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ABSTRACT 

Optimal control of linear stochastic systems of general type, perturbed by a stochastic 
process with independent increments, is considered. The performance functional is quadratic, 
and various different types of observation processes, providing either complete or incomplete 
information about the system, are discussed. It is shown that (with the conditions imposed) 
the optimal control is linear in the observed data and can be determined by solving a determin- 
istic problem with a similar dynamic structure. These results are applied to the control of 
linear stochastic functional differential equations, both with complete and incomplete 
state information. In the latter case, a separation theorem is shown to be valid: The problem 
is decomposed into the corresponding deterministic control problem and a problem of 
estimation. The optimal feedback solution of the deterministic problem is derived. 

1. INTRODUCTION 

In this paper we consider stochastic control problems of the following 
type: Let v(t) be an n,-dimensional stochastic vector process with index set 
[0, T] c R defined by: 

(1.1) 
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where y,,(t) is a measurable’ stochastic process with finite second-order 
moments, u(t) is a control vector process belonging to a class % to be specified 
below, and K is an n, x n,-matrix function with the property: 

TT 

ss 
(K(t,s)j2dsdoc(t) < co, 

0 0 
(1.2) 

T 

s 
IK(t,~)1~ds< a, forall tE[O,T], 

0 

where c( is a monotone increasing bounded function that is continuous on the 
right, thus defining a finite Bore1 measure, and 1. ( denotes Euclidean norm. 
The problem is to determine a control u E @ so as to minimize the performance 
functional : 

‘9 (1.3) 

where E and prime (‘) signify expectation and transposition respectively, 
Q, and Q2 are symmetric and bounded matrix-functions with appropriate 
dimensions. Q, isnonnegativedefiniteand QZ ispositivedefinite. Furthermore, 
Q;’ is bounded. 

Information about the realization of the stochastic process v(t) is provided 
through a measurable process z(t) with finite second-order moments. This 
process is in some way related to y, and we shall call it the observation process. 
At each time t, full information about {z(s);0 G s G t> is available, and therefore 
u(t) should be a nonanticipative functional of z. For this reason, it is natural 
to define our class % of admissible controls to be measurable n2-dimensional 
stochastic vector processes which for each time t are ‘T{z(s);s E [O,r]}- 
measurable random vectors and for which JOT El u(t) I * dt -C cc,. (CT{ .} denotes the 
u-algebra of events generated by (.}.) 

To start with, in Sec. 2, this problem will be solved when: 

YO(~) = ye(t) + j M(t,s) dv(s), 
0 

(1.4) 

where y. is a deterministic function such that JOT Ijo12da -C to, M is a matrix- 

’ We assume an underlying probability space (Q,G,P) where Q is the sample space with 
elements w, 6 is a o-algebra of events and P is the probability measure. The stochastic process 
~(t, w) is said to be measurable if it is (B x Q-measurable, where b is the u-algebra of Bore1 
sets. All deterministic functions are taken to be Bore1 measurable. In the sequel, w will be 
suppressed from notation. Further discussion of questions pertaining to measure theory 
will be postponed to the appendix. 
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function of type (1.2) and v is an n,-dimensional measurable stochastic vector 

process with zero mean and independent increments? : 

Ev( f) = 0; E{v(s)u’(t)} = Imin(s, r). (1.5) 

(I is the identity matrix). The integral in Eq. (1.4) is a stochastic integral 

defined in quadratic mean. Provided that M is measurable in (t,s), which 

we assume, the integral can be defined so that j>(t) is a measurable stochastic 

process. (See paragraph 2 in the appendix.) Furthermore, the observation 

process z(t) = v(t). Many stochastic control problems with complete state- 

information can be reformulated in this way as will be demonstrated below. 

In Sec. 3 we shall consider the problem obtained when ye(t) in Eq. (1.1) 

is an arbitrary but Gaussian stochastic vector process for which E/.Y~/~ is 

cc-integrable and z(t) r v(t) a standard Wiener process (Gaussian) with proper- 

ties (I .5). Moreover, J’,, and v are jointly Gaussian. It will be shown that this 

problem can be reduced to the previous one. This is a more general problem 

than one might first realize. In fact, it is often possible to transform a general 

observation process z(t) to a Wiener process l’(t) which, loosely speaking, 

contains the same information. Such a process is called an innovation process. 

We shall discuss this matter more thoroughly below. 

It will be shown in Sets. 2 and 3 that these stochastic control problems 

can be reduced to deterministic control problems with a similar structure. 

This is an extension of the results given by Lindquist [3-51 concerning a separa- 

tion tlzeorem for stochastic systems with time delay. In Ref. 3 the ordinary 

separation theorem for linear quadratic problems (see references [6-l l] and 

others) is modified to include delays in the performance function. In Ref. 5, 

an early version ofthispaper, timedelays are introduced in the system equations 

and the observation process as well. The methods of these papers, which were 

influenced by Kailath [12-141 and Frost [13, 151, are also employed here. 

(The problem of Ref. 3 has also been solved in Ref. I6 by a completely 
different method.) 

The conditions above that I: have independent increments and the {J,~,v} 

be Gaussian respectively, are introduced to secure that the optimal linear 

control (linear in the observation process) be optimal also in the class & of 

nonlinear controls. If we are only interested in determining the best linear 

control these conditions can be dispensed with. Thus, all results of this paper 
remain valid in this “wide sense” by assuming only that 1‘ have orthogonal 

increments. 

So far we have tacitly assumed that the observation process z is unaffected 
by the control in the sense that it is constant with respect to variation of the 

t Note added in proof: Actually it is sufficient to assume that I‘ is a second-order 
tnartingale. (See Addendum.) 
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control function. A class % of admissible controls which is defined as above by 

means of an observation process which is unaffected by the control, will be 
called a stochastic open loop (SOL) class. (The word “stochastic” accentuates 

the fact that this is not a usual open-loop class, which only includes sure 

(deterministic) functions.) In the problems described above (which are solved 

in Sec. 2 and the beginning of Sec. 3) the optimal control is determined with 

respect to a SOL-class, for it is assumed that the process u(t) is unaffected by the 
control. 

On the other hand, if z is a function of U, which is usually the case when 

there is a functional dependence between z and y, and u is a function of z, 

we obtain a feedback loop. Then we must inevitably raise the question whether 

there really exist unique solutions to all equations defining the system. In our 

class % we can only admit controls u which are formed in the following way: 

u(t) = &t,z), where 4 is a function such that existence and uniqueness are 

secured. The function 4 which maps stochastic processes into stochastic 

processes,* should be nonanticipative, that is for each t yS(t, .) is a function of 

{z(s);s E [0, t]> such that +(t,z) is u{z(s);s E [0, t]}-measurable. Then J& consists 

of all processes +(t, z+) where z4 is the unique z-process corresponding to the 

admissible control law 4. In the sequel, we shall usually say that u is a function 

of z whenever there is no reason for misunderstanding. 

In Sets. 3-6 we shall impose some further conditions on the control. 

In this way it will be possible to imbed the so-defined class of admissible 

controls %,, c @ in a SOL-class defined by an independent increment observa- 

tion process, in the sense that each u E e0 belongs to this SOL-class. Then we 

can use the theory of Sec. 2 to determine an optimal control U* in the SOL-class. 

If U* E C%,, we have found an optimal control in @,,, and it remains to deter- 
mine a corresponding control law. 

In Sets. 5 and 6 we consider optimal control of systems of stochastic 

functional differential equations-in the title of this paper loosely referred 
to as time-lag systems-described by the stochastic differential equation: 

i 

dx(t)== j d,A(t,s)x(s)dt+B(t)u(t)dt+C(t)dv(t) fort>0 
f--h 

(1.6) 
x(t) = f(t) for t G 0. 

Here x(t) is an n,-dimensional stochastic vector process, u(t) is the inde- 
pendent increment process defined by Eq. (1.5) and 5 is a measurable vector 

process with bounded second-order moments and mean Et(t) = a(t), which 
of course is a bounded function. The PZ~ x n,-matrix function A fulfils the 
following conditions (h > 0) : 

’ Since we shall make no distinction between stochastically equivalent processes, we really 
have a mapping between equivalence classes. 
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L 

A (t,s) = 0 forsl t 

A (t,s) = A(t, t - II) for s 5 t - Ir 

s + A(t,s) is continuous on the right (1.7) 

var IA(t,s)l G m(t), 
s E co, T] 

where var means total variation and II? E L,(O, 7’). The first term in Eq. (1.6) 
is a Lebesgue-Stieltjes integral.3 In the following we shall deal on several 

occasions with integrals of type ld,A(t,s) x(s) where x is a measurable 
process for which ElxlZ is bounded. Then Elxl is also bounded and 

11 ]U: A(t,s)lElx(s)ldt c 1 m(t)&ssupEjxl I, %. 

By applying Fubini’s theorem twice (Jld,A(t,s)l Ix(s)1 is measurable according 

to Ref. 29, p. 9) we then find that _f d,A(t,s)x(s,w) exists as an integrable 

function for almost all w. Furthermore, the matrix functions Band Care square 

integrable. Finally, II is a measurable vector control process, for which 

1 Elu12dt < aa. 
By using the transfer function @ corresponding to the matrix function 

A(t,s) (see Sec. 4, Eqs. (4.14)-(4.18)), we can,formal/~~solve Eq. (1.6) toobtain: 

i / d, 
( 

j Q’(t,.s) A(S,T)ds [(T) 
-h 0 I 

i- J @(t,s )B(s)uls)d~+ j~(t.r)C(r)dz~(s). (1.8) 
0 I) 

Here from our previous discussion on Stieltjes integrals the second term is 

well defined, and so is the third term, for @ is bounded. The last term can be 

regarded as a stochastic integral in quadratic mean. (We consider a measurable 

version.) It will be shown in Sec. 5 (Theorem 5.3) that Eq. (1.8) is a unique 

solution of Eq. (1.6) provided that we interpret it in the proper way [Eq. (5.25)]. 

Now, Schwarz’s inequality can be used to see that Elx(t)l’ is bounded on 

[0, T], and therefore we are allowed to form integrals of type $ d, A (t,S)x(.s). 
The observation process z(t) may be of various different types. We shall 

consider two particular cases : 

A. Complete state informatinn: In this case the process x itself is available for 
observation from t =-/I: 

z(t) =x(t). ( 1.9) 

3 We take the intervals of integration for Lebesgue-Stieltjes integrals to be open in the 
left-end and closed in the right. 
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Therefore at time t = 0, the realization oft is known, and for this reason 
we shall regard 5 as a sure function. It is then natural and in accordance with 

our previous discussion to define % as the class of measurable stochastic 

processes which can be expressed by a nonanticipative function of x, such that 

with this function inserted in Eq. (1.6) there exists a unique solution of this 

equation, and such that J’i E(u(t)l*dt c x;. 

B. Incomplete state information: The information about the x-process is pro- 

vided by the n,-dimensional vector process: 

dz(r) = J d, H(t,s)x(s)dt + dw(r), z(0) = 0, (1.10) 
0 

where the n, x n4 matrix function H is of type (I .7) (except that the second 

condition need not be fulfilled) with m E L,(O,T), and w(t) is a standard 

Wiener process. To simplify matters, we assume that U, 111, and fare independent 

(this condition can be relaxed), and that 5 is almost surely sample continuous. 

Also, in order to obtain interesting results, it is necessary that v be a Wiener 

process and [ is Gaussian. Then the class q of admissible controls should be 

defined in the same way as in Ex. A, except that u should now be a non- 

anticipative function of z such that there exist unique solutions of Eqs. (I. 10) 

and (1.6). By making some trivial modifications below, we may include a linear 

nonanticipative function of u in the right member of Eq. (1. IO), but we shall 

refrain from this since it might obscure the notations. 

Now, the problem is to determine a u E q (and an admissible control law 

to implement it) so as to minimize Eq. (1.3) when y is defined by: 

f--h 

where D is a matrix function of type (1.7) such that m(t) < ~0 and J” m*da < ~0. 
First, to solve these problems, in Sec. 4 we consider the deterministic 

counterpart obtained by putting v = 0 in Eq. (1.6), letting 5 be a sure function, 
and removing the expectation sign before Eq. (1.3). It is then shown that for 
this problem we have an optimal feedback solution : 

u(t) = j- dJ(t,s)x(s). 
t-h 

(1.12) 
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Now, the optimal solutions of the stochastic problems can be expressed in 

terms of this feedback law: 

A. Complete state information : The optimal solution is precisely given by 

Eq. (1.12). 
B. Incomplete state information: The optimal control is given by: 

u(t) = j d,L(t,s).i(sjt), 
f-h 

(1.13) 

where Z(sl t) is the least squares estimate: 

a(slr) = E{x(s)lz(7); 7 E [O, t]}. (1.14) 

This is an affine function of z given by a stochastic differential equation, 

which is unfortunately rather complicated. It can also be determined by 

solving a dual deterministic control problem as demonstrated by Lindquist 

In Sec. 5 the problem of delay between observation and control action is 

discussed in the case of complete state information. Also in this case the corre- 

sponding deterministic control law, duly reformulated with respect to the 

delay, is optimal. However, the arbitrariness inherent in the formulation 

of the deterministic control is no longer true for the stochastic case, for here the 

control must be adjusted to the specific information pattern. 

Finally, we should point out that there are other possible applications of the 

results of this paper. For instance, a stochastic counterpart of the dual control 

problem of Ref. 26, which involves Volterra integral equations, has a dynamic 

structure of the same type as the one encountered in Sets. 5 and 6, and similar 
results hold. 

2. STOCHASTIC CONTROL WITH COMPLETE INFORMATION 

Let L’(t) be the process with independent increments defined in Sec. 1 
Eq. (I .5). In the Hilbert space H of all stochastic variables with finite second- 

order moments with inner product (e,~) = E{(q)-, define H, to be the closed 

linear hull of the stochastic variables {oi(s);s E [0, t],i == 1,2...n3) together 

with all constants. That is, H, consists of all finite affine combinations of the 
components of {u(s);s E [O,t]} and limits in quadratic mean of such sums. 
Therefore, due to the definition of a stochastic integral, .$ E H, if and only if 
it can be written : 
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where f is a constant and fan LL vector function. Now, following Doob [ 11, 
we shall call the projection of an arbitrary 71 E H onto H, the wide sense 
conditionalexpectation ofr) relative to{u(s);s E [0, t]) and denote it by ,!?{q]u(s); 
s E [0, t]}. It is obvious that this is the best “linear least squares estimate” of n 
given {v(s);s E [0, t]}. 

We can now state the following lemma (which is also true under the less 
restrictive condition that v has orthogonal increments): 

LEMMA 2.1. Let x be a stochastic vector such that E lx12 < co, and let v be as 
defined above. Then: 

~{xlv(s);s E [0, t]} = 2 + j N(s)dv(s), 
0 

(2.2) 

where 
(Z-=x (2.3) 

i 
N(s) = $ E{xv’(s)}. (2.4) 

Proof (cf. Kailath [12]). For a fixed t, the representation (2.2) follows 
from Eq. (2.1). Since it is immediately clear that X = Ex, it only remains to 
determine N. (We shall write N, to remind ourselves that it might depend on 
t.) To this end, denote the estimate (2.2) by 2 and note that the components 
of x - f by construction are orthogonal to H, and in particular to the compo- 
nents of v(s) for s < t: 

E{(x - 2) v’(s)} = 0. 
But: 

E{.~v’(s)} = E j N,(T) dv j” dv’ = j- N,(T) dT, 
0 0 0 

and therefore : 

E{xv’(s)} = j N,(T) dT, 
0 

which is absolutely continuous and therefore Eq. (2.4) is true (for almost all s). 
It is then clear that N,(s) does not depend on t and the index can be dropped. 

Remark. If the system {x, v(s);s E [0, t]} is Gaussian, the wide sense and 
strict sense conditional expectations coincide, and we can exchange g for E 
in the lemma. (See for example Ref. 2, p. 229.) 

Now, let us return to the first problem posed in Sec. 1, that is to control: 

y(t) = j%(t) + j- M(t,s)dv(s) + j K(t,s) u(s)ds, 
0 0 

(2.5) 
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when the object is to minimize (1.3) and the class of admissible controls 
% is defined by the observation process z(t) = v(t). Let us first determine 
the optimal control in the subclass _!Z’c %! of afine functionals of u : 

u(t) = u(t) + j U(t,s) h(s), 
0 

(2.6) 

where C(t) is a deterministic L2 vector function and U is an L2 matrix-kernel, 
that is JJ 1 U12dsdt < co. It will be shown below that the optimal control U* in 
this affine class is optimal also in a. 

Inserting Eq. (2.6) in Eq. (2.5) and changing the order to integration (per- 
mitted due to a Fubini type theorem for stochastic integrals; Ref. 1, p. 43 1 or 
Ref. 2, p. 197) we have 

y(t) = Jw + j WJ)W), 
0 

where : 

I 
J 
0 

I Y&s) = hf(t,s) + j K(l,T) U(T,S)dT. 
s 

(2.7) 

(2.9) 

It is easily seen that: 

E{y’Q,y}=y’Q,~+E{(y-~)‘Q,(y-L;)} (2.10) 

The second term in Eq. (2.10) can be written (tr is the trace-operator)4: 

= s tr{ Y’(t,s) Q,(f) Y(t,s)}ds. 
0 

4 Remember the formal rule of calculation: 

E{du(s)du’(r)J = I’$ 
iff-s 

ift# s 
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By changing the order of integration (permitted, for the integrand is non- 
negative) we have: 

where y1 is the ith column of the matrix Y: 

Y = (Y,?YZ?. * .Y”,). (2.12) 

In exactly the same way we derive the counterparts of Eqs. (2.10) and (2.11) 
for U, and then the performance functional (1.3) can be written : 

f j’(t) Qdt)_P(t> C&Y. + j W> Qdt> n(t) dt 
0 0 

where ui is the ith column of the matrix U: 

u=(z4*,U2,.*.z4,,). 

We have now decomposed our problem, and it is clear from Eqs. (2.Q 
(2.9), and (2.13) that ti and U should be determined so as to fulfil the require- 
ments of the following optimality theorem: 

THEOREM 2.1. The control u* E 2 : 

u*(t) = a*(t) + j U” (t,s)dv(s), 
0 

is optimal in the class 9 dejned by Eq. (2.6) if and onIy if 

A : Out of all L2 vector functions ii, ti* minimizes: 

j y’(t) Qdt)Y(t) da(t) + 1 a’(t) QAt) a(t) dt, 
0 0 

(2.14) 
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when j is given by: 

j(t) =jo(t) + j K(f,S)ti(S)dS. 
0 

(2.15) 

B: Out of all L2 vector fknctions ui(. ,s), ui*(. ,s) minimizes: 

T T 

1 Yi’(t,s) Pl(t)Yi(t~s)da(t) + _f ui’(t3s) Q*(t>ui(t7s)dt3 

s s 

for all i and almost all s, when yi(t,s) is given by: 

yi(t,s)=mi(t,s) + j K(t,T)Ui(T,s)dT, 
s 

(2.16) 

where m, is the ith column of the matrix M. 
Note that these problems are deterministic counterparts of our original 

stochastic problem and are essentially obtained by putting v = 0 in this 

problem. It will be shown in Sec. 4 that the problems of Theorem 2.1 indeed 

have solutions constituting admissible ti* and U* and thus there exists an 

optimal affine control. 

THEOREM 2.2. The optimal qfine control a* is optimal also in the class “& of all 
measurable n2-dimensional stochastic vector processes u’llici~,fOr each time t are 

o{c(s);s E [0, t])-measurable stochastic rectors andfor which SOT E lu12dt < ‘=. 

Proof. Due to Fubini’s theorem, every u E q fulfils E lu(t)l’ c 3~: for almost 

all t. Then for these t, the wide sense conditional expectation a(t) = l?{u(t)jv(s); 

s E [0, t]} exists and according to Lemma 2. I : 

C(t) := a(t) + j L’(t,s)dv(s), 
0 

(2.17) 

whereti(t) = Eu(t)and U(t,s) = ~/&{E[u(t)v’(s)]}. 
The function U(t,s) can be defined to be measurable in (t,s), and therefore 

the stochastic process ti has a measurable version. (See the appendix for proofs.) 

Furthermore,sinceti(t)isaprojectionofu(t),wehave Eli?(t)l’< Elu(t)l’and 
hence JOT E/Cl2 dt < 0~. The matrix function U is an L2 kernel, that is 

JOT JOT I U(t,s)l=dsd~ -c to, and U is an L2 vector function. In fact, 

f f tr(U(t,s) U’(t,s))dsdt + J’ lti(t)l’dt = 1 E(L(t)l’dt < m. (2.18) 
0 0 0 0 
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Now, define the process 9: 

j(t) = Jo(t) + j M&s) A(S) + j K(Q) G(s) ds. (2.19) 
0 0 

Then inserting Eq. (2.17) in Eq. (2.19) and changing the order of integration 
(Ref. 1, p. 431 or Ref. 2, p. 197) shows that, for each t, j(t) belongs to H,. 
Denote the residual process y(r) -j(t) by j?(t) and u(t) - G(t) by u”(t). From 
Eq. (2.5) and Eq. (2.19), we then have: 

J(t) = / K(Q) u”(s) ds. (2.20) 
0 

For each t, J(t) is orthogonal to H,. In fact, let 5, defined by Eq. (2. l), be an 
arbitrary element in H,. Then for s G t: 

for u”(s) is orthogonal to H, and hence to [ + jif’(~)dv. Moreover, v has 
independent increments, and therefore Jif’(~)dv and u”(s) are independent, 
since u”(s) is o{u(~);T E [O,s]}-measurable. Therefore: 

E{(y”(t)} = j K(t,s) E{&qs)}ds = 0, 
0 

whichestablishestheorthogonality. (ClearlyE]&J(s)( ~(E1512)‘12(EIU”(~)12)“2 
is square integrable, and therefore Fubini’s theorem applies in view of Eq. (1.2).) 

Due to the orthogonality between j, zi, and j, ii the performance functional 
(1.3) can be written : 

E [j’Q,~d~~+~ti’Q~Bm 
t 0 0 1 ( 

+E j4”Q,jdn+Jfi’Q2Cdt. (2.21) 
0 0 1 

Now, the problem is to determine ii to minimize the expression on the last 
line of Eq. (2.21) when j is given by Eq. (2.20) which clearly has the optimal 
solution ii = 0, and to determine ti to minimize the first part of Eq. (2.21) 
when j is given by Eq. (2. IS), which is equivalent to the problem of Theorem 
2.1. This concludes the proof. 

COROLLARY 2.2. For 6 > 0, let @a c @ be the class of all controls in @ which 
for each time t > 6 are u{v(s); s E [0, t - a]}-measurable and for t < 6 are sure 
functions. Then the optimal control in the class a8 of the problem to minimize 
(1.3) given Eq. (2.5) is obtained from Theorem 2.1 provided that the extra 
condition U(t,s) = 0 for t < s + 6 is imposed. 
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Proof. Let u(t) = 0 for t < 0. Every u E @s also belongs to @, and therefore 

the decomposition (Eq. 2.19-2.21) is still valid, and the best performance 

is achieved by putting u” = 0. However, for s > t - 6, E{u(t)v’(s)} = 

E{u(r)v’(t - S)> because U(S) - v(t - S;) is independent of g{u(T);~ < t - S}, and 
therefore U(t,s) = i?/&{E[u(t)v’(s)]} = 0 for s > t - 6. Therefore, the optimal 

control is clearly given by Theorem 2.1 with the further condition that U(t,s) = 

0 for t -c s t 8. The new problems in B are essentially of the same type as before 

and existence is shown in Sec. 4. 

3. STOCHASTIC CONTROL WITH INCOMPLETE INFORMATION 

Let v(t) be a standard vector Wiener process (a Gaussian process with 

independent incrementsdefinedby Eq. (lS))andy,(t)aGaussianvectorprocess 

for which E Iyo(t)l 2 is finite and a-integrable. We shall consider the following 

problem : Determine a measurable control process u(t), which for each t is a 

a{z(s);s E [0, t]}-measurable stochastic vector and for which JOT E I~(r)/~dt < co 
so as to minimize the performance functional (1.3) when the process y(t) is 

defined by: 

y(t) = vo(f) + j- K(o) 4s) ds. 
0 

(3.1) 

The two underlying stochastic processes y. and v, which are jointly 

Gaussian, are not affected by the choice of control function. 

Since {yo,v} are Gaussian, the wide sense and strict sense conditional 

expectations coincide, and therefore Lemma 2.1 implies: 

_Go(tlf) = Wo(f)l ( > us ;SE [O,t]}=j’o(t)+j M(t,s)du(s), (3.2) 
0 

where: 

PO(t) = 00(t) 

i 

(3.3) 

M(Q) = ; -&o(t) 0)). (3.4) 

Furthermore, since the last term in Eq. (3.1) is CJ{V(S);S E [0, t]}-measurable, 

i(rlt) = E{y(t)lu(s);s E [O,t]} is given by: 

j(t ( t) = PO(t) + j- Mks) do(s) t- i K(t,s) u(s) ds, (3.5) 
0 0 

which is a process of the same type as Eq. (2.5). (By a similar method as the one 
used to derive Eq. (2.18) it can be shown that M indeed fulfils condition (1.2), 
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and that JOT Ij+,(t)l*d cc < m.) The residual process J(r It) = y(t) - j(t It), 
which is orthogonal to j(t It), is given by: 

J(t It) = YoO> - PO(?) - 1 M(t, 3) as), 
0 

(34 

which is not affected by the control. 
Due to the orthogonality, we obtain : 

E{Y’@) Q,<t)v(tN = EW(tlt) Q,(t)P(tItN + EW(tlt) Q,(t>y”(tlt)l. 

Since the last term is unaffected by the control, the performance functional 
(1.3) can be exchanged for: 

E 
( 
jP’(t,t)Q,(t)p(tII)da+ju’(f)Q,(t)u(t)dl , 

1 
(3.7) 

0 0 

which together with Eq. (3.5) forms a problem of the type discussed in Sec. 2. 

THEOREM 3.1, The optimal solution u* of the problem posed above is given by: 

u*(t) = ii*(t) + j U*(t,s) dv(s), 
0 

(3.8) 

where ii* and U* are the optimal solutions of the deterministic problems of 
Theorem 2. I where Jo and M are defined by Eq. (3.3) and Eq. (3.4) respectively. 

We shall now consider a problem with a more general observation process 
z(t) defined by the stochastic differential equation: 

dz(t) = q(t) dt + dw(t), 

z(0) = 0, (3.9) 

where the measurement noise w(t) is a standard vector Wiener process, 
and q(t) is a vector process which is causally dependent on {y(s);s E [O,t]} 
(y is defined by Eq. (3. I)) in a way more carefully specified below. It is assumed 
that the dependence of the control thus introduced into q, enters linearly’ : 

q(t) = 400) + j- N&s) 4s) ds, 
0 

(3.10) 

5 We may exchange the last term in Eq. (3.10) for Jf,d,N(t,s)u(s) if Nis defined so that the 
conclusions concerning Eq. (3.14) are unaltered. 



OPTIMAL CONTROL OF LINEAR STOCHASTIC SYSTEMS 95 

where qo(t) is a measurable vector process for which Elq,Jf)J' is integrable 

and N is anLz matrix kernel. We further assume that thejoint finite-dimensional 

distributions of {yo(z),qo(f), 1; q,,(s)ds; t E [0, T]} are Gaussian (see paragraph 

4 in the appendix), and to simplify matters, that it’ is independent of these 

processes. (As we have done above, we shall put a zero index on the uncon- 

trolled counterparts of processes normally affected by the control.) Then if 

we define the uncontrolled observation process: 

we can write: 

d;,(t) =q()(t)dt + dw(t), 

zo(0) = 0, (3.11) 

dz(t) = Liz,(t) + j N(/,s)u(s)dsdt. (3.12) 
0 

When u(t) is a function of {z(s);s E [O,t]}, the feedback loop described 

by Eq. (3.12) may introduce some rather intricate problems of existence. 

Whether or not there exists a unique solution to Eq. (3.9) of course depends 

on the control function used. In studying this problem we shall begin with a 

class 9 of afine controls : 

u(t) =.f’(r) + / F(f,s)dz(s) (3.13) 
0 

wherefis an L2 vector function, F is an L2 matrix kernel, and the integral is 

defined in quadratic means (q.m.). 

Inserting Eq. (3.13) into (3.12) and changing the order of integrationh, we 

obtain an expression of the following type: 

f 

k(f) = dzo(t) i J’ r(t,s)dz(s)dt + h(f)ch (3.14) 
0 

where I’is an L2 matrix kernel and /I is an L2 vector function. 

Now, let the Lz kernel fl(t,s) be defined by the Volterra resolvent equation: 

r(r,s) ~ A(t,s) = - j A(t,T)r(T,S)dT. (3.15) 

’ Since dz = qdt + dw, the stochastic double integral consists of two terms. In the first 
term, which also exists as an ordinary (Lebcsgue) integral changing the order of integration 
is permitted (almost surely) according to Fubini’s theorem. (Jlql*dr < =a.s.) For the second 
term, we find the relevant theorem in Ref. 1, p. 431 or in Ref. 2, p. 197. 
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By changing the order of integration, we obtain from Eq. (3.15) and Eq. 
(3.14): 

1 r(t,S)dz(s)= f A(t,s)dz(s) - j j n(r,T)rfT,S)dTdz(s) 
0 0 0 s 

= j A&s) [dz(s) - j r(s,T)dz(T)ds] 
0 0 

Z 
j A(t,s)dz&) + j A(t,s> h(s) ds, 
0 0 

Then, from Eqs. (3.14) and (3.16) it is clear that z and z. can be obtained 
from each other by nonanticipative affine transformations, and therefore 
Eq. (3.9) has a unique solution7. We shall now impose the further c~~~~~~~~ 

on the functional re~at~~ns~li~ between g and y that there exists a unique solution 
to Eq. (3.1) for each u E 2’. (This condition is fulfilled in most problems of 
any practical interest.) 

Now, if % is the class of measurable control processes u that are non- 
anticipative (not necessarily affine) functions of z such that for each u there 
exist unique solutions to Eqs. (3.9) and (3.1), and for which jl El~(t)/~df -C M, 
then define eO as the subclass of % characterized by: 

@{z@);s E [fAtI> = 4zo(s);s E [O,tl>, (3.17) 

for every t E [O,T], that is a0 is the largest subclass of %, for which the CT- 
algebras generated by the observation process are constant with respect to 
variations of the control. 

We have already found an important subclass of go, namely the class 22’ 
of affine controls (3.13) : 

THEOREM 3.2.9 c 4Yo. 

in order to be able to apply Theorem 3.1, we must transform z(t) to a 
Wiener process. To this end, we define the ~nnovut~on process 

h(t) = f&(t) - E(g(t)jz(s);s E [O, t])dt, 

V(0) = 0. (3.18) 

’ As a solution we usually accept any stochastic process (or really equivalence class of 
processes) for which both members of the equation constitute well-defined and equivalent 
stochastic processes. However, whenever there is a sample continuous version, as in this case, 
the equivalence class will be represented by that process. (See Sec. 5, remark 3.) 
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In view of Eq. (3.17) and the fact that the last term in Eq. (3.10) is 
o{z(s);s E [0, t]}-measurable, for each u E C?JO v takes the form: 

where : 
dv(t) = dz,(t) -&(tIt)dt, (3.19) 

4dtlt) = ‘w,(~)lm);~ E W,tl$. 

To ensure that this expression is well-defined (that Lj,,(f It) is measurable and 
as. integrable) we need the following lemma: 

LEMMA 3.1. The stochastic process G,,(t) t) has a measurable version, such 
that J Ej&(tjt)J2dt < co. 

Proqf. It is no limitation to consider the case that Ego(r) = 0. Since (for 
almost all t) E1q0(t)12 c co and the system of random variables {qo(t),zo(s); 
s E [0, t]} is Gaussian (see paragraph 4 in the appendix), &(t It) can be repre- 
sented in the form : 

where s +l7(t,s) is an L2 function (see Ref. 2, pp. 228-229 and paragraph 5 
in the appendix). Since &(t/t) = qO(t) -&,(tlt) is orthogonal to zo(s) for 
s < t, and q. and w are independent, 17 should be determined to satisfy: 

Wo(r It>Zo'(SN = G?o(~)zo'(~N 

= j Wqo@)qo'(d>d~ = j Q(t,4d7. 

0 0 

On the other hand, using Eq. (3.20) we have: 

I 
do. 

Therefore, we can define n as the L2 matrix kernel solution of the family 
of Fredholm integral equations (cf. Eq. (4.32) and following): 

which clearly delivers a measurable function 17. 
Then by Fubini’s theorem and paragraph 2 in the appendix, do(t It) has a 

measurable version. The last assertion follows from the fact that E]golz < 
Elqo(2, for to is a projection. This concludes the proof. 
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LEMMA 3.2. The innovation process as dejined by Eq. (3.19) is a standard 
Wiener process (such that v and y, are jointly Gaussian) with the property: 

a{v(s);s E [O, t]} = o{z,(s);s E [O, t]}. (3.21) 

Proof. (Cf. Kailath [12, 14, 171 and Frost [15]. Also see Kushner [6], p. 
138): A proof that v is a Wiener process can be found in Ref. 14. To prove 
Eq. (3.21), remember that Eq. (3.19) can be written: 

dv(t) = dz,,(t) - i 17&s) dz,,(s)dt - g(t) dt, 
0 

(3.22) 

where n is an LZ kernel and g an L2 vector function. Then proceed as in the 
proof of Theorem 3.2 to see that v and z. can be obtained from each other by 
nonanticipative affine transformations. (A heuristic proof along these lines 
can be found in Ref. 12.) The joint distribution property is clear from Eq. 
(3.22) (see paragraph 4 in the appendix). 

THEOREM 3.3. The problem to determine an optimal control u E e. so as 
to minimize (1.3) when y(t) is given by Eq. (3.1), has the optimal solution 
described by Theorem 3.1, where v should be exchanged ,for v as defined by 
Eq. (3.18). If y, and w are independent, M is given by: 

Mks) = E{yo(t)Qo’(sIs)>. (3.23) 

Proof. The innovation process for u E eo, described by Eq. (3.19) is clearly 
unaffected by the control. Then Theorem 3.1 applies with v = v, and yields 
an optimal solution : 

u*(t) = ti*(t) + j U*(t,s) dv(s). 
0 

(3.24) 

Since zo, by inversion of Eq. (3.22) = Eq. (3.19), can be expressed as a 
nonanticipative affine function of v, the same is true for the z-process corre- 
sponding to u*, called z*. This can be seen by inserting Eq. (3.24) in Eq. (3.12) 
and changing the order to integration, thus obtaining z* as an affine non- 
anticipative function of v. Inversion of this function, in the way demonstrated 
above, establishes U* as a function of type (3.13), that is u* l 2 c eo. Then 
u* is obviously optimal in qo, since for every u E e. u(t) is u{v(s);s E [O,t]}- 
measurable for each t (see Eqs. (3.17) and (3.21)). 

If y. and w are independent, inserting v(s) = fso go(T/7)dT + w(s) into Eq. 
(3.4) gives: 

which concludes the proof. 
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Theorem 3.1 may also be applied to problems with other types of z- 
processes. The only major condition is that there can be established a non- 
anticipative and invertible transformation between z and a Wiener process 
that is unaffected by the control. For an indication of how this may be done for 
colored Ml-noise, see for instance Ref. 7, p. 87 and Ref. 18. 

4. THE DETERMINISTIC PROBLEM 

To start with, consider the problem to determine an +-dimensional L2 
vector function u so as to minimize 

when y is an n,-dimensional vector function defined by 

J’(f) = h(t) + j K(LT)U(T)dT, (4.2) 

where y, is a vector function for which 1 \yO/2d~ CT X. All other functions are 
defined in Sec. 1. 

This is precisely the type of problem encountered in Theorem 2.1. Since 
similar problems have been studied quite extensively in the literature (see for 
instance Ref. 19), we shall only give a brief outline of the general problem so as 
to get over to feedback solutions of time lag systems as quickly as possible. 

introducing the Hilbert space HI of functions : (s, 7’]+ R”’ with the inner 
product (x,y) = ST x’(t)y(t)& and the Hilbert space HZ of functions: 
[s, T] + R”z with the inner product [u. c] = JT u’( t)z:(t)dt, our problem can be 
written: minimize 

<.Y, a, Y> -t lu, Q2 ul, (4.3) 
when : 

y = ~1~ f Ku. (4.4) 

The meaning of the linear operators Q, : H, -+ H,, Qz: I-f2 -+ H2 and 
K: Hz -+ H, is clear from the context. It is easily seen that the adjoint operator 
K*:H, --f HZ is given by (K*y)(t) = 1: K’(T,~)~,(T)~~(T) and that pi* = Qi 
i = 1,2 [for Qi’(t) = Q;(f)]. 

Then, the performance functional (4.3) can be written: 

(YO + Kw QI (YO + Ku)\ + [u, Pz ~1 

= fu&l + lu, K* Q, vol -t- [K* Q, ~otu1-t <YO, 8, YO>, 
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where A= Q2 f K* 

Tl>. 
We then have: 

[u+A-‘K* Q,~o,hu+d-'K* Q,~o>l+(yo,<Q, - Q,Kn-lK* QJvo>> 
which has a unique minimum for u = -A-’ K* Qlyo that is: 

Q,u+K*Q,Ku+K*Q,y,=O, 

which is a Fredholm integral equation : 

u(t) + jP(r,T)UG)d7 =f(t), 
s 

where : 

1 

PO.) = Q;'(t) j K'(a,t)Q,(a>K(o,~)d~~(u) 
max(t.7) 

f(t) = -Q;'(t) 7 K'(7,t) Q, (d~o(dddd> 
t 

having a unique L2 solution : 

u(t)=f(f)- j R(t,~,f)f(~)dT. 

s 

Here the resolvent L2 kernel R(. , * ,s) satisfies : 

R(~,T,s)--P(~,T)=-~P(~,o)R(o,T,s)~J 
s 

=- 'R(f,o,~)P(o,~)h. I s 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4. IO)’ 

(4.10)” 

For a discussion of the properties of R the reader is referred to a recent 

book by Bellman [20], pp. 281-284 where also a suggestion how to solve 
R is given. 

Then, the solutions 2i* and U* of the deterministic problems of Theorem 

2.1 are given by Eq. (4.9), where in A y, = j. and s = 0, and in ByO(7) should 
be exchanged for &T,S) thus providing a U*(~,S) which clearly possesses the 
necessary properties for Eq. (2.13) to exist as a measurable stochastic process. 

Now, let us turn to a problem with a more specific dynamic structure. 
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We shall consider the problem to control a system of functional differential 
equations : 

I 

i(t) = j d,A(t,s)x(s) + l?(t)u(t) for t > 0 
1-h (4.11) 

( x(r) = t(t) for t < 0 

Y(l) = j d, D(Q)+)? (4.12) 
f-h 

\ 

(where as usual u is the control function) so as to minimize : 

1 ~‘(0 Q,<t)~<f> Wt) + ] u’(t) Qdt) ~0) cit. (4.13) 
0 0 

This is the deterministic counterpart of the problem described by Eqs. 
(1.3) (1.6) and A, B, and D are defined as in Sec. 1. The initial function E is 
bounded on [-h,O]. (However, see Remark 2 in Sec. 5.) 

Optimal feedback solutions of problems of this type (in somewhat less 
general formulations) have been given by Manitius [22] who used a method 
similar to the one presented in this paper, and Kushner and Barnea [23]. 

For t > s > 0 the unique solution of Eq. (4.11) can be written : 

x(t) = @(t,s) x(s) i- @P(t,4 A(a, 4 do ~(4 I 
+ t @(t,~) B(T) U(T) dT, s 

s 

where the transfer matrix @ is defined by: 

@(t,S) + j @(t,T)A(T,S)dT = 1, 
s 

(4.14) 

(4.15) 

for f > s, and 

I ;(t,s) = j- d,A(t,T)@(T,S) for t>s (4.16) 
s 

@(s,s) = I; (4.17) 

CD(Q) = 0 for t c s. (4.18) 

It can be shown that @ is bounded (use Gronwall’s lemma in Eq. (4.15)), 
t -+ @(t,s) is absolutely continuous, and s -+ @(t,s) is of bounded variation. 
(See Refs. 24-27.) 
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For all t > s, we have [D(~,s) = D(t, t - h) for s G t - h]: 

y(t) = j 4 DO, 4 XC’> + j 4 wt 9 4 44 
s-h s 

= j dAT)x(T)+jdr~(t,T)@(T,W) 

s-h s 

+ j d,q D(t$) j 4 

s ( 

J’ @(b o)A(a, T) do X(T) 

s-h s I 

+ j do D(t, a) j @(a, T) B(T) U(T) dT. 
s s 

The properties of the functions as defined above and in Sec. 1 allow us to 
change the order to integration in the last two terms, to obtain: 

where the unsymmetric Fubini theorem of Cameron and Martin [28] and the 
usual Fubini theorem have been employed, and for the last term: 

f I 

# 
do D(t, u) @(u, T) B(T) U(T) dT. 

s T I 

Therefore, defining the matrix functions Y and r to be: 

y(t, s) = j 4 D(t, 7) @CT, S>, 
s 

r(t,.S,T)=D(t,T)-Y$S)ti(S--T)+jy(t,u)&T)do. 

s 

where 8 is the step function : 

e(t) = 1 ; 
for t > 0 

for t < 0, 

we obtain the following expression for y: 

y(t) =Yo(t,%xs) + j K(t,T)U(T)dT for t>s 
s 

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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where : 

s 

,h(f, s, -4 = s d, r(f, s, T) x(T) (4.23) 
s-h 

K(t,s) =Y(V(t,s) B(s). (4.24) 

Here x, -P ,ro(t,s,x,,) is a function from the space of bounded funtions on 

(-A,01 to R”1, and XJT) my x(s + T). It is easily seen that I + _r,,(t,s,x,J and K 
are functions ofthesame typeasthosein Eq. (4.2), and that var,, ro,T,II’(tr~,~)/ 

is dominated by an a-L1 function s(t). For the special case ~3 = x, we have 

D(1, T) = -I&t - T), that is : 

Now, the problem to minimize (4.13) when y is given by Eq. (4.22): 

is, putting s = 0, precisely of the type discussed in the beginning of this section. 

The optimal Lz solution, which we shall denote u*(t), is provided by Eq. (4.9). 

However, we are not primarily interested in an “open loop control function” 

but in a feedback solution, that is a function u*(?,x~*) where x,* is the X, 

corresponding to II*. For this reason, we shall return to Eq. (4.5), from which 

we have (the elements of H, and Hz are now functions on (O,T] and [O,T] 

respectively) : 
14 = -Q;’ K*Q,(_r,, + Ku), (4.26) 

which together with Eq. (4.4) defines the optimal control U* on [O,T] as a 

function of y* (which is obtained by inserting IA* in Eq. (4.4)) : 

u*(f) -=-Q;‘(r) j- K’(T,t) Q,(T)y*(T)dct(T) (4.27) 

We now exploit the fact that Eq. (4.26) only determines U* a.e., to dejine u* 

so that Eq. (4.27) is valid for all t E [0, T]. (The change of u on a null set does 
not affect JJ and hence does not effect the right member of Eq. (4.27) neither.) 
Since Eq. (4.22) is valid for all (t,s) such that 0 G s c t G T, we obtain along the 
optimal trajectory: 

J’*(t) =4'o(t,S,X,*) + j- K(f,T)U*(T)dT for t b s. (4.28) 
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Now, inserting Eq. (4.28) into Eq. (4.27) and changing the order to inte- 
gration (which is safely done due to Eq. (1.2)), we obtain a family of Fredholm 
integral equations of the same type as previously encountered: 

u*(t) + j P@,.) u*(T) dT =f(t,s), 
s 

(4.29) 

where P is defined as in Eq. (4.7) andf(t,s) is given by: 

s--h 

where : 

n(r,s,T)=-Q~‘(t)jK’(a,1)Q,(~)r(,,,T)~~(u), (4.3 1) 
f 

which is obtained from Eq. (4.23) by using the unsymmetric Fubini theorem of 
Cameron and Martin [28]. 

Equation (4.29) is valid for all t and s such that 0 G s Q t G T. This intro- 
duces a certain arbitrariness in the formulation of the optimal control (which is 
no longer the case in stochastic control). In fact, prescribing that Eq. (4.10) 
be valid for all t, the solution of Eq. (4.29) is given by (see Eq. (4.9)): 

u*(t) =f(Q) - / R(t 97, S)f(T, S> d7, 
s 

(4.32) 

for all t and s such that s G t. (Cf. Ref. 21 in which the theory of integral 
equations is presented in terms of “everywhere” results. The extra conditions 
imposed on the L2 kernels, prescribing that the single integrals be finite, is 
clearly fulfilled in our case.) 

From Eq. (4.10)’ it can be seen that (I, T) -+ R(t,T, t) is an Ll kernel. (First 
note that llR(., .,s)/l* = jj/ R(t,T,,s)IZdTdtiscontinuousinsand hence bounded 
on[O,T].Infact,R(.;,s+h)-R(. , -,s) is a solution of an equation of type 
(4.6) wherefis an L2 matrix function tending to zero in norm as h --f 0. Then 
use Schwarz’s inequality.) Then, putting s = t in Eq. (4.32) and changing the 
order of integration (the unsymmetric Fubini theorem), we have: 

u*(t) = j” d, L&s) x*(s), 
f-h 

(4.33) 

where we have used Eq. (4.30) to obtain: 

L(t,s) = n(t, t,s) - j R(t ,T, t)n(T, t,S) dr. 
t 

(4.34) 
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Equation (4.33) is a function of type u*(~,x,*), which was requested, but it 
remains to prove that it is feasible in the sense that there exists a unique solution 
to Eq. (4.11) when u is given by this function. But this is clearly the case, 
for it is not hard to see that L is a function of type (1.7) with m E L2(0, T) 
(use the dominated convergence theorem to prove the continuity on the right), 
and thus B(t)L(r,s) is a function of the same type as A(t,s). Therefore x* 
is the solution of a homogeneous linear functional differential equation. 

THEOREM 4.1. There exists an optimal,feedhack solution of the problem to 
control Eq. (4.1 I) and Eq. (4.12) so as to minimize (4.13) and it is given by 
Eq. (4.33). 

In some practical problems there may be a delay in the observation of the 
process. For this reason we may need a control law u*(t,xF_,& where 6 > 0. 
Such a function is easily obtained from Eq. (4.32) for t > 6. In fact, puts = t - 6 
and proceed in same way as above: 

1-6 
u*(t) = 

.I* d, L(t, s, 6) x*(s), (4.35) 
f-h-6 

where : 

L(r,s,S) = A(t,t - 6,s) - j R(r , T, t - 8) A(T, t - 6, s) dT. (4.36) 
t-6 

Of course, Eqs. (4.33) and (4.35) represent the same function of t u*(t), 
but the relevance of Eq. (4.35) will be revealed in Sec. 5. For in the stochastic 
case, the two situations leading to Eq. (4.33) and Eq. (4.35) represent different 
information patterns. 

Finally, it should be pointed out that, in the feedback solutions (4.33) and 
(4.35) the dependence on the initial function 5 and the initial time t = 0 is 
accumulated in x. The “feedback gain” L does not depend on these data, 
as should be clear from the derivation above, and can be usedfor any s in the 
family of performance indices (4.1) andfor all x,. 

5. CONTROLOFLINEARSTOCHASTICFUNCTlONAL DIFFERENTIAL EQUATIONS WITH 

COMPLETESTATEINFORMATION 

Consider the problem to control the system: 

dx(r) = j d,A(t,s)x(s)dr + B(t)u(t)dt+ C(t)du(t) 
f-h 

x0> = 50) 

for t 2 0, 

for t G 0 
(5.1) 
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where u(t) is the independent increment process (1.5) 4 is a deterministic 
function, and all other functions are defined as in Sec. 1. 

Let %,, be the class of all measurable control processes u(t), which are 
nonanticipative functions of x such that there exists a unique solution of 
Eq. (5.1) with the property that x(t) is u{u(s);s E [0, t]}-measurablea. Further- 
more, jr E]~(l)]~dt < a, should hold. 

This is a subclass of % defined in section 1, and we can immediately give 
an important class of controls belonging to e0 : 

LEMMA 5.1. Let A? be the afine class of controls: 

u(t) = c dJTt,s) x(s) +f (t), (5.2) 
-h 

where 17 is a function of type (1.7) with m E Lz(O, T), except that the second 
condition need not be fulfilled, andf is an L2 vector function. Then 2? c eO. 

Proof. Inserting Eq. (5.2) in Eq. (5.1) we obtain: 

f 

dx(t) = j- d,[A(t,s) + B(t)lT(t,s)lx(s)dt + B(t)f(t)dt + C(t)dv(t), 
-h 

for t > 0 and x(t) = t(t) for t G 0, which has the solution : 

x(t) = R(t) + 1 Y(t,s) C(s)dv(s), 
0 

(5.3) 

where Z( t) = Ex(t) andYis the (bounded) transfer function (4.15) correspond- 
ing to A(t,s) + B(t)n(t,s), which is a function of type (1.7) (except for the 
second condition, see remark 1 in the end of this section). Equation (5.3) can 
immediately be inferred from Eq. (1.8) putting u = f and remembering that 
t is deterministic. Since Elx(t)l* is bounded, Schwa&s inequality can be used 
to show that EIu(t)l* is integrable. This concludes the proof. 

The problem is to determine a control u E go so as to minimize: 

E 
( 
fry Q,(t)u(Wa + j- u’(t) Q*(t) u(t) dt 9 (5.4) 
0 0 

when y is given by: 

f 

y(t) = j- dsW,s) x(s), 
t-k 

(5.5) 

where Q1, Q2 and D are defined in Sec. 1. 

* Then O{X(S);SE [O, fllc o{v(s);s E [O, tl} and therefore u(r) is u{u(s);s E [O, r]}-measurable. 
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Denote the x-process obtained when u z 0 by x0, and define Z,(t) = Exe(t), 
that is from Eq. (1.8): 

0 

and hence Eq. (1.8) can be written : 

x(t) = &j(t) + j @(t,s) C(s) du(s) + j @(t,s) B(s) u(s) ds. (5.7) 
0 0 

Now, inserting Eq. (5.7) into Eq. (5.5) and changing the order of integration 
(for the last term this is permitted due to Fubini’s theorem, for the stochastic 
integral we need a trivially modified version of the stochastic Fubini theorem 
previously encountered, Ref. 1, p. 431 or Ref. 2, p. 197), we obtain (use 
Eq. (4.18)): 

y(t) = jo(l) + j M(Q) da(s) + j K(Q) U(S)& (5.8) 
0 0 

where : 
I t 

700) = I 
4 WV) 20(T) (5.9) 

t-h 

‘ M(t,s)= j d,D(t,7)@(7,S)C(S) 

t-h 

(5.10) 

! K(t,S) = i d,D(t,T)@(T,S)B(S). 
t-h 

(5.11) 

Then y(t) is precisely the type of process described by Eq. (2.5), for y,, M 
and K clearly have the properties prescribed in Sec. 2. In fact, by assumption 

var, E co, Il 1 D(t,s)l is dominated by a finite u-L2 function, (B 1 and 1 C 1 are Lz 
functions, and @ and Z. are bounded. 

Therefore, for the problem to minimize (5.4) given Eq. (5.8), we can 
apply the results of Sec. 2 to obtain an optimal control u* in the SOL-class 
defined by the observation process u(r). According to Theorem 2.2, this 
control should be found in the affine class (2.6). Then inserting Eq. (2.6) 
into Eq. (5.7) and changing the order of integration (as we have previously 
pointed out, this is permitted), we have: 

x(t) = x(t) + 1 x(t,S)du(s), 
0 

(5.12) 
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where : 

(5.13) 

X(t,s) = @(r,s)C(s) + j cw,T)B(T) U(T,S)dT. (5.14) 
s 

Taking Eq. (5.6) into account, it is clear from Eq. (4.14) with s = 0 (which is 

the solution of Eq. (4. I I)) that 2 is given by: 

L 

f 

x’(t) = 1 d,A(f,s).f(s) + L?(r)z.qt) for t > 0 

t-h (5.15) 

x(t) = f(t) for t -G 0. 

Unfortunately, Eq. (5.14) is not expressed in the form (4.14). However, 

since s --f @(r,s) is of bounded variation (see Sec. 4 for references), it has at 

most a countable number of discontinuities. Then exchanging @(t,s)C(s) 

for @(/,s-)C(S) in Eqs. (5.10) and (5.14) only involves a null set, and therefore 

x(t) and ,v( f) are not affected. But from Eq. (4. IS) we have: 

q/,5--) = @(t,s) + 1 @(f,T) [A(T,S) - A(T,S-_)]d7. 
s 

Therefore, the redefined X-function can be written: 

+ j @(I, T) B(T) U(7,s) dT, 
s 

(5.16) 

which is an expression of type (4.14). Then the column vector functions 
xt(t, s) clearly satisfy : 

I $(t,S)= j d,A(t,T)Xi(TyS) + B(t)Ui(fyS) fortes 
t--h 

Xi(S, s) = Cl (5.17) 

x,(t, s) = 0 for t < s, 

where ci and Ui are the column vectors corresponding to C and U. 



OPTIMAL CONTROL OF LINEAR STOCHASTIC SYSTEMS 109 

Now we can determine U* from Theorem 2.1. By inserting Eqs. (5.9)-(5.1 I) 
into Eqs. (2.15) and (2.16) and changing the order of integration we obtain: 

j(f) = j d, Iq,T).f(T) 
r-h 

(5.18) 

(5.19) 

where we have used property (4.18). (Really, in Eq. (5.19) we have the x1- 
function as defined by Eq. (5.14), but our redefinition does not affect y.) 
Then the deterministic problems of Theorem 2.1 belong to the class defined by 
Eqs. (4.1 I)-(4.13) and according to Theorem 4. I, we have: 

n*(t) = f d,L(t,7).2*(T) 
f-h 

(5.20) 

ui*(t,s)= i d,L(t,T)Xi*(T,S). 
f-h 

(5.21) 

The optimal stochastic control is then given by Eq. (2.14): 

u*(t) = P(t) i- j- U*(t,s)dv{s) 
0 

= j d,L(t,~) Z*(T) .t j X*(T,s)dv(s) 
t-h 0 1 

= J 4 LO, 7) X*(T), (5.22) 
f-h 

where we have used Eq. (5.12) and the fact that x(T,S) = 0 for T x s (see Eq. 
(5.17)). Furthermore, we have changed the order of integration in a stochastic 
integral. A justification of this is given above. 

THEOREM 5.1. The problem to determine an optimal control u E %,, so as 
to minimize (5.4) when y is giuen by Eqs. (5.5) and (5.1) has the following 
solution : 

u*(t) = j d,L(t,s)x*(s), 
r-h 

(5.23) 

where L is given by Eq. (4.34). 
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Proof Since L is a function of type (1.7) with m E L,(O, T) (see Sec. 4), 
a* E 9. Then by Lemma 5.1, u* E a0 which is included in the SOL-class 
employed above, and therefore the proposition follows. 

The optimal control (5.23) is clearly identical to the optimal deterministic 
feedback control (4.33). However, it is clear from the derivation of Eq. (5.23) 
that we have no longer the arbitrariness in the formulation of the control 
demonstrated for deterministic controls in Sec. 4. Indeed the formulation 
of the stochastic control has to be adapted to the information provided by 
the observation. So if we modify the class of admissible controls of the problem 
posed above to include only those controls in e2(, which for t 2 6 are non- 
anticipative functions of x(t - S), and for t < 6 are sure functions, we can 
imbed this new class %‘a in the SOL-class of Corollary 2.2. Then all results 
of this section up to Eq. (5.20) are still valid with the extra condition that 
U(t,s) = 0 for s > f - 6. Equation (5.21) is still valid for t 2 s + 6 (for problem 
B of Theorem 2.1 is essentially modified so that the lower limit of integration 
s is changed for s + a), but Eqs. (5.20) and (5.21) cannot be used to synthesize 
a control in ?&a. However, for t 2 6 we can use the equivalent deterministic 
control (4.35) to obtain : 

I 

r-6 

ii*(t) = 1 d,L&T, s)n*(,) 
t-h-8 

f- B 

u,*(t,s) = 1 d,L(t,7,8)x1*(7,s). 
f-h-6 

In fact, proceeding in the same way as above we obtain : 

r-b 

u*(t) = ii.*(t) + 1 u*(t,s) Al(s) 

0 

r-6 

[ 

t-6 

zz 1 d,L(t,T,s) n*(T) + 1 x*(T,S)dL’(S) 
t-h-6 0 I 

t-6 

=s 
bL(t, 7,s) X*(T) fort26 

f-h-& 

(5.24) 

THEOREM 5.2. The problem to determine a u E %S so as to minimize (5.4) 
given Eqs. (5.5) and (5.1) has the optimal solution (5.24), for t > 6. For t -C 6, 
u*(t) = n*(t). 

Proof. This follows immediately from the fact that U* E 9 Al 9s = as 
which is included in the SOL-class of Corollary 2.2. For t < 6, the last term in 
Eq. (2.15) is zero. 
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The problem of Theorem 5.2 clearly corresponds to an important practical 

situation, namely the one obtained when there is a delay in the reception of 

the observation. 

Finally, we shall settle the question of existence and uniqueness for the 

open-loop system discussed above (f is now stochastic): Equation ( 1.6) 
should be interpreted in the following way: 

x(t) = [(O) + j j d,A(T,S)X(S)dT + / B(s)u(s)ds 
0 T-h 0 

I 

(5.25) + 1 C(s) da) for t z 0 
0 

x(t) = 5(t) for t < 0, 

where the last integral is defined in q.m. (A measurable version is considered.) 

A solution of Eq. (1.6) is a measurable stochastic process such that the integrals 

of Eq. (5.25) exist for almost all sample functions and such that for each 

t E [-/?,T] Eq. (5.25) holds a.s. That is, the left side and the right side of Eq. 

(5.25) constitute equivalent stochastic processes. We shall make no distinction 

between equivalent solutions. As we have pointed out above, we are interested 

in solutions with bounded second-order moments. 

LEMMA 5.2. There is a unique (stochastic) solution of: 

x(t) = j j d,A(T,S)X(S)dT for tz0 
0 r-h (5.26) 

x(t) = 0 for t < 0, 

with bounded second-order moments, and it is y(t) = 0. 

Proof. Let y(t) be an arbitrary solution of Eq. (5.26) in the sense described 

above, and for each sample function for which the integrals are defined 
(almost all; see Sec. I), define T(t,u) and $t,co) to be: 

dt>W) = j j d,A(T,s)y(s,w)dT, 
0 7-h 

(5.27) 

ij(t,W) = j 1 d,A(T,s)@,W)dT, 
0 r-h 

(5.28) 
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for t 2 0 and identically zero for t < 0. Then, since JJ is a solution of Eq. (5.26), 

y and 7 are equivalent, and so are 71 and +j for: 

EMt) - $?)I < j j Id,A(7,s)IEIy(s) - Tj(S)ldT = 0. 
0 7-h 

But, according to Eqs. (5.27) and (5.28) 7 and ;i have continuous sample 

functions and therefore they must be identical. In fact, due to the equivalence, 

q(t,~) = $1,~) for all rational t except for a countable union of w-null sets. 

Then, except for this null set, by the continuity, $t,~) = ?j(t,w) for all other 

t as well. Therefore for almost all w, t + $t, co) is a “deterministic” solution 

of Eq. (5.26) and must be identically zero (see Sec. 4). The solution y(t) is 

therefore equivalent to the zero function. This concludes the proof of the 

lemma. 

THEOREM 5.3. With u artd 4 dejned as in Sec. 1, there exists a unique solution 

with boundedsecond-order moments of the linear stochasticfunctional difSerentiaI 

equation ( 1.6), and this solution is provided by Eq. (1 .S). 

Proqf: If there exist two solutions of Eq. (5.25) with bounded second-order 

moments, the difference between them must be a solution of Eq. (5.26) and is 

therefore, by Lemma 5.2 (equivalent to) zero. Therefore, a possible solution 

must be unique. 

It remains to be shown that: 

x(t) = @(t,O)t(O) + j- @(t,s) J’ dSAW)4(8)ds 
0 -h + j @(t,s)B(s) u(s) ds + j- @(t,s) C(s) dv(s) for t 2 0 (5.29) 

0 0 

x(t) = at> for t < 0, 

satisfies Eq. (1.6) = Eq. (5.25) in the sense described above. Equation (5.29) is 
precisely Eq. (1.8) where we have changed the order of integration in the 
second term. This is permitted according to the unsymmetric Fubini theorem 
[28] provided that: 

0 

I(w) = j- lWts)l J‘ l44,~)/ltX~,~)Ids < co. (5.30) 
0 -h 

Since El&~)1 is bounded (for E]&T)( * is bounded), Eq. (5.30) is true with 
/(I exchanged for El[l. Then, by Fubini’s theorem, EI <c co and therefore 
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Eq. (5.30) is valid almost surely. Now, with x given by Eq. (5.29) we have 

a.s. : 

f t 

+ 1s d,A(t,o)~(u,s)B(s)u(s)ds 
0 s 

f t 

+ IS d, A(t, u) @(a,~) C(s) do(s). 
0 s 

Here we have used the usual Fubini theorem and, in the last term, a modi- 
fied version of the stochastic Fubini theorem. (The theorems of Ref. I, p. 431 

and Ref. 2, p. 197, which give almost sure results, are easily seen to be valid 

when the Lebesgue integral is exchanged for a Stieltjes integral.) Again 
applying these theorems and Eq. (4.16) we have a.s.: 

5(O) + j 5 d,, A(T, u) x(u) d7 + j B(s) u(s) ds + j C(s) du(s) 
0 -h 0 0 

i- i[i+1.~(r,rld_]RIT).lr)di+~[~+j~(;,r)dT]CI’)I(”), 

which is equal to Eq. (5.29) because of: 

Here we have used the fact that indefinite integrals of equivalent processes 
form equivalent processes, which can immediately be inferred from Fubini’s 
theorem. Since Elx(t)l* is bounded (to see this, use Schwarz’s inequality 
as indicated in Sec. l), Eq. (5.29) clearly constitutes the unique solution of 
Eq. (1.6). This concludes the proof. 
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Remark 1. It should be noted that the second condition in Eq. (I .7) is in no way 
crucial. Indeed, we can put 12 > T to see that the theorem holds for intervals 
of integration like (0, t] in the Stieltjes integral of Eq. (1.6). 

Remark 2. Regarding f and u as deterministic functions and putting v = 0 
in the proof of Theorem 5.3, it is clear that f need not be bounded in order that 
Eq. (5.13) be the solution, of Eq. (5.15). It suffices that the unsymmetric Fubini 
theorem appties to the last term in Eq. (5.6). This is obviousIy the case for almost 
al1 sample functions of&t, w). 

Remark 3. Really, Theorem 5.3 states that there is a unique equivalence 
class of solutions of Eq. (5.25), for it is clear from the proof of Lemma 5.2 
that if x(r) is a solution, any (measurable) process equivalent to x(t) is also a 
soiution. We have been forced to consider equivalence classes rather than 
individual processes (they have the same finite-dimensional distributions) 
because of the intrinsic lack of uniqueness in the definition of the stochastic 
integrals. However, if u(t) is a Wiener process, these integrals have as. sample 
continuous versions, and there is a unique sample continuous solution of Eq. 
(5.25) such that the two members of Eq. (5.25) areequal (not merely equivalent), 
for two equivalent sample continuous processes are equal a.s. Therefore, in 
Sets. 3 and 6 we consider this kind of solutions. If in addition, as is the case in 
Sec. 6, t(t) is Gaussian, independent of v, and almost surelysamplecontinuous, 
the process x0(t), obtained by putting u = 0 in Eq. (1.8), is Gaussian and a.s. 
sample continuous. (See paragraph 4 in the appendix.) 

6. CONTROL OF LINEAR STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH 

INCOMPLETE STATE INFORMATION 

Consider the systems of stochastic functional differential equations defined 
in Sec. 1: 

dx(t) = j d,A(t,s)x(s)dt+ B(t)u(t)dz+ C(t)dv(t) fort20 (6.1) 
t-h 

x(f) = 63) t<o 

dz(t) = j d, H(t,s) x(s) dr + c&v(t) 
0 

fort20 (6.2) 

( z(0) = 0. 

Here 5 is Gaussian, v(t) and w(t) are standard Wiener processes, and more- 
over these processes have the properties prescribed in point B Sec. 1, where 
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also a class @ of admissible controls based on the observation process z 

was defined. The problem is to determine a u E 0% so as to minimize: 

when y is given by : 

y(t) = j d, D(t,s)x(s). 
f-h 

(6.4) 

A more general problem of this type was described in Sec. 3, and we shall 

make use of the results obtained there. To this end, we shall first assure our- 

selves that the conditions imposed in Sec. 3 are fulfilled in the present problem. 

As in Sec. 3, uncontrolled versions (u = 0) of processes normally affected by the 

control will be indexed with a zero. The solution of Eq. (6.1) is given by Eq. 

(1 A), that is: 

x(r) =x0(r) + j @(t,s)B(s)u(s)ds, (6.5) 
0 

where : 

x0(t) = @(t,o) ((0) + i d, j @(t,s) A(s,T) ds 5(~) + j @(t,s) C(s) du(s)> (6.6) 
-h 0 0 

which is a Gaussian process for which almost all sample functions are continu- 

ous (see Remark 3 in Sec. 5). By point 4 in the appendix, all zero-indexed 

processes in the sequel will be jointly Gaussian. The controlled versions are a 

priori non-Gaussian, for the control law might be a nonlinear function. 

(However, it so happens that this is not the case for the optimal solution.) 

Then inserting Eq. (6.5) into Eq. (6.4) and changing the order of integration 

(Fubini), we have: 

y(r) = ye(t) + 1 K(t,s) 4s) 4 
0 

where : 

I 
VO(~) = j 4 Wr, 7) x0(7) 

t-h 

f-h 
K(t,s) = j- d,D(t,T)@(T,s)Ws), 

(6.7) 

(6.8) 

(6.9) 
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which is precisely an expression of type (3. l), and it is readily seen that y0 and 
Kfulfil the proper conditions. (For y,, note that Elxo(r)12 is bounded. Then, 

use Schwarz’s inequality and the properties of D. For K, see Sec. 5.) 
The process q of Eq. (3.9) is : 

40) = j dsH(t,s)x(s), 
0 

(6.10) 

and by inserting Eq. (6.5) in this expression and changing the order of 

integration we obtain : 

which is the prescribed linear feedback loop (Eq. 3.10). That the integrability 

conditions of q and q. are fulfilled can be seen in exactly the same way as for 
Eq. (6.8). Finally, to ascertain that .Z’ c eo, we must check whether the con- 

dition on the functional relationship between q and y imposed in Sec. 3 is 

fulfilled. By inserting Eq. (6.2) into Eq. (3.13) and using the unsymmetric 
Fubini theorem [28] to change the order of integration, we obtain : 

I X(T) + j” F(r,s)dw(s). (6.12) 
0 

Now, since B(t) ]: F(t,s)H(s,T)dS is a function of type (1.7) (except for 
the second condition) with m E L,(O, r) ( the third condition is obtained with 

the aid of the dominated convergence theorem and the last condition directly 
from the definition), it is clear from Theorem 5.3 (slightly modified) that 

Eq. (6.1) with Eq. (6.12) inserted has a unique solution. 

In Sec. 3 we defined the class C?Zo c @ of all measurable control processes 
u for which ] Elu12dt < 03 and which are nonanticipative functions of z such 
that u(t) is a{zo(s);s E [O,t]}-measurable for each t. This was done to enable 
the imbedding of the class of admissible controls in the SOL-class of the 
innovation process, which in the present problem is given by: 

dv(t) = dz(t) - j. d, H(t,s) i(s It) dt, 
0 

(6.13) 

where : 

a@ 1 f> = %‘ds) lZ(T) ; 7 E [o, fl). (6.14) 
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and which is the same for all u E J$O. For these u it generates the same family 

of u-algebras as z (Lemma 3.2) and for this reason we can equally well condi- 

tion with respect to v when determining expressions of type (6.14), which is 

an advantage since v is a Wiener process. Since x,, and v are jointly Gaussian 
and u(t) is D{v(T); 7 E [0, t])-measurable we obtain: 

.?(s 1 t) = R,(s) + i G(s, T) dv(~) + j-@(s, T) B(T) U(T) do, (6.15) 
0 0 

where, according to Lemma 2.1, k,(s) = Eva(s) and : 

G(w) = aa; E{Xo(Sb”(d) = %o(s)cjo’(TjT)i. (6.16) 

Here we have made use of the independence between x0 and w (due to 
independence between E, u and ~1) in the same way as in Theorem. 3.3. (Jo is 

defined by (3.24).) 

In order to determine G(t,s) we shall need the following lemma, which is 

an immediate consequence of Theorem 5.3 : 

LEMMA 6.1. For all t and s such that 0 *. s cz t, we halle: 

X0(T) 

+ ‘@(t, T) c(T)dU(T). 
s 

(6.17) 

Since qo(s]s) is an affine function of 5, M’ and {V(T);T E [O,s]} (for ah 

estimates are linear when u E eo), qo(s Is) and the last term of Eq. (6.17) 

are independent, and therefore for t z s we have the following equation for 

G(r,s) = %o(r)4o’(s Is)): 

G(t,s)=@(t,s)G(s,s)+ j d, 
( 
/@(r,U)a(o,T)dn 

1 
G(T,s). (6.18) 

s-h s 

Now, according to Theorem 3.3, the optimal control in ‘/2(, should be 
found in the affine class : 

u(r) = u(t) + j” U(t,s) dv(s) 
0 

(6.19) 

Inserting Eq. (6.19) into Eq. (6.15) and changing the order of integration 
(permitted according to Ref. 1, p. 431 or Ref. 1, p. 197), we obtain: 

,?(S 1 t) = f(S) + j x(S, T) dv(T), 
0 

(6.20) 
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where : 

I 

a(s) = &o(s) t i@(s, T) B(T) a(~) d,r (6.21) 
0 

j 

X(s, T) = G(s, T) + j@(~, cr) 8(o) U(u, T) do forsa7 (6.22) 
+ 

X(s, 7) = G(s, P-) for s < 7. (6.23) 

By inserting Eq. (6.18) into Eq. (6.22) we obtain an expression of type (4.14), 
and it is then clear that the column vectors xi of X satisfy: 

i 

$?t,s) = j d,A(t,~)x&~,.s) + B(t)u,(t,s) for t>s (6.24) 
f-h 

xi(t,s) = gdr,s) for t < s, 

where g, are the column vectors of G. In the same way: 

1 

x’(t) = j-* d,A(t,s)Z(s) + B(f)ii(t) fort>0 
f-h 

n(t) = a(t) for t < 0, (6.25) 

which is obtained from Eqs. (6.21) and (6.6) (R, = Exe). 
The optima1 controt of Theorem 3.3 and Theorem 3.1 can now be deter- 

mined from Theorem 2.1. To this end, first note that the column vectors m, 
of A4 are given by: 

r-h 

This is an immediate consequence of Eqs. (6.8), 
same way : 

(6.26) 

(3.23), and (6.16). In the 

(6.27) 

Now, insertion of Eqs. (6.26), (6.27), and (6.9) into Eqs. (2.15) and (2.16) 
yields after changing the order of integration: 

l(t) = j d, o(t, T) -f(T) (6.28) 
t-k 

t 

Y,(h 3) = 
s 

4 &f, T)xi(T,J) for t a s, (6.29) 
f-h 
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where we have used Eqs. (6.21) and (6.22) and also the property (4.18). There- 
fore the deterministic problems of Theorem 2.1 are of the type described in 
Theorem 4.1 and have the optimal solutions : 

u*(t) = f d,L(t,T)f*(T) 
f-h 

(6.30) 

24i*(t,S) = j d,L(t,T)Xi*(T,sY). (6.31) 
1--h 

The optimal stochastic control is then given by Eq. (2.14): 

u*(t) = 22*(t) + j r/*(&s) as) 
0 

= j d,L(t,7) [Z-*(T) +j’x*(TJ)dv(S), 
t-h 0 

t 

=z \ d,L(t,T)i*(Tl t) (6.32) 
f-h 

where Eq. (6.20) has been used. 
Finally, we shall only briefly discuss the calculation of Z(slt). For s G t, 

Eq. (6.20) yields the smoothing estimate: 

i(slf)i-i(s)+~x(s,~)d~(r)+ ji(&T)dv(T) 
0 s 

= a(s Is) + j G(s, 4 dd+ (6.33) 

This equation is valid also for s < 0 provided that we define G(s,T) for 
T < 0 to be zero and define a(s Is) = Z(S) = a(s) for s G 0. A stochastic differen- 
tial equation for the filtering estimate can be determined by means of Eqs. 
(6.20) and (6.24): 

'ax i-(rlr)-a(r);j[x(s.s)+ +,s)dT]dv(s) 
0 

s 
s 

f T 

= 

j 
rG(s,s)dv(s) + g(r,s) d”(s) d7. (6.34) 

0 
J-1 
0 0 
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The last term in Eq. (6.34) can be written (using Eq. (6.24)) : 

d,, A(T, CT) j%(qs) d”(s) + B(T) jO(~,s) h(s) dT 
0 0 I 

= d, A(T, U) [?(01T) -- a(u)] + B(T) [U(T) - c(T)] dT. (6.35) 

Therefore Eqs. (6.33)-(6.35) together with Eq. (6.25) yield the following 
equations (with obvious interpretations) of the filtering and smoothing esti- 
mates : 

1 

dZ(tlt)= / d,,A(t,o)~(a~t)dt+B(t)u(t)dt+G(t,t)dv(t) for t 2 0 
f-h (6.36) 

d,,f(sIt)= G(s,t)dv(t) for s < 1. 

(6.37) 

Note that we have changed the order of integration in stochastic integrals 
on several occasions without saying so. Justifications for this are given in 
Sec. 5. 

It is easily seen from Eq. (6.16) and the fact that Zo(s It) = x0(s) - Zo(s If) is 
orthogonal to Z(s It) that the gain matrix G is given by: 

G(r,s) = 1 Q( t,T,S)d,H’(s,T) fors>O 
0 

G(r,s) = 0 for s < 0, 

where Q is the “error covariance matrix”: 

Q(f, 7,s) = E@o(t 1s) ~o’(+)b 

(6.38) 

(6.39) 

THEOREM 6.1 (Separation Theorem). The problem to determine u E a0 

so as to minimize (6.3) when y is given by Eqs. (6.4) and (6.1) has the following 
solution: 

u*(t) = j d,L(t,s)2*(sIt), 
f-h 

where L is the feedback gain matrix of the corresponding deterministic problem 

(Sec. 4), and 2(s I t) ’ g’ IS lven by Eqs. (6.36) and (6.37). The estimation problem 
and the deterministic control problem can be solved independently. 

An alternative approach to the estimation problem based on the solution 
of a dual control problem is described in Ref. 26. 
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APPENDIX 

1. We assume an underlying complete probability space (Q,e,P), where 

Q is the sample space with elements w, G is a o-algebra of events with respect 

to which all random variables in our paper are measurable, and P is the prob- 
ability measure. Let 8 be the a-algebra of Bore1 sets on [O,T] and let !B x G 

denote the u-algebra generated by the class of all sets of the form A x B where 

A E 8 and B E G. The stochastic process x(r) is meusurabk if the function 
x(t, U) is !II x G-measurable. All deterministic functions defined in this paper 

are !B- or 8 x !&measurable functions. Therefore, by Fubini’s theorem, a 
stochastic process of the form J K( f, s)x(s, w)ds is measurable, and the same is 

true for processes of the type J dsA(t,s)x(s,co) appearing in this paper (see 

Lemma 1.7 in Ref. 29, p. 9). 

2. In the following lemma we modify the results given in Ref. 1, p. 430 

and Ref. 2, p. 196 to our concept of measurability: 

LEMMA: Let u(t) be a process with orthogonal increments described by 

Eq. (I .5), and let M(t,s) be a 8 x !&measurable function such that 
J 1 M(t,s)12d~ < to for almost all t. Then the stochastic integral : 

v(t) = j M(t,s)dv(s), 

can be defined so that y(t) is a measurable process. 

Proof: Let M,,(r, s) be a sequence of functions such that: 

where ‘Pi is !&measurable, J IQi(s)12ds c r, and : 

s 
\M,(t,s) - M(r,s)12 ds --f 0, 64.1) 

for almost all t when n --f co. [Such a sequence can be constructed by expanding 

M as a Fourier series 1 ( M(t, .),Qi j @Js).] Then, the processes: 

y,(t) = 1 M,(t,s)dLj(s) = Gyi(t) 1 @i(s)dn(s), 

are (!D x G)-measurable and, in view of Eq. (A. 1): 

ElJJ,(r) -.?JCt)12 + 0. 

Therefore, for each t, there is subsequence such that y(j) = lim y,,(t) - 
almost surely. Hence j(t) = lim y,,(t), which is measurable (see for instance 
Ref. 30, p. 153), is equivalent to y(t). This concludes the proof. 
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3. We will show that: 

ANDERS LINDQUIST 

which for each t (almost) exists for almost all s, can be redefined on this excep- 
tional set to be 8 x !&measurable. Since E{u(t)v’(s)} is B x B-measurable 
(Fubini): 

are S x 8-measurable, and this sequence tends pointwise to U(t,s) except 
on the set described above. Then, define U(t,s) to be lim U,,(t,s). 
4. Consider an indefinite integral J”; q(s)ds of a Gaussian process q(t). 
If this integral can be defined as an almost sure limit or a limit in q.m. of a 
Riemann approximation sum, it constitutes a Gaussian process. (However, 
for more general conditions, see Ref. 31). In fact, a Riemann sum is a finite 
linear combination of jointly distributed Gaussian vectors q(tJ and then the 
limit is Gaussian too (cf Ref. 2, p. 17), for a.s. and q.m. convergence imply 
weak convergence. By a similar argument it is seen that all finite dimensional 
distributions are Gaussian, and if the processes y and q have joint Gaussian 
distributions, the same is true for y and J” qds. In Sec. 6, Stieltjes integrals of an 
a.s. sample continuous Gaussian process x,,(t) are considered. These integrals 
can be regarded as Riemann-Stieltjes integrals which are a.s. limits of Riemann 
sums and, in virtue of the previous discussion, they are jointly Gaussian. 
Thus ye(t) and qO(t) defined in Sec. 6 are Gaussian, and the same is true for 

where we have used the unsymmetric Fubini theorem. 
Finally, all stochastic integrals with Wiener measure are Gaussian, for by 

definition they are q.m. limits of Gaussian sequences. 
5. Consider a process of type (3.11) : 

z(t) = {q(s) ds + w(t). 
0 

The closed linear hull of {Zi(S);S E [0, t], i = 1,2.. .n,; I} in the usual Hilbert 
space of second-order stochastic variables consists of integrals of type : 
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where { is a constant andfan L2 vector function. In fact, iff, is a step function 
with values cl on [t,_ 1, ti), then 

C ciI.z(ti) - z(ti-l)l = 2 ci jids)ds + C ci fwtri> - w(ii-l)l 

= j Am(s) ds + ~-f.(s, de). (A4 

Then if we have a sequence 0; step functions’such that: 1 1 f, -fmj2ds -+ 0, 
defining a limit functionf, the second term in Eq. (A.2) tends to Jfdw in q.m. by 
definition and the first term tends to J”fqds. In fact, by Schwarz’s inequality: 

which tends to zero when 1 Elq 12ds < to. 

This research wassupportedby the Swedish Boardfor Technical Development. 
Thanks are also due to L. E. Zachrisson with whom the author had some fruitful 
discussions concerning the results of this paper. 
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ADDENDUM TO “OPTIMAL CONTROL OF LINEAR STOCHASTIC SYSTEMS WITH 

APPLICATIONS TO TIME LAG SYSTEMS” BY ANDERS LINDQUIST. 

In Sec. 2 and 5 of the above mentioned paper the stochastic process v(f) 
was assumed to have independent stationary increments. However it is sufficient 


