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ABSTRACT 

In this paper we consider some new algorithms for computing the Kalman-Bucy gain in 
stationary systems requiring a number of equations of order n (rather than r/2) whenever 
the order n of the system is much larger than the dimension of the output. These equations 
were independently obtained by Kailath and Lindquist in continuous and discrete time 
respectively. We briefly discuss the relations with some recent related results due to Casti, 
Kalaba & Murthy and Rissanen. Some of the reasons for these reductions are inherent in 
the properties of general stationary processes, and therefore a considerable portion of the 
paper is devoted to exploring the connections with some previous work by Levinson, 
Whittle and Wiggins & Robinson, and also with the Szeg6 theory of polynomials ortho- 
gonal on the unit circle and some continuous analogs due to Krein. We demonstrate that 
the Bellman-Krein formula is the fundamental relation in continuous time, the trick being 
to introduce a "reversed time" counterpart of the weighting function (Fredholm resolvent). 
This is suggested by the "forward and backward innovation" approach in a previous paper 
by the author, the essential relations of which we reformulate in terms of Fredholm integral 
equations (in continuous time) and Toeplitz equations (in discrete time). Therefore we also 
derive the discrete-time Bellman-Krein formulas of which there are actually two--one 
corresponding to the one-step predictor and one to the pure filter. In this way we shall be 
able to pin down the reasons for the striking discrepancies between the continuous-time 
and the discrete-time cases. Finally we clarify the relations between Levinson's equations 
and Chandrasekhar's X- and Y-functions. 

1. Introduction. In applying K a l m a n - B u c y  filtering to practical problems one 

often encounters  the si tuation for which the order n of the system is much larger 

than the dimension m of the observed process. Al though strictly speaking one 
only needs mn scalar func t ions - -name ly  the components  of the so-called gain- 
ma t r ix - - to  determine the filter, the classical approach requires the solution of an 
n × n - m a t r i x  Riceati equat ion,  i.e., due to symmetry, ½n(n+ 1) scalar equat ion.  
However, recently a different approach has been developed which for a stat ionary 
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system replaces the Riccati equation by a set of 2ran scalar equations in the 
continuous-time case or 2mn + ½m(m+ 1) in the discrete-time case. (Actually for 
m = 1 only 2n equations are really required.) These equations were independently 
derived by Kailath [9] in continuous time and Lindquist [15] in discrete time. 
However the problem appears to have a longer history which we shall briefly 
review and in which particularly the work of Casti, Kalaba and Murthy [4], Casti 
and Tse [6], and Rissanen [19] play an important part. 

Let us first point out that (unlike the Riccati equation) the equations men- 
tioned above only hold for (wide sense) stationary systems. By this we mean that 
the system process is stationary, while of course the filtering estimate is non- 
stationary, the estimation interval being finite and increasing. As demonstrated by 
Kailath a similar reduction in the number of equations required can be obtained 
for certain special types of nonstationary processes. Although these equations 
usually are different in number, Kailath's method [9] to a certain extent provides 
a unified framework for these equations and the stationary ones. However in this 
paper we shall not discuss these nonstationary cases since they do not naturally 
fit into our treatment. 

As already mentioned, the continuous-time version of the new equations were 
first obtained by Kailath [9] who derived them from the Riccati equation. (Also 
see [10].) Basically Kailath's contribution consists in the simple but important 
observation that a certain n×n-matrix in a formula due to Bucy [3] for the 
derivative ~ of the Riccati equation solution has at most rank m (which in the 
sequel we shall always assume to be much less than n). Then ~ has also (at most) 
rank m and can therefore be decomposed to yield the desired equations. However 
it has been demonstrated by Lindquist [15] that this low rank property basically 
has nothing to do with the Riccati equation since in fact it holds tbr all wide sense 
stationary systems and not only those realized by a finite dimensional system. It 
should however be pointed out that the above mentioned n × n-matrix in Bucy's 
formula can have low rank also in certain nonstationary systems and therefore, 
as pointed out above, Kailath's method also works for these situations. 

The discrete-time equations were first derived (independently of Kailath's work 
on the continuous-time case) by Lindquist [15]. This was done without resort to 
the Riccati equation. Instead we used certain recursions for the solution of Toeplitz 
equations with counterparts in the theory of orthogonal polynomials [1, 8] and 
previously derived in various degrees of completeness by Levinson [14], Whittle 
[21] and Robinson and Wiggins [20]. None of these references is however suffi- 
ciently complete for our purposes* and we gave our own proof in [15] which 
suggested the method of "forward and backward innovations", further stream- 
lined in our paper [16]. (Some rudiments of this approach were at least implicitly 
already contained in Whittle's paper [21].) The equations of [15] can of course 
also be derived from the Riccati equation (which was done by Kailath in the 
subsequent paper [11]). However, since somewhat surprisingly the discrete-time 
equations are more complicated, in this case Kailath's method loses much of its 

* After the submission of [15], a complete treatment [18] due to Rissanen has appeared in 
print. His proof is however different in spirit. 
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elegance and unfortunately appears rather ad hoc, the decomposition not being 
unique. Unlike our method [15] and the discrete-time version of our innovation 
method [16] the extra equations obtained in the discrete-time case are given no 
natural interpretation and therefore the Riccati approach gives little physical 
insight. In passing we may add that at an A.M.S. meeting in Cleveland, Ohio, on 
24 November, 1972, R. E. Kalman announced similar results (2n equations for 
the gain in the scalar output case.) We are as yet not aware of the actual details 
of these results although we have been told that his method is independent of ours. 

There are, however, some similar results in the literature which were actually 
obtained somewhat earlier. Casti, Kalaba and Murthy [4] consider the class of 
continuous-time filtering problems for which the (scalar) system process has the 
covariance function 

f~ e -I'la oJ(A)dA (1.1) C(t) 

where co is a suitable weighting function. Then the filter can be determined by 
solving a certain pair of coupled differential equations for two functions X(t, A) 
and Y(t, A). Fredholm integral equations with kernels of type (1.1) were studied 
in other contexts already during the 1940's by Chandrasekhar [7], and in fact the 
two functions mentioned above are usually called Chandrasekhar's X- and Y- 
functions. Now by choosing oJ to be a weighted sum of n 3-functions, (1.1)will be 
a sum Of exponentials and the X- and Y-functions only need to be determined for 
n different values of A. This covariance function corresponds to a scalar output 
Kalman-Bucy process with a simple coefficient matrix (the eigenvectors span the 
whole space) and indeed the corresponding equations of [9, 10, 16] can with some 
effort be derived from these results. (The generalization to vector outputs is fairly 
straightforward.) Certain connections with the Kalman-Bucy filter were discussed 
in Casti and Tse [6]. We should certainly also mention the work of Rissanen [19], 
who was probably the first to give a fast discrete-time algorithm [2(n+l)m 2 
equations] of the type discussed in this paper, although this work concerns ARMA- 
models rather than Kalman-Bucy models. 

The purpose of this paper is to discuss how the above mentioned fast algorithms 
are related to certain results concerning Fredholm integral equations, Toeplitz 
equations and orthogonal polynomials. Linear estimation of arbitrary stationary 
processes leads to Fredholm integral equations in continuous time and Toeplitz 
equations in discrete time, the above mentioned algorithms being obtained by 
introducing a special structure on the covariance function. Nevertheless, as pointed 
out above, certain properties of the new Kalman-Bucy algorithms are actually 
intrinsic to stationary processes in general and therefore to pinpoint these we shall 
first discuss the general case. 

The Toeplitz equations obtained in discrete-time filtering of arbitrary stationary 
processes can be solved recursively by means of the Levinson-type equations [14, 
15, 18, 20, 21] also found in the Szeg0 theory of orthogonal polynomials [1, 8]. 
The continuous-time counterparts of these equations were presented in [16], and 
they are, as we shall demonstrate in this paper, actually restrictions of the Bellman- 
Kreinformula [2, 12] to suitably parametrized planes in the 3-dimensional argument 
space of the resolvent. Hence, as also the treatment in [5] suggests, it appears that 
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the Bellman-Krein formula is the fundamental tool in obtaining the results 
mentioned above, and therefore in Section 3 we shall develop its discrete-time 
counterpart, from which we derive the Levinson-type equations. With the aid of 
the Bellman-Krein formula we shall also construct the matrix versions of certain 
continuous analogs of the Szeg6 orthogonal polynomials introduced by Krein [13]. 
From these equations Chandrasekhar's X- and Y-functions are obtained as a 
special case by using the covariance function (1.1). Hence we are anxious to point 
out that Chandrasekhar's equations are not the continuous analogs of Levinson's 
equation which somewhat vaguely has been suggested in the literature. We shall 
also show that the relation between the Kalman-Bucy gain and the orthogonal 
polynomial type equations is similar in discrete and continuous time and therefore 
the connection to [6] should be clear. 

The main emphasis of this paper is on the connections to our own previous 
work [15, 16], the treatment being in the same spirit giving the pertinent facts of 
our forward and backward innovations approach [16] in terms of Fredholm and 
Toeplitz equations. We shall also try to clarify (as has been done before) that the 
extensions of Levinson's [14], Krein's [13] and Geronimus' [8] equations (which 
were developed for the scalar situation) to the vector case do introduce some non- 
trivial aspects, the scalar equations being degenerated versions of the vector ones 
in that the "backward" and "forward" relations are identical. Also by developing 
the simpler continuous-time case and the more complicated discrete-time case 
parallelly in Sections 2 and 3 respectively, we shall be able to pin down the reasons 
for the differences between the two cases. 

2. The Continuous-time Case. 2.1 Let {y(t); 0 < t _< T} be an m-dimensional wide 
sense stationary stochastic process with zero mean, and let C be the (bounded) 
m × m-matrix covariance function 

C ( t -  s) = E{y(t)y(s)' }. (2.1) 

Prime denotes transposition and of course we have 

C ( - t )  = C(t)'. (2.2) 

Furthermore, let {w(t); 0_< t_< T} be an m-dimensional process with zero mean and 
orthogonal increments: 

E{w(t)w(s)' } = I min(t, s). (2.3) 

Also, for simplicity, assume that the two processes y and w are uncorrelated. 
Consider the wide sense conditional mean 

~(t]r) = E{y(t) l z(s); O<s<r} (2.4) 

where the observation process z is defined as 

z(t) = f'o y(s)ds + w(t). (2.5) 

Then, denoting the estimation error 

y(t Ir) = y(t)-.9(tlr ) (2.6) 
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and the error covariance function 

Gr(t, s) = E{f(tlr)~(slr)' }, (2.7) 

we have the following representation: 

Proposition 2.1: )(tlr ) = f~ G,(t, s)dz(s). 

Proof: Since (2.4) is the linear least squares estimate it has the form (2.8) (see 
e.g. [17]), and it only remains to determine G,. However, the projection theorem 
implies that 

E{~(t]r)z(s)'} = f~ [g{f(t lr)y(~) '}-  G~(t, ~)]d~" 

is zero for all s s [0, r] and therefore 

G~(t, s) = g {~(tlr)y(s)' } (2.9) 
from which (2.7) follows. [] 

Now G, is actually the resolvent of a Fredholm integral equation and has the 
following properties: 

Proposition 2.2: The function G defined by (2.7) satisfies 

G,(s, t) = Gr(t, s)', (2.10) 

and is the unique L 2 solution of each of  the following two integral equations: 

Gr(t, s)+ f~ G,(t, z)CO'-s)dz = C( t - s )  (2.11) 

G,(t, s)+ f~ C(t-'r)G~(z, s)d'r = C( t -s ) .  (2.12) 

Moreover, it satisfies the Bellman-Krein formula 

- -  (t, s) = -Gr(t,  r)Gr(r, s). (2.13) 
8r 

In fact, (2.10) follows directly from the definition (2.7). Inserting (2.8) into (2.9) 
yields (2.11). By transposing (2.11) and applying (2.10) and (2.2), we have (2.12). 
Since C is bounded Gr is bounded too. (For F is a projection of y.) Hence G, is 
the unique L 2 solution of (2.11) and (2.12), the integral operators of which are 
positive. It is easy to derive the Bellman-Krein formula from (2.11), but we refer 
the reader to [2, 12]. 

Note that the well-known formula 

~(tlr) = :9(t]t) + f~ Gs(t, s)[dz(s)-~(s]s)ds] (2.14) 

for the smoothing estimate readily follows from the Bellman-Krein equation. In 
fact, by formally differentiating (2.8) with respect to r and using (2.13) we have 

4 (tjr) = c (t, r ) [dz ( r ) -  G (r, s)dz(s)dr] 

which yields (2.14). (Also see [22].) Here the differentiation is equivalent to changing 
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the order of integration in a stochastic integral which is permitted since the integrand 
is bounded. (See [17] where this argument is used repeatedly.) 

It is clear that there is one resolvent G for each choice of the kernel C and to 
remind ourselves of this fact we may write G[C], although we shall refrain from 
this whenever there is no reason for misunderstanding. Now, define the "back- 
ward" resolvent G* as follows: 

G*(t, s) = G,(r - t, r -  s). (2.15) 

Then it is immediately seen (by using (2.2) and suitably changing the variable of 
integration) that G* satisfies (2.11) with C exchanged for C': 

Proposi t ion 2.3:  G*[C] = G[C'] .  

Clearly G** = G, and in the scalar case (m = 1) the star operation degenerates 
so that G* = G. 

2.2 We shall now turn to the filtering problem and following [16] we define 
the weighting function 

F(t, s) = Gt(t, t - s )  (2.16) 

in terms of which we can write the filtering estimate 

)(t l t  ) = f t  ° F(t, t -  s)dz(s). (2.17) 

We also define the starred version of F as 

F*(t, s) = G*(t, t - s )  (2.18) 

which by (2.15) equals G~(0, s), and is therefore the weighting function for the 
initial point smoothing estimate 

t F*  ~(O[t) = fo (t, s)dz(s). (2.19) 

The reversed time definition of F is natural in the context of [16] where ~(tlt ) was 
expressed in terms of the "backward" observation process. Since by (2.15) 

F(t, s) = G*(O, s), (2.20) 

in our present setting this definition will enable us to apply the Krein-Bellman 
formula to obtain 

8G* 
- -  (0, s) = - 6 " ( 0 ,  t)G*(t, s). (2.21) 

8t 

This motivates us to define the function 

r( t)  = G,(t, 0) (2.22) 

which by (2.15) equals G*(0, t), and therefore (2.21) yields 

~F 
,~7 (t, s) = - r ( t ) F * ( t ,  t - s ) .  (2.23) 

In the scalar case (m = 1) we can remove the star in (2.23), and we have the con- 
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tinuous-time Levinson equation. In the general case we also need the starred 
version of (2.23): 

8F* 
- -  (t, s) = - F*(t)F(t, t - s )  (2.24) 
St 

which follows by analogy, defining F* from G* as in (2.22). However, we are also 
fortunate to have the following important relation 

r*(t)  = r( t) ' ,  (2.25) 

for by (2.14) G*(t, 0) is equal to Gt(0, t), which by (2.10) equals G,(t, 0)'. Also 
notice that F is the restriction of F to the diagonal: 

F(t) = F(t, t), (2.26) 

an analogous starred statement holding for F*. 
Equations (2.23) and (2.24) together with relation (2.25), which were derived 

'in [16] by means of the "forward and backward innovations", constitute the 
continuous-time version of the (matrix) Levinson-type equations [15, 18, 20, 21]. 
We have derived these equations for the sake of comparison and our interest in 
them is mainly theoretical. They show that the filter is completely characterized 
by the parameter function F. Indeed by (2.13) and (2.10) we can express Gr(t, s) 
in terms of the F-function, so that F in fact characterizes any linear estimate (2.8). 
There is a close relationship between F and the filtering error covariance 

R(t)  = G,(t, t). 

In fact, observing that R(t) = G*(0, 0), (2.21) and (2.25) yield 

R(t) = - F(t)F(t) ' ;  R(0) = C(0). 

(2.27) 

(2.28) 

The starred version of this equation is 

R*(t) = - F(t) 'F(t); R*(0) = C(0) (2.29) 

where of course R*(t) = G*(t, t) = G~(0, 0) is the error covariance of the initial 
point smoothing estimate (2.19). 

We can now apply these equations to the Kalman-Bucy filter as outlined in 
the end [16]. However, for the sake of comparison with the discrete-time case and 
the development in [4], we shall formally take a somewhat different course. Let us 
define the functions • and ~* as follows: 

{ ~(t, z) = I -  f'o e~s G*(s, O)ds (2.30) 

• *(t, z ) =  e zt [ I -  f ;  e -zs Gt(s , 0)ds]. (2.31) 

The scalar (m = 1) versions of these functions (in which case G* = G) were defined 
in a paper [13] by Krein, who pointed out that in a certain sense the functions 
A--~*(t, iA) are the continuous-time analogs of the Szeg5 polynomials orthogonal 
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on the unit circle. Note that in the scalar case  we have the particularly simple 
relationship 

**(t, z) = e~! ~(t, - z )  (2.32) 

which however does not hold in the general case. 
Then, by a straight-forward application of the Bellman-Krein formula and 

(2.25), we have 

- ~  (t, z) = -~b*(t, z )r ( t ) '  (2.33) 

l~qb* ~ - ~ -  (t, z) = zCb*(t, z ) -  O(t, z)P(t)  (2.34) 

with initial conditions ~(0, z) = ~*(0, z) = L We shall later allow z to be a 
constant n x n-matrix, so the reader should convince himself that the equations 
hold for this case also. Note that the functions • and qb* are completely deter- 
mined by the parameter  function P. 

2.3 So far we have assumed that C is an arbitrary covariance function. How- 
ever, if we require that C be a certain type of function, we also introduce a structure 
on P. Indeed, from (2.12) and (2.22), we have 

= C ( t ) -  f t  ° C( t -s )G,(s ,  O)ds. (2.35) F(t) 

For example with the covariance function (1.1) 

we have 

in which case 

C(t) = f~ e -Iqa oJ(h)dh 

r(t) = f~ cb*(t,-s)oJ(s)ds, 

(2.36) 

(2.37) 

x(t,  s) = ~(t, - s )  
Y(t, s) ~*(t, - s )  

are the Chandrasekhar X- and Y-functions. Casti, Kalaba and Murthy [4] showed 
that the corresponding filtering estimate can be expressed in terms of these functions. 

Now, let us assume that the process y is defined by 

y(t)  = Hx( t )  (2.38) 

where H is a constant m x n-matrix and x an n-dimensional wide sense stationary 
process described by the stochastic differential equation 

dx = Axdt  + Bdv; x(O) = Xo. (2.39) 

Here Xo has zero mean and covariance matrix Po and v is a zero mean process 
of type (2.3). Assume that Xo, v and the observation noise w in (2.5) are pairwise 
uncorrelated. Therefore, since for t >__ s 
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x being stationary it is not hard to see that 

E{x(t )x(s) '}  = e A(t-~) Po (2.40) 

and consequently we have 

C(t) = He A' Poll ' .  (2.41) 

If  the matrix A is simple, i.e. its eigenvectors span R", and m = 1 (a restriction 
which however can be removed), this covariance function is of type (2.36) with the 
weighting function being a sum of f-functions, and then we can use the method 
of [4]. However with the apparatus developed above we can easily handle the 
general case, the simple trick being the substitution of the matrix A for z in the 
functions • and (I)*. 

In fact, by plugging (2.41) into (2.35), we have 

f: 
which in view of (2.31) suggests the notation 

F(t) = H(PoH'O*)(t , A). (2.42) 

Here (PoH'¢*)(t,  z) is the function obtained by premultiplying (2.31) by Pol l '  
(while formally "z is still a scalar"). Then insert A with the exponentials in the 
left-most position to obtain (PoH'rb*)(t, A). 

It is well-known that the wide sense conditional mean 

2(t) =- ~{x(t) l z(s); O<_s<_t} 

is generated by the Kalman-Bucy filter 

d2 = A2dt+ K( t ) [dz-H2dt] ;  2(0) = 0 

where the gain-matrix 
K(t)  = Z(t)H' (2.43) 

is usually determined by solving a matrix Riccati differential equation for the n x n 
error covariance matrix 

Z(t) = E { [ x ( t ) -  2(t)][x(t) - 2(t)]' }. (2.44) 

However, here we shall derive the new equations [9, 10, 16]. 
Now, by (2.8) and (2.15), we have 

= (~ G*(O, t - s )dz(s )  ~(tlt) 
d u  

which inserted into 

K(t)  = E{x(t)[y( t ) - )~( t l t )] '}  

(obtained from (2.38), (2.43) and (2.44)) yields 

K(t)  = P o l l ' -  f o e  a('-s) PoH'G*( t - s ,  O)ds, 

where (2.38), (2.40) and also (2.10) have been used. Hence, again observing the 
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above mentioned notational convention, (2.30) gives 

K(t)  = (Pon'~b)(t, A). (2.45) 

Therefore, define K* to be 

K*(t)  = (eoH'~*)( t ,  A), (2.46) 

so that we can exploit the recursions (2.33) and (2.34), properly interpreted, to 
obtain 

I I£(t) = - K*( t )  r ( t ) '  (2.47) 

I~*(t) = A K * ( t ) -  K(t)I ' ( t ) .  (2.48) 

However, from (2.42) and (2.46) we have 

I'(t) = H K * ( t )  (2.49) 

and hence we have the 2mn equations for the gain 

/¢(t) = - K * ( t ) K * ( t ) ' H '  (2.50) 

I£*(t) = { A - K ( t ) H ] K * ( t )  (2.51) 

with initial conditions K(0) = K*(0) = Po H' .  Of course we do not need ¢~ and 
• * to derive these equations. However, we feel that there are some conceptual 
advantages which will become apparent on comparing with the results of Section 3. 
The reader can easily convince himself that the formal step from (2.33) and (2.34) 
to (2.47) and (2.48) is indeed correct. 

The equations (2.50) and (2.51) were first obtained by Kailath [9] by decom- 
posing the Riccati equation. Our own approach [16] was by means of the "forward 
and backward innovations". 

3. The Discrete-time Case. In order to explain the differences between the 
discrete-time and the continuous-time estimation problems, in this section we shall 
develop the discrete-time equations by closely following the procedure in Section 2, 
and to facilitate a comparison we shall as far as possible use the same notations. 

3.1 We consider the problem to determine the wide sense conditional mean 

p(tlr) = J~{y(t) [ z(s); s = 0, 1 . . . .  , r} (3.1) 
where 

z(t)  = y( t)  + w(t). (3.2) 

Here {y(t); t = - t, 0, 1, 2 . . . .  } is an m-dimensional wide sense stationary process 
with zero mean and covariance function C defined as in (2.1). Of  course C satisfies 
(2.2). The error process w is a zero mean white noise sequence: 

E{w(t )w(s) ' }  = 13t~ (3.3) 

where 3t~ is the Kronecker symbol, and as in Section 2 we assume that y and w 
are uncorrelated. 

For the one-step prediction problem (r = t - 1 ) ,  in which we are primarily 
interested, a nontrivial estimation problem can sometimes be formulated with the 
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identity matrix 1 in (3.3) exchanged for a singular matrix or even with w = 0. 
(Like in the continuous-time problem, exchanging ! for a non-singular matrix does 
not introduce any nontrivial complications.) However, for the moment we wish to 
retain the analogy with the continuous-time case, and we shall discuss the necessary 
modifications in the end of this section (part 3.3). 

Definition 3.1: With )7 defined as in (2.6), let 

a,(t, s) = E{~(t[r)y(slr)'} (3.4) 

for t ,  s =  - I , 0 , 1 , 2  . . . .  a n d r = 0 , 1 , 2 , . . .  

Proposition 3.2: p(t[r) = ~ = 0  G,(t, s)z(s). (3,5) 

Proof." Since indeed p is linear in z, we only need to show that G as defined by 
(3.5) is given by (3.4). The projection theorem implies that 

E{ ~(tlr)z(s)'} = E{p(tlr)y(s) '}-  G,(t, s) 

is equal to zero for all s = 0, 1 . . . . .  r, and our assertion follows. [] 
Note, that Definition 3.1 defines G, for arguments (s = - 1 ,  s>  r) which are 

not needed in the representation (3.5). The reason for this will soon become 
apparent. Proposition 2.2 has the following counterpart in discrete time: 

Proposition 3.3: The function G satisfies 

G,(s, t) = G,(t, s)' (3.6) 

and is the unique solution of  each of  the following systems of  equations: 

G,(t, s)+ ~, G,(t, i )C(i-s)  = C( t - s )  (3.7) 
i = 0  

G,(t, s)+ ~ C(t-i)G,(i,  s) = C(t -s) .  (3.8) 
i = 0  

Moreover, it satisfies the discrete Bellman-Krein equations 

G,+ l(t, s) = G,(t, s ) -G,+ l(t, r+ 1)G,(r+ 1, s) (3.9) 

and 

G,+ l(t, s) = G,(t, s ) -G,( t ,  r+ 1)G,+l(r+ 1, s). (3.10) 

Proof." Relation (3.6) follows immediately from the definition. Equation (3.7) 
is obtained by inserting (3.5) into 

G.(t, s) = E{~ ( t l r ) y ( s ) ' )  

and equation (3.8) by transposing (3.7) and applying (3.6) and (2.2). Both (3.7) 
and (3.8) have unique solutions since the Toeplitz matrix 

Tt~ = C ( t - s ) +  I3ts 
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is positive definite. For s = 0, 1, 2 . . . .  r we can write (3.7) in the following way: 

Gr(t, i)T,s = C( t - s )  (3.11) 
i=0  

and for the same valv~es of s we also have 

~ Gr+ l(t, i)Ti~+G,+ l(t, r+ 1)C(r+ 1 - s )  = C( t - s )  
i=0  

which together yields 

[G~+l(t , i)-G~(t, i)+G,+l(t , r +  1)G,(r+ 1, i)]T~ = 0. (3.12) 
i=0  

Therefore, since Tij(i, j = O, 1 . . . . .  r) is positive definite, (3.9) holds for s = 0, 1, 
2 , . . . ,  r. To see that (3.9) also holds for s = - 1 and s> r, exchange Tis for C(i -s )  
in (3.12). We can do this since the square brackets are all zero. Then apply (3.7) 
to cancel all sums, which will yield the desired result. Equation (3.10) is obtained 
by transposing (3.9) and using (3.6). [] 

The Toeplitz equations (3.7) and (3.8) are the discrete-time counterparts of the 
Fredholm resolvent equations (2.11) and (2.12), and (3.9) or (3.10) is the discrete 
Bellman-Krein equation. Notice the laek of symmetry in the quadratic term which 
causes the discrete-time equations derived below to be more complicated than their 
continuous-time counterparts. 

The well-known smoothing formula 

~(tLr+ 1) = ~(tLr)+G,+~(t, r+ 1)[z(r + 1 ) - y ( r  + lit)] (3.13) 

is an immediate consequence of (3.9) and (3.5). In fact, multiply (3.9) by z(s) and 
sum over s = 0, 1 , . . . ,  r. Similarly, by multiplying (3.10) by z(s) and summing over 
s = 0, 1 , . . . , r + l ,  we have 

33(tlr + 1) = 9(t]r)+ Gr(t, r+ 1)[z(r + 1) -  9(r+ l l r+  1)]. (3.14) 

We can of course reformulate (3.13) and (3.14) to resemble (2.14) which therefore 
has two counterparts--one for the one-step predictor and one for the pure filter. 
It is however worth noting that although it is the first Bellman-Krein formula (3.9) 
which corresponds to the one-step prediction problem, below we shall in fact use 
the second formula (3.10) in deriving the new equations for this very same problem. 
(Similarly we could use (3.9) in treating the pure filtering problem but we shall not 
go into this here.) 

This suggests that the reason for the discrepancies between the discrete-time 
case and the continuous-time case is to be sought in the fact that the continuous 
time filtering estimate has two "counterparts" in discrete-time, namely p(t]t-1) 
and 9(t[t). We shall pursue this point by determining the relationship between the 
weighting functions G,_ l(t, s) and Gt(t, s) of the two estimates. Such a relation is 
readily obtained from the second Bellman-Krein formula and we have the fol- 
lowing lemma: 

Lemma 3.4: The weighting functions Gt- l(t, s) and Gt(t, s) for the one-step pre- 
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dictor and the pure filter are related in the following way: 

Gt_ ~(t, s) = RtGt(t , s) (3.15) 

or equivalently 

where 

c,_l(s, t)  = G,(s, t )R ,  (3.16) 

Rt = Gt-l( t ,  t ) + L  (3.17) 

Proof: Put r = t -  1 in (3.10) to obtain 

Gt(t, s) = Gt- l(t, s ) -  Gt- l(t, t)Gt(t, s) 

which is the same as (3.15). Then apply (3.6) to obtain (3.16). [] 
Since, by Definition 3.1, Gt_x(t, t) is the covariance of )7(tlt-1), Rt should be 

interpreted as the covariance matrix of the innovation process 

v(t) = z ( t ) - P ( t l t -  1) (3.18) 

which (by definition) is a white noise sequence. Now by multiplying (3.15) by z(s) 
and summing over s = 0, 1 , . . . ,  t, we have 

P(tlt- 1)+ G,_ l(t, t)z(t)  = Rt.P(tlt), (3.19) 

which provides us with the following relation 

v(t) = Rtlz(t ) (3.20) 

where/z is the other innovation process 

tz(t) = z ( t ) - 9 ( t l t ) .  (3.21) 

We may add in passing that (3.20) gives us 

E{ix(t)lz(s)' } = R t  ~ 8is (3.22) 

and 

E{t~(t)v(s)'} = ISt~ , (3.23) 

which shows that only the asymmetric form (3.23) can be normalized as in the 
continuous-time case. We shall make further use of Lemma 3.4 below after having 
introduced the matrix versions of Szeg6's orthogonal polynomials. 

However first, as in Section 2, we define 

G*(t, s) = Gr(r-  t, r -  s) (3.24) 

and it should be clear that Proposition 2.3 holds for the discrete-time case as well, 
so that all formulas in Proposition 3.3 and 'Lemma 3.4 are valid also for G* pro- 
vided that we exchange C for C' whenever this function occurs. Of course we 
should also exchange R t in Lemma 3.4 by R* with the obvious definition. (In the 
context of [16] this is the covariance of the backward innovation process.) As in 
Section 2, G** = G, and in the scalar case (m ~= 1) we have G* -- G. 

3.2 Now define the matrix polynomials ~t(z) and qb*(z) in analogy with the 
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functions @(5 z) and @*(t, z) of Section 2: 

I Z s * 0 t (Z) ~--- - -  s~=l G t_ l ( s - -  l ,  - -  1) (3.25) 
t 

~O*(z) z t [ I -  ~=12 z-SGt - l ( s -  1, - 1)1. (3.26) 

In the scalar case (m = 1) the polynomials {0o*, @*, ~ ' ,  . . .  } are the well-known 
Szeg5 polynomials orthogonal on the unit circle, as the subsequent development 
will show, and the unstarred polynomials (3.25) are given by 

@t(z) = zt@* ( ! ) .  (3.27) 

However for m > 1 the simple relation (3.27) is not true, but we shall shortly see 
that certain useful recursions due to Geronomus [8] can be generalized to the 
vector case. 

In fact, the discrete Bellman-Krein equation (3.10) yields 

a t ( s - l ,  - 1 )  = G t _ i ( s - 1 ,  - 1 ) - G * _ l ( t - s  , - 1)G,(t, -1 ) ,  (3.28) 

where we have also used (3.24). Likewise we have the starred version of (3.28) 

G*(s -1 ,  - 1 )  = G * _ l ( s - 1 ,  - 1 ) - G t _ l ( t - s ,  -1)G*(t, -1) .  (3.29) 

Then, if we define 
r t = Gt(t, - 1) (3.30) 

and r* analogously in terms of G*, it is not hard to see that the following recursions 
hold: 

(I),+ i(z) = Ot(z ) - z t I )*(z )r*  (3.31) 

0,*+ l(z) = z ~ * , ( z )  - ~,(z)  r ,  (3.32) 

with @o(Z) = I and @~(z) = L 
The m x m matrix coefficients of these polynomials are essentially the weighting 

matrices for the data {z(0), z(1) . . . . .  z ( t -  1)} in linearly estimating one step forward 
and backward respectively. In fact, if for the moment we write qSt(z ) and @*(z) as 
~@t~z ~ and ~@*z i respectively, (3.5) and (3.24) may be invoked to see that 

t - 1  

29(tit- 1) = - ~ qbt, t -d ( i )  (3.33) 
i = 0  

and that 
t - 1  

29(- l i t -  1) = - }-'. @*t,t- ,z(i). (3.34) 
i = 0  

(Note that the error covariance of (3.34) is Gt_l(-1, -1), which by (3.24) is the 
same as R * -  L) 

Analogously with the continuous-time case there are some parameter sequences 
r and F* which completely characterize the weighting pattern of the one-step 
predictor (and in fact any other linear estimate). It is then natural to ask whether 
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there is a simple relation such as (2.25) also in the discrete-time case. Unfortunately 
the answer of this question is "no" .  Except for the scalar case (m = 1) when of 
course r *  = I't, in general we have F* 4= I';. In fact, 

r *  = G*( t ,  - 1) = Gt(0, t +  1) = Gt( t  + 1, 0 ) ' ,  

which, compared with (3.30), is seen to be "one-step out of phase". However if 
instead we define the function 

S t  = G , _  ~(t, - 1), (3.35) 
by Lemma 3.4 we have 

obtained by putting s = 
of (3.36): 

S t  = R , I ' t ,  (3.36) 

- 1  in (3.15). Of course, we also have a starred version 

S *  = R * I ' * .  (3.37) 

With this transformation we have established a counterpart of (2.25), for by (3.24) 
and (3.6), we have 

S *  = S t ,  (3.38) 

so that instead S t  is the parameter sequence characterizing the predictor. 
This of course leaves us with the task to determine R t and R* to which we shall 

finally proceed. Therefore first note that (3.24) can be used to reformulate (3.17) 
as follows 

R t = G * _ ~ ( - 1 , - 1 ) + I .  

Then again apply the Bellman-Krein formula (3.10) to obtain 

G * ( -  1, - 1) = G*_ 1 ( -  1, - 1 ) -  G*_ a ( -  1, t ) G * ( t ,  - 1) 

which is the same as 
R t +  1 = R t -  S * ' F * .  (3.39) 

We can write this in a more symmetric form, for by (3.37), 

R t +  1 = R t  - - t  p* '~'*~'t -tr*, (3.40) 

and of course the corresponding recursion for R* is 

R*+ ~ = R * -  F ; R t I '  t. (3.41) 

The initial conditions are R o = R* = Co + L 
Hence the equations (3.31), (3.32), (3.36), (3.37), (3.38), (3.40) and (3.41) 

provide us with a means to recursively determine the matrix coefficients of the 
one-step predictor, that is granted that we know the sequence S t . However, by (3.8) 

t - 1  

S t = C ( t +  1 ) -  ~ C ( t - i ) G t _ ~ ( i  , - 1), (3.42) 
i = 0  

so that in fact to update S t  we must keep a record of all old matrix coefficients. 
By imposing a suitable structure on C, we can however obtain a recursion for S t  

also. This can be achieved by an ARMA-model [19] or by a Kalman-Bucy model, 
to the latter of which we shall return below (part 3.4). The equations for the general 
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case in (for our purposes) somewhat incomplete versions have been in the literature 
for some time. For the scalar case (m = 1) they can be found in Levinson [14] and 
in the theory of orthogonal polynomials [1, 8]. In this case of  course (3.31) and 
(3.32) are really equivalent since we have (3.27). In the general case (m > 1), the 
equations can be found in Whittle [21] and Robinson and Wiggins [20]. However, 
the relation (3.38) is missing in [21], and in [20] there is no proof  for it. In our 
present context the proof  of  this relation is immediate. Complete treatments can 
be found in the recent papers by Rissanen [19] and Lindquist [15]. However the 
motive for our present exposition is not to give another proof  for these simple 
relations, but rather to expose the interconnection with the continuous-time case 
and the central role played by the discrete-time Bellman-Krein formula (3.10). 

3.3 Finally let us point out how the one-step prediction problem as it is usually 
stated in the literature can be reformulated in the framework of this section: 
Consider a wide sense stationary vector process {u(s); s = - 1, 0, 1, 2 . . . .  } with 
zero mean and covariance function 

F4 u(Ou(s)'} = r ( t -  s) .  

Then the problem is to determine 

~(tlt-- 1 ) = ~(u( t )  lu(s); s = O, 1 . . . . .  t - - l } .  

Furthermore, assume that the process is full rank in the sense that the block 
Toeplitz matrix {T~j} is positive definite. (Here we have defined T~j = T ( i - j ) . )  
Then { Tij } can be decomposed as follows 

T ( t - s )  = ~ ( t - s ) + P 3 , s  

where { ~s } is positive semidefinite and P positive definite. (E.g., take P = E1 where 
e is sufficiently small.) Then 

C ( t -  s) = P - -~ ~ ( t -  s)P - ~" 

is the covariance matrix of  some process {y(t); t = - 1, 0, 1 , 2 , . . . } ,  and therefore 
the process z(t) = P-~u( t )  can be written as 

z(t)  = y(t)  + w(t) 

where y and w are defined as in the beginning of this section. Of course 

a ( t l t -  I) -- P~e( t l t -  1). 

3.4 We shall now impose a special structure on the covariance matrix sequence 
C of the process y. Assume that y is given by 

y(t)  = Hx( t )  (3.43) 

where H is a constant m x n-matrix (m being usually much smaller than n) and x 
is an n-dimensional wide sense stationary process defined by the difference equation 

x( t+ 1) = Ax( t )+Bv( t ) ;  x ( -  1) = Xo. 

Here A and B are constant matrices, v is a zero mean white noise vector sequence 
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(3.3) of arbitrary dimension and Xo is a zero mean random vector with covariance 
matrix Po. (Since x is stationary, Po is in fact the covariance matrix of x(t) for all t.) 
Also assume that x0, v, and the observation noise w are pairwise uncorrelated. 
Then it is readily seen that 

E{x(t)x(s) '}  = A'-SPo ( t>s) (3.44) 

so that the covariance matrix of y is 

C(t) = HAtPoH ' (t_>0). (3.45) 

It is well-known that the one-step predictor 

~(t) = E{x(t)  lz(s); s = 0, 1 . . . . .  t - l }  

is generated by the Kalman-Bucy formula 

~(t+ 1) = A~(t)+ K,[z(t)-H~(t)];  ~(0) = 0 

in which it remains to determine the gain matrix 

K t = A Q t ( H Q , + I  ) -  ~ (3.46) 

where the n × m-matrix Qt is defined by 

Q, = E{ [x ( t ) -  ~(t)][x(t)-  2(t)]' }n ' .  (3.47) 

Of course the estimate p ( t l t -  1) is given by 

p(t] t -  1) = HE(t), (3.48) 

/~ being a linear operator. 
Proceeding along the same lines as in the original proof [15], we shall now derive 

the fast algorithm first obtained by Lindquist. To this end, first note that by (3.5) 
and (3.24) we have 

t - - 1  

) ( t i t -  1) = ~ G*  a ( -  1, t -  1 - s )z (s )  
i = 0  

which inserted into (3.47) 

yields 

Qt = E{x ( t ) [y ( t ) -~ ( t l t -  1)]'} 

2_ 
Qt = Po H ' -  ~ A~PoH'G *_ l ( s -  1, - 1) 

s = l  

where we have used (3.44) and (3.6). Analogously with Section 2 and in view of 
(3.25), we shall write this as 

Ot = (PoH'~,)(A) (3.49) 

by which we mean that d~t(z ) should first be premultiplied by Poll '  regarding z as 
a scalar, after which A is inserted with z s in left-most position. 

Then if we define Qt* to be 

Q* = A(PoH'~*)(A ) (3.50) 
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with initial conditions Qo = Pol l '  and Q~' = APort ' ,  and therefore it only remains 
to determine I" and I'*. However  inserting (3.45) into (3.42), we immediately have 

s ,  = HA(PoH'~*) (A)  

~ t  - -  ~ - ~ t  " 

Now from (3.47), (3.43) and (3.48) we see that  

Unfor tunate ly  R* cannot  easily be expressed in terms of  Qt or Q*, and therefore 
we shall need to use the recursion (3.41). Then, by using (3.36), (3.37), (3.38), 
(3.53) and (3.54), we can completely eliminate F ,  P* and R t f rom the recursions 
(3.51), (3.52) and (3.41) to obtain 

with initial conditions Qo = Poll ' ,  Q~ = APort '  and R* = H P o H ' + L  Since R* 
is symmetric,  these are 2 m n + l m ( m +  1) equations to determine Qr I f  m = 1 we 
do not need (3.57) since R* is then equal to R t which is given by (3.54). This leaves 
us with 2n equations,  and if we prefer  we can express them directly in the gain. 
(See [16] .)However,  for  comput ional  purposes the number  of  equations is not  our  
main  concern. Instead we wish to minimize the number  of  ari thmetic operat ions 
and to achieve this, our  equations have to be reformulated somewhat.  We refer 
the reader  to [15] for the details on this problem.  
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