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Optimal Damping of Forced Oscillations
in Discrete-Time Systems

Anders Lindquist,Fellow, IEEE, and Vladimir A. Yakubovich

Abstract—In this paper we consider a linear discrete-time
control system affected by an additive sinusoidal disturbance
with known frequencies but unknown amplitudes and phases.
The problem is to damp this forced oscillation in an optimal
fashion. We show that the natural solution from the point of view
of optimal control is neither robust with respect to errors in the
frequencies, and thus not optimal in practice, nor independent
of the unknown amplitudes and phases. The main result of this
paper concerns the existence and design of a realizable, robust
optimal regulator, which is universal in the sense that it does not
depend on the unknown amplitudes and phases and is optimal
for all choices of such parameters. The regulator allows for a
considerable degree of design freedom to satisfy other design
specifications. Finally, it is shown that this regulator is optimal
also for a wide class of stochastic control problems.

Index Terms—Optimal damping, optimal universal regulators,
sinusoidal disturbances, stochastic control.

I. INTRODUCTION

CONSIDER the linear discrete-time system

(1)

where is an -dimensional real state sequence, is a
-dimensional real control sequence

...
(2)

is an -dimensional real sinusoidal disturbance with known
frequencies

(3)

but unknown amplitudes and phases
and are given real matrices of

appropriate dimensions so that is a stabilizable pair
and has no trivial (i.e., zero) columns.

One application area of interest which can be modeled
by such equations is that of flight control through wind
shear, where the sinusoidal forcing terms arise from a model
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for wind shear based on harmonic oscillations [24], [18].
Various criteria such as set point control of the clime rate or
minimization of other performance criteria have been proposed
in the literature [24], [18], [32]. Other applications include
vibration damping for industrial machines, noise reduction in
vehicles and transformers, periodic disturbance reduction in
disk drives, and the control of the roll motion of a ship (see,
e.g., [4], [8], [9], [11], [12], [14], [27], [29], and [30]).

Another possible criterion for these problems is to force
some output signal to tend asymptotically to zero.
Since the sinusoidal disturbance can be modeled as a critically
stable “exosystem,” a discrete-time version of the methods
proposed in [6] and [7] could be used for this purpose.
However, such solutions are not always available, as some
rather strict geometric conditions need to be satisfied.

In this paper we shall consider the minimization of a
quadratic performance measure which reflects the ability of
damping the steady-state solution of (1) produced by the
sinusoidal disturbance. More precisely, the control objective
is to minimize the cost functional

(4)

where is the real quadratic form

(5)

satisfying the frequency-domain condition (13) below and with
and symmetric, i.e., and . This cost

function is appropriate for most of the applications mentioned
above. However, in many problems of noise reduction or
vibration attenuation in vehicles, especially in helicopters, the
harmonic disturbance needs to enter the cost function in a
quadratic manner in order to allow some system output to track
a harmonic reference signal of type (2); see, e.g., [23] and [13].
This situation is not covered by our present formulation but is
considered in a sequel to this paper [22].

The mathematical problem under consideration in this paper
is to find among all regulators

(6)

which are stabilizing in the sense that they generate a state
process satisfying the admissibility condition

(7)
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for each choice of disturbance (2), one that minimizes the cost
functional . We would like to find an optimal regulator with
the following special properties. It is realizable in the sense
that it has a bounded finite memory

for some
(8)

and does not depend on the unknown parameters
and . More precisely, the function

corresponding to the optimal controller should not depend on
the amplitudes and phases, while of course the optimal process

and the cost function certainly do depend on these
parameters. In other words, we want to find a regulator (8)
which isuniversalin the sense that it solves the complete fam-
ily of optimization problems corresponding to different choices
of and . Moreover, the optimal
regulator must berobustwith respect to the known frequencies

in the following (nonstandard) sense: since,
in practice, the regulator will be computed from estimates

of the true frequencies , the cost
functional must be continuous in the estimation errors

and tend to its true optimal
value as the errors tend to zero. Otherwise, the regulator will
not be optimal in practice. This formulation can be generalized
to the situation of more general output feedback where some
output, and not the complete state, is available for observation
[21], [22].

We shall demonstrate that this problem has a solution in the
class of linear regulators

(9)

for which the overall closed-loop system consisting of (1) and
(9) is stable. Here is the forward shift operator ,
and and are and matrix polynomials
such that the leading coefficient of is nonsingular and

so that is a proper rational
matrix function. Of course, for such a regulator to be universal,
the matrix polynomials and must not depend on
the unknown amplitudes and phases.

Since therefore the optimal solutions belong to a class of
linear stabilizing regulators, (7) may seem unnecessarily weak.
However, the point is that we want to prove optimality in the
largest possible class of regulators, including nonlinear ones,
and (7) turns out to be the natural stability condition for such
a class.

Regulator (9) may also be written in the form

(10)

where and can be determined from the matrix
fraction representation

(11)

by means of some realization procedure. However, the matrix
polynomials and need not be coprime, so for the
sake of robustness it is practically more convenient to use the
form (9). Also, if we replace (1) by

(12)

for appropriately defined matrix polynomials and ,
then we can reduce it to (1), but it also allows us to consider
many cases of (1) for which we can observe only an output

, where is some matrix.
The quadratic form (5) could be indefinite but must satisfy

the frequency-domain condition

(13)

for some and for all such that
and . This is a natural condition. In

fact, it can be shown that if it fails in a strong way, i.e., there
are and such that , then there is an
external disturbance such that (see Appendix
A). In the optimal damping problem the quadratic formis
usually of the type . If
for all , then in this case (13) obviously holds. Here
we allow for more general forms of , even those that are
indefinite.

The outline of the paper is as follows. In Section II we
present some preliminary optimality results for a general
bounded external disturbance. In Section III we specialize this
to harmonic disturbances, discuss some nonsolutions to the
robust control problem, and reformulate the problem to be
solved. In Section IV we give a general characterization of
the class of stabilizing regulators, which may be of interest
in its own right. This parameterization turns out be related
to, but not quite equivalent to, the Youla parameterization.
Section V is devoted to the main result. Here we present a
solution of the control problem stated above, and in Section VI
we illustrate this solution by a simple numerical example and
some simulations. In Section VII we show that this solution is
also optimal when the disturbance is generated by a certain
harmonic stochastic system. Of course, if is merely white
noise or colored noise with known rational spectral density,
the solution is well known; see, e.g., [2] and [5]. Our problem,
however, actually corresponds to the case of colored noise but
with unknownspectral density.

II. PRELIMINARY OPTIMALITY RESULTS

We recall the classical problem in control theory to minimize

(14)

when

(15)

and

(16)

It is well known that this problem has the optimal feedback
solution

(17)

where the gain

(18)
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is expressed in terms of the stabilizing solution of the matrix
equation

(19)

i.e., the symmetric solution which, if it exists, renders the
feedback matrix

(20)

stable in the sense that all eigenvalues oflie strictly inside
the unit circle (see, e.g., [16], [31], [25], and [17], and the
articles in [3]). Matrix equation (19) is known as thealgebraic
Riccati equationor, originally and more correctly, theLur’e
equation.

The existence of a solution of (19) is equivalent to the
existence of a Lyapunov function

(21)

satisfying

(22)
for some matrices and . This can be seen
by merely forming the left member of (22) and completing
squares, whereby (22) is obtained if and only ifsatisfies
(19). This procedure also shows thatmust be given by (18)
and that

(23)

We recall the following theorem which relates the
frequency-domain condition introduced in Section I to the
existence of an optimal solution to the problem to minimize
(14) subject to (15) and (16) as well as to the existence of a
stabilizing solution of (19). Different versions of this theorem
can be found in [16], [31], [26], [25], and [17], but the first
result of this type was established by Kalman and Szegö [15]
for the case . The case of infinite-dimensional systems
was treated in [1] and [19]. Using the results of [1] and [19],
all the results of this paper could be extended to the case that

are vectors in infinite-dimensional Hilbert spaces.
Theorem 2.1:Let be stabilizable. Then the follow-

ing statements hold:

1) there exist matrices and
satisfying (22) and rendering (20) stable;

2) for any initial condition there exists an op-
timal process minimizing (14) subject to the
constraints (15) and (16);

3) the frequency-domain condition (13) holds.

It is easy to see that (13) is an immediate consequence of
(22) and the fact that is stable and is positive definite. Let
us suppose for simplicity that is a stable matrix. (The general
case reduces to this one by the stabilizability of .)
Relation (22) for real implies that the same relation holds
for complex provided denotes Hermitian conjugation.
Taking and such that and
(22) becomes

with equality if and only if , i.e., if and only if
. But, since is a stable matrix, this is equivalent

to , and hence . Since has no eigenvalues on
the unit circle, this establishes (13). The proof of the converse
statement, namely that the frequency domain condition (13)
implies 1), is much harder.

We also remind the reader that the optimality of (17) is
immediate from 1). In fact, for any admissible process, (16)
implies that as and hence so does .
Therefore, (22) yields

Since is stable, (17) yields an admissible process, which is
obviously optimal and uniquely defined by virtue of the fact
that .

Next we add a bounded external disturbance to (15)
to obtain

(24)

Then, we must change both the stability condition (16) and
the cost functional. In fact, we take

(25)

to be the cost functional to be minimized, and we say that
the process is admissibleif it satisfies (24) and the
stability condition (7), i.e.,

(26)

For simplicity, and with the obvious definition of the averaging
operator M , we shall also write

M (27)

A completion-of-squares argument such as the one above
will still work but requires a more general Lyapunov function
of the form

(28)

where is a stabilizing solution of (19). To this end we shall
assume again that is stabilizable and that the frequency-
domain condition (13) holds so that such a stabilizing solution
actually exists.

Lemma 2.2:Let be a stabilizing solution of (19) and
suppose that the sequences and satisfy the recursions

(29)

and

(30)

for where and are defined by (20) and
(23), respectively, and

(31)
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Then, the Lyapunov function (28) satisfies

(32)

along the trajectory of (24), where is the gain (18).
Proof: Using (22) and completing squares in a straight-

forward calculation shows that the left and right members of
(32) differ by a term which is linear in , whose coefficient
is zero by (29) and a constant term, which is zero by virtue of
(30).

If we have

(33)

so that (30) and (31) can be replaced by

(34)

respectively

(35)

However, since is stable, (33) is strictly unstable in the
forward direction. Moreover, (29), or (33), has a unique
bounded solution, namely

(36)

It is easy to verify that (36) is true, regardless of whether
or not, but if the bounded solution of

(29) is not unique.
Theorem 2.3:Let be stabilizable and suppose that

the frequency-domain condition (13) holds so that (19) has
a stabilizing solution . Moreover, let be the bounded
solution (36) of (29). Consider the problem to minimize the
functional (25) subject to conditions (24) and (26). Then the
process obtained by taking the control

(37)

in (24) is optimal if and are given by (18) and (35),
respectively, and is a sequence such that

M (38)

The optimal value of the cost function is given by

M (39)

More specifically, for any admissible , the value of the
cost functional is

(40)

If the limit exists, any optimal process
is produced by a controller (37) with satisfying

(38).

Proof: Set and , where
is an admissible process. Then (32) yields

Since and , by admissibility
condition (26)

for any initial value , and hence the cost functional (25)
becomes (40). Since , we obtain from (40) that

(41)

for any admissible control. Now, taking (37), the controlled
system (24) becomes

(42)

where, by construction, is a stability matrix and is
bounded. Because satisfies (38), it is simple to show that
the admissibility condition (26) is fulfilled (see Appendix B),
and consequently (37) is an admissible control. Then we see
from (41) and the condition that (37) is in fact optimal,
and hence the minimum value of is

(43)

Using (30), we now transform (43) to (39). Conversely,
suppose that is optimal so that . Then, since
the limit exists

M

implies that satisfies M . But
and hence (38) follows.

The control law described in this theorem is of course in
general not satisfactory becausedepends through

(44)

on future values of the disturbance. Hence it is, in general,
not realizable. As we shall see next, the objection disappears
if is harmonic, but new difficulties will appear.

Remark 2.4:All the results of this section remain valid
when the disturbance is allowed to be complex (while the
other parameters remain real), provided that and
are replaced by and , respectively. Then

is complex, while remains real.



790 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 6, JUNE 1997

III. OPTIMAL CONTROL WHEN THE

EXTERNAL DISTURBANCE IS HARMONIC

Let us now suppose that the external disturbancein (24)
is harmonic or, more precisely, that

(45)

where

...
(46)

with complex numbers and

(47)

This allows us to write where

and

(48)

This choice of is more general than that in Section I, and
by redefining the matrix it covers the systems description
there.1

However, if the limits exist in the corresponding cost
functions (4) as will be the case for the linear class (10), or
(9) (see Theorem 4.4), the problem of Section I with a real
disturbance, henceforth called thereal optimization problem,
can be embedded in thecomplex optimization problemwith
harmonic disturbance (46) and with the same (real)as
in Section I. With the obvious modifications described in
Remark 2.4, Theorem 2.3 applies to this problem as well.

Proposition 3.1: Let , and set and
for . Then, if the process

is optimal for the complex optimization problem, the process
is optimal for the real optimization prob-

lem, provided the limits in the cost functions (4) exist in both
problems.

Proof: Note that

and that satisfies (1) with given by
(2) and the same equation with cosine
exchanged for sine and with . Therefore, if the corre-
sponding limits in (4) exist, the complex optimization problem
is decomposed into two real optimization problems, one of
which is precisely that of Section I. Clearly, the complex
optimization problem is solved only if the two real ones are.

Let us now consider the optimization problem. For simplic-
ity and to illustrate a point, let us, just for the moment, assume
that and let us take in Theorem 2.3. Then, by
(35), where , and therefore, in

1Let us denoteC andwt in (1) asC0 andw0

t , respectively. Then, if no
!j equals zero or�, C = [C0; C0] andC0w0

t = Cwt in (45), and, in (46),
m = 2�; �j = 1

2
�je

i' ; ��+j = 1

2
�je

�i' ; �j = !j ; and��+j = �!j
for j = 1; 2; � � � ; �. If !k = 0 or !k = �; �k = ��+k; and we may take
�k = ��+k, so the corresponding column inC0 need be repeated inC. Note
thatC andCwt are real.

view of (42) and (43), the optimal process,
satisfies the system of equations

(49)

For an optimal process, , given by (36), and are bounded.
Conversely, let be a bounded solution of (49) and let

. Using the first equation in (49) and (20),
we obtain

Therefore, by Theorem 2.3, is an optimal process.
Now, consider the linear -dimensional system

(49). Since is stable and therefore is antistable, the
state space is decomposed as the direct sum of three invari-
ant subspaces, the-dimensional stable subspace , the

-dimensional antistable subspace , and -dimensional
center manifold , being the subspaces spanned by the
generalized eigenvectors of the coefficient matrix of (49)
corresponding to the eigenvalues of modulus less than one,
greater than one, and one, respectively. The evolution of the
entire linear system (49) is a superposition of three motions,
the one on which tends asymptotically to zero as ,
the one on , which is unbounded, and the one on ,
which is harmonic.

We remark that almost all solutions of (49) are unbounded
and hence do not correspond to optimal processes. By Theorem
2.3, , as a unique bounded solution of (29), is given by (36).
Therefore, in view of (45) and (46), must be harmonic in
the optimal solution, i.e.,

(50)

where

(51)

with being the th columns of the identity matrix .
Consequently, , given by (31), must also be harmonic and
is given by

(52)

where

(53)

and therefore there is a matrix

(54)

which does not depend on the unknown such
that

(55)

This implies that (49) may be replaced with

(56)
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the orbits of which are bounded and fill the -
dimensional subspace . Note that (50)–(56) have
been derived without resorting to the condition , so
this condition is no longer needed. We have established that
any solution of (56) together with

(57)

yields an optimal process. The equations in (56) coincide with
(24) with given by (45) if we use the control (57). So the
regulator (57) gives us an optimal process. But, we cannot use
this regulator since the process is not available through
observations.

Next, consider two ideas of identification of the unknown
. We will see that both of them will fail. In the first, we

consider as part of the state and try to construct an observer
to estimate it from . Indeed, the standard reduced-order
observer is obtained by setting

(58)

so that

Then, the observer will have the same structure, namely

but with an initial condition which is an arbitrary estimate of
, say . Since satisfies

(59)

and is an observable pair (provided is full rank), the
pole placement theoremimplies that can be chosen so as
to give any desired spectrum; in particular we can
make it stable. Then, by Theorem 2.3, the control law (57)
could be replaced by

since as . Unfortunately, however,
the corresponding closed-loop system will not be strictly
stable since, as a simple calculation reveals, its characteristic
polynomial will contain the characteristic polynomial of

as a factor. In fact, this will also be the case for a
regulator based on a full-order observer. This is of course a
manifestation of the fact that (25) is not a stabilizable system.

A second unworkable idea is based on the observation that
the unknown amplitudes can be determined
exactly in a finite number of steps by choosingin (59) so
that all eigenvalues of are zero, and hence is
at most steps so that can be determined
exactly. Then, by (58), is completely known, and hence so
is as given by Theorem 2.3 and by (52). It may therefore
seem reasonable to try to use a control law

(60)

where is known and precomputed instead of being obtained
via feedback. However, such a regulator will not be robust with
respect to errors in the frequencies .

To see this, let us first remark that if and are harmonic
sequences, i.e.,

and (61)

and is an arbitrary matrix of appropriate dimensions, then

(62)
The limit in this expression does exist, and it is one if

and zero otherwise. Therefore, since the frequencies
are distinct

(63)

(If the frequencies were not distinct, the expression becomes
somewhat more complicated, but the idea would be the same.)

Now, returning to the question of robustness, let us suppose
that the frequencies used in computing the
control law (60) are not the same as those driving the system,
being estimates of . Then the control really
becomes

(64)

where is (52) computed with respect to the estimated
frequencies . Clearly and thus
as , for any fixed . Nevertheless, as we
shall see, the regulator will not be robust. To see this, note that
by (40) in Theorem 2.3, the cost of using the control (33) is

M

i.e., the increase in the cost function is

M

Now, assuming that all are different, we have

and, therefore, in view of (63)

Consequently, as for , and hence

we have

(65)

so that an arbitrary small mistake in the estimation of frequen-
cies produces a jump in the cost function.
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Due to this discontinuity, the control law (60) is not optimal
for practical purposes.

Let us now return to (56), the state space of which has
the decomposition so that all orbits converge
to the center manifold of harmonic solutions. Since the
component in —let us call it —tends asymptotically
to zero

and therefore only the harmonic component in
contributes to the cost function. Consequently, in Theorem 2.3,

has the form

(66)

where still is any sequence satisfying (38). Hereand
are the harmonic solutions

and

(67)

where

(68)

The expression for has already been derived above [see
(52) and (53)], and the one for is then obtained from (56).

Next, consider the regulator (9), which we shall write in a
slightly different form. In fact, let us introduce the new control

(69)

in terms of which (9) may be written as

(70)

where is the matrix polynomial

(71)

Moreover, (1) becomes

(72)

where is stable, as pointed out in Section II. We
shall say that the regulator (9), or, equivalently, the regulator
defined by (70) and (69), is optimal if the solution of
the closed-loop system (1), (70) is an optimal process in our
problem to minimize (4) subject to (24), (45), and (46) for
any initial conditions.

Theorem 3.2:Let be the harmonic optimal process
defined by (67), (68), and let be given by (46). Then
the regulator (9) is optimal for the problem to control (1)
so as to minimize (4) if the closed-loop system (70), (72)
is asymptotically stable and has a harmonic solution
which coincides with (67).

Proof: Because of stability, any solution of (70), (72) has
the property that , where exponentially
as . Therefore, recalling that , (69) implies that

, where M . Also, , which tends
exponentially to , satisfies the admissibility condition (7).
Consequently, by Theorem 2.3, the process is optimal
for the problem to control (1) so as to minimize (4), i.e., the
regulator (9) is optimal for the problem to control (1).

We are now in a position to formulate the general principles
that need to be followed in designing an optimal, robust, and
universal regulator for the control problem in Section I. The
goal is to construct an optimal regulator (70) in which the
matrix polynomials and are chosen so that:

1) the closed-loop system (70), (72) is asymptotically stable;
2) the closed-loop system (70), (72) has the same harmonic

solutions as (67), (68) for any complex amplitudes
;

3) the matrix polynomials and in the regulator
(70) do not depend on ;

4) the regulator (70) is robust in the sense that if it is
determined from estimates of the frequen-
cies , then the value of the cost
functional must be continuous in so that,
in particular, as . (This is a
somewhat nonstandard use of the concept “robust”.)

By Theorem 3.2, Conditions 1) and 2) imply that the
regulator (70) will be optimal. It will be shown in Section V
that 4) is a consequence of 1) and 2).

IV. THE GENERAL REPRESENTATION

OF A STABILIZING REGULATOR

We have now reduced the problem of Section I to that
of designing a regulator (70), independent of ,
rendering the closed-loop system (70), (72) asymptotically
stable, and having a harmonic solution coinciding
with the harmonic solution of (1) obtained by applying the
nonrobust and unrealizable regulator of Section II. This section
will be devoted to the stability Condition 1).

More precisely, in this section we shall parameterize the
class

(73)

of stabilizing linear regulators, where is the forward shift
operator and are real and
matrix polynomials such that the leading coefficient of
is nonsingular and so that is a
proper rational matrix function. Consequently

(74)

is the closed-loop system under consideration. We recall that
is a stable matrix and that .
Therefore, from now on, we shall take (74) withstable

as the starting point of the analysis of this section. Let
and be the transfer functions from the input to the
outputs and , respectively, of this new system. They are
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defined by

(75)

and consequently

(76)

Condition 1) at the end of Section III is precisely the
condition that (74) is stable. To say that (74) is stable is to
say that

(77)

is a stable matrix polynomial, i.e., that for
. Now recall the following definition.

Definition 4.1: The regulator (73) is said to bestabilizing
for the system

(78)

if the closed-loop system (74) is stable and
.

The last requirement ensures causality in the sense that
in (74) will depend on only. We also introduce

the following definition.
Definition 4.2: The regulators and

of the type (74) are calledequivalent
if there exist matrix polynomials such that

for some stable matrix polynomials .
It is clear that the equations of (74) with equivalent regu-

lators have the same transfer functions . Moreover, if
one regulator is stabilizing, then so is the other. The following
lemma, which is also of independent interest, completely
characterizes those regulators (73) which satisfy Condition 1).

Lemma 4.3: Let in (74) be a stable matrix. Let be
an arbitrary real scalar stable polynomial, and let be an
arbitrary real matrix polynomial such that

. Then, the regulator (73) with

(79)

is stabilizing for (78), and, for this regulator

(80)

where is given by (77). The class of regulators (73), (79)
contains all stabilizing regulators in the sense that any other
stabilizing regulator is equivalent to one in this class.

We note that since the coefficients in (1) are real, so are the
polynomials and . For the complex case we would need
the polynomials to be complex. Lemma 4.3 may be deduced
from the Youla parameterization, but it is simpler to give an
independent proof.

Proof: Set and
. From (77) and (79) we obtain

which is a stable polynomial. Therefore (74) is stable. Now,
in view of (76) and (79)

and

and so yields

Thus we have established (80). Since
, and consequently, by (76), .

Therefore, the regulator (73) is stabilizing.
Now, let be an arbitrary stabilizing

regulator, and let be the transfer functions formed
in analogy with . Then, we have and

, and is stable. Here

(81)

where

(82)

is a matrix polynomial. From (81) we have
, so must be stable. Let

(83)

be the adjoint matrix polynomial. In accordance with (75) we
have

Consequently

i.e., , and hence, in view of (83)

(84)

Now, let us take

(85)

and let and be defined correspondingly by (79). Since
, we have . Moreover, is stable.

Therefore, as proved above, is a stabilizing
regulator, and , so we must have , and
consequently, by (76), . Since ,
we have , and (76) implies .
Consequently, the second of the relations in (76) can be written
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. But we also have and
so

(86)

Let the matrix polynomial be the greatest left common
divisor of and , i.e.,

(87)

where and are left coprime matrix polynomials. Since
is a stabilizing regulator, is stable, and, since

and . From (86) we have
, so setting , we obtain

(88)

Since and are left coprime, there exist matrix polyno-
mials and such that

(see, e.g., [10]). Therefore

is a matrix polynomial. Since is a stabilizing
regulator, is stable. From (87), (88) we now see that the
regulators and are equivalent.

This lemma provides us with a complete answer to the ques-
tion of how to satisfy Condition 1) at the end of Section III:
We can use a regulator of the type (73) with defined by
(79) for some and , and, modulo equivalence, the regulators
of this type are all the stabilizing regulators. From (79) we see
that the leading coefficient of is nonsingular and that

, which implies that (73) is a causal regulator,
i.e., is proper.

That the limit in the cost function (4) does exist for any
stabilizing regulator in the class presented in this section, as
required by Proposition 3.1, is a consequence of the following
theorem, which is also of interest in its own right and will be
needed in Sections V and VII.

Theorem 4.4:Let . Then the limit

(89)

exists for any process defined by a stabilizing regulator
(73), and it takes the form

(90)

where the matrix depends continuously on
and and the parameters

of the regulator polynomials and . Moreover, the
admissibility condition (7) is satisfied.

Proof: Since the closed-loop system

is stable, and tend asymptotically to the harmonic
solutions

(91)

where

(92)

as , and,a fortiori, satisfies (7). Now

M

where the symmetric matrix

depends continuously on and . In view of the fact
that and , this can be written

M (93)

Consequently, (90) follows from (91), (92), and (63), and the
analysis leading to (91) shows that the limit in (89) exists, as
claimed. Moreover, the stabilizing solution to the algebraic
Riccati equation (19) depends continuously on and

, and hence so does as defined by (18). Consequently, in
view of (92), the statement on continuity holds.

V. THE EXISTENCE AND DESIGN OF THE

REALIZABLE ROBUST OPTIMAL REGULATOR

We now turn to the other requirements for the regulator
which are enumerated at the end of Section III.

Condition 2), which we consider first, implies that
and satisfy certain interpolation relations ensuring that
(74) has the harmonic solution (67), (68). As seen from (45)
and (46), the harmonic solution of (74) with is

(94)

where

(95)

Here is the th unit axis vector of dimension , i.e., the
th column of the identity matrix .

The conditions and required for optimality
hold for all if and only if the following
interpolation conditions are valid:

(96)
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The relations for in (96) follow from the ones for .
In fact, using (76) and the expression for in (67), we
transform the interpolation relation (96) for into

(97)

which follows from the second set of equations in (96).
Therefore, may be omitted from the subsequent analysis.
By replacing in (96) by the expression in (68), the
remaining interpolation conditions become

(98)

and are thus independent of .
Now, inserting , as prescribed by Lemma 4.3,

into the interpolation conditions (98), we obtain

(99)
where

(100)

so and must be chosen to satisfy (99) and the conditions of
Lemma 4.3. If , the th interpolation condition
(99) can be written

(101)

where is an arbitrary matrix such that . It is
clear that there exists a solution of (99) for each of
sufficiently high degree.

Obviously the interpolation relations (99) do not contain the
unknown complex amplitudes . Therefore,
and and, consequently and in (79), will not depend on

either; hence Condition 3) is satisfied. Recall
that an optimal regulator with this property is calleduniversal.

To prove that Condition 4) holds, note that by Theo-
rem 4.4 the cost function depends continuously on the
parameters of the regulator polynomials and ,
which in turn depend continuously on the polynomials
and via (79). The regulator is determined by fixing a

of sufficiently high degree and determining from
(101) with exchanged for . It
remains to prove that this depends continuously on

. To this end, observe that (101) is a (generally
underdetermined) system of linear equations in the coefficients
of , and therefore the question is reduced to deciding
that the coefficient matrix of this linear system has full rank,
which is the case since it is a (block) Vandermonde matrix
corresponding to distinct points on the unit circle.

Thus we have established a general formula for the required
universal optimal regulator. In fact, Lemma 4.3 gives us the
complete class of stabilizing regulators [satisfying Condition
1)], and the interpolation conditions (99) are equivalent to
Condition 2).

We summarize our results in the following theorem. Before
that, however, let us recall the problem formulation for the
complex problem: given (24) with the external disturbance
given by (45) and (46), find a realizable regulator (6) satisfying

condition (7) such that the regulator does not depend on the
unknown complex amplitudes and the cost
functional (4) is minimized for all .

Theorem 5.1:Let be an arbitrary real scalar monic
stable polynomial, and let be a real matrix polynomial
satisfying the interpolation conditions (99) and having degree
less than that of . Moreover, let and be given
by (79), respectively. Then the regulator

(102)

is optimal for the problem posed in Section III, and it renders
the complete closed-loop system asymptotically stable, and
therefore (7) holds. It is also robust in the sense of Condition
4) at the end of Section III, and it is universal in the sense
that it does not depend on the unknown complex amplitudes

. Finally, modulo equivalence, all universal
optimal regulators are formed in this way.

Now, in view of Proposition 3.1 and Theorem 4.4, this
regulator is also an optimal robust and universal regulator for
the original real problem posed in Section I. Also, modulo
equivalence, all universal optimal regulators are formed in
this way.

By taking to be a (minimal or nonminimal)
realization of , i.e., a representation

(103)

we can write the regulator (102) in the form

(104)

with being the gain (18). We observe, however,
that and need not be coprime and that any
left common factors are canceled in determining a minimal
realization of . Therefore, for the sake
of robustness, a nonminimal realization may be preferable.

Remark 5.2:Theorem 5.1 states that the regulator (104) is
optimal in any wider class of regulators which is in harmony
with condition (7). In particular, no nonlinear or nonrealizable
regulator will yield a smaller value of the cost functional
(4). The same, of course, holds for the real problem of
Section I. (To see that there is a linear optimal regulator,
use the formulation in the footnoteto avoid the question of
existence of limits.)

Remark 5.3:Note that, since and are real, the interpo-
lation condition is equivalent
to .

Let us next consider the question of determining and
. Clearly, there is a considerable degree of design freedom

here. If2

(105)

and consequently , we can always choose to be
of degree two and take of the form

(106)

2The observation in Remark 5.3 may allow us to remove some redundant
columns inC.
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where are real matrices. To prove this, insert (106)
into the interpolation conditions (99), yielding the system of
equations

(107)

in the real -vectors , defined by

(108)

where, as before, is the th column vector in the identity
matrix . The solution of (107) is unique, provided no

is a multiple of . Otherwise, the second equation is
trivial, so the first alone determines the (nonunique) solution.
Given , the matrices and can
be obtained from (108). To this end, form the matrix
polynomial

(109)

of degree one. Then, if (105) holds, can be solved from

(110)

In fact, if

(111)

is a (in general nonunique) solution of (110). On the other
hand, if , the degrees of and may
need to be increased.

In the case , the degree of will in general increase
with .

VI. A SIMPLE NUMERICAL EXAMPLE

Consider the problem of designing a universal optimal
regulator for the scalar plant

(112)

with the external disturbance

(113)

where, as before, the frequenciesand are known, while
the amplitudes and the phases are unknown.
Hence this disturbance includes a bias as well as harmonic
oscillations. The problem is to find an admissible regulator (8)
which is stabilizing in the sense that as and
universal in the sense that it does not depend on
and and which minimizes the cost functional

(114)

for any values of and . Introducing the state

(115)

the plant equations (112) can be written in the state form

(116)

where

(117)

and

(118)

if we reformulate the problem according to the footnoteor

(119)

if, as we shall do here, we embed our problem in the
complex optimization problem as described in Proposition 3.1.
Moreover

(120)

are the parameters in the cost function (4). It is easy to see
that the corresponding algebraic Riccati equation (19) has the
unique stabilizing solution

(121)

where

(122)

and the gain (18) is given by

(123)

In fact

and the corresponding feedback matrix (20)

(124)

has all its eigenvalues strictly inside the unit circle. If ,
there will be a pair of imaginary eigenvalues, and if

a pair of real ones.
Let us now choose some (real) polynomial

which in the present example must be of degree five, having
all its roots strictly inside the unit circle. The parameters

will be available for tuning in order to im-
prove the overall design. Next, we want to determine a real
1 2 matrix polynomial of degree at most four, which
satisfies the interpolation conditions (101) in which we choose
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for each . Since for each and, as a simple
calculation shows, (100) is given by

we need to find an which satisfies the interpolation
conditions

(125)

Clearly, such an must have the form

for all (126)

As explained in Remark 5.3, we only need to satisfy this
interpolation condition for ; then, the condition is
automatically satisfied for . We can therefore use
the format expressed by (119). Then, except for which
yields a real condition, we obtain a real equation for both the
real and the imaginary part. Consequently, the coefficients of
the real scalar polynomial

(127)

must be the solution of the system of linear equations

(128)

where denotes real part and imaginary part.
We are now in a position to describe a class of optimal

universal regulators. In fact, from (79), we obtain

(129)

so, in view of Theorem 5.1, (115) and (123), the optimal
regulator corresponding to is given by

(130)

i.e., the transfer function of the regulator from the output to
the control is

(131)

We stress again that we have one such universal optimal
regulator for each admissible choice of.

As an alternative to solving (128), we may use Lagrange’s
interpolation formula to obtain

(132)

where

(133)

Fig. 1.

Fig. 2.

Here we must use the symmetric formulation (118) to obtain
a real polynomial .

In Fig. 1 we show a simulation for the situation that
and . To illustrate the

amount of damping, we depict the output both for the
case that there is no control and for the optimal
universal regulator corresponding to the polynomialwith
roots .

The choice of must be made with some care, since it may
drastically affect the transient. In fact, the transient behavior
does not affect the value of the cost function.

Next let us consider what happens if the true frequencies
of the system are not quite the ones used in computing
the regulator, but there is an estimation error. Fig. 2 shows
the outputs obtained if the regulator of Fig. 1, based on the
frequencies and , is applied to a system with
true frequencies and .

As we can see, the regulator still behaves reasonably despite
the large errors in the frequency estimates.
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VII. T HE STOCHASTIC CASE

A natural question to ask is whether the regulator of
Theorem 5.1 remains optimal if the amplitudes
are allowed to be random variables or processes and the cost
functional (4) to be minimized is replaced by

(134)

where denotes mathematical expectation. As before, we
assume that is known at time , so the regulator
should be chosen in some suitable class of feedback laws

(135)

with the property that a condition similar to (7) holds.
In the case that are random variables, it is

not hard to convince oneself that the answer to this question is
affirmative. In fact, in the deterministic case studied above, the
same optimal regulator can be used for each fixed set of values
of . Therefore, summing over a probability
measure will yield the same optimal regulator as in the
deterministic case.

As it turns out, and this is the topic of this section, more
general external disturbances may be considered. In fact,
we may consider a control system

(136)

with being the solution of a “harmonic” linear stochastic
system

(137)

where and are given by (48), is a random vector with
mean is a zero-mean white-noise
process with , i.e.,

(138)

and is an sequence, i.e.,

(139)

The noise model (137) does not damp past white noise
exponentially, as does the usual “colored noise” model for
which has all its eigenvalues strictly inside the unit circle.
Consequently, (139) is needed to decrease the influence of past
white noise as time goes on and is actually the natural condi-
tion ensuring that the process has bounded covariance.
In fact3

(140)

where (139) ensures that

3We recall thatej is thejth column vector inIm.

is bounded for all . This should be compared with
the deterministic case considered before, which is obtained by
setting . As we have full state information, it is no
restriction to assume that is deterministic.

We restrict our attention to the following class of admissible
control laws. Let be the class of linear feedback laws (135)
corresponding to regulators

(141)

as defined in Section I, such that the closed-loop system
consisting of (136) and (141) is asymptotically stable.

We remark that adding a white noise term, which is indepen-
dent of other system noise, to the left member of (136) does not
alter the problem. In fact, for any , the contribution of
this white noise to the processesand produces an additive
contribution to which tends to zero as and
hence does not affect the cost.

Theorem 7.1:Consider the control system (136) with the
external disturbance being defined by (137), or equiva-
lently, by (140), where satisfies (138) and (139). Then the
limit in (134) exists for all . Moreover, if corresponds
to an optimal regulator of Theorem 5.1, , and is
also optimal with respect to the cost functional (134), for the
problem to control (136) in the class.

Proof: The white-noise process can be represented in
the form

where is a matrix-valued function and is a zero-mean,
-dimensional, normalized white noise, i.e.,

(142)

Then

(143)

where

(144)

and

(145)

Clearly, an admissible process defined via a control law
(141) with has a representation of similar form, namely

(146)

(147)

where and are deterministic
vector sequences. More precisely, since

(148)
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and since for

(149)

for .
In view of (144) and (145), these equations all have the same

structure, namely that of the deterministic case, and they differ
only in the amplitudes of the harmonic external disturbances,
the quantities which do not affect the optimal regulator in the
deterministic case. Also, it is easy to check that

(150)

if we agree to define and to be zero for .
Consequently

(151)

We would like to be able to take the limit in this expression
so that

(152)

where

(153)

and

(154)

This, of course, needs to be justified. We proceed next to doing
precisely this.

Let us first address the question of existence of the limits
(153) and (154). Due to the linearity of the control laws in

and

whenever the control law is applied to the stochastic
problem. But then, by Theorem 4.4, the limits exist, and
and satisfy the admissibility condition (7).

Secondly, Theorem 4.4 also implies that ,
where varies with the choice of and

col is defined as in (144). Consequently,
since it follows from (144) that ,
for some constant , and therefore, in view of (139)

It remains to prove that

(155)
But, in view of (62), there is a uniform bound

for some , and consequently (154) follows by a
dominated convergence argument.

Consequently, we have now decomposed the problem into a
countable number of separate, uncoupled deterministic prob-
lems of the same structure as that of Theorem 5.1, namely
Problem to minimize (153), given (148), and Problems
to minimize (154), given (149). These problems differ only in
the values of the initial state and the amplitudes (and phases)
of the external disturbance. But, by Theorem 5.1, the optimal
regulator does not depend on these quantities. Consequently,
it solves all these problems simultaneously, and therefore it
yields the minimum of the functional (152).

Now, let be the linear control law corresponding to
an optimal regulator (104) in the deterministic problem of
Theorem 5.1. Clearly, . Moreover, Problem has the
optimal solution

(156)

and, for each , Problem has the solution

(157)

In Problem play the role of the
unknown amplitudes. Now, inserting (156) and (157) into
(147) and applying (146) yields

(158)

by linearity. Consequently, (158) is optimal for the stochastic
problem as claimed.

We note that the decomposition (148), (149), and (152) is
analogous to the one used in [20], so a natural question is
whether the admissible class of regulators could be extended
to include nonlinear control laws as in [20]. However, this
leads to technical difficulties related to the existence of the
limits (153) and (154) and the validity of (155).

VIII. C ONCLUSION

In this paper we present a complete characterization of
all regulators which: 1) stabilize a linear system with ad-
ditive harmonic disturbances with known frequencies but
unknown amplitudes and phases; 2) minimize an infinite-
horizon quadratic cost function; and 3) are universal in the
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sense that the regulators do not depend on the unknown ampli-
tudes and phases and are optimal for all choices of these. These
optimal universal regulatorsare linear, but we show that they
are optimal in a wide class of nonlinear regulators. Finally, we
show that these regulators are also optimal universal regulators
(in a natural sense) for a corresponding stochastic problem.

We stress that our solutions are optimal in the sense stated in
this paper only, and other desirable design specifications may
not be satisfied for an arbitrary universal optimal regulator.
Therefore, it is an important property of our procedure that it
allows for a considerable degree of design freedom. How this
design freedom is to be used may be the topic of a future paper.

As pointed out to us by one of the referees, related optimal
control problems have been studied in some recent papers [13],
[28], but with different problem formulations.

APPENDIX A
NECESSITY OF THEFREQUENCY-DOMAIN CONDITION

Let us prove the assertion from Section II:if the frequency-
domain condition (13) fails in a strong way, then there exists
an external disturbance such that . Since the
frequency-domain condition (13) is invariant under feedback
and the pair is stabilizable, we will assume without
loss of generality that is stable.

Suppose that the frequency-domain condition fails strongly
for the values so that

(159)

for

(160)

We need to find a sequence of admissible processes
[which is defined via a sequence of regulators (9)] such that

, where are the corresponding values of the
functional (4).

Let us first consider the case when the admissible process
is allowed to be complex. Consider a process and perturbation
of the type

(161)
where and remain to be defined. Admissibility
requires that (1) and (9) must hold, where (9) is a stabilizing
regulator. By Lemma 4.3, we may take

(162)
for some polynomials and with the properties
prescribed by Lemma 4.3. Using (1) we transform (9) into

(163)

so the system (1), (9) is equivalent to (1), (163). Since ,
we can choose so that . Equation (163)
is satisfied if

(164)

For example, we can take as the constant matrix

(165)

In accordance with Lemma 4.3, we here take to be
any stable scalar polynomial of degree . Then (9) is a
stabilizing regulator. In view of (160) and (163), we see that
(1) is satisfied if

(166)

and therefore (161) and (166) with define
an admissible process. Note that in (159) and (160)
may be replaced by for an arbitrary . Next,
we construct a sequence of admissible processes by replacing

in (161) by where
, yielding the admissible processes

(167)

By formula (165) we have

(168)

where we have taken a which does not depend on.
(Therefore, to our sequence of admissible processes (167),
there corresponds a sequence of stabilizing regulators (9) with

and defined by (162) and .)
Consider now the corresponding sequence of cost function-

als . By (4) and (5), we have

(169)

Therefore, as . This concludes the
proof of the complex case.

Next, consider the real case. We now have (1) with
defined by (2), or, more generally, the system consisting of
(24), (45), and (46) with real. The matrices
are real, as are the coefficients of the form and of the
polynomials and in (9). The admissible process must
also be real, so the process (161) can no longer be used. Let
us therefore rename and in (1), (2) as and , as in
the footnote. Then (1) becomes

(170)

with and
. Certainly the system (170) has the previously consid-

ered form (24), provided we put

and

for . We have shown that the complex processes

(171)

defined by (161) and (166) with satisfy the
complex system

(172)

Therefore, the real process

(173)
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satisfies (170). Now consider the stabilizing regulator (9) for
the plant (172) which as we have seen may be rewritten as
(163), which in our present notation reads

(174)

Choosing real polynomials and here, the process (171)
satisfies the equation

(175)

implying that (173) will be the admissible process. Therefore,
we have to find a real stable scalar polynomial and a
real matrix polynomial , satisfying (174),
which is equivalent to

(176)

Without loss of generality let us assume that . (If
needed, we can perturb the value ofa little in (159) and
(160).) Let be real, , and
with real matrix coefficients . Moreover, let be any
stable polynomial, , and set ,
where are real. Equation (176) gives

To satisfy these equations we can take, for example

Then the process (173) is admissible. Next, we find the
value of the functional (4) for this process. To this end, set

, and let be an admissible

process, where real. Then, for any
real Hermitian form , we have

(177)

and . A simple calculation yields

and therefore, using (176), we have

Consider again the sequence of admissible processes
with , where . The correspond-

ing values of are . Since
, we obtain as , and hence

, as claimed.

APPENDIX B
ADMISSIBILITY OF THE CONTROL (37)

Lemma B.1: Consider the solution of

(178)

with , where the matrix is stable in the sense that
there is a and a such that for

. Then, for any

(179)

Proof: Since , we have
, and, consequently

Therefore, since , we obtain (179).

Corollary B.2: Under the conditions of Lemma B.1 we
have

(180)

Now, in (42), , and hence

But and are bounded, and consequently, by Lemma
B.1, there are constants and such that

when . Therefore, M implies
that as . Since is stable, this is obviously
true for any initial condition .
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