maximum degree as a solution
with a full-degree P has about half the number of parameters. To compensate for
this, we let the degree of the ME solution be a factor

√
2 higher (rounded up), in

order to get a fair comparison.

8.1. Compression of simplistic images. To better understand the different
methods we first perform compression on a simple image of only black and white
squares. The original image is shown in Figure 6 and various results are shown in
Figure 7. Figure 7(a), shows that, if too few coefficients are used, the compression
cannot represent the harmonics present in the image, regardless of the use of a non-
trivial P . A visual assessment of the result shows that 7(e) clearly outperforms 7(a),
and that 7(f) is still slightly better than 7(b). However 7(c) and 7(d) are better than
7(g) and 7(h), respectively. In order to more objectively assess the quality of the
two different compression methods, we also compute the mean structural similarity
(MSSIM) value of the compressed images. This is a measure, taking values in the
interval [0, 1], for evaluating quality and degradation of images, for which 1 means
exact agreement [73]. A plot of the MSSIM value for compressions of different degree
is shown in Figure 8. However note that this measure does not agree completely with
the visual impression of all images. Most notably, the measure gives a higher value
to the grey image in Figure 7(a) than the image with structure in Figure 7(e).

8.2. Compression of real images. We now apply the methods to some more
realistic images. In the first example, shown in Figure 9(a) the original image is the
Shepp–Logan phantom often used in medical imaging [70], of size 256 × 256 pixels.
In Figure 9(b) a compression using covariance and cepstral mathing is shown, where
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(a) Cepstral match-
ing, n = 4.

(b) Cepstral match-
ing, n = 10.

(c) Cepstral match-
ing, n = 11.

(d) Cepstral match-
ing, n = 30.

(e) ME solution, n =
6.

(f) ME solution, n =
15.

(g) ME solution, n =
16.

(h) ME solution, n =
43.

Fig. 7. Compressions of the simple image shown in Figure 6. The top row shows compression
with regularized covariance and cepstral matching, where λ = 10−2, and the bottom row shows
compression with the ME solution. In all cases n1 = n2, and the pair of compressions in each
column have approximately the same number of parameters, namely, nme ≈

√
2nceps.

Fig. 8. MSSIM values of different compression levels, plotted against n for the compression
with cepstral matching. Hence the corresponding ME compression has d

√
2ne coefficients.

n1 + 1 = n2 + 1 = 30. Hence this image is described by 2 · 302 = 1800 parameters,
compared to the original 2562 = 65536 parameters, which corresponds to a reduction
in parameters of about 97%. We also compute an ME compression, with degree
n1 + 1 = n2 + 1 = 45 ≈

√
2 · 30 which is shown in Figure 9(c).

The second example is a compression of the classical Lenna image, often used in
the image processing literature. The original image, shown in Figure 10(a), is 512×512
pixels. For regularized cepstral matching we set n1 + 1 = n2 + 1 = 60, corresponding
to a compression rate of about 97%, and the result is shown in Figure 10(b). The ME
compression, computed with n1 +1 = n2 +1 = 85 ≈

√
2 ·60, is shown in Figure 10(c).
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(a) Original image. (b) Cepstral matching, n = 30
and λ = 10−2.

(c) ME solution, n = 45.

Fig. 9. Compression of the Shepp–Logan phantom with a compression rate of 97%.

(a) Original image. (b) Cepstral matching, n = 60
and λ = 10−2.

(c) ME solution, n = 85.

Fig. 10. Compression of the Lenna image with a compression rate of about 97%.

Table 1
MSSIM values of different compression techniques on the two test images.

Shepp–Logan Lenna

Compression MSSIM value Compression MSSIM value

Cepstral 0.8690 Cepstral 0.7451
ME 0.7044 ME 0.7489

The MSSIM values for these compressions are shown in Table 1. They seem to
agree with the visual impression. Interestingly the compression with cepstral matching
is better for the Shepp–Logan phantom. However, in the Lenna image neither of the
methods outperform the other. The ME compression has more ringing artifacts, but
it is less blurred than the cepstral compression. We believe that this is related to the
fact that if you have relatively few sharp transitions in pixel values, which is the case
in Figures 6 and 9(a), placing both poles and zero close to each other can achieve this
transition efficiently and thus give better quality on the compressed image. However
when this is not the case, as with the Lenna image in Figure 10(a), the trade-off
between having spectral zeros or matching higher frequencies is more complex.

Similar methods have previously been used for compression of textures [18, 59],
where, instead of a scalar two-dimensional moment problem, a one-dimensional vector
problem is considered. Here the image is modeled by a periodic stochastic vector pro-
cess rather than a two-dimensional random field, leading to a discrete vector moment
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problem akin to the one presented in [49]. This is connected to the circulant moment
problem considered in section 2.2 and to modeling of reciprocal systems [17, 47].

Appendix A.
In this appendix we provide the proofs that have been deferred in the main text.

Some of the proofs use general properties of multidimensional trigonometric polyno-
mials, summarized in this lemma.

Lemma A.1. For all P ∈ P̄+ we have (i) |pk1...,kd | ≤ p0...,0 and (ii) ‖P‖∞ ≤
|Λ|‖p‖∞.

Proof. The fact that |pk| =
∣∣∫

Td e
i(k,θ)Pdm

∣∣ ≤ ∫Td |ei(k,θ)| |P |dm = p0 implies
(i). Next we note that P has |Λ| coefficients, and hence

‖P‖∞ ≤ sup
θ∈Td

∑
k∈Λ

|pk||ei(k,θ)| =
∑
k∈Λ

|pk| ≤ |Λ|‖p‖∞,

which proves (ii).

Proof of Lemma 3.1. To show lower semicontinuity of

JP (Q) = 〈c, q〉+

∫
Td

−P logQdm

we note that 〈c, q〉 is continuous and hence only the integral needs to be considered.
Fix any Q ∈ P̄+ \ {0}. From [69, p. 223] we know that it is log integrable.

Moreover, let (Qn) be a sequence of trigonometric polynomials in P̄+ \ {0} that
converges to Q in L∞(Td). We know that Q is bounded, and, since the convergence
Qn → Q is uniform, we must have M := supn{maxθ[Qn]} <∞, and thus 0 ≤ Q/M ≤
1 and 0 ≤ Qn/M ≤ 1 for all n. Moreover, limn→∞− log(Qn/M) = − log(Q/M) in an
extended real-valued sense. Since − log(Qn/M) ≥ 0, by Fatou’s lemma [68, p. 23],
we have ∫

Td

− log

(
Q

M

)
dm ≤ lim inf

n→∞

∫
Td

− log

(
Qn
M

)
dm.

Since (Qn) is an arbitrary sequence, the functional is lower semicontinuous in Q.
Moreover, since Q is also arbitrary it follows that JP is lower semicontinuous on
P̄+ \ {0}.

Proof of Proposition 4.2. Let k1,k2,k3 ∈ Λ be three linearly independent in-
dex vectors. First note that for the nonnegative trigonometric polynomial Q(eiθ) =∑3
`=1(1−(ei(k`,θ) +e−i(k`,θ))/2) we have Q(0) = 0, and hence Q ∈ ∂P+. Next we will

show that
∫
Td Q

−1dm(θ) is finite. By the variable change φ = Aθ, where A ∈ Rd×d
is selected to be invertible and with the `th row equal to k` for ` = 1, 2, 3, the integral
becomes ∫

Td

1

Q
dm(θ) =

∫
A(Td)

det(A)−1∑3
`=1(1− cos(φ`))

dm(φ),

where the set A(Td) = {Aθ | θ ∈ Td}. Due to the periodicity of the integrand, the
integral is bounded by

κ

∫
T3

dφ1dφ2dφ3∑3
`=1(1− cos(φ`))

for some constant κ that depends on A and d. This bound is finite [41, 44], and
therefore the proposition follows.
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To prove Theorem 4.4, we need the following lemma.

Lemma A.2. fp is a bijective map.

Proof. By Corollary 2.3, fp is injective, since there is a unique minimizer of (2.2)
over all Q ∈ P+. Hence there is at most one q corresponding to a certain c, proving
injectivity. Surjectivity also follows from Corollary 2.3. We fix a P ∈ P+ and simply
note that there exists a unique solution for all c ∈ C+, given by q = (fp)−1(c).

Proof of Theorem 4.4. In the proof of Theorem 2.1 we saw that ∂2JP (Q; δQ) > 0
for all nontrivial variations δQ. Hence

(A.1)
∂fpk
∂q`

=

∫
Td

ei(k−`,θ) P

Q2
dm =

∂2JP (Q)

∂q`∂q̄k

is positive definite. Next, we define the map

ϕp : C+ ×P+ → {(rk)k∈Λ ∈ C|Λ| | r−k = r̄k,k ∈ Λ} ∼= R|Λ|

as

ϕpk(c, q) = ck −
∫
Td

ei(k,θ)P

Q
dm.

By Corollary 2.3, γ(c, q) = 0 has a unique solution for each c ∈ C+. Since ∂ϕp/∂q =
∂fp/∂q is invertible, the implicit function theorem implies that q = (fp)−1(c) is
locally a C1 function and hence a local diffeomorphism. However, fp is a bijection
(Lemma A.2) and therefore a (global) diffeomorphism.

By Theorem 4.4, the function gc is a well-defined map. The proof of Theorem 4.5
now follows along the same lines.

Lemma A.3. gc is a bijective map.

Proof. Surjectivity of gc on the image Q+ follows directly from definition. A
straightforward generalization of Lemma 2.4 in [14] shows that gc is injective.

Proof of Theorem 4.5. Let the map

ϕc : P+ ×P+ → {(rk)k∈Λ ∈ C|Λ| | r−k = r̄k,k ∈ Λ} ∼= R|Λ|

be given by

ϕck(p, q) = ck −
∫
Td

ei(k,θ)P

Q
dm.

The Jacobian with respect to q is the same as (A.1). Hence q = gc(p) is C1 by the
implicit function theorem. Since (A.1) gives a positive definite Jacobian matrix,

∂ϕck
∂p`

= −
∫
Td

ei(k−`,θ) 1

Q
dm

defines an invertible Jacobian. Hence p = (gc)−1(q) is C1, so gc is a local diffeomor-
phism. Since it is a bijection (Lemma A.3), it is a (global) diffeomorphism.

Proof of Lemma 5.1. For any Q ∈ P̄+ \{0}, logQ is integrable [69, p. 223]. Since
P ∈ P̄+,◦, P is not the zero polynomial, hence, since x log x→ 0 as x→ 0, P logP is
integrable and in fact continuous for all P ∈ P̄+,◦. Hence∫

Td

P logP dm−
∫
Td

P logQdm =

∫
Td

P log

(
P

Q

)
dm,
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and therefore we can rewrite the functional J(P,Q) as

J(P,Q) = 〈c, q〉 − 〈γ, p〉+

∫
Td

P logP dm−
∫
Td

P logQdm.

All terms in this expression are continuous, except possibly the last integral. However,
following along the same lines as in the proof of Lemma 3.1, we can apply Fatou’s
lemma showing that J(P,Q) is lower semicontinuous.

Proof of Lemma 5.2. To show that J−1(−∞, r] has compact sublevel sets, we pro-
ceed as in [50, p. 503] by first splitting the objective function into two parts

J1(P,Q) = 〈c, q〉 −
∫
Td

P logQdm and J2(P ) = −〈γ, p〉+

∫
Td

P logP dm.

The sublevel set consists of the (P,Q) ∈ P̄+,◦ × P̄+ such that r ≥ J1(P,Q) + J2(P ),
and from Lemma 3.3 we have J1(P,Q) ≥ ε‖Q‖∞ + log ‖Q‖∞, since

∫
Td Pdm = 1

by (5.5). Next we show that J2(P ) is bounded from below. We first note that since
P ∈ P̄+,◦ we have p0 = 1, and thus P is bounded away from the zero polynomial.
Now, since x log(x) achieves a minimum > −∞ on any compact set [0, a], P logP
must achieve a minimum > −∞ on Td. Calling this minimum κP , we have∫

Td

P logP dm ≥
∫
Td

κP dm = κP .

To bound the term −〈γ, p〉 from below we note that

〈γ, p〉 =
∑
k∈Λ

γ̄kpk ≤

∣∣∣∣∣∑
k∈Λ

γ̄kpk

∣∣∣∣∣ ≤∑
k∈Λ

|γ̄k| |pk| ≤
∑
k∈Λ

‖γ‖∞|pk| ≤ ‖γ‖∞|Λ|‖p‖∞

and thus −〈γ, p〉 ≥ −|Λ|‖γ‖∞‖p‖∞ = −|Λ|‖γ‖∞, since ‖p∞‖ = p0 = 1 by Lemma
A.1. Hence there exist some ρ > −∞ such that J2(P ) ≥ ρ. From this we have

r − ρ ≥ J1(P,Q) ≥ ε‖Q‖∞ + log ‖Q‖∞,

so comparing linear and logarithmic growth we see that the set is bounded both from
above and below. As before, since it is the sublevel set of a lower semicontinuous
function it will be closed, and hence it is compact.

Proof of Lemma 5.3. Consider the directional derivative of J in a point (P,Q) ∈
P̄+,◦× ∈ P̄+ in any direction (δP, δQ) such that P + εδP ∈ P̄+,◦, and Q+ εδQ ∈ P̄+

for all ε ∈ (0, a) for some a > 0. A quite straightforward calculation yields

δJ(P,Q; δP, δQ) = 〈c, δq〉 − 〈γ, δp〉+

∫
Td

[
δP log

(
P

Q

)
− δQP

Q

]
dm,

where we have used the fact, obtained from (5.5), that
∫
Td δPdm = δp0 = 0, since

p0 = 1 is constant. Likewise, the second directional derivative becomes

δ2J(P,Q; δP, δQ) =

∫
Td

P

(
δP

1

P
− δQ 1

Q

)2

dm,

which is clearly nonnegative for all feasible directions and hence positive semidefinite.
Thus the problem is convex.
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Proof of Lemma 6.4. First note that C+(N) ⊂ C+. To prove the lemma, it is
sufficient to prove that any c ∈ C+ belongs to C+(N) if min(N) is large enough.

Let c ∈ C+. From (3.4) there exists κc > 0 such that

(A.2) 〈c, p〉 ≥ κc‖p‖∞ for all p ∈ P̄+.

We want to show that 〈c, p̂〉 > 0 for any p̂ ∈ P̄+(N) \ {0}. Without loss of generality
we may take ‖p̂‖∞ = 1. Then |∂P̂ (eiθ)/∂θj | ≤

∑
k∈Λ |kj |, and, since P̂ (eiθ) ≥ 0 in

θ ∈ TN, it follows that P̂ (eiθ) ≥ −π∆/min(N), where ∆ =
∑

k∈Λ ‖k‖1. Therefore

P̂ + π∆/min(N) ∈ P̄+, and by using (A.2) we get

〈c, p̂〉+ c0
π∆

min(N)
≥ κc

(
‖p̂‖∞ −

π∆

min(N)

)
.

By selecting min(N) > π∆(1 + c0/κc), we obtain 〈c, p̂〉 > 0. Since p̂ ∈ P̄+(N) \ {0}
is arbitrary, it therefore follows that c ∈ C+(N).

Proof of Lemma 6.5. For a fixed Q̃ ∈ P+ we have limmin(N)→∞ JNP (Q̃) = JP (Q̃),
since the sums in (6.3b) are Riemann sums converging to (6.3a). Hence we can define
L := supN JNP (Q̃) < ∞. Also, by optimality, ∞ > JNP (Q̃) ≥ JNP (Q̂N) for all values of

N and also ∞ > JP (Q̃) ≥ JP (Q̂). Using this and Lemma 3.3 we obtain

L ≥ JNP (Q̃) ≥ JNP (Q̂N ) ≥ εN‖Q̂N‖∞ − ‖P‖1‖ log(Q̂N)‖∞

for all values of N. In accordance with (3.5), we can choose εN := κNc /|Λ|, where κNc
is the minimum value of 〈c, qN〉 on the compact set {Q ∈ P̄+(N) | ‖q‖∞ = 1}. If we
can show κc := infN κNc > 0, we can choose ε := κc/|Λ| ≤ εN for all N, so that

L ≥ ε‖Q̂N‖∞ − ‖P‖1‖ log(Q̂N)‖∞.

Then comparing linear and logarithmic growth this implies that (Q̂N) is bounded.
To show that κc > 0 first note that for every finite value of min(N) we have

κNc > 0. Now assume infN κNc = 0. Then there must exist a sequence (q?N) such that
〈c, q?N〉 → 0 as min(N) → ∞, where q?N ∈ P̄+(N) and ‖q?N‖∞ = 1. Now, since every
q?N is a vector in C|Λ|, the constraint ‖q‖∞ = 1 defines a compact set. Hence there
is a subsequence, also indexed with N, so that q? := limmin(N)→∞ q?N is well defined
and ‖q?‖∞ = 1. Then 〈c, q?〉 = 0. However, since c ∈ C+ and q? ∈ P̄+, this implies
that q? = 0, which contradicts ‖q?‖∞ = 1. Hence κc > 0, as claimed.
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