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Universal Regulators for Optimal Tracking
in Discrete-Time Systems Affected

by Harmonic Disturbances
Anders Lindquist,Fellow, IEEE, and Vladimir A. Yakubovich,Member, IEEE

Abstract—The authors consider the problem of controlling a
discrete-time linear system by output feedback so as to have a
second outputzzzttt track an observed reference signalrrrttt. First, as a
preliminary, we consider the problem of asymptotic tracking, i.e.,
to design a regulator such thatjzjzjz

ttt
��� rrrtttjjj!!!0. This problem has

been studied intensely in the literature, mainly in the continuous-
time case. It is known that only under very special conditions
does there exist a linear regulator which achieves this design
goal and which is universal in the sense that it works for all
reference signals and does not depend on them. On the other
hand, if rrrttt is a harmonic signal with known frequencies but
with unknown amplitudes and phases, there exist such regulators
under mild conditions, provided the dimension ofrrrttt is no larger
than the number of controls. This is true even if the plant itself
is corrupted by an unobserved additive harmonic disturbancewwwttt

of the same type asrrrttt, if the dimension of wwwttt is no larger than
the number of outputs available for feedback control.

However, if the first dimensionality condition is not satisfied,
asymptotic tracking is not possible, but a steady-state tracking
error remains. Therefore, the authors turn to another approach
to the tracking problem, which also allows for damping of
other system and control variables, and this is our main result.
The measure of performance is given by a natural quadratic
cost function. The object is to design an optimal regulator
which is universal in the sense that it does not depend on the
unknown amplitudes and phases ofrrrttt and wwwttt and is optimal
for all choices of rrrttt and wwwttt. The authors prove that an optimal
universal regulator exists in a wide class of stabilizing and
possibly nonlinear regulators under natural technical conditions
and that this regulator is in fact linear, provided that the second
dimensionality condition above is satisfied. On the other hand, if
it is not satisfied, the existence of an optimal universal regulator is
not a generic property, so as a rule no optimal universal regulator
exists.

The authors provide complete solutions of all the problems
described above.

Index Terms—Internal model principle, optimal tracking, op-
timal universal regulators, sinusoidal disturbance.

I. INTRODUCTION

CONSIDER a discrete-time linear control system
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Fig. 1. Feedback configuration.

(1b)

(1c)

with a state , two vector outputs and ,
and two vector inputs, namely a control and an
unobserved disturbance which we shall take to be
harmonic with known frequencies but unknown amplitudes
and phases. More precisely

(2)

where the frequencies

(3)

are known, but the complex vector amplitudes , ,
, , in which the phases have been absorbed, are either

completely unknown or zero. Consequently, some frequencies
(3) may not be represented in and have been included for
notational purposes to be explained shortly.

In this paper we consider the problem to control the system
(1) by feedback from the output so as to have the output
track an observed-dimensional real reference signal

(4)

which is harmonic with the known frequencies (3) but with
complex vector amplitudes , , , which are
either completely unknown or zero so that certain frequencies
(3) may not occur in . The feedback configuration of this
problem is described in the flow diagram as shown in Fig. 1.

Many important engineering problems could be modeled in
this way. Some examples are connected to industrial machines
and helicopters [2], [9]–[12], [27], [28], control of aircraft in
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the presence of wind shear [19], [23], [31], and control of the
roll motion of a ship [14].

For notational convenience we use a common set of fre-
quencies (3) for and , forcing us to set certain complex
vector amplitudes equal to zero. To formalize this we introduce
the index sets , of for which
and , respectively, are nonzero and arbitrary. Then

and (5)

Without loss of generality we assume that

Accordingly, we define the class of disturbances and the
class of reference signals consisting of all signalsand ,
respectively, obtained by letting and
vary arbitrarily subject to the constraint that the signals (5)
are real.

We assume that , , , , , and are constant
real matrices of appropriate dimensions such that
is stabilizable and is detectable. Without loss of
generality we may also assume that

and (6)

In fact, if the first condition is not satisfied, some components
of could be eliminated. Moreover, if has linearly depen-
dent columns, these could be combined without restriction.
Clearly, (6) implies that and .

Now, a possible criterion of performance for the tracking
problem described above is given by

(7)

but, to allow for damping of internal system variables and
the energy of control, we shall also consider a more general
criterion of the type

(8)

where is a real quadratic form

(9)

with properties to be specified in Section V. [To ensure that the
infimum of is not , we must of course introduce some
condition on the quadratic form (9).] We note that the second
functional (8) becomes a measure not only of the tracking
accuracy but also of the forced oscillations in the closed-loop
system. For the classes of admissible regulators to be defined
next, these cost functions do not depend on initial conditions.

The object is to find, for suitable, , a regulator

(10)

which is:

1) stabilizing in the sense that any process sat-
isfying the closed-loop system equations (1), (10) also

satisfies the weak stability condition

as (11)

2) optimal in the sense that the cost function (8) is
minimized;

3) universalin the sense that it simultaneously solves the
complete family of optimization problems correspond-
ing to different values of the complex vector amplitudes

and and thus does not depend
on these amplitudes.

Such a regulator will be referred to as anoptimal universal
regulator (OUR), and the class of regulators (10) satisfying
conditions 1) and 2) will be denoted. The stability condition
(11) may at first sight seem somewhat unnatural, but, as we
shall see in Section VI, it is the natural mathematical condition
defining the largest class for which statements of necessity
and sufficiency can be made.

Removing the last term of (8) related to tracking we obtain
some special cases of this problem which were studied in [21]
and in [22] for the cases of complete and incomplete state
information, respectively.

In this paper we show that, under suitable technical con-
ditions and provided , the problem stated above has
a solution in , and this solution happens to be a linear
stabilizing regulator of type

(12)

where is the backward shift and ,
, and are real matrix polynomials, of dimensions
, , and , respectively, with the property that

and and are proper rational
functions so that the regulator is nonanticipatory in the sense
that does not depend on future values of and , in
harmony with (10). We shall denote by the subclass of
such linear regulators. Existence of an OUR in the subclass

itself can be established under somewhat milder technical
conditions. The dimensionality condition is important.
As in [22], it can be shown that if it fails, then the existence of
an optimal universal regulator becomes a nongeneric property.
It means that no optimal universal regulator exists from a
practical point of view if .

The cost function (7) would of course be minimized if we
could control (1a) so that

as (13)

In fact, it would be zero. Therefore, asymptotic tracking
appears as a special case in our analysis. This problem has been
studied intensely in the literature, at least in the continuous-
time case; see, e.g., [1], [4]–[8], [13], [16], and the references
therein. The connection to this earlier work, developed in
continuous time, is made evident by noting that the disturbance
and reference signals (5) can be modeled as the output of a
critically stable system

with having all its eigenvalues on the unit circle.



1690 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 9, SEPTEMBER 1999

Therefore, we begin by developing our optimization pro-
cedure in this well-known setting of asymptotic tracking,
thereby obtaining alternative formulations in the discrete-time
case. Using a very short and simple proof, we are able
to give a complete solution to the problem of finding all
universal tracking regulators,i.e., all regulators which achieve
asymptotic tracking (13) for all values of the complex vector
amplitudes and and which do not
depend on these amplitudes. This will be done in Section IV.
As a preliminary for this, and to set up notations, in Section III
we first consider an undisturbed system ( ), and we
characterize all regulators (12) achieving the design objective
(13) for all reference signals , not only harmonic ones, and
all initial conditions; we shall refer to this property asT-
universal. The solution of this problem is certainly known,
but we include it for conceptual reasons.

However, if , i.e., the dimension of is larger than
the number of outputs available for feedback, no universal
tracking regulator exists, so a nonzero tracking error remains.
To damp this error we turn to our main problem, namely to
characterize all optimal universal regulators, as defined above.
Also, we may want to use a criterion (8) even if asymptotic
tracing is possible, if it is desirable to damp the control energy
and/or some particular internal system variables. This is the
topic of Section V, where optimality in the linear classis
studied. In Section VI we show that these linear universal
regulators are optimal also in the wider class of nonlinear
regulators satisfying (11), provided slightly stronger technical
conditions are satisfied. The complete solution is given. We
note that a similar but different optimization problem, over a
finite horizon, is considered in [26].

Obviously, there is noa priori guarantee that a regulator
which minimizes (8) will also satisfy other design specifica-
tions, and hence we look for complete solutions with many
free parameters which then can be tuned by loop shaping. In
fact, all our results are based on a parameterization derived
in Section II, which is akin to that of Youla and Kuc̆era
and which generalizes some parameterizations previously pre-
sented in [21] and [22].

Finally, in Section VII, we give some simple numerical
examples.

II. L INEAR STABILIZING AND REALIZABLE REGULATORS

In order to design universal regulators we need a parame-
terization of all linear regulators

(14)

which stabilize the control system (1) and which are realizable
in a sense to be defined shortly. As before,is the backward
shift , and , , and are real matrix
polynomials of dimensions , , and , respectively.

Let us consider a bit closer the meaning of (14) being
stabilizing. To this end, note that the transfer functions, ,

from to , , and , respectively, in the closed-loop
system (1), (14) satisfy

(15a)

(15b)

(15c)

so, in particular,

(16)

where is the matrix polynomial

(17)

Similarly, the transfer functions , from to and ,
respectively, are given by

(18)

which together with (16) yields

(19)

We shall say that the regulator (14) isstabilizing if the matrix
polynomial is stable,i.e., for .

Next we consider the condition that the regulator be real-
izable. Clearly (14) must be nonanticipatory in the sense that

does not depend on future values ofand . To ensure
this, we must assume that

and are proper (20)

requiring in particular that .
Let us investigate what properties must have for (20) to

be satisfied. To this end, let us introduce the rational transfer
functions

(21)

from the control signal to the outputs and , respectively.
Then it is easy to see that

(22)

and that

(23)

Writing (22) in the alternative form

we see that (20) implies that is strictly proper and
is proper. In fact, is strictly proper, making

as well as its inverse proper. Then, it follows from
(23) that and are strictly proper also. Consequently

where is finite (24)
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so that and depend on for only and on for
only. We shall say that the regulator (14) isrealizable

if condition (24) is satisfied. At the end of this section we
shall demonstrate that any stabilizing and realizable regulator
satisfies (20) so that the nonanticipatory property is implied
(Corollary 2.3).

We say that two regulators

and

areequivalentif there are stable matrix polynomials
and such that

(25)

Hence we allow the systems matrices, , and to have
stable common factors, as coprimeness is not required. Clearly,
as can be seen from (22) and (23), , , , and
are invariant under this equivalence and so are the regulator
transfer functions (20).

From now on, we assume that is a stable matrix, i.e.,
for all . Since is stabilizable

and is detectable, this is no restriction. In fact, it is
well-known that the system (1) can be replaced by a similar
system having a stable -matrix but, in general, a larger
dimension. (See any standard text, such as [1] and [18].) Only
under special conditions [15], including the case of complete
state observation, is it possible to do this by constant feedback,
but the system can always be stabilized by a dynamic observer.
Then, extending the state space by including this observer, a
system with stable -matrix is obtained. For these reasons we
shall from now on, without loss of generality, assume that
in (1) is a stable matrix.

The following theorem, generalizing a similar result in
[22], provides a parameterization akin to the well-known
Youla–Kŭcera parameterization. (We note that ifis not sta-
ble, also the latter parameterization requires an observer-based
prestabilization, increasing the dimension of the regulator; see,
e.g., [32, p. 226].)

Theorem 2.1:Let be a stable matrix with
being its characteristic polynomial, and let

and be the matrix polynomials

(26)

Moreover, let be an arbitrary stable scalar polynomial
and let and be arbitrary matrix polynomials of
dimensions and , respectively, such that

(27)

Then the regulator

(28)

with

(29)

is stabilizing and realizable, and for this regulator

(30)

and

(31)

where is given by (17). Conversely, any stabilizing and
realizable regulator (28) is equivalent to one constructed in
this way.

Before turning to the proof of this parameterization, let us
briefly explain the nature of relation (31). Although is a
factor in for the regulator defined via (29), this is in
general not the case for an arbitrary regulator belonging the
same equivalence class. In fact, while the closed-loop transfer
function and the regulator transfer functions and

are invariant under the equivalence (25),is not.
Taking the Schur complement, it immediately follows from
(17) that

(32)

where is given by (21). Since, in general, the second factor
is not a polynomial, is of course not a factor in in
general. Nevertheless, it will turn out to be useful to represent
each equivalence class by a regulator that has this property.

Proof of Theorem 2.1:In view of (29), we have

(33)

and consequently (30) follows from (22) and (31) follows from
(32). By construction, therefore, is a stable matrix poly-
nomial, establishing that the regulator is stabilizing. Moreover,
in view of (27), is strictly proper and is proper, i.e.,

and is finite. It then follows from (23)
that and are strictly proper, and hence the regulator
is realizable.

To prove the converse statement, suppose that, ,
is an arbitrary stabilizing and realizable regulator. Then (32)
may be written

where is the matrix polynomial

(34)

which is stable and full rank, since is
stable and nontrivial. It follows from (22) that

(35)

where and are the closed-loop transfer functions
corresponding to the regulator , , . Therefore, setting

and

where is the adjoint matrix polynomial of
, (35) shows that and are given by (30). Since ,
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, is a realizable regulator, it follows from (24) that the
degree conditions (27) hold. Consequently, definingand

via (29), it follows from the first part of the theorem that
, , is a stabilizing and realizable regulator with the

same closed-loop transfer functions and as , ,
. It remains to show that , , and , , are

equivalent. To this end, note that

Also it follows from (34) that

Consequently

i.e., and are equivalent as required.

If so that , the representation of stabilizing
regulators can be simplified considerably, sinceand can be
chosen so that cancellations occur. Since this formulation has a
different form and, moreover, will be used later, we state it as
a corollary. Note that, in view of the converse statement, this
corollary is strictly speakingnota special case of Theorem 2.1.
It is in fact a generalization of [21, Lemma 4.3], but the proof
here is new.

Corollary 2.2: Let be a stable matrix, and suppose that
. Let be an arbitrary real scalar stable polynomial,

and let and be arbitrary real matrix polynomials,
of dimensions and , respectively, such that

(36)

Then the regulator

(37)

with

(38)

is stabilizing and realizable, and, for this regulator

(39)

and satisfies (31). Conversely, any stabilizing and
realizable regulator (37) is equivalent to one constructed in
this way.

Proof: Let the polynomials and be chosen as in the
statement of the corollary, and take and

to be the corresponding polynomials
in Theorem 2.1. Then, since and

, the degree conditions (27) are satisfied forand .
Moreover, the corresponding regulator polynomials matrices
(29), which we denote and , become
and , where and are given by (38). Then,
setting , the regulator , , is stabilizing and
realizable by Theorem 2.1. Thanks to cancellation, therefore,

is a stabilizing and realizable regulator for the
problem of Corollary 2.2, as claimed.

Conversely, by Theorem 2.1, any stabilizing and realizable
regulator (37) is equivalent to some regulator of
the type described in Theorem 2.1, where we set
everywhere. It remains to show that is also a
regulator of the type described in the corollary. To this end,
define . This implies that ,
and hence the equations of Theorem 2.1 become those of the
corollary with replaced by . Hence is also a
regulator in the sense of the corollary.

In the beginning of this section we demonstrated that the
realizability condition (24) is a consequence of nonanticipatory
condition (20). Next we show that the converse is also true,
provided has full rank as assumed in (6).

Corollary 2.3: Suppose that . Then, for any
stabilizing regulator (28), the realizability condition (24) and
the nonanticipatory condition (20) are equivalent.

Proof: The proof is immediate in the special case
. In fact, for a regulator (37) with and given by (38),

condition (20) is a direct consequence of the degree condition
(36). For any other stabilizing regulator (37), it follows from
the definition of equivalence.

The general case follows from the fact that (28) is a subclass
of (37). In fact, writing (28) as

it follows from what has already been proved that
is proper. Since has full rank, this implies that is
proper. That is proper follows directly.

III. -UNIVERSAL REGULATORS

As a preliminary for the analysis in Sections IV and V,
in this section we consider the problem of controlling the
undisturbed system

(40a)

(40b)

(40c)

by feedback from the output so that it tracks a given
reference signal in the sense that

as (41)

As explained in Section II it is no restriction to assume that
is stable if it is assumed that is stabilizable and

is detectable. The solution of this problem is simple
and certainly known, but we include it for completeness and
for conceptual reasons.

More precisely, we want to find a stabilizing and realizable
regulator of the form

(42)

which is universalfor the asymptotic tracking problem in the
sense that (41) holds forall solutions of (40), (42), andall
reference signals . More specifically we shall refer to this
property asT-universal.

Clearly, for (42) to be stabilizing and realizable, the matrix
polynomials , , and must satisfy the specifi-
cations of Theorem 2.1. It remains to investigate under what
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conditions the tracking criterion (41) is satisfied and under
what conditions this regulator is T-universal.

We begin by deriving a necessary condition for T-
universality. Consider a reference signal of the type

(43)

where and are fixed but arbitrary. Then the
closed-loop system (40), (42) has solutions

(44)

with

(45)

where , , and and
are defined by (21). Moreover,

(46)

But the tracking condition (41) requires that

as

and, since is arbitrary, this implies that . Therefore, it
follows from (44) and (46) that

(47)

Now, in order for the regulator (42) be T-universal, (47) must
hold for all , that is, for all and . Consequently, we must
have

(48)

on the unit circle and, by analytic continuation, in the rest of
the complex plane.

Lemma 3.1: A stabilizing and realizable regulator (42) is
T-universal if and only if the identity (48) holds.

Proof: We have already proved that (48) is a necessary
condition for (42) to be T-universal, so it remains to prove
that it is also sufficient. To this end, first assume that there are
positive numbers , such that for all . Then

has a -transform

which converges for . It follows from (45) and
(46) that is the transfer function from to ,
and hence (40), (42) has a solution with a -transform

. But, if (48) holds, then and hence
for all . Because of stability any other solution

tends asymptotically to this solution, and therefore (41) holds.
If increases so fast that it does not have a-transform, set

for and for , and
let be the corresponding-solution. Then it is easy to see
that for . Since is arbitrary, the
conclusion follows.

As a corollary we see that must be full rank, or
else (48) will be violated. This implies that there are no

delays between and . Indeed, the condition (48) for T-
universality imposes some rather stringent conditions on the
system (40). In particular, since is and is ,
(48) implies that , and must have full rank.

Theorem 3.2:Suppose that is stable. Then there exists a
T-universal regulator for the tracking problem if and only if
there is a proper rational matrix function with no
poles in the region which satisfies the equation

(49)

which, in particular, implies that .
In this case, let be a stable scalar polynomial such that

(50)

is a matrix polynomial, and let be a matrix
polynomial satisfying the first degree constraint (27). Then, the
regulator (28), with and given by (29), is a T-universal
regulator for the tracking problem, and any other T-universal
regulator is equivalent to one obtained in this way.

Proof: First, suppose that there exists a T-universal reg-
ulator of the form (42). Then, according to Lemma 3.1, there
exists a solution to (49) with the prescribed properties,
namely . In fact, in view of (22), (32) and the fact that

is stable, it follows that has no poles in the region
. Moreover, since the regulator is realizable, is

proper.
Next, suppose that (49) has a solution which is proper

with no poles in the region , and let , , and be
defined as in the theorem. [Note that in order to satisfy the
first of degree conditions (27) we may need to chooseand
which are not coprime.] Then, by Theorem 2.1, the regulator
(28) with given by (29) is stabilizing and realizable and

(51)

i.e., in view of (50), . Consequently, it follows from
(49) and Lemma 3.1 that the regulator is T-universal.

It remains to prove the last statement of the theorem. To
this end, suppose that the regulator

(52)

is T-universal. Then, in particular, it is stabilizing and real-
izable, and thus, by Theorem 2.1, there are some, , and

with the properties specified in Theorem 2.1 such that the
regulator (28) with given by (29) is equivalent to (52).
Now, is invariant under this equivalence. Therefore, since
(48) holds for the regulator (52) by Lemma 3.1, (48) also holds
for (28). However, by Theorem 2.1, (51) holds, and hence there
is an , namely , satisfying (49) and (50).

In general, a solution to (49) cannot be expected to be
unique, but if , only one solution is possible, namely

and this would require that is a stable, proper rational
function, implying that must be minimum phase with
no zeros at infinity. In particular, must be
nonsingular.
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Corollary 3.3: Suppose that is stable and the transfer
function is square, i.e., .
Then there is a T-universal regulator for the tracking problem
if and only if is proper with no poles in the region

. In this case, let be a stable scalar polynomial
such that is a matrix polynomial and is
a matrix polynomial satisfying the degree requirement
(27). Then, if and are defined by (29) and by

(53)

the regulator (28) is a T-universal regulator, and any other
T-universal regulator is equivalent to one obtained in this way.

A T-universal regulator exists only under rather special
conditions. However, if we restrict our attention to harmonic
reference signals (4), these conditions can be considerably
relaxed and we may also allow for external harmonic dis-
turbances. This is the topic of the next section.

IV. UNIVERSAL TRACKING REGULATORS

IN HARMONICALLY DISTURBED SYSTEMS

We now return to the situation described in Section I,
where the control system takes the form (1) with a harmonic
disturbance (2) and where there is a harmonic reference signal
(4). Although we may allow the index set to be empty, for
tracking we must take .

The first question to be answered is when it is possible to
find a regulator (12) in such that

as (54)

which is universal in the sense that (54) holds for all values
of and and does not depend on these
vector amplitudes. We shall refer to such a regulator as a
universal tracking regulator. For convenience, in the sequel
we use the notation

(55)

Theorem 4.1:Suppose that the matrix is stable, and let
and be the matrix polynomials defined by (26).

Moreover, let be the matrix function defined by
(21) and the matrix polynomial

(56)

Then, for a universal tracking regulator to exist in, it is
necessary that the rank condition

for all (57)

holds, and it is sufficient that both rank conditions (57) and

for all (58)

hold. In particular, (57) requires that , and
(58) that . More precisely, let be
an arbitrary stable scalar real polynomial, and let and

be matrix polynomials, of dimensions and ,

respectively, satisfying the degree requirements (27) and the
interpolation conditions

for
(59a)

for (59b)

Then, if and are given by (29), the regulator (28) is a
universal tracking regulator, and any other universal tracking
regulator (28) is equivalent to one obtained in this way.

Proof: Whenever a linear stabilizing regulator is applied
to system (1), the process tends exponentially to the
harmonic steady-state solution

(60)

where

(61a)

(61b)

, , , and being the closed-loop transfer functions
defined in Section II. In fact, for any regulator in, ,
defined by (17), is a stable matrix polynomial. In the same
way, in view of (1c), tends exponentially to

(62)

Now, the basic idea is that the tracking condition (54) is
achieved precisely when the cost function (7) is zero. It is
easy to see that

(63)

To see this, observe that if and are two harmonic vector
sequences

and

with distinct as in (3), and is an arbitrary matrix of
appropriate dimensions, then

(64)

Moreover, in view of (61b) and (62)
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and consequently (63) equals zero for all values of
and if and only if

for
(65a)

for (65b)

Theorem 2.1 states that the regulator (28) is stabilizing if
and are defined by (29) for some stable scalar real

polynomial and some real matrix polynomials
and satisfying (27) and that any other stabilizing and
realizable regulator (28) is equivalent to one obtained in this
way. Moreover

(66)

which inserted into (65) yields precisely (59).
If the rank conditions (57) and (58) hold, the interpolation

conditions (59) have a solution, and the general solution is

for

for

where, for , and are arbitrary matrices
such that and . Here
the degree of the stable polynomialis chosen sufficiently
high to satisfy the degree constraints (67). On the other hand,
the rank condition (57) is also necessary for the existence of a
universal tracking regulator. In fact, since is stable, (65b)
cannot hold if for some .

Remark 4.2:The two rank conditions (57) and (58) in
Theorem 4.1, which of course can be stated in terms of zeros
of certain transfer functions, have different status. If (57) is
violated, the interpolation condition (59b) cannot hold, so there
could be no universal tracking regulator. On the other hand,
if (57) holds but (58) does not, interpolation condition (59a)
could still be valid, as the rank of the right member could be
less than . However, this is a nongeneric situation, and hence
it cannot be expected to occur in practice. In fact, if
and , the following equation must hold:

which will occur only on a lower-dimensional algebraic set in
the parameter space.

Theorem 4.1 provides a complete solution of a problem
studied in various degrees of generality in [4]–[8], [13], [16]
and of course is consistent with the solutions given there,
although given in a different form and in continuous time.
If , rank condition (58) becomes void and only (57), a
considerably weaker version of condition (49) in Section III,
remains. Hence, for universal tracking regulators to exist the
condition is necessary, and if there are external
disturbances , in practice, we must also have .
Consequently, as also noted in [4], [7], [8], [13], and [16],
asymptotic tracking is only possible under certain specific
conditions.

Remark 4.3—Internal Model Principle:The situation most
often studied in the literature is when , i.e., ,

, and , and when the regulator (28) takes the form

obtained by setting . We assume that the rank
conditions (57) and (58) are satisfied so that .
For robustness it is desirable to include a model of the
disturbance dynamics in the regulator. This is theinternal
model principle. Following [3], we replace the matrix frac-
tion representation by the (reachable) matrix fraction
representation so that . The harmonic
dynamics is then included in the regulator dynamics by setting

, where and
is a stable matrix polynomial. Then, by (29)

which, in view of the fact that , yields

where we have assumed that has no zeros in the points
. (Otherwise we include a simple feedback loop to

move the zeros.) These clearly satisfy the interpolation
conditions (59). In fact, since , and

, by (29), these can be written

for

for

Consequently, we see that the internal-model-principle regu-
lators form a subclass of the ones considered above.

The rank condition (58) becomes void if , which
is equivalent to the case with complete state information, i.e.,
the case when . Then the formulas for the regulator
also simplify considerably.

Theorem 4.4:Suppose that so that .
Moreover, suppose that is stable and that condition (6) holds.
Then, there exists a universal tracking regulator (37) inif
and only if the rank condition (57) holds. In fact, let
be a stable scalar real polynomial, and let and be
matrix polynomials satisfying the degree constraints (36) and
the interpolation conditions

for
(67a)

for (67b)

Then, if and are given by (38), the regulator (37) is a
universal tracking regulator, and any other universal tracking
regulator (37) is equivalent to one obtained in this way.
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Proof: The proof follows the same lines as that of
Theorem 4.1, except that (39) from Corollary 2.2 is used in
lieu of (66). Since , exists and (67a)
can be solved.

When , there are no universal tracking regulators,
and in order to damp the steady-state tracking error we shall
therefore next turn to an optimization procedure. This is the
topic of the next section.

V. LINEAR QUADRATIC OPTIMIZATION

FOR TRACKING AND DAMPING

We now return to the optimization problem stated in
Section I. In this section we consider only linear regulators.
Later, in Section VI, we demonstrate that under slightly
stronger technical conditions the optimal universal regulators
presented here are actually optimal in the much larger class

, which includes nonlinear regulators.
Let us recall that the problem under consideration is to

control the disturbed system (1) by feedback from the output
so as to minimize the cost function

(68)

where is the quadratic form defined by (9). Hence,
we may not only want to damp the tracking error, but also
some internal systems variables. As before, both the distur-
bance and the reference signal are harmonic and given by
(5), where only the frequencies are known. The optimization is
performed over the class of stabilizing and realizable linear
regulators (12). The problem under consideration is: 1) to find
the conditions under which there are optimal regulators which
areuniversalin the sense that they are optimal for all choices
of the amplitudes of (5) and independent of these and 2) to
characterize the class of all such universal optimal regulators.

To address this problem, let us first take a closer look at
the cost function (68). A straightforward reformulation taking
(1c) into consideration yields

(69)

where is the real quadratic form

(70)

with the real matrices , , and given by

(71)
The quadratic form (70) need not be nonnegative definite but

must of course satisfy some condition ensuring that
. As we shall see, a sufficient condition for this is the

strong frequency domain condition,i.e., that there is a
such that

(72)

for all , satisfying

(73)

for all such that . It can be shown [21]
that if this condition fails in a strong way, i.e., there are

, , and , , such that , then there
is an external disturbance such that . In
this section, however, we shall only need theweak frequency
domain conditionthat (72) and (73) hold for , , ,

, defined as in (55).
Both of these conditions are invariant under the action of

the feedback group

where is a nonsingular matrix and is an arbitrary matrix of
appropriate dimensions. Moreover, sincehas no eigenvalues
on the unit circle, the inverse

(74)

exists for all on the unit circle, and hence so
that where is the Hermitian
matrix function

(75)

In this notation the strong frequency domain condition may
be written

for all on the unit circle (76)

and the weak one as

for (77)

We now state the main result of this section. It will be
strengthened in Section VI, where we show that under mild
technical conditions the optimal universal regulator inis
also optimal in the wider class .

Theorem 5.1:Let , , and be the matrix
polynomials defined by (26) and (56). Suppose that the matrix

is stable and that the weak frequency domain condition
(77) holds, and suppose that

for all (78)

i.e., in particular that . Then,
there exists an optimal regulator in which is universal in
the sense that it is optimal for all values of and

and does not depend on these vector amplitudes.
More precisely, let be an arbitrary stable scalar real

polynomial, and let and be matrix polynomials of
dimensions and , respectively, satisfying the degree
requirements (27) and the interpolation conditions

for (79a)

for (79b)

with and given by

(80)
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where . Then the regulator (28) is an
universal regulator, which is optimal in, provided and
are given by (29) and any other universal regulator (28), which
is optimal in , is equivalent to one obtained in this way.

Since, by assumption, is nonsingular for
, (79a) has the solution

(81)

for , and these are precisely all solutions of (79a).
Clearly, there are always matrix polynomials and
satisfying (81), (79b) and the degree constraints (27), provided
the degree of the stable scalar polynomial is chosen
sufficiently large.

Remark 5.2: If , there exist optimal regulators, but,
as explained in Remark 4.2, universality is not a generic
property; therefore, for all practical purposes, there are no
optimal universal regulators if .

Remark 5.3:Before proceeding to the proof of Theorem
5.1, let us make certain that it is consistent with the results
of Section IV. To this end, let us consider a cost function (7),
i.e., suppose that . Then

where the matrix function is given by (21). If
, the weak frequency domain condition cannot hold,

so Theorem 5.1 does not apply. Instead, Theorem 4.1 should
be used. If , the weak frequency domain condition is
a consequence of condition (57), and it is easy to check that
the optimal cost will be zero, as required by Theorem 4.1.
Moreover, interpolation conditions (59) and (79) are identical.
Finally, if , no universal tracking regulator exists by
Theorem 4.1, and the optimal cost will be nonzero in general.

Remark 5.4—Generalized Internal Model Principle:As in
Remark 4.3, let us consider the case when , so that

, , , and , and
in the regulator (28). For simplicity, also assume that .
If and and , the interpolation
conditions (79) can be written

for , as can be seen from (29), (80), and
the fact that , , and . All of these
interpolation conditions are satisfied if the second set is, and
in this case (29) implies that

which could be interpreted as ageneralized internal model
principle for the optimization problem.

The basic idea behind the proof of Theorem 5.1 is, as for
Theorem 4.1, that whenever a linear stabilizing regulator is
applied to the system (1), the process tends exponen-
tially to the harmonic steady-state solution (60). Therefore, the
cost function (68) depends only on the harmonic component

(60) of . In fact, we have the following lemma. The
proof follows from a simple completion-of-squares argument
and is deferred to Appendix A.

Lemma 5.5:Let be any solution to the closed-loop
system (1), (12), where (12) is a stabilizing and realizable reg-
ulator, and suppose that the weak frequency domain condition
(77) holds. Then the cost function (68) exists as a usual limit,
and it takes the value

(82)

where, for

(83)

with and given by (80) and by

(84)

where

(85)

In the expression (82) for the cost function, only ,
, , depend on the regulator to be chosen. They are

defined by (61b), i.e.,

(86)

Recall that we consider the class of external disturbances
with arbitrary for and for

and the class of reference signals with
for and for .

Consequently, if we could find a stabilizing and realiz-
able regulator (12) such that satisfy the
optimality conditions

(87)

which, in view of (86), is the same as

(88)

then this regulator would be optimal. If, in addition, this regu-
lator does not depend on the amplitudes ,
and , and the conditions (88) hold for all

and , i.e., all disturbances in and all
reference signals in , then this optimal regulator is also
universal. This condition holds if and only if

for (89a)

for (89b)
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Proof of Theorem 5.1:Theorem 2.1 states that the regu-
lator (28) is stabilizing if and are defined by (29) for
some stable scalar real polynomial and some real matrix
polynomial satisfying (27), and that any other stabilizing
and realizable regulator (28) is equivalent to one obtained in
this way. Moreover

(90)

We have demonstrated above that (89) is a necessary condition
for the regulator (28) to be an optimal universal regulator, and
inserting (90) into (89) yields precisely (79). Clearly, as we
have already discussed, there are always matrix polynomials

and satisfying these conditions and the degree
constraints (27), provided the degree of the stable scalar
polynomial is chosen sufficiently large, and provided
condition (78) is satisfied.

It remains to prove the converse statement. For any optimal
universal regulator , the value of the cost function
(68) equals , defined by (84). It follows from (82) and the
fact that , for , that (87) holds for
all , and . Therefore, (89) follows from
(88). By Theorem 2.1, the regulator is equivalent to
(28) with given by (29) for some satisfying the
requirements of Theorem 5.1. This regulator is also optimal
since equivalent regulators have the same cost. It is also
universal because does not depend on
and .

Corollary 5.6: The optimal value of the cost function (68)
in the class is , defined by (82) and (83).

Note that, although an optimal universal regulator will not
depend on and , the cost function (84)
will.

In the special case of complete state information, i.e.,
, condition (78) is always satisfied. In view of Corollary 2.2,

Theorem 5.1 can be considerably simplified in this case, so we
state it separately. The proof is the same as for Theorem 5.1,
except that we now use the equations of Corollary 2.2.

Theorem 5.7:Suppose that so that .
Moreover, suppose that is stable and that condition (6) holds.
Then, if the weak frequency domain condition (77) holds, there
exists a universal regulator (37), which is optimal in. In fact,
let be a stable scalar real polynomial, and let and

be matrix polynomials satisfying the degree constraints
(36) and the interpolation conditions

for (91a)

for (91b)

where and are defined as in (80). Then, if and are
given by (38), the regulator (37) is a universal regulator, which
is optimal in . Conversely, any other universal regulator (37),
which is optimal in , is equivalent to one obtained in this
way. Finally, the optimal value of the cost function (68) is
given by (84).

Since, by assumption, is a nonsingular matrix of
dimension , (91a) has the solution

(92)

for . There are always matrix polynomials and
satisfying (92), (91b), and the degree constraints (36),

provided the degree of the stable scalar polynomial is
chosen sufficiently large.

VI. OPTIMALITY IN THE CLASS OF NONLINEAR REGULATORS

In this section we show that the universal optimal linear
regulators described in Theorems 5.1 and 5.7 are actually
optimal in a wide class of nonlinear regulators. We now define
this class.

Given the control system (1), consider the class of
nonlinear regulators

(93)

which is stabilizing in the sense that any solution of
the closed-loop system consisting of (1) and (93) satisfies the
condition

as (94)

This stability condition is quite weak but will suffice for our
purposes. Of course, a weaker condition has the advantage of
allowing for a larger class of controls.

We consider the same problem as in Section V, except that
we now optimize over all regulators in . Clearly, .
The only price we have to pay for this generalization is that
the weak frequency domain condition needs to be replaced by
the strong one.

Theorem 6.1:Let be stable, and suppose that the rank
condition (78) holds. Then, if the strong frequency domain
condition (76) holds, the linear optimal universal regulators of
Theorem 5.1 are optimal in the class.

It turns out that Theorem 6.1 is a simple consequence of the
corresponding result for complete state information. In fact, the
class of stabilizing and realizable regulators

with

is a subclass of the class of stabilizing and realizable regulators

in that only a special structure of is required. But, as seen in
Section V, an optimal universal regulator in the former class
is optimal also in the latter, since the same optimal value

is achieved (Corollary 5.6 and Theorem 5.7). (The only
difference between the cases of complete and incomplete state
information is that a higher degree regulator may be required
in the latter case to achieve the optimum.) Consequently, if
we can prove the following theorem, we have also proved
Theorem 6.1.
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Theorem 6.2:Let be stable, and suppose that
and that . Then, if the strong frequency domain
condition (76) holds, the linear optimal universal regulators of
Theorem 5.7 are optimal in the class.

In order to prove this theorem we consider an optimization
problem which unlike that in Section V does not require that
a linear regulator has been applied. More precisely, let us
first consider the problem of finding a process
which minimizes the cost function (8), subject to the con-
straints (94) and

(95)

where now and are arbitrary bounded and
complex-valued vector sequences.

It is well known (see, e.g., [20], [21], [24], [25], and [29])
that if the strong frequency domain condition (76) holds and

is stabilizable, then the algebraic Riccati equation

(96)

has a unique symmetric solutionwhich renders the feedback
matrix

where
(97)

stable in the sense that all eigenvalues oflie strictly inside
the unit circle. We shall refer to this solution as thestabilizing
solution of (96). For this solution we also have that

(98)

is positive definite.1

Then we have the following result, which should be com-
pared to [21, Th. 2.3], the proof of which we defer to
Appendix B.

Lemma 6.3: Let be stabilizable and suppose that
the strong frequency domain condition (76) holds so that (96)
has a stabilizing solution . Moreover, let

(99)

where

(100)

Then the problem to minimize the cost function (8) subject
to constraints (94) and (95) is solved by a process
such that

(101)

where is given by (97) and is any vector sequence
such that

(102)

1Note that there is a misprint in [21, p. 788]: In Theorem 2.1, replace
“statements hold” for “statements are equivalent.”

The optimal value of the cost function is

(103)

where

(104)

If the limit exists, any optimal process
is produced in this way.

Note that the control (101) cannot in general be used in
practice, since it depends on future values ofand . Even
in the harmonic case when this dependence can be resolved,
this control law has serious disadvantages [21, Sec. III]. It is
developed here as an instrument of proof.

Next, let us return to our original problem and take
and to be harmonic, given by (5). Then a simple

calculation, using (99) and (100), yields the representation

with (105)

where

We are now in a position to prove Theorem 6.1.
Proof of Theorem 6.1:Clearly, for any regulator in ,

(103) is a lower bound for the cost. Therefore, if we can
demonstrate that there is a regulator inwhich achieves the
same value (103) of the cost, this regulator must be optimal
also in , and so must all regulators which are optimal in.

To this end, let us introduce a new control so that

(106)

transforming the system (1a) to

(107)

We want to find a stabilizing and realizable regulator

(108)

so that the closed-loop system (106)–(108) has a solution
satisfying (101) for some with the property (102).

Then, by Lemma 6.3, the regulator (106), (108), i.e.,

(109)

is optimal in . Therefore, the optimal linear regulators of
Theorem 2.1 must be optimal also in.

Since (108) is stabilizing, the solution of the closed-
loop system (107), (108) tends exponentially to a harmonic
solution
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which of course yields the same value toas . Now,
if we can choose so that

for (110)

and hence , then has the property (102)
and (106) becomes (101) as required.

To show that there are such that (110) holds, we
first apply Corollary 2.2 to the system (107), wheretakes
the place of and that of . In fact, by Corollary 2.2,
there is a stable scalar polynomialand matrix polynomials

such that and so that
are given by

and

and

However, tends exponentially to the harmonic solution.
Since therefore

and is given by (105), the optimality condition (110) will
be satisfied for all and if

Since is full rank, in view of the discussion in Section V
can be chosen to satisfy these interpolation

conditions.

VII. SOME SIMPLE NUMERICAL EXAMPLES

To illustrate the results of this paper, let us consider the
system

(111)

where is the control, and are outputs, and the
characteristic polynomial

is stable with . Defining the state

the plant equations (111) can be written in state-space form
(1), where

so that is the characteristic polynomial of , and

The matrix polynomials (26) are

and

Let us first take and consider the problem to find
a T-universal regulator

(112)

so that tends asymptotically to . By Corollary 3.3, a
T-universal regulator exists if and only if

and stable (113)

where

In fact, . In this case, (112) is a T-
universal regulator if and only if

(114)

for some polynomials and such that is stable and
or is equivalent to one obtained in this

way. This corresponds to the choice . Of course,
asymptotic tracking is achieved forall choices of reference
signal .

If, instead, we consider a reference signal

(115)

where the frequencies , are given, but the amplitudes ,
and the phases , are unknown, the class of regulators

(112) which achieve asymptotic tracking is much larger, and
condition (113) need not be satisfied but can be exchanged for

for (116)

In fact, by Theorem 4.1, in this case we may choose any
stabilizing regulator

(117)

provided is stable and the degree constraint (27) and the
interpolation conditions

for

are satisfied. The same regulator is obtained by applying
Theorem 5.1, now observing that (116) is the weak frequency
domain condition; see Remark 5.3. This allows for more tuning
parameters to satisfy other design specifications. Of course, if
condition (113) is fulfilled, the T-universal regulator can still
be used.

As a numerical example, suppose that , , and
, and let and . Then condition (113)

is satisfied, so a T-universal regulator exists. Such a regulator
is obtained by, for example, setting and in
(114). If and and the initial conditions are

, this yields the error depicted in Fig. 2. The
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Fig. 2.

dashed line in the same figure is the tracking error obtained
by setting .

Next, let us take , while and remain the same.
Then becomes unstable, so a T-universal regulator fails to
exist. Although condition (113) fails, we could still obtain
asymptotic tracking by using a universal tracking regulator,
constructed as in Theorem 4.1, provided condition (116) holds,
and we shall present a simulation for this case in the end of
the section.

We now add an harmonic disturbance

(118)

in the system (111), where , are given, but , and ,
are unknown. Suppose we want to determine an optimal

universal regulator for the cost function

(119)

Since the matrices , , and in (71) become

a simple calculation yields

for (75), and therefore the strong frequency domain condition
(76) is always satisfied if , so any optimal universal
regulator (112) is optimal in the larger class of possibly
nonlinear regulators described in Section VI. If , the
strong frequency domain condition will fail if and only if the
polynomial has a root on the unit circle, while the weak
frequency condition (77) will still hold provided we avoid
choosing any of the frequencies in (115) and (118) so that

, , , or is such a root.
Next, let us consider the interpolation condition (79).

Clearly, defined by (56) is identically one, and a

Fig. 3.

straightforward calculation yields

for any on the unit circle. In order to construct an optimal
universal regulator we need to choose a stable polynomial

of degree at least five. The parameters, , , , , as
well as will be available for tuning in order to improve the
overall design. Then, defining the real numbers, , , ,

, , , via

for

for

it is easily seen that the polynomials

will satisfy the interpolation conditions (79a) if and only if its
coefficients satisfy the linear system of equations

Consequently, by Theorem 5.1, (117) is an optimal universal
regulator if and are determined in this way.

For an example, take as before , , and
. Moreover, we choose a disturbance (118) with

frequencies and , while the harmonic
reference signal (115) has the same frequencies ,

as in the first simulation. In Fig. 3 we illustrate the
tracking error of the optimal universal regulator corresponding
to a polynomial with roots 0.3 0.3 , 0.3 0.2 , 0.5, and

. The amplitudes in (115) and (118) have been taken
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Fig. 4.

to be , , and , and the initial
conditions are . As before, the dashed line is
the tracking error obtained by setting . Remember
that, since , the control energy is also damped, so
there is a certain tradeoff here. We remark that it is important
to tune the free parameters to obtain good properties of the
regulator. In particular, the transients, which do not affect the
cost function, can change dramatically with different choices
of free parameters.

Now, setting and instead,
while keeping all the other parameters the same, we obtain
the errors in Fig. 4. As seen, the error goes asymptotically
to zero, despite the fact that condition (113) is not fulfilled so
that a T-universal regulator does not exist. In fact, by Theorem
4.1, this is a universal tracking regulator which exists since

on the unit circle. In order to speed up the
convergence, the roots ofhave been reset at 0.7 0.1 , 0.3

0.2 , and 0.8. Since now we do not have the disturbance
frequencies and , we could choose another

to possibly get a universal tracking regulator with a
better transient.

VIII. C ONCLUSIONS

In this paper we have givencompletecharacterizations of
regulators which satisfy certain tracking specifications and
which are universal in the sense that they are independent
of disturbances and tracking signals and apply regardless of
the values of these.

As a preliminary, we considered a problem of asymptotic
tracking of an arbitrary signal , and we characterized all
regulators which are universal with respect to the choice of

. We showed that such universal regulators exist only under
very special conditions. These conditions can be considerably
relaxed if the reference signal is exchanged for a harmonic
signal with known frequencies but unknown amplitudes and
phases, and we want the regulator to be universal in the
sense that it achieves asymptotic tracking for all choices
of amplitudes and phases. Then, if the dimensionof the

reference signal is no larger than the dimensionof the
control, such a regulator exists under mild conditions. This
is in harmony with other results in the literature [4]–[8], [13],
[16], where, however, the continuous-time case is considered.
We provided complete solutions of these problems in discrete
time, and our proof is considerably simpler.

If the system is also corrupted by a harmonic disturbance
, asymptotic tracking may still be possible provided the

dimension of the disturbance is no larger than the dimension
of the output available for feedback. However, if a certain

rank condition fails, which in particular is the case if ,
asymptotic tracking is not possible, but a steady-state error
will remain. Therefore, we considered next an optimal control
problem to damp the steady-state tracking error, also giving
the option to damp internal system variables. We characterized
the class of all optimal regulators which are universal in the
sense that they are optimal for all choices of the amplitudes
of and . Such regulators were shown to exist if the weak
frequency domain condition holds and . On the other
hand, if , there are always algebraic conditions on the
system parameters, implying that universality is not a generic
property in this case.

We have also shown that all optimal universal regulators
can be chosen as linear even if the optimization is over a
very large class of nonlinear regulators, provided the strong
frequency domain condition holds. We have given complete
characterizations of all linear optimal universal regulators in
terms of parameterizations containing many free parameters.
This allows for a considerable amount of design freedom,
which can be used to satisfy other design specifications via
loop shaping. Indeed, we stress that our solutions are optimal
in the sense stated in this paper only, and that other desirable
design specifications may not be satisfied for an arbitrary
universal optimal regulator.

APPENDIX A
PROOF OF LEMMA 5.5

Since and tend exponentially to the harmonic com-
ponents (60), only these contribute to the cost function (70);
consequently, the usual limit (rather than just limsup) does
exist in (69), and it is given by where

(A1)

for . In fact, this follows from the argument
leading to (64). Now, in view of the constraint (1a)

(A2)

and therefore (A1) takes the form

(A3)

where if the weak frequency domain condition (77)
is fulfilled. Here is given by (85), and

(A4)
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Therefore, assuming that the weak frequency domain condition
(77) holds so that for , we may
complete squares in (A3) to obtain

(A5)

where

(A6)

From this the equations of the lemma follow readily.

APPENDIX B
PROOF OF LEMMA 6.3

The proof is similar,mutatis mutandis,to the one given in
[21, Sec. II]. Recall from (69) that the cost function can be
written

(B1)

where

(B2)

with being the quadratic form (70). Next, introduce
the Lyapunov function

(B3)

where is the unique stabilizing solution of (96),
is given by (100) and satisfies (104). Then, along
the trajectory of (95)

(B4)

where is given by (99).
In fact, inserting (95) and completing squares in the left

member of (B4) yields the right member of (B4) plus a number
of terms which are either quadratic in , linear in , or
constant with respect to . The quadratic terms cancel due
to the fact that satisfies the algebraic Riccati equation (96),
and the constant terms cancel due to (104). Finally, the linear
terms cancel provided

which has the unique bounded solution (100), sinceis a
stable matrix.

Now, set and , where
is an admissible process, and sum (B4) from

to to obtain

By virtue of condition (94) and the boundedness of

where of course the last term tends to zero as .
Consequently, for any admissible , the cost function
(B1) becomes

(B5)

Therefore, since

(B6)

for any admissible control. Clearly, equality would be achieved
if we could take to satisfy (101) since does not
contribute to by virtue of (102). Hence it remains to prove
that such a process satisfies the stability condition (94). To this
end, insert (101) in (95) to obtain

(B7)

Since and are bounded, satisfies
(102) and is a stability matrix, satisfies the
weak stability condition (94). The last statement follows
immediately from (B5) and (B6).
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[17] V. Kuc̆era, “The discrete Riccati equation of optimal control,”Kyber-
netika, vol. 8, pp. 430–447, 1972.

[18] H. Kwakernaak and R. Sivan,Modern Signals and Systems.Engle-
wood Cliffs, NJ: Prentice-Hall, 1991.

[19] G. Leitmann and S. Pandey, “Aircraft control under conditions of
windshear,” inProc. 29th Conf. Decision and Control,Honolulu, HI,
1990, pp. 747–752.

[20] P. Lancaster, A. C. M. Ran, and L. Rodman, “Hermitian solution of the
discrete algebraic Riccati equation,”Int. J. Contr.,vol. 44, pp. 777–802,
1986.

[21] A. Lindquist and V. A. Yakubovich, “Optimal damping of forced
oscillations in discrete-time systems,”IEEE Trans. Automat. Contr.,vol.
42, pp. 786–802, 1997.

[22] , “Optimal damping of forced oscillations by output feedback,”
in Stochastic Differential and Difference Equations,Progress in Systems
and Control Theory, vol. 23, I. Csiszár and G. Michaletzky, Eds.
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