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This paper is dedicated to Giorgio Picci on the occasion of his 65th birthday. I have
come to appreciate Giorgio not only as a great friend but also as a great scholar.
When we first met at Brown University in 1973, he introduced me to his seminal
paper [29] on splitting subspaces, which became the impetus for our joint work on
the geometric theory of linear stochastic systems [23–26]. This led to a life-long
friendship and a book project that never seemed to converge, but now is close to
being finished [27].

I have learned a lot from Giorgio. The present paper grew out of a discus-
sion in our book project, when Giorgio taught me about the connections between
prediction-error identification and the Kullback-Leibler criterion. These concepts led
directly into the recent theory of analytic interpolation with complexity constraint,
with which I have been deeply involved in recent times. I shall try to explain these
connections in the following paper.

1 Introduction

Prediction error methods for ARMA modeling play a major role in system identi-
fication [28, 30], but in general they lead to nonconvex optimization problems for
which global convergence is not guaranteed. In fact, although these algorithms are
computationally simple and quite reliable, as pointed out in [32, p. 103], there is so
far no theoretically satisfactory algorithm for ARMA parameter estimation. Convex
optimization approaches have been proposed [7, 17] for the approximation part, but
it remains to verify their practical applicability and statistical accuracy.

In this paper we identify certain classes of ARMA models in which predic-
tion error minimization leads to convex optimization. It has been shown [2, 33]
that model approximation via prediction error identification leads to an optimization
problem that is related to the minimization of the Kullback-Leibler divergence cri-
terion [18, 21]. This, in turn, leads naturally to the theory of analytic interpolation
and generalized moment problems with complexity constraints developed in recent
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years [8–14,16]. This has already been observed, at least in the context of covariance
extension, in [4, 6].

The paper is outlined as follows. In Section 2 we review some pertinent facts
on prediction error approximation and set notations. In Section 3 we define model
classes in terms of a finite number of, not necessarily rational, basis functions and
show that the corresponding prediction-error minimizers can be obtained as the solu-
tion of a pair of dual convex optimization problems. In the rational case we can even
compute the minimizer in closed form. The connections to the Kullback-Leibler cri-
terion and maximum-likelihood identification is described in Section 4. In Section 5
we provide prediction-error approximants in model classes determined by interpola-
tion conditions on the spectral density and its positve real part.

For simplicity this paper will only deal with the scalar case, but multivariable
extensions are straightforward, given multivariable versions of the the theory of gen-
eralized moment problems with degree constraints [5, 22].

2 Prediction-error approximation

Let {y(t)}Z be a zero-mean stationary stochastic process with a spectral density
{Φ(eiθ); θ ∈ [−π, π]} that may be rational or nonrational but is zero only in isolated
points θ. Let w be a normalized minimum-phase spectral of Φ; i.e.,

Φ(eiθ) = ρ|w(eiθ)|2, θ ∈ [−π, π],

where w(0) = 1 and ρ > 0 is a suitable normalizing factor. Then the process y
can be modeled by passing a white noise e with covariance lags E{e(t)e(s)} = ρδts
through a filter with a transfer function

w(z) =
∞∑
k=0

wkz
−k.

Since w0 = 1,
y(t) = e(t) + y(t|t−1),

where
y(t|t−1) = w1e(t− 1) + w2e(t− 2) + . . .

is the one-step ahead linear predictor of y(t) given {y(s); s ≤ t−1}. Hence y(t|t−1)
can be represented by passing e through a filter with transfer functionw−1 as shown
in the block diagram

y(t) y(t|t−1)e(t)
-w−1- w − 1 -
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In particular,
y(t)− y(t|t−1) = e(t).

Now, let ŵ be a normalized (ŵ(0) = 1), stable minimum-phase function belong-
ing to some model class W to be specified later. We shall regard ŵ as an approxima-
tion of w, from which we can form an approximate predictor, denoted by ŷ(t|t−1),
as in the figure

y(t) ŷ(t|t−1)ε(t)
-ŵ−1- ŵ − 1 -

Then
ε(t) = y(t)− ŷ(t|t−1);

i.e., ε(t) is the prediction error, which is not a white noise. Indeed, it is easy to see
that it has the variance

r := E{ε(t)2} =
∫ π

−π
|ŵ(eiθ)|−2Φ(eiθ)

dθ

2π
. (1)

Since ε(t) = e(t) + [y(t|t−1)− ŷ(t|t−1)] and e(t) and [y(t|t−1)− ŷ(t|t−1)] are
uncorrelated,

r = ρ+ E{|y(t|t−1)− ŷ(t|t−1)|2} ≥ ρ.

The idea is now to find a ŵ ∈W that minimizes the prediction error variance (1).
To this end, define the class F of spectral densities

Φ̂(eiθ) = ρ̂|ŵ(eiθ)|2, (2)

where ŵ ∈W and ρ̂ > 0. Then the prediction error takes the form

r := ρ̂

∫ π

−π
Φ̂(eiθ)−1Φ(eiθ)

dθ

2π
. (3)

The purpose of the coefficient ρ̂ in (3) is merely to normalize Φ̂. Once an optimal Φ̂ ∈
F has been determined, ρ̂ and ŵ ∈ W are obtained by outer spectral factorization
and normalzation so that ŵ(0) = 1.

3 Prediction-error approximation in restricted model classes

We begin by defining the model class F. To this end, let

g0, g1, g2, . . . , gn (4)

be a linearly independent sequence of Lipschitz continuous functions on the unit
circle with zeros only in isolated points, and let the model class F be the set of all
functions Φ̂ such that
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Φ̂(eiθ)−1 = Q(eiθ) := Re

{
n∑
k=0

qkgk(eiθ)

}
, (5)

for some q0, q1, . . . , qn ∈ C such that Q(eiθ) ≥ 0 for all θ ∈ [−π, π]. In addition,
let Q the class of all such functions Q.

As a simple example, consider the case gk = zk, k = 0, 1, . . . , n. Then the
model class W is the family of all AR(n) models. However, more general choices
of rational basis functions (4) yield model classes of ARMA models. Even more
generally, we may choose basis functions that are not even rational.

Theorem 1. Let the spectral density Φ have the property that the generalized mo-
ments

ck :=
∫ π

−π
gk(eiθ)Φ(eiθ)

dθ

2π
, k = 0, 1, . . . , n, (6)

exist, and define the functional J : Q→ R as

J(Q) =
∫ π

−π

[
Φ(eiθ)Q(eiθ)− logQ(eiθ)

] dθ
2π
. (7)

Then the functional (7) has a unique minimum Qopt, which is an interior point in Q.
Moreover, ∫ π

−π
gk(eiθ)

1
Qopt(eiθ)

dθ

2π
= ck, k = 0, 1, . . . , n. (8)

Proof. Since the functions g0, g1, . . . , gn are Lipschitz continuous, hypothesis H1 in
[14] is satisfied [14, Remark 1.1]. Moreover, since bothQ ∈ Q andΦ are nonnegative
on the unit circle with zeros only in isolated points,∫ π

−π
QΦ

dθ

2π
> 0

for all Q ∈ Qr{0}. Hence the sequence c = (c1, c2, . . . , cn) is positive in the sense
prescribed in [14].

The functional J : Q → R is strictly convex on the convex set Q, and hence,
if a minimum does exist, it must be unique. However, it is shown in [14, Theorem
1.5] that J has a unique minimizer, Qopt, which lies in the interior of Q, provided the
sequence c = (c1, c2, . . . , cn) is positive and hypthesis H1 holds, which is what we
have established above. Since the minimizer Qopt is an interior point, the gradient
of J must be zero there, and hence (8) follows.

Theorem 2. Let Φ be an arbitrary spectral density such that the generalized mo-
ments (6) exist. Then, there is a unique spectral density Φ̂ in the model class F that
minimizes the prediction error variance (3), and it is given by

Φ̂opt := Q−1
opt, (9)

where Qopt is the unique minimizer in Theorem 1.
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Proof. By Theorem 1, Φ̂opt is the unique minimizer of

J(Φ̂−1) =
∫ π

−π

[
Φ(eiθ)Φ̂−1(eiθ) + log Φ̂−1(eiθ)

] dθ
2π
. (10)

However, by (3), ∫ π

−π
Φ(eiθ)Φ̂−1(eiθ)

dθ

2π
=
r

ρ̂
.

Moreover, in view of (2)∫ π

−π
log Φ̂

dθ

2π
= log ρ̂+ 2

∫ π

−π
log |ŵ| dθ

2π
= log ρ̂+ 2 log ŵ(0) = log ρ̂,

where we have used Jensen’s formula [1, p.184] and the facts that ŵ is outer and
ŵ(0) = 1. Consequently,

J(Φ̂−1) =
r

ρ̂
+ log ρ̂. (11)

Now, for any fixed r > 0, (11) has a unique minimum for ρ̂ = r, and hence

J(Φ̂−1
opt) = 1 + min

r
log r.

Therefore log r, and hence the prediction error r, takes it unique minimum value for
Φ̂ = Φ̂opt, as claimed.

Now, in view of (8) and (9),∫ π

−π
gk(eiθ)Φ̂opt(eiθ)

dθ

2π
= ck, k = 0, 1, . . . , n. (12)

However, Φ̂opt is not the only spectral density that satisfies these moment conditions.
In fact, following [12, 14], we can prove that, among all such solutions, Φ̂opt is the
one maximizing the entropy gain.

Theorem 3. The optimal prediction-error approximation Φ̂opt of Theorem 2 is the
unique maximizer of the entropy gain

I(Φ̂) :=
∫ π

−π
log Φ̂(eiθ)

dθ

2π
(13)

subject to the moment constraints∫ π

−π
gk(eiθ)Φ̂(eiθ)

dθ

2π
= ck, k = 0, 1, . . . , n. (14)
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Let us stress again that the basis functions g0, g1, . . . , gn need not be rational.
Although, in general, we want the model class W to consist of rational functions
of low degree, there may be situations when it is desirable to include nonrational
components, such as, for example, exponentials.

Identification in terms of orthogonal basis functions is a well studied topic [19,
34, 35]. The most general choice is

gk(z) =

√
1− |ξk|2
z − ξk

k−1∏
j=0

1− ξ∗j z
z − ξj

,

where ξ0, ξ1, ξ2, . . . are poles to be selected by the user. The functions g0, g1, g2, . . .
form a complete sequence in the Hardy space H2(Dc) over the complement of the
unit disc D provided

∑∞
k=0(1 − |ξk|) = ∞. In [19] the problem to determine a

minimum-degree rational function of the form

F̂ (z) =
1
2
c0g0(z) +

∞∑
k=1

ckgk(z),

where c0, c1, . . . , cn are prescribed, was considered.
In our present setting, in order for Φ̂ := Re{F̂} to be a spectral density, F̂ needs

to be positive real, leading to a problem left open in [19]. Let c0, c1, . . . , cn be given
by (6). Then, by Theorem 3, the problem of determining the minimum prediction-
error approximant of Φ in the model class defined by g0, g1, . . . , gn amounts to find-
ing the function Φ̂ that maximizes the entropy gain∫ π

−π
log Φ̂

dθ

2π
,

subject to ∫ π

−π
gkΦ̂

dθ

2π
= ck, k = 0, 1, . . . , n.

Alternatively, we may solve the convex optimization problem of Theorem 1.
Theorem 1 enables us to determine, under general conditions, the minimum

prediction-error in closed form. Here, following [16], we state such a result under
the assumption that the basis functions are rational.

Proposition 1. Suppose that the basis functions g0, g1, . . . , gn are rational and ana-
lytic in the unit disc D. Then,

Qopt(z) =
|g∗(z)P−1g(0)|2

g∗(0)P−1g(0)
, (15)

where

g(z) :=


g1
g2
...
gn

 , P :=
∫ π

−π
g(eiθ)Φ(eiθ)g(eiθ)∗

dθ

2π
.
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Proof. Clearly the basis functions g0, g1, . . . , gn belong to the Hardy space H2(D),
and g := (g0, g1, . . . , gn)′ has a representation

g(z) = (I − zA)−1B,

where (A,B) is a reachable pair. Then

ϕ(z) =
det(zI −A∗)
det(I − zA)

is an inner function, and it can be shown that the basis functions g0, g1, . . . , gn span
the coinvariant subspace K := H2 	 ϕH2. Moreover, for any Q ∈ Q, there is an
outer function in a ∈ K such that Q = a∗a ( [13, Proposition 9]). Consequently (7)
can be written

J(a) =
∫ π

−π
a∗Φa

dθ

2π
−
∫ π

−π
2 log |a| dθ

2π
.

Here the second term can be written 2 log |a(0)| by Jensen’s formula [1, p.184], and
since a ∈ K, there is a vector a ∈ Cn+1 such that a(z) = g∗(z)a, so the second
term be written a∗Pa. Hence the optimization problem is reduced to determining
the a that minimizes

J̃(a) = a∗Pa− 2 log |a∗g(0)|.

Setting the gradient equal to zero, we obtain a = P−1g(0)/|a(0)| and hence a(z) =
g∗(z)P−1g(0)/|a(0)|. Then |a(0)|2 = g∗(0)P−1g(0), and therefore the optimal a
becomes

a(z) =
g∗(z)P−1g(0)√
g∗(0)P−1g(0)

,

from which (15) follows.

Remark 1. The pair of dual optimization problems in Theorems 1-3 are special cases
of a more general formulation [8–14, 16] where (7) is replaced by

JΨ (Q) =
∫ π

−π

[
Φ(eiθ)Q(eiθ)− Ψ(eiθ) logQ(eiθ)

] dθ
2π
, (16)

with Ψ is a parahermitian function that is positive on the unit circle and available for
tuning; and (13) is replaced by

IΨ (Φ̂) :=
∫ π

−π
Ψ(eiθ) log Φ̂(eiθ)

dθ

2π
. (17)

The particular choice Ψ = I , corresponding to the minimum prediction-error ap-
proximation, is called the central or maximum entropy solution. As suggested by
Blomqvist and Wahlberg [4,6] in the context of covariance extension, a nontrivial Ψ
corresponds to a particular choice of prefiltering that may lead to better results; cf,
page 274.
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4 The Kullback-Leibler criterion and maximum-likelihood
identification

The optimization problem of Theorem 1 is intimately connected to the Kullback-
Leibler divergence [18, 21]

D(y‖z) := lim sup
N→∞

1
N
D(pNy | pNz )

from one stationary, Gaussian stochastic processes z to another y, where pNy and pNz
are the N -dimensional density functions of y and z respectively, and where

D(p1 | p2) :=
∫

Rn
p1(x) log

p1(x)
p2(x)

dx.

In fact, it was shown in [33] that, if y and z have spectral densities Φ and Φ̂, respec-
tively, then

D(y‖z) =
1
2

∫ π

−π

[
(Φ− Φ̂)Φ̂−1 − log(ΦΦ̂−1)

] dθ
2π
. (18)

Consequently,

D(y‖z) =
1
2

J(Φ̂−1)− 1
2

[
1 +

∫ π

−π
logΦ

dθ

2π

]
, (19)

where the last integral is constant.
Given the process y, consider the problem to find the minimum divergence

D(y‖z) over all z with a spectral density Φ̂ ∈ F. Then we have established that
this minimum is attained precisely when Φ̂−1 is the unique minimizer of J in The-
orem 1, which in turn is the minimum prediction-error estimate in the model class
F.

Next, suppose that we have a finite sample record

{y0, y1, . . . , yN} (20)

of the process y and an estimate ΦN of Φ based on (20) that is consistent in the sense
that limN→∞ ΦN (eiθ) = Φ(eiθ) with probability one for almost all θ ∈ [−π, π].
The periodogram

ΦN (eiθ) =
1
N

∣∣∣∣∣
N∑
t=0

e−iθtyt

∣∣∣∣∣
2

.

is one such estimate of Φ. Then, under some mild technical assumptions,

JN (Φ̂) :=
1
2

∫ π

−π

[
ΦN (eiθ)Φ̂(eiθ)−1 + log Φ̂(eiθ)

] dθ
2π

(21)

tends to J(Φ̂−1) as N → ∞. The functional JN (Ψ) is known as the Whittle log-
likelihood, and it is a widely used approximation of − logLN , where LN (Φ̂) is the
likelihood function. In fact, JN (Φ̂) and LN (Φ̂) tend to the same limit J(Φ̂−1) as
N →∞.
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5 Prediction-error approximation by analytic interpolation

Let Φ be the given (or estimated) spectral density defined as above. Then, by the
Herglotz formula,

F (z) =
∫ π

−π

eiθ + z

eiθ − z
Φ(eiθ)

dθ

2π
(22)

is the positive real part of Φ. More precisely, F is the unique function in H(D) such
that F (0) is real and

Φ(eiθ) = Re{F (eiθ)}. (23)

Now, let us select a number of points

z0, z1, . . . , zn (24)

in the unit disc D. Then, in view of (22),

F (zk) =
∫ π

−π
gk(z)Φ(eiθ)

dθ

2π
,

where
gk(z) =

z + zk
z − zk

. (25)

Therefore, if the points (24) are distinct, we may choose g0, g1, . . . , gn as our basis
functions, and then

F (zk) = ck, k = 0, 1, . . . , n,

where

ck :=
∫ π

−π
gk(eiθ)Φ(eiθ)

dθ

2π
, k = 0, 1, . . . , n. (26)

If (24) are not distinct, we modify g0, g1, . . . , gn in the following way to make them
linearly independent. If zk = zk+1 = · · · = zk+m−1, then gk, . . . , gk+m−1 are
replaced by

gk(z) =
z + zk
z − zk

, gk+1(z) =
2z

(z − zk)2
, . . . , gk+m−1(z) =

2z
(z − zk)m

.

(27)
Then, differentiating (22), we have the modified interpolation conditions

F (zk) = ck,
dF

dz
(zk) = ck+1, . . . ,

1
(m− 1)!

d(m−1)F

dz(m−1)
(zk) = ck+m−1.

Now, given the points (24), let F(z0, z1, . . . , zn) be the class of all spectral den-
sities Φ̂ with positive real part F̂ of degree at most n and satisfying the interpolation
conditions

F̂ (zk) = ck (28a)

for distinct points and
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F̂ (zk) = ck,
dF̂

dz
(zk) = ck+1, . . . ,

1
(m− 1)!

d(m−1)F̂

dz(m−1)
(zk) = ck+m−1,

(28b)
if zk = zk+1 = · · · = zk+m−1, where c0, c1, . . . , cn are given by (26). In particular,

Φ̂(zk) = Φ(zk), k = 0, 1, . . . , n (29)

for all Φ̂ ∈ F(z0, z1, . . . , zn), where some of the conditions (29) may be repeated (in
case of multiple points).

With the basis (4) chosen as above, the minimum prediction-error approximation
in the model class F(z0, z1, . . . , zn) defined by these functions is as described in the
following theorem, which now is a direct consequence of Theorems 1 and 2.

Theorem 4. The minimum prediction-error approximation of Φ in the class
F(z0, z1, . . . , zn) is the unique Φ̂ ∈ F(z0, z1, . . . , zn) that minimizes the entropy
gain ∫ π

−π
log Φ̂

dθ

2π
,

or, dually, the Φ̂ that minimizes (7), where g0, g1, . . . , gn are given by (25), or (27)
for multiple points.

It follows from Theorem 1 that all Φ̂ ∈ F(z0, z1, . . . , zn), and in particular the
optimal one, has (spectral) zeros that coincide with z0, z1, . . . , zn and hence with the
interpolation points. Recently, Sorensen [31] has developed an efficient algorithm
for solving large problems of this type. In [15] we point out the connection between
this approach, initiated by Antoulas [3], and our theory for analytic interpolation
with degree constraints [10–14, 16]. We show that a better spectral fit can often
be obtained by choosing a nontrivial weight P in the objective function (16). This
corresponds to prefiltering; see Remark 1.

An important question in regard to the application of Theorem 4 to system iden-
tification is how to choose the interpolation points z0, z1, . . . , zn. Here (29) could
serve as an initial guide. However, a more sofisticated procedure is proposed in [20].

6 Conclusion

In this paper we have shown that in large model classes of ARMA models, as well
as in some model classes of nonrational functions, prediction-error approximation
leads to convex optimization. The connections to Kullback-Leibler and maximum-
likelihood criteria have been described. Model classes defined in terms of interpo-
lation conditions have also been considered, connecting to literature in numerical
linear algebra. Generalizations to the multivarable case should be straight-forward
relying on mutivarable versions [5, 22] of the theory of analytic interpolation and
generalized moment problems with complexity constraints.
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13. Byrnes CI, Georgiou TT, Lindquist A, Megretski (2006) Trans American Mathematical
Society 358: 965–987

14. Byrnes CI, Lindquist A (2006) Integral Equations and Operator Theory 56: 163–180
15. Fanizza G, Karlsson J, Lindquist A, Nagamune R (2007) Linear Algebra and Applica-

tions. To be published
16. Georgiou TT, Lindquist A (2003) IEEE Trans. on Information Theory 49: 2910–2917
17. Georgiou TT, Lindquist A (2007) IEEE Trans Autom Control. Submitted
18. Good, IJ (1963) Annals Math. Stat. 34: 911–934
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