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1 Introduction

The problem of stabilizing a linear control system leads to several important consid-
erations. In particular, there are certain basic requirements which need to satisfied in
any practical feedback system [6, 7, 11, 18]. First, the closed-loop system needs to be
internally stable, i.e., the transfer function between any two points in the loop should
be stable. Internal stability guarantees that all signals in the system remain bounded
when a bounded signal is injected at any location. Secondly, the absolute value of the
closed-loop transfer function needs to be bounded in the right half-plane. Prescribing
a fixed uniform bound, the design of an internally stable feedback system leads to a
Nevanlinna-Pick interpolation problem [12,13,16].

In many situations, we require in addition that the closed-loop transfer function has
bounded degree, often chosen to be equal to the number of interpolation conditions. In
general, this ensures not only low degree of the controller but also that the feedback
system behaves like a low-order system, a common specification in many applications.
In general, there are infinitely many transfer functions satisfying these these conditions,
and one would like to select one which best satisfied some additional specifications.
However, classical theory does not provide procedures for determining an arbitrary
such solution, but only a particular one, known as the central solution.

Recently, however, a new theory has been developed [1,2,5,9,10], which provides a
complete parametrization of all solutions and a procedure for determining each of them.
This is a modification of a theory previously developed for the Caratheodory extension
problem with degree constraint [3, 4, 8].

In this paper, we shall apply this theory to the design problem described above.
In Section 2 we set up and motivate the problem, in Section 3 we review pertinent
fact about the theory of Nevanlinna-Pick interpolation with degree constraint, and in
Section 4 we discuss various desighn strategies and give some examples. The sensitivity
shaping problem considered here is a special case of the model matching problem [6,7,
11], and the theory can also be appled to this problem.

Only the single-input-single-output case is considered here. For such problems good
results can be obtained by manual loop shaping. It is therefore desirable to extend
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these results to the multi-input-multi-output case, since in this case the advantages of
our procedure become much more convincing.

2 Sensitivity shaping in feedback control

Consider a standard linear control system

ẋ = Ax + Bu

y = Cx + Du

with a scalar input u and a scalar output y. In Figure 1 we depict this system as an
input-output system with the transfer function

P (s) = C(sI − A)−1B + D.

We shall refer to it as the “plant.” The plant is said to be stable if all the poles of P lie
in the open left half-plane. Then, since P is proper, it belongs to RH∞, the space of all
rational functions which are bounded and analytic in the closed right half-plane. If, in
addition, P has all its zeros in the open left half-plane it is said to be minimum-phase.

P (s)✲
u

✲
y

Figure 1: The plant

By contrast, suppose that P (s) has np poles and nz zeros in the closed right half-
plane (including point at infinity; let us denote them p1, p2, · · · , pnp and z1, z2, · · · , znz ,
respectively. For simplicity, we assume that these zeros and poles are simple. If np �= 0,
the plant is unstable, and we need to stabilize it by feedback. Consider, therefore, the
standard feedback system depicted in Figure 2. Here C(s) is a controller to be designed
so that the closed-loop system fulfills certain design specifications, r is a reference signal,
d a disturbance, and n measurement noise.

✲
r e

✐ ✲ C(s) ✲ P (s) ✲ ✐ ✲❄
d
+

y

❄✛
n

−✐

✻−

Figure 2: The closed-loop system

It is straight-forward to see that the closed-loop transfer function from the reference
signal r to the error signal e is given by

S =
1

1 + PC
. (1)

The function S is called the sensitivity function, and it is also the transfer function
from the disturbance d to the output y.
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The first object is to stabilize the system in such a way that the transfer functions
between any two arbitrary points in the closed-loop system is stable. This stronger
concept of stablity is called internal stability. For internal stability, you require not
only that the closed-loop system transfer function (from r to y) is stable, but that
there is no cancelation of right-half-plane (unstable) pole and zeros in the product
PC [11, p.13]. Internal stability is needed in all practical feedback systems, since it
guarantees that all signals in the system remain bounded when a bounded signal, such
as r, d or n in Figure 2, is injected at any location in the loop.

It is well-known [11, Theorem 7.2.2] that internal stability is achieved if and only if
the sensitivity function is stable and satisfies the interpolation conditions

S(zk) = 1, k = 1, 2, · · · , nz, and S(pk) = 0, k = 1, 2, · · · , np. (2)

Secondly, for robustness it is also desirable to put a specified uniform bound on the
absolute value of the sensitivity function. For example, inserting a reference signal r in
the feedback system of Figure 2, we have e = Sr, and hence

‖e‖2 ≤ ‖S‖∞‖r‖2.

To bound the error norm, we need to bound ‖S‖∞ := supω∈(−∞,∞) |S(iω)|. Similarly,
we note that the output y produced by a disturbance d satisfies

‖y‖2 ≤ ‖S‖∞‖d‖2,

so for disturbance attenuation, we also need to bound ‖S‖∞. Therefore, we require
that

‖S‖∞ < γ (3)

for some prescribed γ > 0.
With this bound, the RH∞-function S/γ maps the right half-plane into the open

unit disc. Hence the problem of finding an S satisfying both (2) and (3) is equivalent to
the Nevanlinna-Pick interpolation problem [16]. It has a solution if and only if a certain
matrix depending on the interpolation data, the Pick matrix (8) defined in Section 3, is
positive semidefinite. If the Pick matrix is positive definite, and from now on we shall
assume this, there are infinitely many analytic S solutions, so we need to specify what
kind of solution we prefer.

A third requirement is that of low complexity: We would like the degree of closed-
loop transfer function

T =
PC

1 + PC
(4)

to be as small as possible. Except that there may be compeling reasons for T itself to
have low degree, as mentioned in the introduction, an important reason is that a low
degree of T guarantees a low degree of the compensator C. This is seen by the following
observation, which is proved in [?]. Since S = 1 − T , deg T = degS.

Proposition 2.1 Suppose P is strictly proper and that S satisfies the interpolation
conditions (2). Then the controller

C =
1 − S

PS
(5)

satisfies the degree bound

degC ≤ degP − nz − np + degS, (6)

where nz and np are the number of unstable zeros and poles of P , respectively.
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As we shall see in the next section, we need to have degS ≥ nz +np−1 to guarantee
the existence of an interpolant. But, even if degS = nz +np−1, there may be infinitely
many analytic interpolants, so we may choose one that is most suitable with respect to
the particular application in mind.

The lowest bound (3), namely

γopt = inf{‖S‖∞ | S satisfied (2)}.
is attained for an S such that |S(iω)| = γopt for all ω ∈ R. However, if we want to
achieve lower sensitivity in some selected frequency band, we must allow a higher upper
bound

γ > γopt. (7)

In fact, decreasing the sensitivity at low frequences will ofte increase the sensitivity in
other parts of the spectrum. In particular, if P has relative degree at least two, Bode’s
sensitivity integral yields

1

2π

∫ ∞

−∞
log |S(iω)|dω =

m∑
k=1

Re{ρk},

where ρ1, ρ2, · · · , ρn are the unstable poles of PC. This is called the water-bed effect
(see, e.g., [18]).

In this regard, the most common design specification is to require the absolute
value of the senitivity function to be small for low frequencies. In fact, typical reference
signals and disturbances have low frequencies, so having low sensitivity for these fre-
quencies reduces the corresponding contributions to the error e and output y. Design
specifications, as well as interpolation conditions, can also be expressed in terms of
the closed-loop transfer function T , which is the transfer functions not only from the
reference signal r to the output y, but also from the measurment noise n to the output
y. Therefore, it is also called the complementary sensitivity function. Typically, we
want low complementary sensitivity at high frequencies, since the measurement noise
generally consists of high frequencies. The difficulty of modeling at high frequencies
may also require low complementary sensitivity at these frequencies. In fact, to in-
crease the robust stability margin against the multiplicative unstructured uncertainty,
which is large at high frequencies, the complementary sensitivity should be low over
this frequency band, due to the small gain theorem [18].

There are situations where such design specification cannot be met and where we
need to modify the interpolation problem. Typical examples are when either nz or np

is zero. In this case we have an interpolation problem of the type

S(sk) = w, k = 0, 1, 2, · · · , n,
where s0, s1, · · · , sn are some arbitrary interpolation points. With the degree constraint
degS ≤ n, S takes the form

S(z) =
b(z)

a(z)
=

b0z
n + b1z

n−1 + · · · + bn
zn + a1zn−1 + · · · + an

,

so any interpolant must satisfy b(sk) = S(sk)a(sk), k = 0, 1, · · · , n, or, equivalently, the
linear system of equations


sn0 sn−1

0 · · · 1
sn1 sn−1

1 · · · 1
...

...
...

snn sn−1
n · · · 1







b0 − w
b1 − wa1

...
bn − wan


 = 0.
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Assuming that sk, k = 0, 1, · · · , n are distinct, the Vandermonde matrix in the left-hand
side is nonsingular, which shows that S ≡ w is the only possible solution.

For this reason we shall sometimes introduce additional interpolation conditions.
How this should be done is discussed in Section 4.

3 Nevanlinna-Pick interpolation with degree con-

straint

The basic analytic interpolation problem (also allowing for extra interpolation condi-
tions) described in the previous section can be summerized as follows. Given interpo-
lation points s0, s1, · · · , sn in the right half-plane, interpolation values v0, v1, · · · , vn in
the open unit disc and abound γ, find a function S with the properties

(i) S is analytic in RHP and |S(s)|/γ < 1 in RHP

(ii) S(sk)/γ = vk, k = 0, 1, · · · , n

(iii) degS ≤ n.

By Pick’s Theorem, this problem has a solution if and only if the Pick matrix

[
1 − vkv̄�
sk + s̄�

]n

k,�=0

(8)

is positive definite [16]. For simplicity, we assume that the interpolation points are
distinct and that the sets of interpolation points and interpolation values are self-
conjugate. Hence we are only interested in real S. Without loss of generality, we can
also assume that s0 = 1 and that v0 is real. In fact, a simple conformal mapping moves
s0 to arbitrary point.

In this formulation of the Nevanlinna-Pick interpolation problem with degree con-
straint, S is analytic in the right half-plane and maps it into the open unit disc. We
would like to consider instead functions which are strictly positive real, i.e., functions
which are analytic and have positive real part in the complement of the open unit disc.
By transforming the domain and codomain via

z =
1 + s

1 − s
and w =

1 + v

1 − v
,

respectively, we transform S to the strictly positive real function

f(z) =
γ + S

(
z−1
z+1

)
γ − S

(
z−1
z+1

) . (9)

Then, in this setting, the basic interpolation problem becomes: Given interpolation
points z0, z1, · · · , zn in the complement of the closed unit disc and interpolalation values
w0, w1, · · · , wn in the open right half-plane, find a function f with the properties

(i)′ f is strictly positive real

(ii)′ f(zk) = wk, k = 0, 1, · · · , n

(iii)′ deg f ≤ n.
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We assume that the corresponding Pick matrix

[
wk + w̄�

1 − z−1
k z̄−1

�

]n

k,�=0

(10)

is positive definite, so that there are infintely many solutions. In this setting, the
normalization s0 = 1 becomes z0 = ∞.

A strictly positive real funcion f of degree less than or equal to n can always be
written as

f(z) =
b(z)

a(z)
, (11)

where the polynomials

a(z) = a0z
n + a1z

n−1 + · · · + an, a0 > 0

b(z) = b0z
n + b1z

n−1 + · · · + bn, b0 > 0

are stable, i.e., they have all roots in the open unit disc. They both have degree n but
may have common factors. Then,

f(z) + f(z−1) =
a(z)b(z−1) + a(z−1)b(z)

a(z)a(z−1)
,

which must be positive on the unit circle. Therefore, there exists a unique stable
polynomial ρ(z) of degre n such that

a(z)b(z−1) + a(z−1)b(z) = ρ(z)ρ(z−1). (12)

The roots of ρ(z), all located in the open unit disc, are called the spectral zeros of f .
It was shown in [1] that, for each choice of spectral zeros, i.e., for each stable

polynomial
ρ(z) = zn + ρ1z

n−1 + · · · + ρn,

there is one and only one pair (a, b) such that (11) satisfies (i)′,(ii)′ and (iii)′ and that
this pair can be determined by solving a convex optimization problem.

To formulate this optimization problem, we need some notation. Let Q be the space
of all functions

Q(eiθ) =

∣∣∣∣π(eiθ)

τ(eiθ)

∣∣∣∣
2

on the unit circle, where

τ(z) =
n∏

k=0

(z − z−1
k )

is stable, and π(z) is an arbitrary polynomial of degree less than or equal to n. Of
course, all Q ∈ Q are nonnegative on the unit circle. We denote by Q+ the subset of
all Q ∈ Q which are positive on the unit circle. Next, let w(z) be any real rational
function which is analytic on and outside the unit circle and satisfies the interpolation
conditions

w(zk) = wk, k = 0, 1, . . . , n.

Note that w need not be positive real, so it is easy to find such a function. In fact,
choose any stable polynomial α(z) of degree n and determine the polynomial β(z), also
of degree n, satisfying the Vandermonde system β(zk) = wkα(zk), k = 0, 1, · · · , n. Since
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the points z0, z1, · · · , zn are distinct, there is a unique such β(z), and the corresponding
w is given by w = β/α.

Then, for each stable ρ(z) and any Q ∈ Q, define the functional

Jρ(Q) =
1

π

∫ π

−π

Q(eiθ)Re{w(eiθ)}dθ − 1

2π

∫ π

−π

log{Q(eiθ)}
∣∣∣∣ρ(e

iθ)

τ(eiθ)

∣∣∣∣
2

dθ. (13)

It can be shown that the value of Jρ does not depend on the particular choice of w but
only on the values w0, w1, · · · , wn of w at the interpolation points. The function Jρ is
strictly convex. The following (nontrivial) result was proven in [1].

Theorem 3.1 The function Jρ has a unique minimum Q̂ in Q, which is an interior

point. That is, Q̂ ∈ Q+.

The minimum-phase spectral factor of Q̂ turns out to be precisely a/τ . More pre-
cisely, a in (11) is the unique stable a(z) with a0 > 0 such that

a(z)a(z−1) = τ(z)τ(z−1)Q̂(z). (14)

Then, given a(z) and ρ(z), b(z) can be uniquely determined from (12). In fact, the
linear operator

S(a)v = a(z)v(z−1) + a(z−1)v(z)

from the vectorspace Vn of polynomials of degre less than or equal to n to the space
Dn of symmetric pseudo-polynomials of degree at most n is nonsigular, since a(z) has
no reciprocal roots; see, e.g., [?]. We qoute from [1]:

Theorem 3.2 For each stable ρ(z), there is one and only one pair (a, b) such that (11)
satisfies (i)′, (ii)′, (iii)′ and (12), and this pair of polynomials are obtained by solving
first (14) for a, where Q̂ is the minimizing function in Theorem 3.1, and the (12) for
b.

The convex optimization problem of Theorem 3.1 can be solved using Newton’s
method; see [?, 1] for details.

Finally, returning to the original problem of finding a sensitivity function S satisfying
(i), (ii) and (iii), we first observe that

Re(f) =
γ2 − |S|2
|γ − S|2 .

Therefore, in this context, the spectral zeros, to be chosen, are precisely the zeros of

Γ(s) = γ2 − S(s)S(−s), (15)

and in terms of the interpolant f , determined by the convex optimization algorithm,

S(s) = γ
f

(
1+s
1−s

)
− 1

f
(

1+s
1−s

)
+ 1

. (16)
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4 A new procedure for sensitivity shaping

To ensure internal stability, the sensitivity function must always satisfy the interpolation
conditions (2). Hoverver, as pointed out in Section 2, sometimes we need to introduce
extra interpolation conditions

S(λk) = αk, k = 0, 1, · · · , ne, (17)

so the integer n in the interpolation problem of Section 3 is

n = nz + np + ne.

Of course, like the other interpolation conditions, the extra ones need to be chosen in
complex conjugate pairs, if they are not real.

The design parameters, to be selected, are therefore

1. n spectral zeros,

2. (λk, αk), k = 0, 1, · · · , ne.

The question is how to choose them to achieve the prescribed design specifications.
First, placing a spectral zero close to the imaginary axis at the frequency ω1, raises

the modulus of the sensitivity to a level close to the upper bound γ at that frequency,
as depicted in Figure 3. In fact, if λ is a spectal zero close to iω1,

γ2 − S(iω1)S(−iω1) ≈ γ2 − S(λ)S(−λ) = 0,

and hence |S(iω1)| ≈ γ. Then, by the water-bed effect, the sensitivity will often be
lowered in other parts of the spectrum.

0

x −λ

Re

λ x ω1

γ

ω1 ω

Im

i

S(i   )|     ω  |

Figure 3: The influence of a spectral zero λ near the imaginary axis on
the sensitivity frequency response

Introducing an extra interpolation condition S(λ) = α with α real and λ close to
the imaginary axis at the frequency ω2, fixes the modulus of the sensitivity at a level
close to α at that frequency, as depicted in Figure 4. To see this, observe that

|S(iω2)| ≈ |S(λ)| = α.

By an approriate choice of (λ, α) we can thus prescribe the senitivity at a selected
frequency.
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0
Re

γ

ω

Im

2

α

o

o

S(i   )ω2i |     ω  |λ

λ

Figure 4: The influence of an extra interpolation constraint S(λ) = α on
the sensitivity frequency response

Example 4.1 Consider a plant

P (s) =
(s− 1)(s− 2)

(s + 1)(s2 + s + 1)
,

which is stable but has nonminimum-phase zeros at s = 1 and s = 2. This example is
discussed in [7, p. 77], where the performance specification

|S(iω)| ≤ 0.1, for ω < 0.01

is imposed. We also impose the bound γ = 1.3 over the whole spectrum. Transforming
this to the discrete-time setting, we obtain the unstable zeros ∞,−1,−3. To move one of
these zeros off theunit circle, we make the transformation z → z/(1+ε), where we choose
ε = 0.005. Then the interpolation points become z0 = ∞, z1 = −1.005, z2 = −3.015,
and the corresponding interpolation conditions are

f(z0) = f(z1) = f(z2) =
γ + 1

γ − 1
=

2.3

0.3
.

As explained at the end of Section 2, a senitivity fuction of at most degree two satisfying
these interpolation conditions would have to be constant, which would not allow us to
satisfy the specifications. Therefore, we add another interpolation condition. Choosing
a real λ > 0 close to the origin, and choosing α = 0 reduces the sensitivity for low
frequencies. Taking λ = 0.001/1.001 yields the extra interpolation condition

f(1.002) = 1.

Then n = 3, and choosing the spectral zeros 0, 0.9e±1.7453i yields the sensitivity function

S(s) =
s3 + 2.6532s2 + 6.3989s + 0.0096

s3 + 3.0042s2 + 5.3459s + 0.7115
,

depicted with solid line in Figure 5, and the controller

C(s) =
1 − S(s)

P (s)S(s)
=

0.3510s3 + 0.7020s2 + 0.7020s + 0.3510

s3 + 2.6532s2 + 6.3989s + 0.0096
.
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Figure 5: The frequency response of S

Both these functions have degree three, and, as can be seen in Figure 5, the specifications
are satisfied with broad margin.

The corresponding sensitivity function, determined in [7], using conventional H∞

methods, is depicted with a dashed line in Figure 5. It barely satisfies the specifications,
despite the fact that the degree of the controller is four.

Example 4.2 As a second example, we consider a mixed sensitivity shapinging prob-
lem for the discrete-time plant

P (z) =
1

z − 1.05
,

having an unstable pole at 1.05 and a nonminimum-phase zero at infinity. For internal
stability, we need the interpolation conditions

S(∞) = 1, S(1.05) = 0.

The specifications are

|S(ejθ)| < 2(≈ 6.02dB), θ ∈ [0, π] (rad/sec),

|S(ejθ)| < 0.1(= −20dB), θ ∈ [0, 0.3] (rad/sec),

|T (ejθ)| < 0.5(≈ −6.02dB), θ ∈ [2.5, π] (rad/sec),

and hence we choose γ = 2.
However, there turns out to be no sensitivity function of degree two which satisfies

these specifications, we need to add an extra interpolation conditions. To this end, we
choose S(−1.01) = 1 to obtain small |T | for high frequencies and S(1.01e±0.3i9 = 0
to obtain small |S| for low frequencies.This yields the sensitivity function S depicted
with solid line in Figure 6. The complementary sensitivity function T is depicted with
dashed line in the same figure. Here we have degS = deg T = 4 and degC = 3.

Solving the same problem by the conventional method of mixed sensitivity mini-
mization with weighting functions, i.e.

min
C

∥∥∥∥ W1S
W2T

∥∥∥∥ −∞ (18)

subject to internal stability for the nominal system, we were unable to satisfy the
specifications even with a sensitivity function of degree seven and a corresponding
controller of degree six. (See [?] for further details.)

10



     

0 0.3 1 2 2.5 3
−40

−30

−20

−10
−6.02

0

6.02
10

Frequency θ(rad/sec)

G
ai

n 
(d

B
)

Figure 6: The gains of S (solid line) and of T (dashed line)
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