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Abstract— The rational covariance extension problem is a
moment problem with several important applications in sys-
tems and control as, for example, in identification, estimation,
and signal analysis. Here we consider the multidimensional
counterpart and present new results for the well-posedness of
the problem. We apply the theory to texture generation by
modeling the texture as the output of a Wiener system. The
static nonlinearity in the Wiener system is assumed to be a
thresholding function and we identify both the linear dynamical
system and the thresholding parameter.

I. INTRODUCTION

Moment problems with rationality constraints are ubiqui-

tous in the areas of systems, control and signal processing.

One important example is the rational covariance extension
problem. First posed by R.E. Kalman [32] in 1981, this

problem can be stated as follows: Given a finite covariance

sequence c := (c0, . . . , cn), determine all infinite extensions

cn+1, cn+2, . . . such that

Φ(eiθ) =

∞∑
k=−∞

cke
−ikθ (1)

is a positive rational function of degree bounded by 2n. The

reason for calling this a covariance extension problem is

that a function Φ of the form (1) can be regarded as the

spectral density of a zero-mean, stationary stochastic process

{yt; t ∈ Z} with covariance lags ck = E[yt+kȳt] [41,

Sections 3.2-3.3], [50, Section 1.3]. Here ¯ denotes complex

conjugation. Moreover, it is well-known that the rational

covariance extension problem is equivalent to a truncated

trigonometric moment problem with a certain complexity

constraint on the solution [41, Section 12.5]. In fact, the

problem amounts to determining all coercive spectral densi-

ties Φ(eiθ) = P (eiθ)/Q(eiθ) such that

ck =

∫
T

eikθΦ(eiθ)
dθ

2π
,

where T = [−π, π], and where P and Q are trigonometric

polynomials of degree at most n.
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The rational covariance extension problem was partially

solved in 1983 by T.T. Georgiou [22], [23], who proved

that to each positive covariance sequence c and positive nu-

merator polynomial P there is a corresponding denominator

polynomial Q such that Φ = P/Q matches the covariances

and conjectured that this correspondence is unique. This

conjecture was then proved in [12], where it was also

established that this (complete) parameterization is smooth,

i.e., a diffeomorphism.

Since then, this and similar problems has been extensively

studied in the literature [7], [8], [10], [17], [18], [24],

[40], [43], [44], [53], and this research has provided the

stimulus for research in the general theory for scalar moment

problems [9], [11], [27]. Moreover a number of multivariate

counterparts, i.e., when Φ is a matrix-valued spectral density,

have also been solved [5], [20], [26], [39], [45], [47]. All

this work is connected to dynamical systems that depends

on one variable, typically representing time. However, many

problems in spectral estimation, signal processing, system

identification, and image processing are inherently multidi-

mensional [6]. Multidimensional systems theory has been

applied to many different problems, for example pollution

models [21], agricultural models [3], [52], texture modeling

[35], and image processing [16]. Therefore, more recently,

interest has also been directed towards a multidimensional

version of the rational covariance extension problem [25],

[26], [34], [48], [49], a problem which is linked to earlier

work on maximum entropy solutions [36]–[38].

The focus of the present paper is on the multidimensional

rational covariance extension problem, which can be posed

as a complexity-constrained, multidimensional, truncated,

trigonometric moment problem. In Section II we define

the problem and present results from the literature, mainly

from [49]. Section III is devoted to well-posedness of this

inverse problem and contains some new results reported here

for the first time. Finally, in Section IV we consider an

example related to Wiener system identification and texture

generation.

II. THE MULTIDIMENSIONAL RATIONAL COVARIANCE

EXTENSION PROBLEM

The multidimensional rational covariance extension prob-

lem is an inverse problem. To formally define it, let Λ ⊂ Zd

be a finite index set such that 0 ∈ Λ and −Λ = Λ, and let

c := [ck | k := (k1, . . . , kd) ∈ Λ] (2)

be a set of known covariances, which are complex num-

bers with the symmetry c−k = c̄k. Also let |Λ| denote
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the cardinality of the index set Λ. The problem amounts

to parametrizing a certain family of nonnegative bounded

measures dμ on Td such that

ck =

∫
Td

ei(k,θ)dμ(θ) for all k ∈ Λ, (3)

where (k,θ) :=
∑d

j=1 kjθj . Like in the one-dimensional

case, the reason for referring to this problem as a covariance

extension problem is that the c in (2) can be interpreted as

a set of covariance lags ck := E[yt+kȳt] of a discrete-time,

zero-mean, homogeneous1 stochastic process {yt; t ∈ Zd}.
Now, let

dμ(θ) = Φ(eiθ)dm(θ) + dμ̂(θ), (4)

where Φdm is the absolutely continuous and dμ̂ the singular

part in the Lebesgue decomposition of dμ and dm(θ) :=
(1/2π)d

∏d
j=1 dθj is the (normalized) Lebesgue measure on

Td. In general, if a solution to (3) exists, there are infinitely

many measures dμ satisfying the equation. We wish to

parametrize the family of measures for which the spectral

density takes the form

Φ(eiθ) =
P (eiθ)

Q(eiθ)
, p, q ∈ P̄+\{0}. (5)

Here P+ is the set of coefficients p := [pk | k ∈ Λ]
corresponding to trigonometric polynomials

P (eiθ) =
∑
k∈Λ

pke
−i(k,θ) (6)

that are positive for all θ ∈ Td. The set P+ is in fact a convex

cone, and by P̄+ and ∂P+ we will denote the closure and the

boundary P̄+\P+, respectively. It is then easily verified that

∂P+ is the subset of all p ∈ P̄+ such that the corresponding

nonnegative trigonometric polynomial P (eiθ) is zero in at

least one point. In this context we also introduce the dual

cone of P̄+, called C̄+, the interior of which is given by

C+ :=
{
c | 〈c, p〉 > 0, for all p ∈ P̄+ \ {0}

}
.

Here, 〈c, p〉 = ∑
k∈Λ ckp̄k denotes the complex inner prod-

uct. The boundary ∂C+ of C+ consists of all c ∈ C̄+ such

that 〈c, p〉 = 0 for some p ∈ P̄+ \ {0}. The cone C̄+ plays

an important role in the theory. In particular, it is easily seen

that, for any c satisfying (3) for some nonnegative measure

dμ, we have

〈c, p〉 =
∫
Td

P (eiθ)dμ ≥ 0

for all p ∈ P̄+, and hence c ∈ C̄+ (cf. [34, Proposition 2.2]).

In fact, the converse statement is also true [34, Theorem 2.3].

In view of the complexity constraint (5), parametrizing the

rational family of solutions to (3) is a non-convex problem.

However, formulating the inverse problem as an optimization

problem, we can use a regularizing functional that turns out

1That is, E[yt+kȳt] is independent of t for all k. Homogeneity gener-
alizes stationarity for d = 1 to the multidimensional case d > 1.

to promote rational solutions. To this end, let p ∈ P̄+ \ {0}
and consider the functional

Ip(dμ) =

∫
Td

P (eiθ) log
P (eiθ)

Φ(eiθ)
dm(θ), (7)

which is the Kullback-Leibler divergence between the two

measures Pdm and dμ = Φdm+ dμ̂ [27], [49]. The primal

problem then amounts to minimizing (7) subject to (3), i.e.,

min
dμ≥0

∫
Td

P (eiθ) log
P (eiθ)

Φ(eiθ)
dm(θ),

subject to ck =

∫
Td

ei(k,θ)dμ(θ) for all k ∈ Λ.

(8)

From this, one can readily derive the Lagrangian dual func-

tional obtained by relaxing the equality constraint, which

takes the form

Jp(q) = 〈c, q〉 −
∫
Td

P (eiθ) logQ(eiθ)dm, (9)

and the corresponding dual optimization problem is

min
q

〈c, q〉 −
∫
Td

P (eiθ) logQ(eiθ)dm,

subject to q ∈ P̄+.

(10)

Using the primal-dual pair of optimization problems (8) and

(10), we get the following (complete) characterization of the

multidimensional rational covariance extension problem.

Theorem 1 ([49, Theorem 2.1]): For every (c, p) ∈ C+ ×
(P̄+ \{0}) the functional (9) is strictly convex, and (10) has

a unique minimizer q̂ ∈ P̄+ \ {0}. Moreover, there exists

a unique ĉ ∈ ∂C+ and a nonnegative singular measure dμ̂
with support supp(dμ̂) ⊆ {θ ∈ Td | Q̂(eiθ) = 0} such that

ck =

∫
Td

ei(k,θ)
(
P

Q̂
dm+ dμ̂

)
for all k ∈ Λ

and

ĉk =

∫
Td

ei(k,θ)dμ̂, for all k ∈ Λ.

For any such dμ̂, the measure

dμ(θ) = (P (eiθ)/Q̂(eiθ))dm(θ) + dμ̂(θ)

is an optimal solution to (8). Moreover, dμ̂ can be chosen

with support in at most |Λ| − 1 points.

In view of Theorem 1, the optimality conditions for (10)

can be summarized as follows.

Corollary 2 ([34, Corollary 5.3]): Let c ∈ C+. Then q̂ is

an optimal solution to (10) if and only if

q̂ ∈ P̄+, ĉ ∈ ∂C+, 〈ĉ, q̂〉 = 0

ck =

∫
Td

ei(k,θ)
P

Q̂
dm+ ĉk for all k ∈ Λ.
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III. WELL-POSEDNESS OF THE PROBLEM

Since (8) is an inverse problem, we are not only interested

in the existence of a solution but also in the question of

whether (8) is well-posed. Theorem 1 guarantees that for

(c, p) ∈ C+ × (P̄+ \ {0}) a unique solution (q̂, ĉ) exists.

It remains to investigate how this solution depends on the

parameters of the problem, i.e., on the tuple (c, p). To this

end, from Propositions 7.3 and 7.4 in [34], we first have the

following result.

Proposition 3: Let c, p and q̂ be as in Theorem 1. Then

the map (c, p) �→ q̂ is continuous.

Next, consider the continuity of the map (c, p) �→ ĉ. For

d ≤ 2, note that
∫
Td Q

−1dm =∞ for all q ∈ ∂P+. Hence,

when p ∈ P+ and thus P is strictly positive on all of Td, the

gradient of (9) will be −∞ on the boundary ∂P+. Therefore,

the optimal solution q̂ is pushed into P+, and in view of

Theorem 1 we can thus guarantee that ĉ = 0.

Proposition 4 ([49, Corollary 2.3]): Suppose that d ≤ 2.

Then, for any c ∈ C+ and p ∈ P+ there exists a q ∈ P+

such that dμ = (P/Q)dm satisfies (3). Moreover this q is

the unique solution to (10).

Hence, since ĉ = 0 for d ≤ 2 and p ∈ P+, the continuity

of C+ × P+ � (c, p) �→ ĉ is trivial in this case. For

later reference we formulate this result in the following

proposition.

Proposition 5: Let c, p, q̂ and ĉ be as in Theorem 1. Then,

for d ≤ 2 and all (c, p) ∈ C+ ×P+, the mapping (c, p) →
(q̂, ĉ) is continuous.

Remark 6: In the case d ≤ 2 in turns out that the result

of Proposition 3 can be strengthened. In fact, for a fixed

p ∈ P+, the map C+ � c �→ q̂ ∈ Q+ ⊂ P+ is

a diffeomorphism onto its image Q+ [49, Theorem 4.4].

Moreover, for fixed c ∈ C+ the map P+ � p �→ q̂ ∈ Q+ is

also a diffeomorphism [49, Theorem 4.5] .

However, the case d ≥ 3 turns out to be trickier, since we

can have ĉ = 0 although p ∈ P+. In the following subsection

we will investigate the continuity of the map (c, p) �→ ĉ for

the case d ≥ 3 under certain conditions.

A. New results on well-posedness

In view of Propositions 3 and 5, the problem (8) is well-

posed for d ≤ 2 and p ∈ P+. However, the well-posedness

in ĉ is in some sense trivial, since in this case we have ĉ = 0
for all p ∈ P+ and c ∈ C+. For d ≥ 3 this is not the case,

as we can have q̂ ∈ ∂P+ even when p ∈ P+ and thus might

have ĉ = 0. In this subsection we extend the well-posedness

result of Proposition 5 to hold also in some cases where

d ≥ 3.

However, we begin by noting that the condition p ∈ P+

in general cannot be weakened to p ∈ P̄+ \ {0}, which

the following one-dimensional example illustrates (cf. [34,

Example 3.8]).

Example 7: Let

c =

⎡
⎣13
1

⎤
⎦ =

⎡
⎣02
0

⎤
⎦+

⎡
⎣11
1

⎤
⎦ =

∫ π

−π

⎡
⎣e−iθ

1
eiθ

⎤
⎦ (2dm+ dν0) ,

where dm = dθ/2π, and dν0 is the singular measure δ0(θ)dθ
with support in θ = 0. Since dμ := 2dm + dν0 is positive,

c ∈ C̄+. Moreover, since the Toeplitz matrix Tc := [cj−�]j,�
is positive definite, i.e.,

Tc =

[
3 1
1 3

]
> 0,

we have c ∈ C+ (see, e.g., [40, p. 2853]). Thus we know

that for each p ∈ P+ we have a unique q̂ ∈ P+ such that

P/Q̂ matches c, and hence ĉ = 0 (Proposition 4). However,

for p = 2(−1, 2,−1)T we have that q̂ = (−1, 2,−1)T and

ĉ = (1, 1, 1)T (Corollary 2). Then, for the sequence (pk),
where pk = 2(−1, 2 + 1/k,−1)T ∈ P+, we have ĉk = 0,

so

lim
k→∞

ĉk = lim
k→∞

[
0 0 0

]T = [
1 1 1

]T
,

which shows that the mapping p �→ ĉ is not continuous.

One way to try to establish continuity of the map (c, p) �→
ĉ is to try to use the already established continuity from

(c, p) to q̂ in Proposition 3. From the KKT conditions in

Corollary 2 we have in particular that

ck =

∫
Td

ei(k,θ)
P

Q̂
dm+ ĉk for all k ∈ Λ,

and hence continuity of ĉ would follow if
∫
Td PQ̂−1dm is

continuous in (c, p, q̂), whenever the integral is finite. If p ∈
P+, this follows from the continuity of the map q̂ �→ Q̂−1

in L1(T
d). Note here that we know from Example 7 that

the condition p ∈ P+ is actually needed. In fact, if p ∈
∂P+ we may have “pole-zero cancellations” in P/Q̂ (cf.

[34, Example 5.10]), and then
∫
Td P/Q̂dm may be finite

even if Q̂−1 ∈ L1(T
d).

For the case d ≤ 2, the continuity of the map q̂ �→ Q̂−1 in

L1(T
d) is trivial, since, if

∫
Td Q̂

−1dm is finite, then q̂ ∈ P+

and Q̂ is bounded away from zero (cf. Propositions 4 and

5). However, for the case d ≥ 3 the optimal q̂ may belong

to the boundary ∂P+, i.e., Q̂ is zero in some point. Here

we show L1 continuity of q̂ �→ Q̂−1 for certain cases. The

proof is deferred to the appendix.

Proposition 8: For d ≥ 3, let q̂ ∈ P̄+ and suppose that

the Hessian ∇θθ Q̂ is positive definite in each point where

Q̂ is zero. Then Q̂−1 ∈ L1(T
d) and the mapping from the

coefficient vector q ∈ P̄+ to Q−1 is L1 continuous in the

point q̂.

From Propositions 8 and 5 the following continuity result

follows directly.

Corollary 9: Let c, p, q̂, and ĉ be as in Theorem 1. For

all c ∈ C+ and all p ∈ P+, the mapping (c, p) → (q̂, ĉ) is

continuous in any point (c, p) in which Q̂ is strictly positive

or in which the Hessian ∇θθ Q̂ is positive definite in each

point where Q̂ is zero.

IV. EXAMPLE IN TEXTURE GENERATION

Wiener systems form a class of nonlinear dynamical

systems that consist of a linear dynamic part composed with

a static nonlinearity, as in Figure 1. They belong to a class

of so called block-oriented systems, which has a long history
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Linear system Static nonlinearity
ut xt yt

Fig. 1. A Wiener system with thresholding as static nonlinearity.

[4], and applications are found in many areas of science and

engineering [2]. A lot of research has been done in the area of

identification of Wiener systems, see, e.g, [31] and references

therein, and the area is still active [1], [42], [51].

In this example we shall use Wiener systems to model and

generate textures. The idea of using dynamical systems for

modeling of textures and images is not new and has been

considered in, e.g., [13], [45]. The setup we present here is

motivated by [19], where thresholded Gaussian random fields

are used to model porous materials for design of surface

structures in pharmaceutical film coatings.

To this end, we let {xt; t ∈ Zd} be the stationary output

of a linear system with Gaussian white noise input {ut; t ∈
Zd}, and let yt = f(xt) where f is the static nonlinearity

f(x) =

{
1 x > τ

0 otherwise,
(11)

where the thresholding parameter τ is assumed to be un-

known. We assume that ut is a zero-mean process, and hence

xt is also a zero-mean Gaussian process, which we assume to

be normalized c0 := E[x2
t ] = 1. Due to these assumptions,

the output yt of the static nonlinearity has mean

E[yt] = P (yt = 1) = 1− P (xt ≤ τ) = 1− φ(τ), (12)

where φ(τ) is the Gaussian cumulative distribution function

φ(τ) =

∫ τ

−∞

1√
2π

exp(−s2/2)ds.

A. Covariances of thresholded Gaussian variables

Next we consider the relation between the covariances of

the input xt and those of the output yt, respectively, and use

this to estimate the covariances of the process xt [2], [46].

To this end, let x1, x2 ∈ N(0, 1) be two jointly Gaussian

stochastic variables and set y� = f(x�), for 	 = 1, 2, where

f : R→ R is a given function. In addition, let ρ and r be the

covariances ρ := E[x1x2] and r := E[y1y2] − E[y1]E[y2],
respectively. We are interested in the relation between ρ and

r, and to this end we introduce R := E[y1y2]. Now note that

R is related to the covariance ρ via [46, Equation 21] (see

also [2, p. 32]), i.e.,

∂R

∂ρ
=

∫
R2

exp
(
−x2

1+x2
2−2ρx1x2

2(1−ρ2)

)
2π

√
1− ρ2

f ′(x1)f
′(x2)dx1dx2.

In our case f(x) is given by (11), and thus f ′(x) = δτ (x)
is a Dirac delta function at τ . Therefore

∂R

∂ρ
=

1

2π
√
1− ρ2

exp

(
− τ2

1 + ρ

)
,

and from this it follows that

R(ρ) = b+

∫ ρ

0

1

2π
√
1− s2

exp

(
− τ2

1 + s

)
ds,

for some constant b. In order to determine b, first note that

ρ = 0 implies that x1 and x2 are uncorrelated, and hence

independent, since the joint distribution is Gaussian. This in

turn means that y1 and y2 are independent, since f is a static

function, and hence we get

b = R(0) = E[y1y2] = E[y1]E[y2].

Therefore r can be expressed as

r = R(ρ)− E[y1]E[y2]

=

∫ ρ

0

1

2π
√
1− s2

exp

(
− τ2

1 + s

)
ds.

(13)

The integrand is well-defined for −1 < ρ < 1, and the

integral converges for all values in the closed interval [−1, 1].
Moreover, the integrand is strictly positive on (−1, 1) and by

the inverse function theorem this transformation is invertible.

B. Estimating the linear part of the Wiener system

By using the inverse of (13) we can estimate the covari-

ances ck := E[xt+kxt] from estimates of the covariances

rk := E[yt+kyt] − E[yt+k]E[yt]. Note however that (13)

depends on the threshold parameter τ , which is assumed to

be unknown. In order to estimate τ we use (12), which gives

τest = φ−1(1−E[yt]). Having estimates of the covariances

ck, we can now appeal to Theorem 1 in order to estimate a

rational spectrum for xt.

Given this rational spectral density we want to recover

a linear dynamical system corresponding to the spectrum.

In the one-dimensional case, d = 1, this is always possible

by spectral factorization, since the spectral density can be

written as a sum-of-one-square

Φ(eiθ) =
P (eiθ)

Q(eiθ)
=
|b(eiθ)|2
|a(eiθ)|2 .

However in higher dimensions this is in general not possible

[15]. For a strictly positive spectrum, a factorization as a

sum-of-several-squares is always possible [14]

Φ(eiθ) =
P (eiθ)

Q(eiθ)
=

∑�
k=1 |bk(eiθ)|2∑m
k=1 |ak(eiθ)|2

.

However, for m > 1 the interpretation of this in terms of a

dynamical system is not clear to the authors. We therefore

resort to a heuristic and apply the factorization procedure in

[28, Theorem 1.1.1] although some of the conditions required

to ensure the existence of a spectral factor may not be met

(cf. [49, Section 7]).

The complete procedure for identifying the Wiener system

with thresholding as static nonlinearity is summarized in

Algorithm 1.

C. Simulation results

Next we test the procedure outlined above on simulated

data. To this end, we consider the two-dimensional recursive

filter with transfer function given by

b(eiθ1 , eiθ2)

a(eiθ1 , eiθ2)
=

∑
k∈Λ+

bke
−i(k,θ)∑

k∈Λ+
ake−i(k,θ)

,
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(a) True spectrum.

(b) Identified ME spectrum. (c) Identified and factorized ME spectrum.

(d) Identified spectrum with true p. (e) Identified and factorized spectrum with true p.

Fig. 2. Log-plot of the true spectrum and the identified spectra, both before and after factorization.

Algorithm 1
Input: (yt)

1: Estimate threshold parameter: τest = φ−1(1− E[yt])
2: Estimate covariances: rk := E[yt+kyt]−E[yt+k]E[yt]
3: Compute covariances ck := E[xt+kxt] by using (13)

4: Estimate a rational spectrum using Theorem 1

5: Apply the factorization procedure in [28, Theorem 1.1.1]

Output: τest, coefficients for the linear dynamical system

where Λ+ = {(k1, k2) ∈ Z2 | 0 ≤ k1 ≤ 2, 0 ≤ k2 ≤ 2}
and the coefficients are given by b(k1,k2) = Bk1+1,k2+1 and

a(k1,k2) = Ak1+1,k2+1, where

B=

[
0.75 −0.2 0.05
0.2 0.3 0.05

−0.05 −0.05 0.1

]
, A=

[
3.6623 −4.0222 0.9987

−4.0939 4.8705 −1.1913
1.2018 −1.3539 0.2155

]
.

The threshold parameter in (11) is set to τ = 0.06.

The system is simulated with Gaussian white noise as

input, and 500 × 500 samples are taken as output. These

samples are used to estimate the threshold parameter, which

gives the estimate τest = 0.0570. Moreover, they are used

to estimate covaraiances rk on a grid Λ = {(k1, k2) ∈
Z2 | |k1| ≤ 3, |k2| ≤ 3}. Note that this grid Λ does not

agree with the true degree of the linear system. From the

estimated covariances (rk) we determine the covariances

(ck), which are then used in the optimization problem (10).

We compute the solution with two different P , the first one

being P ≡ 1, which corresponds to the maximum entropy

(ME) solution, and the second one being P = Ptrue, i.e., the

trigonometric polynomial corresponding to the filter b. The

optimization problems are solved using the CVX toolbox

in Matlab [29], [30]. The corresponding spectra obtained are

shown in Figure 2. As can be seen in the figure, using the true

P gives a better agreement with the true spectrum, shown

in Figure 2a, which indicates that an appropriate tuning of

p can improve the fit. Although there are methods in the

literature on how to do simultaneously estimation of p and q
[7], [17], [33], [48], [49], the question on how to best select

p is still open.
After estimating the spectra, we compute estimates of filter

coefficients for the autoregressive part of the linear system,

and the corresponding estimates are

AME =

⎡
⎣ 4.1270 −3.8799 0.3572 0.2297
−5.4210 4.0752 0.4412 −0.2174
2.4057 −0.0926 −1.7157 0.1816

−0.4199 −0.6931 0.9018 −0.1010

⎤
⎦

ATrue P =

⎡
⎣ 3.7207 −4.3079 1.3210 −0.0861
−4.2527 5.4070 −1.6585 0.0364
1.3381 −1.6108 0.1836 0.2351

−0.0562 0.0019 0.2183 −0.2145

⎤
⎦

Using these filter coefficients, together with the correspond-

ing filter coefficients for the moving-average part, we simu-

late the estimated Wiener system. The corresponding gener-

ated textures are shown in Figure 3. Visually, the generated

textures seem to have similar structures. However, by com-

paring the covariances, which are shown in Figure 4, it can

be seen that the texture generated by the filter obtained using

the true p matches the higher order covariances considerably

better.
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(a) Output of true system. (b) Output of identified maximum en-
tropy system.

(c) Output of identified system with
true p.

(d) Close-up of Figure 3a. (e) Close-up of Figure 3b. (f) Close-up of Figure 3c.

Fig. 3. Output of the true and the identified systems. Figures 3a - 3c show 500× 500 samples, and Figures 3d - 3f show 100× 100 samples.

(a) Covariances rk of texture in Figure
3a.

(b) Covariances rME
k of texture in Fig-

ure 3b.
(c) Covariances rTrue P

k of texture in
Figure 3c.

(d) Absolute error |rk − rME
k |. (e) Absolute error |rk − rTrue P

k |.
Fig. 4. Covariances and covariance errors for the textures. Here k = (k1, k2) where the x-axis corresponds to k1 and the y-axis corresponds to k2.

V. CONCLUSION AND FUTURE WORK

In this paper we continue our work on the multidimen-

sional rational covariance extension initiated in [49]. We

develop theory for identification of Wiener systems with

applications to texture generation, and present new results

on the well-posedness of the problem in dimension d ≥ 3.

However, a complete such characterization of well-posedness

is still missing (see, e.g., Example 12 in the Appendix).

Another remaining issue is that spectral factorization typ-

ically is not possible for multidimensional spectral densities,

and therefore we have resorted to an heuristic approach

to approximate factorization. An alternative framework that

avoids this problem is to model the texture as an output

of an one-dimensional vector valued process as in [13] and

[45]. This framework is not symmetric with respect to the

coordinate-axes since it assumes stationarity only in one

direction, a feature which may or may not be desirable

depending on the application at hand.

APPENDIX

Proof of Proposition 8: The proof will be carried out

using a sequence of lemmas. First we bound the integral of
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Q−1 over the ball Bρ(θ0) := {θ ∈ Td | ‖θ − θ0‖2 ≤ ρ},
where the bound only depends on the Hessian of Q.

Lemma 10: Let d ≥ 3 and q ∈ P̄+. If the Hessian

∇θθ Q(eiθ) ≥ γI > 0, for θ ∈ Bρ(θ0), then∫
Bρ(θ0)

Q(eiθ)−1dm(θ) ≤ ρd−2/γ.

Proof: By integrating the inequality twice, we see that

Q(eiθ) ≥ γ‖θ− θ̂‖2/2 for θ̂ = argminθ∈Bρ(θ0) Q(eiθ). By

radial symmetry, the integral of (γ‖θ − θ̂‖2/2)−1 is in turn

bounded by the integral of (γ‖θ − θ0‖2/2)−1. Therefore,∫
Bρ(θ0)

Q(eiθ)−1dm(θ)≤
∫
Bρ(θ0)

2

γ‖θ − θ0‖2 dm(θ)≤ ρd−2

γ
,

using basic approximations in spherical coordinates.

Secondly we show that if q satisfies the condition in

Lemma 10, then any polynomial sufficiently close to q is

well-behaved.

Lemma 11: Let d ≥ 3, q ∈ P̄+, and assume that the

Hessian ∇θθ Q(eiθ) is positive definite in the zero θ0 of Q.

Further, let qk ∈ P̄+ for k ∈ N such that qk → q as k →∞.

Then for any ε > 0 there exists an N ∈ N and a ρ > 0 such

that ∫
Bρ(θ0)

Q(eiθ)−1dm(θ) ≤ ε and∫
Bρ(θ0)

Qk(e
iθ)−1dm(θ) ≤ ε

for all k ≥ N .

Proof: Let γ be such that ∇θθ Q(eiθ)|θ=θ0
≥ 3γI ,

and let ρ1 > 0 be such that ∇θθ Q(eiθ) ≥ 2γI for

θ ∈ Bρ1(θ0). This is always possible since Q is C∞

and hence the second derivatives are continuous. Next,

let ρ = min(ρ1, (εγ)
1/(d−2)) and select an N such that

∇θθ Qk(e
iθ) ≥ γI for θ ∈ Bρ(θ0) holds for all k ≥ N .

Such an N exists since ∇θθ Qk(e
iθ)→ ∇θθ Q(eiθ) ≥ 2γI

on Bρ(θ0). From Lemma 10 it then follows that∫
Bρ(θ0)

Q(eiθ)−1dm(θ) ≤ ρd−2/γ ≤ ε∫
Bρ(θ0)

Qk(e
iθ)−1dm(θ) ≤ ρd−2/γ ≤ ε,

which proves the lemma.

Next, continuing the proof of Proposition 8, we use the

fact that the integrals of Q̂−1 and Q−1
k in a neighborhood

of the zero set of Q̂ can be made arbitrary small. Further,

the convergence is uniform on the complement of this set,

and hence convergence of the integrals will follow. To this

end, let the sequence (qk) ⊂ P̄+ converge to q̂. For any

ε > 0 we need to show that there is an N ∈ N such that

‖Q−1
k − Q̂−1‖1 < ε for all k > N . Also note that Q̂ has

finitely many zeros. To see this, assume that this is not so.

By compactness of Td the zeros have an accumulation point.

However, this is contradicted by the fact that the Hessian is

positive definite in each zero of Q̂ and hence any zero of Q̂

is isolated. Using Lemma 11 there is a ρ > 0 and an N1 ∈ N

such that ∫
∪�Bρ(θ�)

Q̂(eiθ)−1dm(θ) ≤ ε/3 and∫
∪�Bρ(θ�)

Qk(e
iθ)−1dm(θ) ≤ ε/3

for all k > N1. Since Qk → Q̂ uniformly and Q̂ >
0 on Td \ ∪�Bρ(θ�), there is an N2 such that ‖Q̂−1 −
Q−1

k ‖L1(Td\∪�Bρ(θ�)) < ε/3 for all k > N2. The result now

follows since, for k > N := max(N1, N2), we have

‖Q−1
k − Q̂−1‖1 ≤ ‖Q−1

k − Q̂−1‖L1(Td\∪�Bρ(θ�))

+ ‖Q̂−1‖L1(∪�Bρ(θ�)) + ‖Q−1
k ‖L1(∪�Bρ(θ�))

≤ ε,

which shows the continuity in the point q̂.

Finally, we note that there are cases, even for d = 3, where

the conditions in Corollary 9 are not satisfied and hence the

corollary does not apply. In these cases the question of well-

posedness is still open. The following is an example of this.

Example 12: Let d = 3, Q ∈ P̄+, and let the integer

n ≥ 2. Then, assuming that

Q(eiθ) ≥ θ21 + θ22 + θ2n3 ,

we have ‖Q−1‖L1(T3) <∞. To see this, first note that Q−1 is

unbounded only at the origin. Therefore ‖Q−1‖L1(T3) <∞
if ‖Q−1‖L1(Bρ) < ∞ for some 1 > ρ > 0, where Bρ :=
Bρ(0). A variable change into spherical coordinates2 gives∫

Bρ

Q(eiθ)−1dm(θ) ≤
∫
Bρ

(θ21 + θ22 + θ2n3 )−1dm(θ)

=

∫ π/2

−π/2

∫ ρ

0

| sin(ϕ1)|drdϕ1/(2π)
2

sin(ϕ1)2 + r2(n−1) cos(ϕ1)2n
.

Note that the integrand is uniformly bounded outside the set

|ϕ1| < ε for any 1 > ε > 0. However due to symmetry it is

enough to consider the set S = {(r, ϕ1) | 0 ≤ ϕ1 ≤ ε, r ∈
[0, ρ]}. Moreover, inside S we have α1ϕ1 ≤ sin(ϕ1) ≤ α2ϕ1

and cos(ϕ1) ≥ α3 for some positive constants α1, α2, α3.

Therefore ‖Q−1‖L1(Bρ) is finite if the following integral is

finite:∫ ρ

0

(∫ ε

0

ϕ1dϕ1

ϕ2
1 + r2(n−1)

)
dr =

∫ ρ

0

(
1

2
log

(
1 +

ε2

r2(n−1)

))
dr

≤
∫ ρ

0

(
1

2
log

(
2

r2(n−1)

))
dr

=

∫ ρ

0

(
1

2
(log 2− 2(n− 1) log r)

)
dr <∞.

This shows that the integral of Q−1 over T3 is finite.
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