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Optimal Damping of Forced Oscillations
In Discrete-Time Systems

Anders Lindquist,Fellow, IEEE and Vladimir A. Yakubovich

Abstract—In this paper we consider a linear discrete-time for wind shear based on harmonic oscillations [24], [18].
control system affected by an additive sinusoidal disturbance Various criteria such as set point control of the clime rate or
with known frequencies but unknown amplitudes and phases. inimization of other performance criteria have been proposed
The problem is to damp this forced oscillation in an optimal . . . .
fashion. We show that the natural solution from the point of view 'n the_ Ilteraturg [24], _[18]’ [32]' Othe_r appllc_atlons Inc_lud(—?‘
of optimal control is neither robust with respect to errors in the  Vibration damping for industrial machines, noise reduction in
frequencies, and thus not optimal in practice, nor independent vehicles and transformers, periodic disturbance reduction in
of the unknown amplitudes and phases. The main result of this disk drives, and the control of the roll motion of a ship (see,
paper concerns the existence and design of a realizable, robuste_g” [4], [8], [9], [11], [12], [14], [27], [29], and [30]).

optimal regulator, which is universal in the sense that it does not Anoth ibl iterion for th bl is to f
depend on the unknown amplitudes and phases and is optimal nother possible criterion for these problems IS 1o torce

for all choices of such parameters. The regulator allows for a SOme output signay, = Lz, to tend asymptotically to zero.
considerable degree of design freedom to satisfy other designSince the sinusoidal disturbance can be modeled as a critically

specifications. Finally, it is shown that this regulator is optimal stgble “exosystem,” a discrete-time version of the methods

also for a wide class of stochastic control problems. proposed in [6] and [7] could be used for this purpose.
Index Terms—Optimal damping, optimal universal regulators, However, such solutions are not always available, as some
sinusoidal disturbances, stochastic control. rather strict geometric conditions need to be satisfied.

In this paper we shall consider the minimization of a
quadratic performance measure which reflects the ability of
damping the steady-state solution of (1) produced by the
sinusoidal disturbance. More precisely, the control objective
is to minimize the cost functional

I. INTRODUCTION
CONSIDER the linear discrete-time system

Tpy1 = Azy + Bug + Cuwy, To=a (1)
T
where{x.} is ann-dimensional real state sequen{e;} is a ® = limsup 1 Z Ay, u) (4)
k-dimensional real control sequence T—oo 1 =0
oy cos(wit + 1) where A(z,u) is the real quadratic form

iy cos(wat + p2)

S e (EDO o

oy, cos(wyt + ¢,)
atisfying the frequency-domain condition (13) below and with
and R symmetric, i.e.,Q = Q* and R = R*. This cost
function is appropriate for most of the applications mentioned

is an v-dimensional real sinusoidal disturbance with know
frequencies

T W <war < o <wy < (3) above. However, in many problems of noise reduction or

vibration attenuation in vehicles, especially in helicopters, the

but unknown amplitudes a;,az,---,a,, and phases harmonic disturbance needs to enter the cost function in a
¢1,2, ,¢p, and A, B,C are given real matrices of quadratic manner in order to allow some system output to track
appropriate dimensions so thatt, B) is a stabilizable pair a harmonic reference signal of type (2); see, e.g., [23] and [13].
and C has no trivial (i.e., zero) columns. This situation is not covered by our present formulation but is

One application area of interest which can be modele@dnsidered in a sequel to this paper [22].

by such equations is that of flight control through wind The mathematical problem under consideration in this paper
shear, where the sinusoidal forcing terms arise from a mogelto find among all regulators
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for each choice of disturbance (2), one that minimizes the cdst appropriately defined matrix polynomiaigA) and b(\),
functional ®. We would like to find an optimal regulator with then we can reduce it to (1), but it also allows us to consider
the following special properties. It is realizable in the sengeany cases of (1) for which we can observe only an output

that it has a bounded finite memory iy = Lxy, where L is some matrix.

_ 7 for some The quadratic form (5) could be indefinite but must satisfy
U = f(T Bem1,  Bemr Upm 1, o+ Up—r ) (g) the frequency-domain condition
and does not depend on the unknown parameters o, A(%,4) > 5(|§;|2+ |a|2) (13)
<oy, and g1, @9, -+, ¢,. More precisely, the functiorf

corresponding to the optimal controller should not depend &¥ someé > 0 and for allz € C™, @ € C*, X € O, such that
the amplitudes and phases, while of course the optimal proceds= 1 and Az = Az + Bu. This is a natural condition. In
(z+,u;) and the cost functio® certainly do depend on thesefact, it can be shown that if it fails in a strong way, i.e., there
parameters. In other words, we want to find a regulator (8yeZ, %, andA, |A| = 1, such that\(z, %) < 0, then there is an
which isuniversalin the sense that it solves the complete fanfxternal disturbance, such thatnf ¢ = —co (see Appendix

ily of optimization problems corresponding to different choice8)- In the optimal damping problem the quadratic forinis

of g, qa, -+, 0, and gy, @2, - - -, ¢,. Moreover, the optimal usually of the type\.(z, u) = |c*z|*+ul?. If det(A[—A) £ 0
regulator must beobustwith respect to the known frequenciedor all [A| = 1, then in this case (13) obviously holds. Here
wi,ws, -+, w, in the following (nonstandard) sense: sinceye allow for more general forms of, even those that are
in practice, the regulator will be computed from estimatdgdefinite.

&1, @9, -+ -, &, of the true frequenciesy, ws, - - -, w,, the cost ~ The outline of the paper is as follows. In Section Il we
functional ® must be continuous in the estimation errorgresent some preliminary optimality results for a general
wi — @1, wr — @a, -+, wy, — &, and tend to its true optimal bounded external disturbance. In Section Ill we specialize this
value as the errors tend to zero. Otherwise, the regulator Wifi harmonic disturbances, discuss some nonsolutions to the
not be optimal in practice. This formulation can be generalizégbust control problem, and reformulate the problem to be
to the situation of more general output feedback where sog@lved. In Section IV we give a general characterization of
output, and not the complete state, is available for observatih¢ class of stabilizing regulators, which may be of interest

[21], [22]. in its own right. This parameterization turns out be related
We shall demonstrate that this problem has a solution in tis but not quite equivalent to, the Youla parameterization.
class of linear regulators Section V is devoted to the main result. Here we present a
solution of the control problem stated above, and in Section VI

D(o)ur = M(o)a: (9)  we illustrate this solution by a simple numerical example and

for which the overall closed-loop system consisting of (1) artPMe simulations. In Section VIl we show that this solution is
(9) is stable. Here is the forward shift operatarz, = 1, also opt_lmal when _the disturbanag is gen(_ar_ated by a certain
andD()\) and M (\) arek x k andk x n matrix polynomials ha_rmomc stochastlc_syste_m. Of course_w;f is merely white _
such that the leading coefficient @#()\) is nonsingular and noise or_col_ored noise with known rational spectral density,
deg M < degD so thatD(\)~*M()) is a proper rational the solution is well known; see, e.g., [2] and [5]. Our proplem,
matrix function. Of course, for such a regulator to be universdlOWeVer, actually corresponds to the case of colored noise but
the matrix polynomialsD()\) and M (\) must not depend on With unknownspectral density.
the unknown amplitudes and phases.

Since therefore the optimal solutions belong to a class of [I. PRELIMINARY OPTIMALITY RESULTS

linear stabilizing regulators, (7) may seem unnecessarily weakyye recall the classical problem in control theory to minimize
However, the point is that we want to prove optimality in the

largest possible class of regulators, including nonlinear ones, =
and (7) turns out to be the natural stability condition for such ;A(xt’ut) (14)
a class. =
Regulator (9) may also be written in the form when
Zep1 = Fz + Gy (10) Ti41 = Az + Buy (15)
Ut = HZt + J.’L’t
) ~and
where F, G, H, and J can be determined from the matrix
fraction representation || € £3, |ut| € 2. (16)
DM\ =HW\ -F)'G+J (11) 1t is well known that this problem has the optimal feedback
by means of some realization procedure. However, the matﬁ%luuon
polynomialsD(X) and M () need not be coprime, so for the u = Ky (17)
sake of robustness it is practically more convenient to use the _
form (9). Also, if we replace (1) by where the gain

a(a)yr = b(o)uy + cw, (12) K =—(B*PB+ R)"'(A*PB + S5)* (18)
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is expressed in terms of the stabilizing solution of the matrixith equality if and only if4 = Kz, i.e., if and only if
equation (AM[-T")Z = 0. But, sincel is a stable matrix, this is equivalent
N N N _ to & = 0, and hence; = 0. Since A has no eigenvalues on
P=A"PA— (A"PB+S)(B'PB+ R)™ the unit circle, this establishes (13). The proof of the converse
X (A"PB+5)" +Q (19) statement, namely that the frequency domain condition (13)
implies 1), is much harder.

We also remind the reader that the optimality of (17) is
immediate from 1). In fact, for any admissible process, (16)
I'=A+BK (20) implies that|z;| — 0 ast — oo and hence so doe(x;).
Therefore, (22) yields

i.e., the symmetric solutio® which, if it exists, renders the
feedback matrix

stable in the sense that all eigenvalued'dfe strictly inside

the unit circle (see, e.g., [16], [31], [25], and [17], and the == g
articles in [3]). Matrix equation (19) is known as thiyebraic ZA(% ut) = )+ Z — Kzy)* — Ka:).
Riccati equationor, originally and more correctly, theur'e t=0 =0
equation Sincel is stable, (17) yields an admissible process, which is
The existence of a solution of (19) is equivalent to thebviously optimal and uniquely defined by virtue of the fact
existence of a Lyapunov function that B > 0.
V(z) = 2" Pe 21) Next we add a bounded external disturbadeg} to (15)
to obtain
satisfying
ZTe41 = Axe + Buy + v, (24)

V(Az + Bu) — V(z) + Az, u) = (u— Kz)*R(u —

(22) Then, we must change both the stability condition (16) and
for some matricesk and R = R* > 0. This can be seen the cost functional. In fact, we take
by merely forming the left member of (22) and completing

squares, whereby (22) is obtained if and onlyAfsatisfies = limsup — ZA Tt Ur) (25)
(19). This procedure also shows thgtmust be given by (18) T—oo T
and that

. to be the cost functional to be minimized, and we say that
R=B*PB+R. (23) the procesgz:,u:) is admissibleif it satisfies (24) and the

We recall the following theorem which relates thetablllty condition (7), i.e.,

frequency-domain condition introduced in Section | to the I 1
. ; . L im |a:t| =0. (26)
existence of an optimal solution to the problem to minimize t—o0
(14) subject to (15) and (16) as well as to the existence o F%r simplicity, and with the obvious definition of the averaging
stabilizing solution of (19). Different versions of this theorem
can be found in [16], [31], [26], [25], and [17], but the firsCPErator M-}, we shall also write
result of this type was established by Kalman and $4&8] ® = M{A(zs, ur)}. (27)
for the casen = 1. The case of infinite-dimensional systems
was treated in [1] and [19]. Using the results of [1] and [19], A completion-of-squares argument such as the one above
all the results of this paper could be extended to the case thélt still work but requires a more general Lyapunov function
x¢,ue are vectors in infinite-dimensional Hilbert spaces.  of the form
Theorem 2.1:Let (A, B) be stabilizable. Then the follow-
ing statements hold:

1) there exist matrices” = P*, R = R* > 0, and K whereP is a stabilizing solution of (19). To this end we shall
satisfying (22) and rendering (20) stable; assume again th&ti, B) is stabilizable and that the frequency-
2) for any initial conditiona € R™ there exists an op- domain condition (13) holds so that such a stabilizing solution
timal process(z:,u:) minimizing (14) subject to the actually exists.
constraints (15) and (16); Lemma 2.2:Let P be a stabilizing solution of (19) and
3) the frequency-domain condition (13) holds. suppose that the sequendes} and{¢, } satisfy the recursions
It is easy to see that (13) is an immediate consequence of
(22) and the fact thaf is stable and? is positive definite. Let
us suppose for simplicity that is a stable matrix. (The generalarlOI
case reduces to this one by the stabilizability (of, B).)
Relation (22) for real, » implies that the same relation holds Q41 = q¢ — v; Poy — 2pf v + r;*fzrt (30)
for complexx,w provided* denotes Hermitian conjugation. )
Taking &, %, and A such that\& = A% + Ba, and |\ = 1, fort =0,1,2,.-., wherel’ and R are defined by (20) and
(22) becomes (23), respectively, and

A(E,0) = (o — K&) R — Ki) > 0 ry = —R7*B*(piy1 + Puy). (31)

V(z,t) = " Pr + 2pfx + ¢ (28)

Pt = F*pt+1 + F*Pvt (29)
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Then, the Lyapunov function (28) satisfies Proof: SetV; := V(z,t) and A; := A(zy, we), Where
(z+,u:) is an admissible process. Then (32) yields
V(-TH—l, t+ 1) - V(xtv t) + A(xtv U't)
= U,t—K.’L't—Tt *R U,t—K.’L't—Tt (32)

_ ( ) ( _ ) %[VT-H — Vol + T
along the trajectory of (24), wherK is the gain (18). t
Proof: Using (22) and completing squares in a straight- 1
forward calculation shows that the left and right members of =

—
=

Ay

(U,t d K.’L’t d 7’t)*R(U,t d K.’L’t d 7’t)-

M= L

(32) differ by a term which is linear ia;;, whose coefficient T t=0
is zero by (29) and a constant term, which is zero by virtue of
(30). 0 Since |z Pz:| = o(t) and |pix;| = o(v/t), by admissibility
If detT’ # 0 we have condition (26)
— (T*V"Ly, — 1 1
Prer = (L)7 e = Py (33) pVres = Vol = rar + o(1)

so that (30) and (31) can be replaced by
for any initial valuego, and hence the cost functional (25)

Qi1 = g + v Poy — 2piT Loy + 77 Ry (34) becomes (40). Sinc& > 0, we obtain from (40) that
respectively 1
) ® > limsup <——qT+1> (41)
ry = —RBH ) . (35) T—oo \ T

However, sincel’ is stable, (33) is strictly unstable in thefor any admissible control. Now, taking (37), the controlled
forward direction. Moreover, (29), or (33), has a uniquéystem (24) becomes
bounded solution, namely

oo Tt4+1 = F.’L’t + B(Tt + Gt) + vy (42)
=) () Py 36
bt kZ::t( ) Uk (36) where, by construction]” is a stability matrix andr, is

_ _ _ bounded. Becausg satisfies (38), it is simple to show that
It is easy to verify that (36) is true, regardless of whethghe admissibility condition (26) is fulfilled (see Appendix B),
detI" # 0 or not, but ifdetI" = 0 the bounded solution of and consequently (37) is an admissible control. Then we see

(29) is not unique. from (41) and the conditiod > 0 that (37) is in fact optimal,
Theorem 2.3:Let (A, B) be stabilizable and suppose thagnd hence the minimum value &f is
the frequency-domain condition (13) holds so that (19) has

a stabilizing solutionP. Moreover, letp, be the bounded B, = limsup <—iqT+1) (43)
solution (36) of (29). Consider the problem to minimize the S, '
functional (25) subject to conditions (24) and (26). Then the
process(z,, u;) obtained by taking the control Using (30), we now transform (43) to (39). Conversely,
suppose thatz;, u;) is optimal so thatb = ¢,,;,. Then, since
ur = Kz +1e + e (37) the limit limg—o0 2qr41 eXists

in (24) is optimal if K and r, are given by (18) and (35),

respectively, ande; } is a sequence such that © = Punin +M{ (e — Kare —70)" Ru = Ky — 1)}

M{|e]?} = 0. (38) implies thate, := u; — K, — r; satisfies Me Re;} = 0. But
_ o R > 0 and hence (38) follows. O
The optimal value of the cost function is given by The control law described in this theorem is of course in
£ f X N eneral not satisfactory becausgdepends through
Buin = M{rf Rre — 29, o0 — o Puy. (39) © y becausedep g
More spec_ificall)_/, for any admissible, ), the value of the r=—R-1B* Z(F*)k—tpvk (44)
cost functional is Pt
T
® = limsup 1 Z(“t — Kz, —1)* on future values of the disturbaneg. Hence it is, in general,
T—oo | T {5 not realizable. As we shall see next, the objection disappears

R 1 if v, is harmonic, but new difficulties will appear.
X R(uy — Ky — 1) — T(]T+l}- (40) Remark 2.4: All the results of this section remain valid
when the disturbance; is allowed to be complex (while the
If the limit limp— .o %qTH exists, any optimal processother parameters remain real), provided thiat, and p;, ;v
(w¢,u;) is produced by a controller (37) with, satisfying are replaced bRRe{p;v;} andRe{p;, v:}, respectively. Then
(38). p: is complex, whileg; remains real.
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lll. OPTIMAL CONTROL WHEN THE view of (42) and (43), the optimal process u; = Kz;+Ep;
EXTERNAL DISTURBANCE IS HARMONIC satisfies the system of equations
Let us now suppose that the external disturbanca (24) 2441 = zy + BEpy + Cwy
is harmonic or, more precisely, that per1 = (U)7ipy — PCuy (49)
vy = Cwy (45) wyy1 = Dwy.

For an optimal procesg,, given by (36), and:, are bounded.

where ‘ Conversely, letz,, p, be a bounded solution of (49) and let
Pt uy = Kz, + Ep,. Using the first equation in (49) and (20),
Bocifzt we obtain
. Ti4+1 = A.’L’t + BU,t + th, Uy = K.’L’t —+ 7.
ﬁmez&mt - -
. Therefore, by Theorem 2.3;, w; is an optimal process.
with By, B2, -+, fim complex numbers and Now, consider the linea2n + m)-dimensional system
<0 <Oy << b,y < (47) (49). Sincel’ .is stable and therefor@l“*_)—1 is antistable, the .
state space is decomposed as the direct sum of three invari-
This allows us to writew, = D3 where ant subspaces, the-dimensional stable subspacef, the
D = diag(cl® eif> ... gifm n-dimensional antistable subspagd_, and m-dimensional
= diag(e™, €™, -, ™) center manifold Mg, being the subspaces spanned by the
and generalized eigenvectors of the coefficient matrix of (49)

B=col(B1,P2, ,Pm)- (48) corresponding to the eigenvalues of modulus less than one,

) . ) ] ) reater than one, and one, respectively. The evolution of the

This choice ofv; is more general than that in Section |, ‘_"mgntire linear system (49) is a superposition of three motions,
by redefining the matrixC' it covers the systems descriptiona gne onM_, which tends asymptotically to zero as- oo,

1
there: _ o o _ the one onM_, which is unbounded, and the one ol,,
However, if the limits exist in the corresponding cos{yhich is harmonic.
functions (4) as will be the case for the linear class (10), or e remark that almost all solutions of (49) are unbounded

(9) (see Theorem 4.4), the problem of Section I with a regf,q hence do not correspond to optimal processes. By Theorem
disturbance, henceforth called theal optimization problem 2.3,p:, as a unique bounded solution of (29), is given by (36).

can be embedded in theomplex optimization problemith  tperefore, in view of (45) and (46), must be harmonic in
harmonic disturbance (46) and with the same (redllas ihe optimal solution, i.e.

in Section I. With the obvious modifications described in

Remark 2.4, Theorem 2.3 applies to this problem as well. _\ () 3. .85t
Proposition 3.1: Let m = v, and set3; = «;¢™¥/ and b _z_:lp Aie 0)
6; = w; for j = 1,2,--- m. Then, if the procesgz,u.) =
is optimal for the complex optimization problem, the proceg¥here
(Re{xt},Re{ut}) i§ qptimal for the real_optimizatign prob- P9 = ¥ T — 1)L PCe; (51)
lem, provided the limits in the cost functions (4) exist in both
problems. with ¢; being the jth columns of the identity matrix,,.
Proof: Note that Consequentlyy,, given by (31), must also be harmonic and
is given by
Az, ur) = A(Re{z: }, Re{ur }) + A(Im{z }, Im{ue }) .
and that(Re{x,},Re{u,}) satisfies (1) withw, given by re=yl =y yp;ettt (52)
j=1

(2) and (Im{x;},Im{w:}) the same equation with cosine
exchanged for sine and witla = 0. Therefore, if the corre- where
sponding limits in (4) exist, the complex optimization problem W . ks 0B 1
is decomposed into two real optimization problems, one of ¥ = (B*PB + R)™"B* ("™ = )" PC¢, (53)
which is precisely that of Section I. Clearly, the complexnq therefore there is a matrix

optimization problem is solved only if the two real ones are.

Let us now consider the optimization problem. For simplic- Y= (W, y@, .yt (54)
ity and to illustrate a point, let us, j_ust for the moment, assum@ .- qoes not depend on the unknoyn s, - - - , B, such
thatdetI" # 0 and let us take; = 0 in Theorem 2.3. Then, by .

(35),7: = Ep; whereE := —R-1B*(I'*)~1, and therefore, in

1Let us denoteC andw: in (1) asC® andw?, respectively. Then, if no
w; equals zero o, C = [C?, C°] andCPw? = Cw; in (45), and, in (46),

re =10 = Y. (55)
This implies that (49) may be replaced with

m=2v,j3; = %a]'ei“"j,ﬁ'y+j = %a']-c_wjﬁej =wj, andb,; = —w;

forj =1,2,---,v. If wp =0 0rwy =, 31 = Bu4k, and we may take T =Tz, +(BY + C)w

8y = 6,11, SO the corresponding column i° need be repeated ifi. Note { L -D ¢ ( ) i (56)
that C andC'w; are real. Wi41 = LWt
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the orbits of which are bounded and fill th@ + m)- To see this, let us first remark thatfif andg, are harmonic

dimensional subspac&1, & M. Note that (50)—(56) have sequences, i.e.,

been derived without resorting to the conditidet I" £ 0, so m m

this condition is no longer needed. We have established that fi = Zf(j)eiejt and g, = Zg(j)ewjt (61)
J=1

any solution of (56) together with =1

uy = Kxy + Ywy (57) andW is an arbitrary matrix of appropriate dimensions, then

yields an optimal process. The equations in (56) coincide with . LU N 1 s

(24) with w, given by (45) if we use the control (57). So théM{fy Wee} =D > fr" W™ lim ¢ 2% et .
regulator (57) gives us an optimal process. But, we cannot use j=lk=1 t=0 (62)
this regulator since the process is not available through The limit in this expression does exist, and it is one if

observations. - — 0, and therwise. Theref ince the f [
Next, consider two ideas of identification of the unknowr)/ — 7% antl zero oiNEnwise. Theretore, since the requencies

ws. We will see that both of them will fail. In the first, we ?1102>"*~+0m are distinct

considerw, as part of the state and try to construct an observer LI .

to estimate it fromz,. Indeed, the standard reduced-order M{fiWag} = fO*Wwg"). (63)
observer is obtained by setting i=1

2= w; — La, (58) (If the frequencies were not distinct, Fhe expression becomes
somewhat more complicated, but the idea would be the same.)
so that Now, returning to the question of robustness, let us suppose
that the frequenciesﬁl, ég, e 6., used in computing the
control law (60) are not the same as those driving the system,
being estimates o#,,605,---,6,,. Then the control really
becomes

241 = (D bt LC)Zt + (DL - LCL - LA).’L't bt LBU,t
Then, the observer will have the same structure, namely
73}4_1 = (D bt LC)?:’t + (DL - LCL - LA).’L't bt LBU,t

but with an initial condition which is an arbitrary estimate of

. . g ~0 7 . .
20 = wo — Lag, say = 0. Sincez; = z, — %, satisfies where 9 is (§2) conjputed with respect to the estimated
frequencied,, 6y, - - -, .. Clearlygy — v and thusi, — wu,
Zy1 = (D= LC)Z (59) as; — 6;,j =1,---,m, for any fixedt. Nevertheless, as we

shall see, the regulator will not be robust. To see this, note that

and(C, D) is an observable pair (providedis full rank), the by (40) in Theorem 2.3, the cost of using the control (33) is

pole placement theorerimplies that can be chosen so as
to give D — LC any desired spectrum; in particular we can ¢ = &, + M{(t — Kx, — y?)*fz(at — Kz, — )}
make it stable. Then, by Theorem 2.3, the control law (57)

could be replaced by i.e., the increase in the cost function is
~ * LA
w = (K +YL)z + Y3 A® =M{(% —v) R(3 — o)) }-
sincee; := % — 0 ast — oo. Unfortunately, however, Now, assuming that al@j are different, we have
the corr_espondlng _closed—loop s_ystem will r_10t be strlcﬂy_ o o ) bt )ikt
stable since, as a simple calculation reveals, its characteristic Y — Yy = Z (G e yett)
polynomial will contain the characteristic polynomigl, of 6;76;

D as a factor. In fact, this will also be the case for a L
L and, therefore, in view of (63)
regulator based on a full-order observer. This is of course a

manifestation of the fact that (25) is not a stabilizable system. AD = Z (597 R 40 Ry,
A second unworkable idea is based on the observation that b.26,
the unknown amplitudes,, 3, --, /3. can be determined T

exactly in a finite number of steps by choosihgin (59) so Consequently, aéj — @, for j =1,2,---,m, and hence
that all eigenvalues ab — LC' are zero, and hencg — 0 is .

at mostm steps so that,, t = m, m+1, - - - can be determined 49 = R1B*(
exactly. Then, by (58)z; is completely known, and hence so R—lB*(
is ¥ as given by Theorem 2.3 and by (52). It may therefore

seem reasonable to try to use a control law we have

wy = Kz, 410 (60) A —2 ) IRy = A, (65)
6;7#6;

— T 10 — W)

I
I— T

wherey? is known and precomputed instead of being obtained
via feedback. However, such a regulator will not be robust wigo that an arbitrary small mistake in the estimation of frequen-
respect to errors in the frequencies 6, - -, 6,,. ciesfy,8,--- .6, produces a jumg®, in the cost function.
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Due to this discontinuity, the control law (60) is not optimal Proof: Because of stability, any solution of (70), (72) has
for practical purposes. the property that, = 4 + ¢, wheree, — 0 exponentially
Let us now return to (56), the state space of which hast — oo. Therefore, recalling thag? = r;, (69) implies that
the decompositionM & M, so that all orbits converge u; = Kx+r+¢:, where M|e;|?} = 0. Also, z;, which tends
to the center manifold\1, of harmonic solutions. Since theexponentially toz?, satisfies the admissibility condition (7).
component inM_ —Ilet us call it z;"—tends asymptotically Consequently, by Theorem 2.3, the processu; is optimal
to zero for the problem to control (1) so as to minimize (4), i.e., the
regulator (9) is optimal for the problem to control (1). O
We are now in a position to formulate the general principles
that need to be followed in designing an optimal, robust, and
and therefore only the harmonic compone[rﬁg] in Mo universal regulator for the control problem in Section I. The
contributes to the cost function. Consequently, i in Theorem 2gbal is to construct an optimal regulator (70) in which the
uy has the form matrix polynomialsD()\) and N()) are chosen so that:
1) the closed-loop system (70), (72) is asymptotically stable;
2) the closed-loop system (70), (72) has the same harmonic
solutionsz?, 1° as (67), (68) for any complex amplitudes
/317 /327 e 7/3771;
. 3) the matrix polynomialdD(\) and N(}A) in the regulator
0 _ () 3. 105t (70) do not depend Oﬁlvﬁ% o '7/3771;
i _;x Pie 4) the regulator (70) is robust in the sense that if it is
determined from estimatéy, 65, - - - , 8, of the frequen-

=0

uy = Kz + 10 + ¢ (66)

where still¢, is any sequence satisfying (38). Herg and?
are the harmonic solutions

and

m cies 6,6, -, 6,,, then the valued(d, ) of the cost

v = y et (67) functional must be continuous #, 0, -, so that,

j=1 in particular, ®(6,8) — ®(8,6) asé — 6. (This is a

where somewhat nonstandard use of the concept “robust”.)

By Theorem 3.2, Conditions 1) and 2) imply that the
8) regulator (70) will be optimal. It will be shown in Section V

{a:(j) = (%1 —1)"Y(ByY) + Ce;)
that 4) is a consequence of 1) and 2).

y9) = (B*PB + R)™'B*(c"%* — I)"1PCe;. (
The expression foy? has already been derived above [see
(52) and (53)], and the one far} is then obtained from (56).
Next, consider the regulator (9), which we shall write in a
slightly different form. In fact, let us introduce the new control We have now reduced the problem of Section | to that

IV. THE GENERAL REPRESENTATION
OF A STABILIZING REGULATOR

yr = uy — Ky (69)
in terms of which (9) may be written as
D(o)y: = N(0)a: (70)
where N()) is the matrix polynomial
N(A) = M()\) — DOVK. (71)
Moreover, (1) becomes
Zey1 = U'zy + By, + Cuy (72)

wherel’ := A— BK is stable, as pointed out in Section II.

shall say that the regulator (9), or, equivalently, the regulat@r

defined by (70) and (69), is optimal if the solutiés,, u.) of

the closed-loop system (1), (70) is an optimal process in our
problem to minimize (4) subject to (24), (45), and (46) for

any initial conditions.

of designing a regulator (70), independent®f 35, - - -, 5.,
rendering the closed-loop system (70), (72) asymptotically
stable, and having a harmonic solutign!,+) coinciding
with the harmonic solution of (1) obtained by applying the
nonrobust and unrealizable regulator of Section Il. This section
will be devoted to the stability Condition 1).

More precisely, in this section we shall parameterize the
class

D(o)y: = N(o)y (73)

of stabilizing linear regulators, where is the forward shift
operatoroz; = 241 andD(X), N()\) are realk x k andk x n

Wematnx polynomials such that the leading coefﬁmentl@(f)\)

nonsingular andleg N < deg D so thatD(\)"!N()) is a
proper rational matrix function. Consequently

Zey1 =Lz + By, +we 74

{D(O’)yt :N(O').’L't ( )

Theorem 3.2:Let (2?9, 3?) be the harmonic optimal processis the closed-loop system under consideration. We recall that
defined by (67), (68), and lets; be given by (46). Then I is a stable matrix and that, € C™,y, € C*.
the regulator (9) is optimal for the problem to control (1) Therefore, from now on, we shall take (74) wikhstable
so as to minimize (4) if the closed-loop system (70), (73s the starting point of the analysis of this section. gt \)

is asymptotically stable and has a harmonic solutigh 4?)
which coincides with (67).

and ¥, () be the transfer functions from the input to the
outputsz, andy,, respectively, of this new system. They are
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defined by Proof: Setl'y := Al —I',6()) = detI'y andQ(A) :=
§(AI'3E. From (77) and (79) we obtain

(M, = D), (\) = BY,(\) + I, (75)
NO)WYL(N) = DOV, (V) det = = §det [NI'y'B — D] = §det(—pI) = (—=1)*6p*
and consequently which is a stable polynomial. Therefore (74) is stable. Now,
in view of (76) and (79)
U, (\) = (M, = D)TH(BY,(N) + 1,). (76)

NV, = NI' Y (BY, +1) = RBY, + R
Condition 1) at the end of Section Ill is precisely the
condition that (74) is stable. To say that (74) is stable is gnd

say that DV, = RBV, + p¥,

(M, -I) -B

=EN=1"Nn T —poy

(77) and soN¥, = DV, yields

: . N - R(A) = p(N) Ty (A).
is a stable matrix polynomial, i.e., thaletZ(A) # 0 for

[A] > 1. Now recall the following definition. Thus we have established (80). SindegR < degp,
Definition 4.1: The regulator (73) is said to b&tabilizing ¥,(c0) = 0, and consequently, by (76)¥,(c0) = 0.
for the system Therefore, the regulator (73) is stabilizing.
Now, let D'(¢)y; = N'(o)z, be an arbitrary stabilizing
Tepr = Lwe + By, + v (78)  regulator, and letl,, U}, be the transfer functions formed
1 1 ! —
i\Lt(he)clos(;ed—loop system (74) is stable ang,(c0) = I\B; ?::)llo:gyo,wgrd\l:ﬁ\;?'isTlsqg:)]eV_v?_':rzve\Px(oo) 0 and
yloo) = U

The last requirement ensures causality in the sense that Jet =’ — det ry -B

x¢, Yy In (74) will depend orv;, j < ¢t only. We also introduce G= =N _pr

the following definition. = det D'y det (N'I';1B — D)
Definition 4.2: The regulatorsD;(s)y: = Ni(o)x; and

—1 (k-1
Dy(o)y: = Na(o)z, of the type (74) are callegquivalent = 6det(557) =6 * D det S (81)
if there exist matrix polynomialdg, Ny such that where
Dy =MDy, Ny=DMNy, Dy=MDy, N»=DMNg S=NQB-8§D (82)
for some stable matrix polynomial®/;, M>. is a matrix polynomial. From (81) we havdetS =

It is clear that the equations of (74) with equivalent regys—1! det =/, so $ must be stable. Let
lators have the same transfer functiobs, ¥,. Moreover, if .
one regulator is stabilizing, then so is the other. The following Se=5""detS (83)
lemma, which is also of independent interest, complete I . . :
characterizes those regulators (73) which satisfy Condition ggvtge adjoint matrix polynomial. In accordance with (75) we
Lemma 4.3:Let T" in (74) be a stable matrix. Lei(\) be
an arbitrary real scalar stable polynomial, andAgt\) be an {FA‘I’;()\) =BV, (A +1
arbitrary realk x n matrix polynomial such thadeg R(\) < N'(MWLA) = D(A)TLN).

deg p(A). Then, the regulator (73) with Consequently

D(A) = R(X)B + p(A) I}, D'V = NTHBY, +1) =6 'N'Q(BV, +1
{N()\)IR()\)()\In—F) (79) y A ( y ) Q( y )
i.e., SV, = —N'Q, and hence, in view of (83)

/
o = SN (84)
det Z(\) = (=1)*p(N)* det(M = I) det S

(80) Now, let us take

R(A) = =S:(A)N'(NQM),  p(A) =det S(A)  (85)

is stabilizing for (78), and, for this regulator

\I/y()‘) = %7

whereZ is given by (77). The class of regulators (73), (79)
contains all stabilizing regulators in the sense that any othend letD and ¥V be defined correspondingly by (79). Since
stabilizing regulator is equivalent to one in this class. W (00) = 0, we havedeg @ < deg p. Moreover,p is stable.

We note that since the coefficients in (1) are real, so are thieerefore, as proved abovéd)y, = Nz, is a stabilizing
polynomialsp and R. For the complex case we would needegulator, and¥, = R/p, so we must haver, = ¥, and
the polynomials to be complex. Lemma 4.3 may be deducednsequently, by (76)¥, = V.. SincedegR < degp,
from the Youla parameterization, but it is simpler to give awe have det D(A) # 0, and (76) impliesdet ¥, # 0.
independent proof. Consequently, the second of the relations in (76) can be written
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DN = ¥, ¥;t, But we also haveD’ "' N’ = ¥, ¥ and Proof: Since the closed-loop system
so
{$t+1 =Tz, + By, + Cuy
D(o)ye = N(o)x:

N =DV, Ut =D'D7IN. (86)
is stable,z; and y; tend asymptotically to the harmonic

Let thek x k matrix polynomial)/ be the greatest left commonsolutions
divisor of D and N, i.e.,

m

Fy = Zf(i)/jjewﬂ’ G = Zg(i)ﬁjei%t (91)
j=1

D=MDy,, N=MN, (87) =1
) ) ) ~ where
where Dy and IV, are left coprime matrix polynomials. Since » ” 1
Dy, = Nz, is a stabilizing regulator)/ is stable, and, since gD (%1 -T) -B I .
~(]) = 00 8 Cﬁg@g (92)
det D # 0,det M # 0 anddet Dy # 0. From (86) we have ] N(e®)  =D(c") 0

N' = D'Dg No, so settingM’ := D'Dg, we obtain ast — oo, and, a fortiori, z; satisfies (7). Now

D'=M'Dy,, N’ =MN,. (88) ®— M{ [wtrw[m} }

Y Yt

Since Dy and N, are left coprime, there exist matrix polyno-Where the symmetric matrix
mials II; andIl, such that

Q+ SK + K*S*+ K*RK S+K*R}

W:[ S*+ RK R

Dolly + Noll, =1
depends continuously of}, R, S, and K. In view of the fact

(see, e.g., [10]). Therefore thatz; — #; — 0 andy, — §; — 0, this can be written

M’ = M'(DolI; + Noll) = D'TI; + N'II, o= M{ Ft } W {xt} } (93)
Yt 0
is @ matrix polynomial. SinceD’y, = N'y, is a stabilizing  consequently, (90) follows from (91), (92), and (63), and the
regulator,M/’ IS stat/)le. From (87), (88) we now see that thgnsis leading to (91) shows that the limit in (89) exists, as
regulatorsD’y, = N'xz; and Dy, = N, are equivalent. [ cjaimed. Moreover, the stabilizing solutidh to the algebraic
This lemma provides us with a complete answer to the qu&$ic4ii equation (19) depends continuously4nB, Q, S, and

tion of how to satisfy Condition 1) at the end of Section R and hence so dodgs as defined by (18). Consequently, in
We can use a regulator of the type (73) with \V defined by ey of (92), the statement on continuity holds. O
(79) for somep and R, and, modulo equivalence, the regulators

of this type are all the stabilizing regulators. From (79) we see
that the leading coefficient aD()\) is nonsingular and that
deg N < deg D, which implies that (73) is a causal regulator,
i.e., D(A)"LN()) is proper. We now turn to the other requirements for the regulator
That the limit in the cost function (4) does exist for anyvhich are enumerated at the end of Section IlI.
stabilizing regulator in the class presented in this section, asCondition 2), which we consider first, implies thit, (\)
required by Proposition 3.1, is a consequence of the followigd ¥, () satisfy certain interpolation relations ensuring that
theorem, which is also of interest in its own right and will b¢74) has the harmonic solution (67), (68). As seen from (45)
needed in Sections V and VII. and (46), the harmonic solution of (74) with = Cw; is
Theorem 4.4:Let uwy = Kz + 3. Then the limit

V. THE EXISTENCE AND DESIGN OF THE
REALIZABLE ROBUST OPTIMAL REGULATOR

we= #VB =) g (94)
j=1 j=1

T
1

= lim =Y Az, up) (89)

T—oo T ; where

2D = U Cer. G = W, () Ce,
exists for any procesa:, u,) defined by a stabilizing regulator 39 = W, () Ce;, g9 = Wy () Ce;. (95)

(73), and it takes the form Here ¢, is the jth unit axis vector of dimensiom, i.e., the

jth column of the identity matrix,,.
¢ =prQp (90) " The conditionsr; = z? andy, = 4? required for optimality
hold for all 31,/s,---,3, if and only if the following
where the m x m matrix Q depends continuously oninterpolation conditions are valid:
01,605,---,0,, A B,C,Q,R, and S, and the parameters 0. ) i0. )
of the regulator polynomial®(\) and N()). Moreover, the Uo(e™)Cej =z, Wy (") Ce; =y,
admissibility condition (7) is satisfied. =12 m. (96)
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The relations for¥, in (96) follow from the ones forl,. condition (7) such that the regulator does not depend on the
In fact, using (76) and the expression fef’) in (67), we unknown complex amplitudeg;, 3., --,n, and the cost

transform the interpolation relation (96) faf) into functional (4) is minimized for all3y, 82, -, Bm.
BU (65 1] _ B, 97 Theorem 5.1:Let p(\) be an arbitrary real scalar monic
(BYy(e¢"™) +1)Ce; = By + Ce; ©O7) " stable polynomial, and leR(\) be a real matrix polynomial

which follows from the second set of equations in (%fatisfying the interpolation conditions (99) and having degree
Therefore, ¥, may be omitted from the subsequent analysi{Ss than that op(A). Moreover, letD() and N (}) be given

By replacing 4 in (96) by the expression in (68), thePy (79), respectively. Then the regulator

remaining interpolation conditions become D(o)us = [N(0) + D(0) K]z, (102)

205 L * —1 px/ 10, 7* -1 .
Wy(e™)Ce; = (B'PB + R)7 BY (™1™ = [)™ PCe;j, is optimal for the problem posed in Section IIl, and it renders
J=12---m (98) the complete closed-loop system asymptotically stable, and
therefore (7) holds. It is also robust in the sense of Condition
4) at the end of Section Ill, and it is universal in the sense
that it does not depend on the unknown complex amplitudes

and are thus independent 8f, 3, -, Bm.
Now, inserting¥, () = %, as prescribed by Lemma 4.3,
into the interpolation conditions (98), we obtain

81, P2, 3. Finally, modulo equivalence, all universal
R(&%)Ce; = p(c¥)0(c)PCe;, j=1,2,---,m optimal regulators are formed in this way.
(99) Now, in view of Proposition 3.1 and Theorem 4.4, this
where regulator is also an optimal robust and universal regulator for

the original real problem posed in Section I. Also, modulo
(100) equivalence, all universal optimal regulators are formed in

so R andp must be chosen to satisfy (99) and the conditions IS Way- . -
Lemma 4.3. Ifc; := Ce; # 0, the jth interpolation condition _ BY taking (£ G, 4, L) to be a (minimal or nonminimal)
(99) can be written realization of D(\)"1N()), i.e., a representation

R(Giej) — p(ezﬂj)@(ezﬂj)ch(c;gcj)—lc;g +Rj (101) H()\I— F)_1G+L = D()\)_IN()\) (103)

O(\) = (B*PB+R)'B*(A* - )7t

where R; is an arbitrary matrix such thak,c; = 0. It is W€ can write the regulator (102) in the form

clear that there exists a solutidi(\) of (99) for eachp of z41 = Fz + Gy
sufficiently high degree. {U/t = Hzy 4+ Jay
Obviously the interpolation relations (99) do not contain the
unknown complex amplitudeg;, 3, - -, 8,,. Therefore, R With J = K+ L, K being the gain (18). We observe, however,
andp and, consequentlp and V in (79), will not depend on that D(A) and N(A) need not be coprime and that any
B1, B2, -+, Bm either; hence Condition 3) is satisfied. Recaleft common factors are canceled in determining a minimal
that an optimal regulator with this property is callediversal realization(F, G, H, J— K) of D='N. Therefore, for the sake
To prove that Condition 4) holds, note that by Theoof robustness, a nonminimal realization may be preferable.
rem 4.4 the cost functior® depends Continu0u5|y on the Remark 5.2: Theorem 5.1 states that the regulator (104) is
parameters of the regulator polynomial3(\) and N()), optimalin any wider class of regulators which is in harmony
which in turn depend continuously on the polynomi&g\) with condition (7). In particular, no nonlinear or nonrealizable
and p()\) via (79). The regulator is determined by fixing gegulator will yield a smaller value of the cost functional
p(\) of sufficiently high degree and determinig(\) from (4). The same, of course, holds for the real problem of
(101) with 6,65, ---,6,, exchanged ford;,fs,---.6,,. It Sectionl. (To see that there is a linear optimal regulator,
remains to prove that th|£()\) depends COﬂtinuous'y on use the formulation in the fOOtnd’tGO aVOid the question Of
61,0, .0,,. To this end, observe that (101) is a (generall§Xistence of limits.)
underdetermined) system of linear equations in the coefficientdk@mark 5.3:Note that, since andp are real, the interpo-
of R()\), and therefore the question is reduced to decidid@tion conditionR(c' )c; = p(c'%)O(c*% ) Pc; is equivalent
that the coefficient matrix of this linear system has full rank0 R(¢™"%)¢c; = p(e™%)0(e ™) Pe;.
which is the case since it is a (block) Vandermonde matrix L€t Us next consider the question of determinjxg) and

(104)

corresponding to distinct points on the unit circle. R()). Clearly, there is a considerable degree of design freedom
Thus we have established a general formula for the requiré@re- IF
universal optimal regulator. In fact, Lemma 4.3 gives us the det C*C #£0 (105)

complete class of stabilizing regulators [satisfying Condition
1)], and the interpolation conditions (99) are equivalent tgnd consequentlyn < n, we can always choosg\) to be

Condition 2). of degree two and tak&()) of the form
We summarize our results in the following theorem. Before
that, however, let us recall the problem formulation for the R(A) = RoA+ Ry (106)

CQmF”eX problem: given (24) W?th the external diStur_ban_(:ezThe observation in Remark 5.3 may allow us to remove some redundant
given by (45) and (46), find a realizable regulator (6) satisfyinglumns inC.
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where Ry, R, are real matrices. To prove this, insert (106yvhere

into the interpolation conditions (99), yielding the system of 0 —a 1
equations A= {1 0 }, B= [0} (117)
ajcosbj +bj = Re{p(c™)O(c?)PCej} o0 and
a;jsin@; = Im{p(c*1)0(c"%)PCe;} 110101 1
in the realk-vectorsas, as, -+, am, b1, ba, - - -, b, defined by ¢= 0 0 0 0 0}
-1 —ia ,—iwat 16 _ot
. . . , i e e [_se
aj = RoCley, bj = RiCey, J=12,---,m (108) ;ale—ime—iwlt /3_16?0_1t (118)
where, as beforeg; is the jth column vector in the identity wy = Qo = /306@“
matrix I,,. The solution of (107) is unique, provided no lal@f“@f“” Prett
6, is a multiple of =. Otherwise, the second equation is L Japetezeient Bacifzt

trivial, so the first alone determines the (nonunique) solutio

ﬁ"we reformulate the problem according to the foothooe
Given a;,b,;,7 = 1,2,---,m, the matricesRy and R; can P 9

be obtained from (108). To this end, form thex m matrix 111 o Boctfot
i — — o1 twit | 01t
polynomial C= {0 0 0}, wy = et | = | Brett
2 twat 02t
upe¥? gt [oet??
S()‘) = [a17a27"'7am])‘+ [b17b27"'7bm] (109) (119)
of degree one. Then, if (105) holdB(\) can be solved from if, as we shall do here, we embed our problem in the
R(\C = S(\). (110) complex optimization problem as described in Proposition 3.1.
Moreover

In fact, if det C*C # 0

R(\) = S(\)(Cro)~ter (111) @= {(1) 8}’ 5= m’ R=1 (120)

is a (in general nonunique) solution of (110). On the otht?lr{ett;e parameterjin thle CbOSF fLQCtiop (4). Itt. Is elagsyhto Stﬁe
hand, if det C*C' = 0, the degrees op(\) and R(\) may at the corresponding algebraic Riccati equation (19) has the

need to be increased. unique stabilizing solution

In the casen > n, the degree op will in general increase p_ |Pu 0 121
with m. 10 pu-1 (121)
where
VI. A SIMPLE NUMERICAL EXAMPLE ) -
Consider the problem of designing a universal optimal pL1 = a + e +1 (122)
regulator for the scalar plant 2 4
and the gain (18) is given by
Yyt T ah—1 = w + fr (112) a
_ , K=[0 r], r=-P1 (123)
with the external disturbance 1+pu

fi = oo + a1 cos(wit + ¢1) + o cos(wat + 2)  (113) In fact

where, as before, the frequenciesandw, are known, while BPB+R=1+pn>0

the amplitudeso, a1, a2, and the phases; , ¢ are unknown. and the corresponding feedback matrix (20)

Hence this disturbance includes a bias as well as harmonic

oscillations. The problem is to find an admissible regulator (8) r= [0 _’q , v = @ . (124)
which is stabilizing in the sense thatly, — 0 ast — oo and 10 1+pu

universal in the sense that it does not depenchgim, a2,  has all its eigenvalues strictly inside the unit circlealf> 0,

and g, ¢2, and which minimizes the cost functional there will be a pairti,/7 of imaginary eigenvalues, and if
1 X a < 0 a pair=£,/|y| of real ones.
® = limsup T Z (7 +u?) (114)  Let us now choose some (real) polynomial
T—oo t=0

p(A) = N+ p1 At + pad® + 40307 + ps) + ps
for any values ofxg, o1, 2, @1, andes. Introducing the state ] )
which in the present example must be of degree five, having

zp = { Yt } (115) all its roots strictly inside the unit circle. The parameters
Yt-1 P1, P2, P3, P4, p5 Will be available for tuning in order to im-

the plant equations (112) can be written in the state form Prove the overall design. Next, we want to determine a real
1 x 2 matrix polynomialR()) of degree at most four, which

ZTey1 = Axy + Buy + Cuy (116) satisfies the interpolation conditions (101) in which we choose
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calculation shows, (100) is given by

o) :

S —
1+p11+a)\2[ Al

we need to find anR(\) which satisfies the interpolation

conditions

26 ;
5y = [ 0 () = _—pup(e™)
Ry =1r I, 7 T+ act®

Clearly, such ank()\) must have the form

R\ =1[r(x) 0] r(e%) =+ for all j.

R; =0 for eachj. Sincec; = [|] for eachj and, as a simple

(125)

(126)

2

1

As explained in Remark 5.3, we only need to satisfy this,
interpolation condition forj = 0, 1,2; then, the condition is
automatically satisfied fof = —1, —2. We can therefore use -1

the format expressed by (119). Then, exceptjfer 0 which

yields a real condition, we obtain a real equation for both tHeg- 1.

real and the imaginary part. Consequently, the coefficients of

100

the real scalar polynomial

r(A) = 1A+ o F 3\ A s 127y 4|

must be the solution of the system of linear equations 6

1 1 1 1 17 e 7(0) 51
cosdfly cos3f; cos20; cosby 1| |ra For )

sin4f; sin36; sin20; sinf; 0| |rs| = |Sr® 4r

cosdfy cos3fr cos26y cosfy 1| |74 For al
sindf, sin36, sin26, sinf, 0l Lrs (2

(128) 2 1

whereR denotes real part and imaginary part.

We are now in a position to describe a class of optimab

universal regulators. In fact, from (79), we obtain

{D(A) =7r(A) +p(N)
NQA) = Pr(A) yr(V)]

(129)

8 T T T T

1 4

-1 -

T

2 L L 1 L

0 20 40 60 80 100

so, in view of Theorem 5.1, (115) and (123), the optimdl9- 2

regulator corresponding tp is given by

[o(a) + r(D)ur = or(a)ye + [rp(0) + ar(o)]yr—1

(130)

Here we must use the symmetric formulation (118) to obtain
a real polynomialr(\).

i.e., the transfer function of the regulator from the output to !N Fig- 1 we show a simulation for the situation that

the control is
A2r(A) + kp(X) + ar(\)

F = =500 + 0]

(131)

a = —08, 6§ = 0.3, and 8, = 1.0. To illustrate the
amount of damping, we depict the outpyt both for the
case that there is no contr¢l; = 0) and for the optimal
universal regulator corresponding to the polynompalvith

We stress again that we have one such universal optini@Pts —0.3,-0.4 +£0.2,-0.5+0.3.

regulator for each admissible choice af

The choice ofp must be made with some care, since it may

interpolation formula to obtain

2

r(A) = > DN (132)
j==2
where
mN) =[5 =" (133)
g N T M

does not affect the value of the cost function.

Next let us consider what happens if the true frequencies
of the system are not quite the ones used in computing
the regulator, but there is an estimation error. Fig. 2 shows
the outputs obtained if the regulator of Fig. 1, based on the
frequencie#; = 0.3 andf, = 1.0, is applied to a system with
true frequencie#¢; = 0.5 and 6, = 1.5.

As we can see, the regulator still behaves reasonably despite
the large errors in the frequency estimates.
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VII. THE STOCHASTIC CASE is bounded for allt € Z,. This should be compared with
A natural question to ask is whether the regulator dipe deterministic case considered before, which is obtained by

Theorem 5.1 remains optimal if the amplitud&s s, - - - , setting p; = 0. As we have full state information, it is no

are allowed to be random variables or processes and the ¢ES{riction to assume tha, is deterministic. o
functional (4) to be minimized is replaced by We restrict our attention to the following class of admissible

control laws. LetZ be the class of linear feedback laws (135)
T
. 1
¢ = lim E{ T ; Az, ut)} (134)

corresponding to regulators
D(O’)U,t = M(O’).’L’t (141)

where E{-} denotes mathematical expectation. As before, wg defined in Section I, such that the closed-loop system

assume thafay; & < t} is known at timet, so the regulator consisting of (136) and (141) is asymptotically stable.

should be chosen in some suitable class of feedback laws e remark that adding a white noise term, which is indepen-

dent of other system noise, to the left member of (136) does not

= f(t 135 L
= flt o, 21,0, 2) (135 Jiter the problem. In fact, for any € £, the contribution of
with the property that a condition similar to (7) holds. this white noise to the processesandu; produces an additive
In the case thaBy, 5, -, 3, are random variables, it is contribution toA(z¢,u:) which tends to zero as — oo and

not hard to convince oneself that the answer to this questiorhignce does not affect the cobt
affirmative. In fact, in the deterministic case studied above, theTheorem 7.1:Consider the control system (136) with the
same optimal regulator can be used for each fixed set of valgxéernal disturbancev, being defined by (137), or equiva-
of 81,8, ++,0m. Therefore, summing over a probabilitylently, by (140), where, satisfies (138) and (139). Then the
measure will yield the same optimal regulator as in thiémitin (134) exists for allf € £. Moreover, if f corresponds
deterministic case. to an optimal regulator of Theorem 5.%, € £, and f is

As it turns out, and this is the topic of this section, mor&lso optimal with respect to the cost functional (134), for the
general external disturbances may be considered. In fact, problem to control (136) in the class.

we may consider a control system Proof: The white-noise process can be represented in

the form
Tt41 = A.’L’t + BU,t + th (136
. . . . . . & = Ly,

with w, being the solution of a “harmonic” linear stochastic

system where L, is a matrix-valued function ang, is a zero-mean,
p-dimensional, normalized white noise, i.e.,

w1 = Dwy + &1, wo = f3 (137) .
E{nsny } = 184, E{m}=0. (142)

where D and 3 are given by (48)/3 is a random vector with
meanj := E{8}, {0, &1, &, -} is a zero-mean white-noise Then
process with¢, := 5 — 3, i.e., Pt

wy = Wy + Z Z wy(k, £)(mn)e (143)

B{&E ) = pibst,  E{&} =0 (138) =i
and {|p:| }32, is an¢; sequence, i.e., where
> ol < oo (139) wilk,€) = D enee®®t, e = (Ly)jee” 0 (144)
t=0 Jj=1

The noise model (137) does not damp past white noidad

exponentially, as does the usual “colored noise” model for mo

which D has all its eigenvalues strictly inside the unit circle. @ =Y e, (145)
Consequently, (139) is needed to decrease the influence of past j=1

white noise as time goes on and is actually the natural congitearly, an admissible process, «; defined via a control law

tiOf; ert;suring that the procedsu; } has bounded covariance.(141) with f € £ has a representation of similar form, namely
In fac

p t—1
m m t —
= . 0. (t—k Ty =Tt + 2 (K, ) (my, (146)
wr = Zejﬁje ejt—i-zej Z(SUJG 03 (t=k) (140) i i ;::1;; t( )(nk)é
j=1 j=1 k=0 p t—1
where (139) ensures that w=T4+ > >k, () (147)
£=1 k=0
t
E{ww}} = D'AB*(D*)" + ZDt_kpk(D*)t_k where{z;}, {u: }, {z:(k, £)}, and {u,(k, £)} are deterministic
k=0 vector sequences. More precisely, simge= F{z;}

3We recall thate; is the jth column vector inl,. Tyl = ATy + By + Cy, To = To (148)
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and sincex(k,4) = E{x¢(ng)e} fort > k41 col (Y1re, Yore, -+ » Ymie) IS defined as in (144). Consequently,

_ since L Lj, = px, it follows from (144) that|®y.| < s1|pkl,
we41(k, €) = Aze(k, £) + Bur (b, ) + Cwn(k, ) (149) for some constark; > 0, and therefore, in view of (139)
.’17k+1(/€,£) = ka(l{;7£)

fort =k+1,k+2,--. Z‘Pké<00-
In view of (144) and (145), these equations all have the same

structure, namely that of the deterministic case, and they differremains to prove that

only in the amplitudes of the harmonic external disturbances,

the quantities which do not affect the optimal regulator in the lim i [1 Z Alwe(k, 0),ue(k, £)) ] Z(I)M

deterministic case. Also, it is easy to check that T—oof— Nl
p t-1 (155)
E{A(ze, )} = ATy, Ty +ZZA x4 (k, 0), u (K, £)) But, in view of (62), there is a uniform bound
£=1 k=0

8

< Rz |px

1 T
T O Ak, 0, u(k0)

t=k+1

a:t,ut +Z A .’L’t k‘ K U,t(k} E))

= (150) for somex, > 0, and consequently (154) follows by a
dominated convergence argument.
if we agree to define,(k,£) andu,(k,£) to be zero fork > . Consequently, we have now decomposed the problem into a
Consequently countable number of separate, uncoupled deterministic prob-
T lems of the same structure as that of Theorem 5.1, namely
E{ 1 ZA(“’W)} ProblemP to minimize (153), given (148), and Probleris,
r —o to minimize (154), given (149). These problems differ only in
1 I the values of the initial state and the amplitudes (and phases)
== ZA(Q‘;t’ﬂ,t) of the external disturbance. But, by Theorem 5.1, the optimal
T t=0 regulator does not depend on these quantities. Consequently,
>~ 4 it solves all these problems simultaneously, and therefore it
+ZZ [— Z Ay (b, 0),u(k, £))|. (151) yields the minimum of the functional (152).
£=1 k=0 t=k+1 Now, let f be the linear control law corresponding to
We would like to be able to take the limit in this expressiogN OPtimal regulator (104) in the deterministic problem of
so that Theorem 5.1. Clearlyf € £. Moreover, ProblemP has the
p o optimal solution
C=0+3 > Pu (152) @ = f(t, 70,81, 7) (156)
¢=1 k=0
where and, for each(k, £), ProblemP,, has the solution
_ 1 T U,t(/{},g) = f(tv-IO(kvg)vxl(kvg)v"'737t(k7£))- (157)
® _TIEEOT;A(%W) (153) In Problem P, yixe, Yore, - -+ Ymre Play the role of the
unknown amplitudes. Now, inserting (156) and (157) into
and (147) and applying (146) yields
T A
By = TIL‘%ol 3 Ak, O, uk,0).  (154) ue = f(t, 20,31, -+, 2) (158)
t=k+1 by linearity. Consequently, (158) is optimal for the stochastic
This, of course, needs to be justified. We proceed next to doipgpblem as claimed. O
precisely this. We note that the decomposition (148), (149), and (152) is

Let us first address the question of existence of the limigalogous to the one used in [20], so a natural question is
(153) and (154). Due to the linearity of the control lawsdn whether the admissible class of regulators could be extended
to include nonlinear control laws as in [20]. However, this

U = [t To, T1y o0, 2 leads to technical difficulties related to the existence of the
and limits (153) and (154) and the validity of (155).
uy(k,€) = f(t, 2ok, £), z1(k, £), -+, x:(k, L)) VIIl. CONCLUSION

whenever the control lawf € £ is applied to the stochastic In this paper we present a complete characterization of
problem. But then, by Theorem 4.4, the limits exist, and all regulators which: 1) stabilize a linear system with ad-
and xz(k, ¢) satisfy the admissibility condition (7). ditive harmonic disturbances with known frequencies but

Secondly, Theorem 4.4 also implies thhf, = v;,Qv,, unknown amplitudes and phases; 2) minimize an infinite-
where 2 varies with the choice off € £, and v = horizon quadratic cost function; and 3) are universal in the
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sense that the regulators do not depend on the unknown amipli-accordance with Lemma 4.3, we here tai@\) to be
tudes and phases and are optimal for all choices of these. Thasg stable scalar polynomial of degree 1. Then (9) is a
optimal universal regulatorsire linear, but we show that theystabilizing regulator. In view of (160) and (163), we see that
are optimal in a wide class of nonlinear regulators. Finally, w@) is satisfied if

show that these regulators are also optimal universal regulators 0 it 0 0 1o

(in a natural sense) for a corresponding stochastic problem. Azy = Az”e™, Art=(NT-A)"¢ (166)

.We stress that our solutions are optlme}l in the sense State%mj therefore (161) and (166) wit = Cu® % 0 define
this paper only, and other desirable design specifications ma - 0

e . . . arl admissible process. Note theft,«° in (159) and (160)

not be satisfied for an arbitrary universal optimal regulator. o\ 0 .

. . may be replaced byz”, Au” for an arbitraryA € C. Next,

Therefore, it is an important property of our procedure that it o .

allows for a considerable degree of design freedom. How tr\ﬁle construct a sequence of admissible processes by replacing

g 9 : 8 . in (161) by z) = X\;2°, u() = X\;ul, where|);| —

design freedom is to be used may be the topic of a future papaér’. ielding the admissible processes
As pointed out to us by one of the referees, related optim%ﬁ’ y 9 P

control problems have been studied in some recent papers [13], xgj) _ )\jxoeiet + Az, ugj) _ )\juoeiet7
[28], but with different problem formulations. i=1,2.3,-... (167)
APPENDIX A By formula (165) we have
NECESSITY OF THEFREQUENCY-DOMAIN CONDITION
Ri(N) = X oA\l [(”) " 7HE)” (168)

Let us prove the assertion from Sectioniflthe frequency-

domain condition (13) fails in a strong way, then there exXistShare we have taken A()\) which does not depend o
an external disturbancey, such thatinf & = —cc. Since the rherefore, to our sequence of admissible processes (167),

frequency-domain condition (13) is invariant under feedbagKe e corresponds a sequence of stabilizing regulators (9) with
and the pair(A, B) is stabilizable, we will assume without 1y 5nd A7 defined by (162) and’(\) = R,.)
= R;.

loss of generality that! is stable. . . . Consider now the corresponding sequence of cost function-
Suppose that the frequency-domain condition fails strongly ¢, By (4) and (5), we have

for the valuesz®,+%, \° so that

0 0o\ * 0 0
0 0 G _ (Ax” + Az Q S\ Az +Ax
A= u”) <0 (159) oY) = < A ) <S* R Al
for = [N [2A(°, 1) + O(|As))- (169)

0,0 _ 0 0 0 _ 6
Aoi=Az 4 Bu’,  A=et bk (160) Therefore,®) — —oc as|)\;| — oc. This concludes the

We need to find a sequenaé),ugj) of admissible processesproof of the complex case.
[which is defined via a sequence of regulators (9)] such thatNext, consider the real case. We now have (1) with
®U) — —o0, where®() are the corresponding values of thalefined by (2), or, more generally, the system consisting of
functional (4). (24), (45), and (46) with,, = Cw, real. The matricest, B, C
Let us first consider the case when the admissible process real, as are the coefficients of the fofx, «) and of the
is allowed to be complex. Consider a process and perturbatf@lynomials D and A/ in (9). The admissible process must
of the type also be real, so the process (161) can no longer be used. Let
0 iet 0 ot 0 ot us therefore renam€ andw, in (1), (2) asC® andw?, as in

sp=w e +An,  wm=weT,  wp=w 6(161) the footnotet Then (1) becomes

wherew € C™ and Az; remain to be defined. Admissibility Tip1 = Axy + Buy + C%w?, To=a (170)
requires that (1) and (9) must hold, where (9) is a stabilizing . .
regulator. By Lemma 4.3, we may take with wy) = Rew,wy = col(Brert, ... Bert) and 3; =

B B a;¢*¥3. Certainly the system (170) has the previously consid-
D) = RNB + p(V iy, M(A) = RN — 4) ered form (24), provided we put, = Cw; = C'w?,C =

(162) w
for some polynomialsp(A) and R(A) with the properties [C,C%)w, = %[w@]’m =2 andf; = w;, 01, = wjt,
prescribed by Lemma 4.3. Using (1) we transform (9) into for j = 1,2, .-, . We have shown that the complex processes
p(o)ur = R(0)Cwy (163) &= (24 Ax)e™® @y = w0 (171)

so the system (1), (9) is equivalent to (1), (163). Siate 0,
we can chooser’ so thatc” := Cw® # 0. Equation (163)
is satisfied if

defined by (161) and (166) with® = C°w° satisfy the
complex system

pOO)u = RO, (64 T = AR B O, d=wtet (172)
For example, we can take @ \) the constant matrix Therefore, the real process

RO\ = pODO)ul[(2)* P71 . (165) x = Redy, u = Retyy (173)
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satisfies (170). Now consider the stabilizing regulator (9) for APPENDIX B

the plant (172) which as we have seen may be rewritten as ADMISSIBILITY OF THE CONTROL (37)
(163), which in our present notation reads Lemma B.1: Consider the solution, of
p(o)iy = R(o)CO?. (174) Tip1 =Dmy + f (178)

with zo = 0, where the matrid’ is stable in the sense that
there is aK > 0 and ay > 0 such that|I*| < Ke™* for
t > 0. Then, for anyt > 0

Choosing real polynomialg and R here, the process (171)
satisfies the equation

(o) uy :R(U)C'OwgJ (175) = o
e < T D e TIIAP (179)
s=0

implying that (173) will be the admissible process. Therefore,
we have to find a real stable scalar polynomigh) and a Proof: Since z; = EZ;E rt=s=1f, we havel|z;,| <

real matrix polynomialR(\), deg R < deg p, satisfying (174), KL e=t=s=D)|£,|, and, consequently
which is equivalent to 5=0

t—1 t—1
PN = RO\, aze)y el <D Y KT IL ||
81=0 82=0
t—1 t—1
Without loss of generality let us assume tkat 6 # 0. (If < 1 2 —y(2—s51—52—2) 2 2
needed, we can perturb the value tfa little in (159) and -2 SEZ:O SEZ:OK © ([forl” 1752

(160).) Letw? be realc® = COw® # 0, andR(\) = Ro+ R\
with real matrix coefficientsio, ;. Moreover, lefp()) be any Therefore, sinc& ‘Zf ¢=7(¢—*~1) < - we obtain (179).
stable polynomialdeg p > 2, and setp(\")u® = «' +4v”, O

wherew/,w” are real. Equation (176) gives Corollary B.2: Under the conditions of Lemma B.1 we
have
u = (Ro + Ry cos 9)60, u = (Rl sin 9)60. K2 t—1
_ _ oo < T DI (180)
To satisfy these equations we can take, for example ¢ 0

Now, in (42), f: = B(r: + &) + v, and hence
e < 41BI(Irel? + [ee]?) + 2|w]*.

But r, and v, are bounded, and consequently, by Lemma

2
Then the process (173) is admissible. Next, we find g1, there are constants; and K such thafjz,|* < K, +

- . . t—1 2 _ 27 _ (i ;
value of the functional (4) for this process. To this end, sét2 les=0 |es|* whenzy = 0. Therefore, Mes| ]_’f 0 |mpI|es
2 =[*] € C™*, and letz, = [**] = 2¢%* be an admissible that ;|| — 0 ast — oc. Sincel is stable, this is obviously

true for any initial conditionz.

_ 1 " O\ 01—1/ Oyx*
By = ()T

Ro = (u' — Ric® cos 0)[(°)*cH ()™

process, wheré = [“”Ojﬁl’] = a + ib,a, b real. Then, for any

real Hermitian formA(z), we have
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