
Modeling of Stationary Periodic Time Series by
ARMA Representations

Anders Lindquist and Giorgio Picci

Dedicated to Boris Teodorovich Polyak on the occasion of his
80th birthday

Abstract This is a survey of some recent results on the rational circulant covariance
extension problem: Given a partial sequence .c0; c1; : : : ; cn/ of covariance lags
ck D Efy.tCk/y.t/g emanating from a stationary periodic process fy.t/gwith period
2N > 2n, find all possible rational spectral functions of fy.t/g of degree at most 2n
or, equivalently, all bilateral and unilateral ARMAmodels of order at most n, having
this partial covariance sequence. Each representation is obtained as the solution of a
pair of dual convex optimization problems. This theory is then reformulated in terms
of circulant matrices and the connections to reciprocal processes and the covariance
selection problem is explained. Next it is shown how the theory can be extended to
the multivariate case. Finally, an application to image processing is presented.

Keywords Discrete moment problem • Periodic processes • Circulant covariance
extension • Bilateral ARMA models • Image processing

1 Introduction

The rational covariance extension problem to determine a rational spectral den-
sity given a finite number of covariance lags has been studied in great detail
[2, 5–7, 9, 10, 17, 19, 20, 24, 35], and it can be formulated as a (truncated)
trigonometric moment problem with a degree constraint. Among other things, it is
the basic problem in partial stochastic realization theory [2] and certain Toeplitz
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matrix completion problems. In particular, it provides a parameterization of the
family of (unilateral) autoregressive moving-average (ARMA) models of stationary
stochastic processes with the same finite sequence of covariance lags. We also refer
the reader to the recent monograph [31], in which this problem is discussed in the
context of stochastic realization theory.

Covariance extension for periodic stochastic processes, on the other hand, leads
to matrix completion of Toeplitz matrices with circulant structure and to partial
stochastic realizations in the form of bilateral ARMA models

nX

kD!n
qky.t ! k/ D

nX

kD!n
pke.t ! k/

for a stochastic processes fy.t/g, where fe.t/g is the corresponding conjugate
process. This connects up to a rich realization theory for reciprocal processes
[26–29]. As we shall see there are also (forward and backward) unilateral ARMA
representations for periodic processes.

In [12] a maximum-entropy approach to this circulant covariance extension prob-
lem was presented, providing a procedure for determining the unique bilateral AR
model matching the covariance sequence. However, more recently it was discovered
that the circulant covariance extension problem can be recast in the context of the
optimization-based theory of moment problems with rational measures developed
in [1, 3, 4, 6, 8–10, 21, 22] allowing for a complete parameterization of all bilateral
ARMA realizations. This led to a complete theory for the scalar case [30], which
was then extended to the multivariable case in [32]. Also see [38] for modifications
of this theory to skew periodic processes and [37] for fast numerical procedures.

The AR theory of [12] has been successfully applied to image processing of
textures [13, 36], and we anticipate an enhancement of such methods by allowing
for more general ARMA realizations.

The present survey paper is to a large extent based on [30, 32] and [12]. In Sect. 2
we begin by characterizing stationary periodic processes. In Sect. 3 we formulate
the rational covariance extension problem for periodic processes as a moment
problem with atomic measure and present the solution in the context of the convex
optimization approach of [1, 3, 4, 6, 8–10]. These results are then reformulated in
terms of circulant matrices in Sect. 4 and interpreted in term of bilateral ARMA
models in Sect. 5 and in terms of unilateral ARMA models in Sect. 6. In Sect. 7 we
investigate the connections to reciprocal processes of order n [12] and the covariance
selection problem of Dempster [15]. In Sect. 8 we consider the situation when
both partial covariance data and logarithmic moment (cepstral) data is available. To
simplify the exposition the theory has so far been developed in the context of scalar
processes, but in Sect. 9 we show how it can be extended to the multivariable case.
All of these results are illustrated by examples taken from [30] and [32]. Section 10
is devoted to applications in image processing.
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2 Periodic Stationary Processes

Consider a zero-mean full-rank stationary process fy.t/g, in general complex-
valued, defined on a finite interval Œ!N C 1; N! of the integer line Z and extended
to all of Z as a periodic stationary process with period 2N so that

y.tC 2kN/ D y.t/ (1)

almost surely. By stationarity there is a representation

y.t/ D
Z "

!"
eit#dOy.#/; where EfjdOyj2g D dF.#/; (2)

(see, e.g., [31, p. 74]), and therefore

ck WD Efy.tC k/y.t/g D
Z "

!"
eik#dF.#/: (3)

Also, in view of (1),

Z "

!"
eit#

!
ei2N# ! 1

"
dOy D 0;

and hence
Z "

!"

ˇ̌
ei2N# ! 1

ˇ̌2
dF D 0;

which shows that the support of dF must be contained in fk"=NI k D !N C
1; : : : ;Ng. Consequently the spectral density of fy.t/g consists of point masses on
the discrete unit circle T2N WD f$!NC1; $!nC2; : : : ; $Ng, where

$k D eik"=N : (4)

More precisely, define the function

˚.$/ D
NX

kD!NC1
ck$!k (5)

on T2N . This is the discrete Fourier transform (DFT) of the sequence
.c!NC1; : : : ; cN/, which can be recovered by the inverse DFT

ck D
1

2N

NX

jD!NC1
˚.$j/$

k
j D

Z "

!"
eik#˚.ei# /d%; (6)
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where ! is a step function with steps 1
2N at each "k; i.e.,

d!.#/ D
NX

jD!NC1
ı.ei# ! "j/

d#
2N
: (7)

Consequently, by (3), dF.#/ D ˚.ei# /d!.#/. We note in passing that

Z $

!$
eik#d!.#/ D ık0; (8)

where ık0 equals one for k D 0 and zero otherwise. To see this, note that, for k ¤ 0,

.1 ! "k/
Z $

!$
eik#d! D 1

2N

NX

jD!NC1

!
"
j
k ! "

jC1
k

"

D 1

2N

#
"!NC1k ! "NC1k

$
D 0:

Since fy.t/g is stationary and full rank, the Toeplitz matrix

Tn D

2

666664

c0 Nc1 Nc2 " " " Ncn
c1 c0 Nc1 " " " Ncn!1
c2 c1 c0 " " " Ncn!2
:::

:::
:::
: : :

:::

cn cn!1 cn!2 " " " c0

3

777775
(9)

is positive definite for all n 2 Z. However, this condition is not sufficient for
c0; c1; : : : ; cn to be a bona-fide covariance sequence of a periodic process, as can be
seen from the following simple example. Consider a real-valued periodic stationary
process y of period four. Then

E

8
ˆ̂<

ˆ̂:

2

664

y.1/
y.2/
y.3/
y.4/

3

775
%
y.1/ y.2/ y.3/ y.4/

&

9
>>=

>>;
D

2

664

c0 c1 c2 c3
c1 c0 c1 c2
c2 c1 c0 c1
c3 c2 c1 c0

3

775 :
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Then looking at the covariance matrix for two periods, we obtain

E

8
ˆ̂̂
<

ˆ̂̂
:

2

6664

y.1/
y.2/
:::

y.8/

3

7775
!
y.1/ y.2/ ! ! ! y.8/

"

9
>>>=

>>>;
D

2

666666666664

c0 c1 c2 c3 c0 c1 c2 c3
c1 c0 c1 c2 c1 c0 c1 c2
c2 c1 c0 c1 c2 c1 c0 c1
c3 c2 c1 c0 c3 c2 c1 c0
c0 c1 c2 c3 c0 c1 c2 c3
c1 c0 c1 c2 c1 c0 c1 c2
c2 c1 c0 c1 c2 c1 c0 c1
c3 c2 c1 c0 c3 c2 c1 c0

3

777777777775

;

which is a Toeplitz matrix only when c3 D c1. Therefore the condition c3 D c1 is
necessary. Consequently

T8 D

2

666666666664

c0 c1 c2 c1 c0 c1 c2 c1
c1 c0 c1 c2 c1 c0 c1 c2
c2 c1 c0 c1 c2 c1 c0 c1
c1 c2 c1 c0 c1 c2 c1 c0
c0 c1 c2 c1 c0 c1 c2 c1
c1 c0 c1 c2 c1 c0 c1 c2
c2 c1 c0 c1 c2 c1 c0 c1
c1 c2 c1 c0 c1 c2 c1 c0

3

777777777775

is a circulant matrix, where the columns are shifted cyclically, the last component
moved to the top. Circulant matrices will play a key role in the following.

3 The Covariance Extension Problem for Periodic Processes

Suppose that we are given a partial covariance sequence c0; c1; : : : ; cn with n < N
such that the Toeplitz matrix Tn is positive definite. Consider the problem of finding
and extension cnC1; cnC2; : : : ; cN so that the corresponding sequence c0; c1; : : : ; cN
is the covariance sequence of a stationary process of period 2N.

In general this problem will have infinitely many solutions, and, for reasons that
will become clear later, we shall restrict our attention to spectral functions (5) which
are rational in the sense that

˚.!/ D P.!/
Q.!/

; (10)

where P and Q are Hermitian pseudo-polynomials of degree at most n, that is of the
form

P.!/ D
nX

kD!n
pk!!k; p!k D Npk: (11)



286 A. Lindquist and G. Picci

Let PC.N/ be the cone of all pseudo-polynomials (11) that are positive on
the discrete unit circle T2N , and let PC ! PC.N/ be the subset of pseudo-
polynomials (11) such that P.ei! / > 0 for all ! 2 Œ"";"#. Moreover let CC.N/
be the dual cone of all partial covariance sequences c D .c0; c1; : : : ; cn/ such that

hc;pi WD
nX

kD!n
ck Npk > 0 for all P 2 PC.N/ n f0g;

and let CC be defined in the same way as the dual cone ofPC. It can be shown [25]
that c 2 CC is equivalent to the Toeplitz condition Tn > 0. Since PC ! PC.N/,
we have CC.N/ ! CC, so in general c 2 CC.N/ is a stricter condition than Tn > 0.

The proof of the following theorem can be found in [30].

Theorem 1. Let c 2 CC.N/. Then, for each P 2 PC.N/, there is a unique Q 2
PC.N/ such that

˚ D P
Q

satisfies the moment conditions

Z "

!"
eik!˚.ei! /d$.!/ D ck; k D 0; 1; : : : ; n: (12)

Consequently the family of solutions (10) of the covariance extension problem
stated above are parameterized by P 2 PC.N/ in a bijective fashion. From the
following theorem we see that, for any P 2 PC.N/, the corresponding unique Q 2
PC.N/ can be obtained by convex optimization. We refer the reader to [30] for the
proofs.

Theorem 2. Let c 2 CC.N/ and P 2 PC.N/. Then the problem to maximize

IP.˚/ D
Z "

!"
P.ei! / log˚.ei! /d$ (13)

subject to the moment conditions (12) has a unique solution, namely (10), where Q
is the unique optimal solution of the problem to minimize

JP.Q/ D hc;qi "
Z "

!"
P.ei! / logQ.ei! /d$ (14)

over all Q 2 PC.N/, where q WD .q0; q1; : : : ; qn/. The functional JP is strictly
convex.
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Theorems 1 and 2 are discrete versions of corresponding results in [6, 9]. The
solution corresponding to P D 1 is called the maximum-entropy solution by virtue
of (13).

Remark 3. As N ! 1 the process y looses it periodic character, and its spectral
density ˚1 becomes continuous and defined on the whole unit circle so that

Z !

!!
eik"˚1.ei" /

d"
2!
D ck; k D 0; 1; : : : ; n: (15)

In fact, denoting by QN the solution of Theorem 1, it was shown in [30] that ˚1 D
P=Q1, where, for each fixed P,

Q1 D lim
N!1

QN

is the unique Q such that ˚1 D P=Q satisfies the moment conditions (15).

4 Reformulation in Terms of Circulant Matrices

Circulant matrices [14] are Toeplitz matrices with a special circulant structure

Circf#0; #1; : : : ; #$g D

2

666664

#0 #$ #$!1 ! ! ! #1
#1 #0 #$ ! ! ! #2
#2 #1 #0 ! ! ! #3
:::

:::
:::

: : :
:::

#$ #$!1 #$!2 ! ! ! #0

3

777775
; (16)

where the columns (or, equivalently, rows) are shifted cyclically, and where
#0; #1; : : : ; #$ here are taken to be complex numbers. In our present covariance
extension problem we consider Hermitian circulant matrices

M WD Circfm0;m1;m2; : : : ;mN ; NmN!1; : : : ; Nm2; Nm1g; (17)

which can be represented in form

M D
NX

kD!NC1
mkS!k; m!k D Nmk (18)
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where S is the nonsingular 2N ! 2N cyclic shift matrix

S WD

2

666666664

0 1 0 0 : : : 0

0 0 1 0 : : : 0

0 0 0 1 : : : 0
:::
:::
:::
: : :

: : :
:::

0 0 0 0 0 1

1 0 0 0 0 0

3

777777775

: (19)

The pseudo-polynomial

M.!/ D
NX

kD!NC1
mk!
!k; m!k D Nmk (20)

is called the symbol of M. Clearly S is itself a circulant matrix (although not
Hermitian) with symbol S.!/ D !. A necessary and sufficient condition for a matrix
M to be circulant is that

SMSTDM: (21)

Hence, since S!1 D ST, the inverse of a circulant matrix is also circulant. More
generally, if A and B are circulant matrices of the same dimension with symbols
A.!/ and B.!/ respectively, then AB and A C B are circulant matrices with
symbols A.!/B.!/ and A.!/ C B.!/, respectively. In fact, the circulant matrices
of a fixed dimension form an algebra—more precisely, a commutative *-algebra
with the involution * being the conjugate transpose—and the DFT is an algebra
homomorphism of the set of circulant matrices onto the pseudo-polynomials of
degree at most N in the variable ! 2 T2N . Consequently, circulant matrices
commute, and, if M is a circulant matrix with symbol M.!/, then M!1 is circulant
with symbol M.!/!1.

The proof of the following proposition is immediate.

Proposition 4. Let fy.t/I t D "N C 1; : : : ;Ng be a stationary process with period
2N and covariance lags (3), and let y be the 2N-dimensional stochastic vector y D
Œy."N C 1/; y."N C 2/; # # # ; y.N/"T. Then, with " denoting conjugate transpose,

˙ WD Efyy"g D Circfc0; c1; c2; : : : ; cN ; NcN!1; : : : ; Nc2; Nc1g (22)

is a 2N ! 2N Hermitian circulant matrix with symbol ˚.!/ given by (5).

The covariance extension problem of Sect. 3, called the circulant rational
covariance extension problem, can now be reformulated as a matrix extension
problem. The given covariance data c D .c0; c1; : : : ; cn/ can be represented as a
circulant matrix

C D Circfc0; c1; : : : ; cn; 0; : : : ; 0; Ncn; Ncn!1; : : : ; Nc1g (23)
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with symbol

C.!/ D
nX

kD!n
ck!!k; (24)

where the unknown covariance lags cnC1; cnC2; : : : ; cN in (22), to be determined,
here are replaced by zeros. A circulant matrix of type (23) is called banded of order
n. We recall that n < N. From now one we drop the attribute ‘Hermitian’ since we
shall only consider such circulant matrices in the sequel. A banded circulant matrix
of order n will thus be determined by nC 1 (complex) parameters.

The next lemma establishes the connection between circulant matrices and their
symbols.

Lemma 5. Let M be a circulant matrix with symbol M.!/. Then

M D F"diag
!
M.!!NC1/;M.!!NC2/; : : : ;M.!N/

"
F; (25)

where F is the unitary matrix

F D 1p
2N

2

6666664

!N!1!NC1 !
N!2
!NC1 ! ! ! !!N!NC1

:::
::: ! ! !

:::

!N!10 !N!20 ! ! ! !!N0
:::

::: ! ! !
:::

!N!1N !N!2N ! ! ! !!NN

3

7777775
: (26)

Moreover, if M.!k/ > 0 for all k, then

logM D F"diag
!
logM.!!NC1/; logM.!!NC2/; : : : ; logM.!N/

"
F: (27)

Proof. The discrete Fourier transform F maps a sequence .g!NC1; g!NC2; : : : ; gN/
into the sequence of complex numbers

G.!j/ WD
NX

kD!NC1
gk!!kj ; j D "N C 1;"N C 2; : : : ;N: (28)

The sequence g can be recovered from G by the inverse transform

gk D
Z "

!"
eik#G.ei# /d$.#/; k D "N C 1;"N C 2; : : : ;N: (29)

This correspondence can be written

Og D Fg; (30)
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where Og WD .2N/!
1
2

!
G.!!NC1/; : : : ;G.!N/

"
T, g WD .g!NC1; : : : ; gN/T, and F is the

nonsingular 2N ! 2N Vandermonde matrix (26). Clearly F is unitary. Since

Mg D
NX

kD!NC1
mkS!k

and ŒS!kg"j D gj!k, where gkC2N D gk, we have

F.Mg/ D
NX

jD!NC1
!!j

NX

kD!NC1
mkgj!k

D
NX

kD!NC1
mk!
!k

NX

jD!NC1
gj!k!!.j!k/ D M.!/Fg;

which yields

p
2N.FMg/j D M.!j/

p
2N.Fg/j; j D "N C 1;"N C 2; : : : ;N;

from which (25) follows. Finally, since, as a function of z 2 C, logM.z/ is analytic
in the neighborhood of each M.!k/ > 0, the eigenvalues of logM are just the real
numbers logM.!k/, k D "N C 1; : : : ;N, by the spectral mapping theorem [16,
p. 557], and hence (27) follows.

We are now in a position to reformulate Theorems 1 and 2 in terms of circulant
matrices. To this end first note that, in view of Lemma 5, the cone PC.N/
corresponds to the class of positive-definite banded 2N ! 2N circulant matrices
P of order n. Moreover, by Plancherel’s Theorem for DFT, which is a simple
consequence of (8), we have

nX

kD!n
ck Npk D

1

2N

NX

jD!NC1
C.!j/P.!j/;

and hence, by Lemma 5,

hc;pi D 1

2N
tr.CP/; (31)

where tr denotes trace.
Consequently, c 2 CC.N/ if and only if tr.CP/ > 0 for all nonzero, positive-

semidefinite, banded 2N ! 2N circulant matrices P of order n. Moreover, ifQ and P
are circulant matrices with symbols P.!/ and Q.!/, respectively, then, by Lemma 5,
P.!/=Q.!/ is the symbol of Q!1P. Therefore Theorem 1 has the following matrix
version.
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Theorem 6. Let c 2 CC.N/, and let C be the corresponding circulant matrix (23).
Then, for each positive-definite banded 2N ! 2N circulant matrices P of order n,
there is unique positive-definite banded 2N ! 2N circulant matrices Q of order n
such that

˙ D Q!1P (32)

is a circulant extension (22) of C.

In the same way, Theorem 2 has the following matrix version, as can be seen by
applying Lemma 5.

Theorem 7. Let c 2 CC.N/, and let C be the corresponding circulant matrix (23).
Moreover, let P be a positive-definite banded 2N ! 2N circulant matrix of order n.
Then the problem to maximize

IP.˙ / D tr.P log˙ / (33)

subject to

En
T˙En D Tn; where En D

!
In
0

"
(34)

has a unique solution, namely (32), where Q is the unique optimal solution of the
problem to minimize

JP.q/ D tr.CQ/ " tr.P logQ/ (35)

over all positive-definite banded 2N ! 2N circulant matrices Q of order n, where
q WD .q0; q1; : : : ; qn/. The functional JP is strictly convex.

5 Bilateral ARMAModels

Suppose now that we have determined a circulant matrix extension (32). Then
there is a stochastic vector y formed from the a stationary periodic process with
corresponding covariance lags (3) so that

˙ WD Efyy"g D Circfc0; c1; c2; : : : ; cN ; NcN!1; : : : ; Nc2; Nc1g:

Let OEfy.t/ j y.s/; s ¤ tg be the wide sense conditional mean of y.t/ given all
fy.s/; s ¤ tg. Then the error process

d.t/ WD y.t/ " OEfy.t/ j y.s/; s ¤ tg (36)
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is orthogonal to all random variables fy.s/; s ¤ tg, i.e., Efy.t/ d.s/g D !2 ıts, t; s 2
Z2N WD f!N C 1;!N C 2; : : : ;Ng, where !2 is a positive number. Equivalently,
Efyd!g D !2I, where I is the 2N " 2N identity matrix. Setting e WD d=!2, we then
have

Efey!g D I; (37)

i.e., the corresponding process e is the conjugate process of y [33]. Interpreting (36)
in the mod 2N arithmetics of Z2N , y admits a linear representation of the form

Gy D e; (38)

where G is a 2N " 2N Hermitian circulant matrix with ones on the main diagonal.
SinceGEfyy!g D Efey!g D I,G is also positive definite and the covariance matrix
˙ is given by

˙ D G"1; (39)

which is circulant, since the inverse of a circulant matrix is itself circulant. In fact,
a stationary process y is full-rank periodic in Z2N , if and only if ˙ is a Hermitian
positive definite circulant matrix [12].

Since G is a Hermitian circulant matrix, it has a symbol

G."/ D
NX

kD"NC1
gk""k; g"k D Ngk;

and the linear equation can be written in the autoregressive (AR) form

NX

kD"NC1
gky.t ! k/ D e.t/: (40)

However, in general G is not banded and n << N, and therefore (40) is not a
parsimonious representation. Instead using the solution (32), we have G D P"1Q,
where P and Q are banded of order n with symbols

P."/ D
nX

kD"n
pk""k and Q."/ D

nX

kD"n
qk""k;

and hence (38) can be written

Qy D Pe;
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or equivalently in the ARMA form
nX

kD!n
qky.t ! k/ D

nX

kD!n
pke.t ! k/: (41)

Consequently, by Theorem 6, there is a unique bilateral ARMA model (41) for
each banded positive-definite Hermitian circulant matrix P of order n, provided c 2
CC.N/. Of course, we could use the maximum-entropy solution with P D I leading
to an AR model

nX

kD!n
qky.t ! k/ D e.t/: (42)

Next, to illustrate the accuracy of bilateral AR modeling by the methods
described so far we give some simulations from [30], provided by Chiara Masiero.
Given an AR model of order n D 8 with poles as depicted in Fig. 1, we compute a
covariance sequence c D .c0; c1; : : : ; cn/ with n D 8, which is then used to solve the
optimization problem (35) with P D I to obtain a bilateral AR approximations of
degree eight for various choices of N. In Fig. 2, the top picture depicts the spectral
density for N D 128 together with the true spectral density (dashed line), and the
bottom picture illustrates how the estimation error decreases with increasing N.
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1
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Fig. 1 Poles of true AR model
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Bilateral AR(8), N = 128

32 64 128 256 512 1024
0
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6

7
x 104

N

Bilateral AR(8)

Fig. 2 Bilateral AR approximation: (top) spectrum for N D 128 and true spectrum (dashed);
(bottom) errors for ND32, 64, 128, 256, 512 and 1024

6 Unilateral ARMAModels and Spectral Factorization

As explained in Sect. 2, a periodic process y has a discrete spectrum, and Theorem 1
provides values of

˚.z/ D P.z/
Q.z/

only in the discrete points z 2 T2N WD f!!NC1; !!nC2; : : : ; !Ng. Since ˚ takes
positive values on T2N , there is a trivial discrete factorization

˚.!k/ D W.!k/W.!k/" k D !N C 1; : : : ;N: (43)
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Defining

Wk D
1

2N

NX

jD!NC1
W.!j/!kj ; k D !N C 1; : : : ;N;

we can write (43) in the form

˚.!/ D W.!/W.!/"; (44)

where W.!/ is the discrete Fourier transform

W.!/ D
NX

kD!NC1
Wk!

!k:

Formally substituting the variable z 2 T in place of ! in W, we obtain a spectral
factorization equation

Q̊ .z/ D W.z/W.z/"; z 2 T; (45)

defined on the whole unit circle, where the continuous spectral density Q̊ .z/,
frequency sampled with sampling interval "N , satisfies Q̊ .!/ D ˚.!/ on T2N . This
is a spectral density of a non-periodic stationary process but should not be confused
with˚1 in Remark 3, which is the unique continuous˚ with numerator polynomial
P and the same first nC 1 covariance lags as the periodic process y, i.e.,

Z "

!"
eik#˚1.ei# /

d#
2"
D ck; k D 0; 1; : : : ; n:

In fact, although

Z "

!"
eik# Q̊ .ei# /d$.#/ D ck; k D 0; 1; : : : ; n; (46)

the non-periodic process with spectral density Q̊ has the covariance lags

Qck D
Z "

!"
eik# Q̊ .ei# / d#

2"
; k D 0; 1; : : : ; n;

which differ from c0; c1; : : : ; cn. However, setting %#j WD #j ! #j!1 where ei#j D !j,
we see from (4) that %#j D "=N and that the integral (46) with Q̊ fixed is the
Riemann sum

NX

jD!NC1
eik#j Q̊ .!j/

%#j

2"

converging to Qck for k D 0; 1; : : : ; n as N !1.
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By Proposition 4, ˚.!/ is the symbol of the circulant covariance matrix ˙ , and
hence (44) can be written in the matrix form

˙ DWW!; (47)

where W is the circulant matrix with symbol W.!/. The spectral density (45) has a
unique outer spectral factor W.z/; see, e.g., [31]. As explained in detail in [11], this
corresponds in the discrete setting toW.!/ taking the form

W.!/ D
NX

kD0
Wk!

"k; (48)

which in turn corresponds toW being lower-triangular circulant, i.e.,

W D CircfW0;W1; : : : ;WN ; 0; : : : ; 0g: (49)

Note that a lower-triangular circulant matrix is not lower triangular as the circulant
structure has to be preserved. Since ˙ is invertible, then so isW.

Next define the periodic stochastic process fw.t/; t D !N C 1 : : : ;Ng for which
w D Œw.!N C 1/;w.!N C 2/; : : : ;w.N/"T is given by

w DW"1y: (50)

Then, in view of (47), we obtain Efww!g D I, i.e., the process w is a white noise
process. Consequently we have the unilateral representation

y.t/ D
NX

kD0
Wkw.t ! k/

in terms of white noise.
To construct an ARMA model we appeal to the following result, which is easy

to verify in terms of symbols but, as demonstrated in [11], also holds for block
circulant matrices considered in Sect. 9.

Lemma 8. There exists an integer N0 such that the following holds for N " N0. A
positive definite, Hermitian, circulant matrix M admits a factorization M D VV!,
where V is of a banded lower-diagonal circulant matrix of order n < N, if and only
ifM is bilaterally banded of order n.

By Theorem 6, ˙ D Q"1P, where Q and P are banded, positive definite,
Hermitian, circulant matrices of order n. Hence, for N sufficiently large, by
Lemma 8 there are factorizations

Q D AA! and P D BB!;

where A and B are banded lower-diagonal circulant matrices of order n. Conse-
quently, ˙ D A"1B.A"1B/!, i.e.,
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W D A!1B; (51)

which together with (50) yields Ay D Bw, i.e., the unilateral ARMA model

nX

kD0
aky.t ! k/ D

nX

kD0
bkw.t ! k/: (52)

Since A is nonsingular, a0 ¤ 0, and hence we can normalize by setting a0 D 1. In
particular, if P D I, we obtain the AR representation

nX

kD0
aky.t ! k/ D b0w.t/: (53)

Symmetrically, there is factorization

˙ D NW NW"; (54)

where NW is upper-diagonal circulant, i.e. the transpose of a lower-diagonal circulant
matrix, and a white-noise process

Nw D NW!1y: (55)

Likewise there are factorizations

Q D NA NA" and P D NB NB";

where NA and NB are banded upper-diagonal circulant matrices of order n. This yields
a backward unilateral ARMA model

0X

kD!n
Naky.t ! k/ D

0X

kD!n
Nbk Nw.t ! k/: (56)

These representations should be useful in the smoothing problem for periodic
systems [29].

7 Reciprocal Processes and the Covariance
Selection Problem

Let A, B and X be subspaces in a certain common ambient Hilbert space of
zero mean second order random variables. We say that A and B are conditionally
orthogonal given X if
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˛ ! OEf˛ j Xg ? ˇ ! OEfˇ j Xg; 8˛ 2 A;8ˇ 2 B (57)

(see, e.g., [31]), which we denote A ? B j X, and which clearly is equivalent to

E
n
OEf˛ j Xg OEfˇ j Xg

o
D Ef˛ˇg; 8˛ 2 A;8ˇ 2 B: (58)

Conditional orthogonality is the same as conditional uncorrelatedness, and hence
conditional independence in the Gaussian case.

Let yŒt!n;t/ and y.t;tCn! be the n-dimensional random column vectors obtained by
stacking y.t ! n/; y.t ! n C 1/ : : : ; y.t ! 1/ and y.t C 1/; y.t C 2/ : : : ; y.t C n/,
respectively, in that order. In the same way, yŒt!n;t! is obtained by appending y.t/ to
yŒt!n;t/ as the last element, etc. Here and in the following the sums t ! k and t C k
are to be understood modulo 2N. For any interval .t1; t2/ " Œ!N C 1;N!, we denote
by .t1; t2/c the complementary set in Œ1; 2N!.

Definition 9. A reciprocal process of order n on .!N;N! is a process fy.t/I t D
!N C 1; : : : ;Ng such that

OEfy.t/ j y.s/; s ¤ tg D OEfy.t/ j yŒt!n;t/ _ y.t;tCn!g (59)

for t 2 .!N;N!.
This is a generalization introduced in [12] of the concept of reciprocal process

[23], which can be trivially extended to vector processes. In fact, a reciprocal process
in the original sense is here a reciprocal process of order one. This concept does not
require stationarity, although here it will always be assumed.

It follows from [31, Proposition 2.4.2 (iii)] that fy.t/g is reciprocal of order n if
and only if

OEfy.t/ j y.s/; s 2 Œt ! n; tC n!cg D OEfy.t/ j yŒt!n;t/ _ y.t;tCn!g (60)

for t 2 Œ!N C 1;N!. In particular, the estimation error

d.t/ WD y.t/ ! OEfy.t/ j y.s/; s ¤ tg

D y.t/ ! OEfy.t/ j yŒt!n;t/ _ y.t;tCn!g
(61)

must clearly be orthogonal to all random variables fy.s/; s ¤ tg; i.e. Efd.t/y.s/g D
"2ıst, where "2 is the variance of d.t/. Then e.t/ WD d.t/="2 is the (normalized)
conjugate process of y satisfying (37), i.e.,

Efe.t/y.s/g D ıts: (62)

Since e.t C k/ is a linear combination of the components of the random vector
yŒtCk!n;tCkCn!, it follows from (62) that both e.tC k/ and e.t ! k/ are orthogonal to
e.t/ for k > n. Hence the process fe.t/g has correlation bandwidth n, i.e.,
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Efe.tC k/ e.t/!g D 0 for n < jkj < 2N ! n; k 2 Œ!N C 1;N!; (63)

and consequently .y; e/ satisfies (38), where G is banded of order n, which
corresponds to an AR representation (42).

Consequently, the AR solutions of the rational circulant covariance extension
problem are precisely the ones corresponding to a reciprocal process fy.t/g of order
n. Next we demonstrate how this representation is connected to the covariance
selection problem of Dempster [15] by deriving a generalization of this seminal
result.

Let J WD fj1; : : : ; jpg and K WD fk1; : : : ; kqg be two subsets of f!N C 1;!N C
2; : : : ;Ng, and define yJ and yK as the subvectors of y D .y"NC1; y"NC2; " " " ; yN/T
with indices in J and K, respectively. Moreover, let

LYJ;K WD spanfy.t/I t … J; t … Kg D LYJ \ LYK ;

where LYJ WD spanfy.t/I t … Jg. With a slight misuse of notation, we shall write

yJ ? yK j LYJ;K ; (64)

to mean that the subspaces spanned by the components of yJ and yK , respectively,
are conditionally orthogonal given LYJ;K . This condition can be characterized in
terms of the inverse of the covariance matrix ˙ WD Efyy!g D

!
"ij
"N
i;jD"NC1 of y.

Theorem 10. LetG WD ˙"1 D
!
gij
"N
i;jD1 be the concentration matrix of the random

vector y. Then the conditional orthogonality relation (64) holds if and only if gjk D 0
for all .j; k/ 2 J # K.

Proof. Let EJ be the 2N # 2N diagonal matrix with ones in the positions
.j1; j1/; : : : ; .jm; jm/ and zeros elsewhere and let EK be defined similarly in terms
of index set K. Then LYJ is spanned by the components of y ! EJy and LYK by the
components of y ! EKy. Let

QyK WD yK ! OEfyK j LYKg;

and note that its q # q covariance matrix

Q̇ K WD EfQyK Qy!Kg

must be positive definite, for otherwise some linear combination of the components
of yK would belong to LYK . Let QyK D GKy for some q # 2N matrix GK . Since
QyK ? LYK ,

EfQyK.y ! EKy/!g D 0

and therefore EfQyKy!g D GK˙ must be equal toEfQyK.EKy/!g, which, by QyK 2 LY?K ,
in turn equals
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EfQyK.EKy/!g D EfQyK OEf.EKy/! j LY?K gg:

However, since the nonzero components of OEfEKy j LY?K g are those of QyK , there is
an 2N ! q matrix ˘K with the unit vectors e0ki , i D 1; : : : ; q, as the rows such that

OEfEKy j LY?K g D ˘K QyK ;
and hence

EfQyK.EKy/!g D EfQyK Qy!Kg˘!K D Q̇ K˘!K :
Consequently, GK˙ D Q̇ K˘!K , i.e.,

GK D Q̇ K˘!K˙"1:

In the same way, QyJ D GJy, where GJ is the q ! 2N matrix

GJ D Q̇ J˘!J ˙"1;

and therefore

EfQyJ Qy!Kg D Q̇ J˘!J ˙"1˘K Q̇ K ;

which is zero if and only if ˘!J ˙
"1˘K D 0, i.e., gjk D 0 for all .j; k/ 2 J ! K.

It remains to show that EfQyJ Qy!Kg D 0 is equivalent to (64), which in view of (58),
can be written

E
n
OEfyJ j LYJ;Kg OEfyK j LYJ;Kg!

o
D EfyJy!Kg:

However,

EfQyJ Qy!Kg D EfyJy!Kg " E
n
OEfyJ j LYJg OEfyK j LYKg!

o
;

so the proof will complete if we show that

E
n
OEfyJ j LYJg OEfyK j LYKg!

o
D E

n
OEfyJ j LYJ;Kg OEfyK j LYJ;Kg!

o
(65)

the proof of which follows precisely the lines of Lemma 2.6.9 in [31, p. 56].

Taking J and K to be singletons we recover as a special case Dempster’s original
result [15].

To connect back to Definition 9 of a reciprocal process of order n, use the
equivalent condition (60) so that, with J D ftg and K D Œt " n; t C n!c, yJ D y.t/
and yK are conditionally orthogonal given LYJ;K D yŒt"n;t/ _ y.t;tCn!. Then J ! K is
the set

˚
t ! Œt " n; t C n!c I t 2 ."N; N!

!
, and hence Theorem 10 states precisely
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that the circulant matrix G is banded of order n. We stress that in general G D ˙!1

is not banded, as the underlying process fy.t/g is not reciprocal of degree n, and we
then have an ARMA representation as explained in Sect. 5.

8 Determining P with the Help of Logarithmical Moments

We have shown that the solutions of the circulant rational covariance extension
problem, as well as the corresponding bilateral ARMA models, are completely
parameterized by P 2 PC.N/, or, equivalently, by their corresponding banded
circulant matrices P. This leads to the question of how to determine the P from
given data.

To this end, suppose that we are also given the logarithmic moments

!k D
Z "

!"
eik# log˚.ei# /d$; k D 1; 2; : : : ; n: (66)

In the setting of the classical trigonometric moment problem such moments are
known as cepstral coefficients, and in speech processing, for example, they are
estimated from observed data for purposes of design.

Following [30] and, in the context of the trigonometric moment problem, [7, 10,
18, 34], we normalize the elements in PC.N/ to define QPC.N/ WD fP 2 PC.N/ j
p0 D 1g and consider the problem to find a nonnegative integrable ˚ maximizing

I.˚/ D
Z "

!"
log˚.ei# /d$ D 1

2N

NX

jD!NC1
log˚.%j/ (67)

subject to the moment constraints (6) and (66). It is shown in [30] that if there is a
maximal ˚ that is positive on the unit circle, it is given by

˚.%/ D P.%/
Q.%/

; (68)

where .P;Q/ is the unique solution of the dual problem to minimize

J.P;Q/ D hc;qi ! h!;pi C
Z "

!"
P.ei# / log

!
P.ei# /
Q.ei# /

"
d$ (69)

over all .P;Q/ 2 QPC.N/ " PC.N/, where ! D .!0; !1; : : : ; !n/ and p D
.p0; p1; : : : ; pn/ with !0 D 0 and p0 D 1.

The problem is that the dual problem might have a minimizer on the boundary
so that there is no stationery point in the interior, and then the constraints will in
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general not be satisfied [30]. Therefore the problem needs to be regularized in the
style of [17]. More precisely, we consider the regularized problem to minimize

J!.P;Q/ D J.P;Q/ ! !
Z "

!"
logP.ei# /d$ (70)

for some suitable ! > 0 over all .P;Q/ 2 QPC.N/ " PC.N/. Setting J!.P;Q/ WD
2NJ!.P;Q/, (70) can be written

J!.P;Q/ D trfCQg ! trf! Pg C trfP logPQ!1g ! ! trflogPg; (71)

where ! is the Hermitian circulant matrix with symbol

% .&/ D
nX

kD!n
'k&
!k; '!k D N'k: (72)

Therefore, in the circulant matrix form, the regularized dual problem amounts to
minimizing (71) over all banded Hermitian circulant matrices P and Q of order n
subject to p0 D 1. It is shown in [30] that

˙ D Q!1P; (73)

or, equivalently in symbol form (68), maximizes

I.˙ / D trflog˙ g D log det˙ ; (74)

or, equivalently (67), subject to (6) and (66), the latter constraint modified so that
the logarithmic moment 'k is exchanged for 'k C "k, k D 1; 2; : : : ; n, where

"k D
Z "

!"
eik#

!

OP.ei# /
d$ D !

2N
trfSk OP!1g; (75)

OP being the optimal P.
The following example from [30], provided by Chiara Masiero, illustrates the

advantages of this procedure. We start from an ARMA model with n D 8 poles
and three zeros distributed as in Fig. 3, from which we compute c D .c0; c1; : : : ; cn/
and " D .'1; : : : ; 'n/ for various choices of the order n. First we determine the
maximum entropy solution from c with n D 12 and N D 1024. The resulting
spectral function ˚ is depicted in the top plot of Fig. 4 together with the true
spectrum. Next we compute ˚ by the procedure in this section using c and " with
n D 8 and N D 128. The result is depicted in the bottom plot of Fig. 4 again together
with the true spectrum. This illustrates the advantage of bilateral ARMA modeling
as compared to bilateral AR modeling, as a much lower value on N provides a better
approximation, although n is smaller.
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Fig. 3 Poles and zeros of true ARMA model

9 Extensions to the Multivariate Case

To simplify notation we have so far restricted our attention to scalar stationary
periodic processes. We shall now demonstrate that most of the results can be simply
extended to the multivariate case, provided we restrict the analysis to scalar pseudo-
polynomials P.!/. In fact, most of the equations in the previous section will remain
intact if we allow ourselves to interpret the scalar quantities as matrix-valued ones.

Let fy.t/g be a zero-mean stationary m-dimensional process defined on Z2N ; i.e.,
a stationary process defined on a finite interval Œ!NC1; N" of the integer line Z and
extended to all of Z as a periodic stationary process with period 2N. Moreover, let
C!NC1;C!NC2; : : : ;CN be the m " m covariance lags Ck WD Efy.t C k/y.t/"g, and
define its discrete Fourier transformation

˚.!j/ WD
NX

kD!NC1
Ck!
!k
j ; j D !N C 1; : : : ;N; (76)

which is a positive, Hermitian matrix-valued function of !. Then, by the inverse
discrete Fourier transformation,

Ck D
1

2N

NX

jD!NC1
!kj ˚.!j/ D

Z #

!#
eik$˚.ei$ /d%; k D !N C 1; : : : ;N; (77)
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Fig. 4 Bilateral approximations with true spectrum (dashed): (top) bilateral AR with n D 12
and N D 1024; (bottom) bilateral ARMA with n D 8 and N D 128 using both covariance and
logarithmic moment estimates

where the Stieljes measure d! is given by (7). The m ! m matrix function ˚ is the
spectral density of the vector process y. In fact, let

Oy."k/ WD
NX

tD!NC1
y.t/"!tk ; k D "N C 1; : : : ;N; (78)

be the discrete Fourier transformation of the process y. Since

1

2N

NX

tD!NC1
."k"

"
` /

t D ık`
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by (8), the random variables (78) are uncorrelated, and

1

2N
EfOy.!k/Oy.!`/!g D ˚.!k/ık`: (79)

This yields a spectral representation of y analogous to the usual one, namely

y.t/ D 1

2N

NX

kD"NC1
! tk Oy.!k/ D

Z "

""
eik#dOy.#/; (80)

where dOy WD Oy.ei# /d$.
Next, we define the class P.m;n/

C .N/ of m ! m Hermitian pseudo-polynomials

Q.!/ D
nX

kD"n
Qk!
"k; Q"k D Q!k (81)

of degree at most n that are positive definite on the discrete unit circle T2N , and let
P.m;n/
C " P.m;n/

C .N/ be the subset of all (81) such that Q.ei# / is positive define for all
# 2 Œ#";"%. Moreover let C.m;n/C .N/ be the dual cone of all C D .C0;C1; : : : ;Cn/
such that

hC;Qi WD
nX

kD"n
trfCkQ!k g > 0 for all Q 2 P.m;n/

C .N/ n f0g;

and let C.m;n/C $ C.m;n/C .N/ be defined as the dual cone of P.m;n/
C . Analogously to the

scalar case it can be shown that C 2 C.m;n/C if and only if the block-Toeplitz matrix

Tn D

2

666664

C0 C!1 C!2 % % % C!n
C1 C0 C!1 % % % C!n"1
C2 C1 C0 % % % C!n"2
:::

:::
:::

: : :
:::

Cn Cn"1 Cn"2 % % % C0

3

777775
(82)

is positive definite [32], a condition that is necessary, but in general not sufficient,
for C 2 C.m;n/C .N/ to hold.

The basic problem is the following. Given the sequence C D .C0;C1; : : : ;Cn/ 2
C.m;n/C .N/ of m ! m covariance lags, find an extension CnC1;CnC2; : : : ;CN with
C"k D C!k such that the spectral function ˚ defined by (76) has the rational form

˚.!/ D P.!/Q.!/"1; P 2 P.1;n/
C .N/; Q 2 P.m;n/

C .N/: (83)
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Theorem 11. Let C 2 C.m;n/C .N/. Then, for each P 2 P.1;n/
C .N/, there is a unique

Q 2 P.m;n/
C .N/ such that

˚ D PQ!1 (84)

satisfies the moment conditions
Z !

!!
eik"˚.ei" /d# D Ck; k D 0; 1; : : : ; n: (85)

Theorem 11 is a direct consequence of the following theorem, which also
provides an algorithm for computing the solution.

Theorem 12. For each .C;P/ 2 C.m;n/C .N/ ! P.1;n/
C .N/, the problem to maximize

the functional

IP.˚/ D
Z !

!!
P.ei" / log det˚.ei" /d# (86)

subject to the moment conditions (85) has a unique solution O̊ , and it has the form

O̊ .$/ D P.$/ OQ.$/!1; (87)

where OQ 2 P.m;n/
C .N/ is the unique solution to the dual problem to minimize

JP.Q/ D hC;Qi "
Z !

!!
P.ei" / log detQ.ei" /d# (88)

over all Q 2 P.m;n/
C .N/.

The proofs of Theorems 11 and 12 follow the lines of [32]. It can also be shown
that the moment map sending Q 2 P.m;n/

C .N/ to C 2 C.m;n/C .N/ is a diffeomorphism.
To formulate a matrix version of Theorems 11 and 12 we need to introduce

(Hermitian) block-circulant matrices

M D
NX

kD!NC1
S!k ˝Mk; M!k D M"k (89)

where ˝ is the Kronecker product and S is the nonsingular 2N ! 2N cyclic shift
matrix (19). The notation S will now be reserved for the 2mN ! 2mN block-shift
matrix

S D S˝ Im D

2

666664

0 Im 0 : : : 0

0 0 Im : : : 0
:::
:::
:::
: : :

:::

0 0 0 0 Im
Im 0 0 0 0

3

777775
: (90)
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As before S2N D S0 D I WD I2mN , SkC2N D Sk, and S2N!k D S!k D .Sk/T. Moreover

SMS" DM (91)

is both necessary and sufficient for M to be m ! m block-circulant. The symbol of
M is the m ! m pseudo-polynomial

M.!/ D
NX

kD!NC1
Mk!

!k; M!k D M"k : (92)

We shall continue using the notation

M WD CircfM0;M1;M2; : : : ;MN ;M"N!1; : : : ;M
"
1 g (93)

also for (Hermitain) block-circulant matrices.
The problem can now be reformulated in the following way. Given the banded

block-circulant matrix

C D
nX

kD!n
S!k ˝ Ck; C!k D C"k (94)

of order n, find an extension CnC1;CnC2; : : : ;CN such that the block-circulant
matrix

˙ D
NX

kD!NC1
S!k ˝ Ck; C!k D C"k (95)

has the symbol (83).
To proceed we need a block-circulant version of Lemma 5.

Lemma 13. Let M be a block-circulant matrix with symbol M.!/. Then

M D F"diag
!
M.!!NC1/;M.!!NC2/; : : : ;M.!N/

"
F; (96)

where F is the unitary 2mN ! 2mN matrix

F D 1p
2N

2

6666664

!N!1!NC1Im !
N!2
!NC1Im " " " !!N!NC1Im

:::
::: " " "

:::

!N!10 Im !N!20 Im " " " !!N0 Im
:::

::: " " "
:::

!N!1N Im !N!2N Im " " " !!NN Im

3

7777775
: (97)
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Moreover, if M.!k/ is positive definite for all k, then

logM D F!diag
!
logM.!"NC1/; logM.!"NC2/; : : : ; logM.!N/

"
F; (98)

where diag stands for block diagonal.

The proof of Lemma 13 will be omitted, as it follows the same lines as that of
Lemma 5 with straight-forward modification to the multivariate case. Clearly the
inverse

M"1 D F!diag
!
M.!"NC1/"1;M.!"NC2/"1; : : : ;M.!N/"1

"
F (99)

is also block-circulant, and

S D F!diag
!
!"NC1Im; !"NC2Im; : : : ; !NIm

"
F: (100)

However, unlike the scalar case, block-circulant matrices do not commute in
general.

Given Lemma 13, we are now in a position to reformulate Theorems 11 and 12
in matrix from.

Theorem 14. Let C 2 C.m;n/C .N/, and let C be the corresponding block-circulant
matrix (94) and (82) the corresponding block-Toeplitz matrix. Then, for each
positive-definite banded 2mN ! 2mN block-circulant matrices

P D
nX

kD"n
S"k ˝ pkIm; p"k D Npk (101)

of order n, where P.!/ DPn
kD"n pk!

"k 2 P.1;n/
C .N/, there is a unique sequence Q D

.Q0;Q1; : : : ;Qn/ of m!m matrices defining a positive-definite banded 2mN ! 2mN
block-circulant matrix

Q D
nX

kD"n
S"k ˝ Qk; Q"k D Q!k (102)

of order n such that

˙ D Q"1P (103)

is a block-circulant extension (95) of C. The block-circulant matrix (103) is the
unique maximizer of the function

IP.˙ / D tr.P log˙ / (104)
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subject to

En
T˙En D Tn; where En D

!
Imn
0

"
: (105)

Moreover, Q is the unique optimal solution of the problem to minimize

JP.Q/ D tr.CQ/ ! tr.P logQ/ (106)

over all positive-definite banded 2mN"2mN block-circulant matrices (102) of order
n. The functional JP is strictly convex.

For P D I we obtain the maximum-entropy solution considered in [12], where
the primal problem to maximize II subject to (105) was presented. In [12] there
was also an extra constraint (91), which, as we can see, is not needed, since it is
automatically fulfilled. For this reason the dual problem presented in [12] is more
complicated than merely minimizing JI.

Next suppose we are also given the (scalar) logarithmic moments (66) and that
C 2 C.m;n/C .N/. Then, if the problem to maximize trflog˙ g subject to (105) and (66)
over all positive-definite block-circulant matrices (95) has a solution, then it has the
form

˙ D Q!1P (107)

where the .P;Q/ is a solution of the dual problem to minimize

J.P;Q/ D trfCQg ! trf! Pg C trfP logPQ!1g; (108)

over all positive-definite block-circulant matrices of the type (101) and (102) with
the extra constrain p0 D 1, where ! is the block-circulant matrix formed in the
style of (102) from

! ."/ D
nX

kD!n
#k"
!k; #!k D N#k: (109)

However, the minimum of (108) may end up on the boundary, in which case the
constraint (66) may fail to be satisfied. Therefore, as in the scalar case, we need to
regularize the problem by instead minimizing

J$.P;Q/ D trfCQg ! trf! Pg C trfP logPQ!1g ! $ trflogPg: (110)

This problem has a unique optimal solution (107) satisfying (105), but not (66).
The appropriate logarithmic moment constraint is obtained as in the scalar case by
exchanging #k for #k C "k for each k D 1; 2; : : : ; n, where "k is given by (75).
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Fig. 5 Poles and zeros of an
ARMA 2! 2 model of order
n D 6

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Again each solution leads to an ARMA model

nX

kD"n
Qky.t ! k/ D

nX

kD"n
pke.t ! k/; (111)

where fe.t/g is the conjugate process of fy.t/g, Q0;Q1; : : : ;Qn are m " m matrices,
whereas p0; p1; : : : ; pn are scalar with p0 D 1.

We illustrate this theory with a simple example from [32], where a covariance
sequence C WD .C0;C1; : : :Cn/ and a cepstral sequence ! WD .!1; !2; : : : ; !n/ have
been computed from a two-dimensional ARMA process with a spectral density
˚ WD PQ"1, where P is a scalar pseudo-polynomial of degree three and Q is a
2 " 2 matrix-valued pseudo-polynomial of degree n D 6. Its zero and poles are
illustrated in Fig. 5.

Given C and ! , we apply the procedure in this section to determine a pair .P;Q/
of order n D 6. For comparison we also compute an bilateral AR approximation
with n D 12 fixing P D I. As illustrated in Fig. 6, the bilateral ARMA model of
order n D 6 computed with N D 32 outperforms the bilateral AR model of order
n D 12 with N D 64.

The results of Sect. 5 can also be generalized to the multivariate case along the
lines described in [11].
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Fig. 6 The norm of the approximation error for a bilateral AR of order 12 for N D 64 and a
bilateral ARMA of order 6 for N D 32

Fig. 7 An image modeled as
a reciprocal vector process

M

m

y(0) y(1) y(M– 1)

10 Application to Image Processing

In [12] the circulant maximum-entropy solution has been used to model spatially
stationary images (textures) [40] in terms of (vector-valued) stationary periodic
processes. The image could be thought of as an m ! M matrix of pixels where the
columns form a m-dimensional reciprocal process fy.t/g, which can extended to a
periodic process with periodM > N outside the interval Œ0;N!; see Fig. 7.

This imposes the constraint CM!k D Ck
T on the covariance lags Ck WD Efy.t C

k/y.t/Tg, leading to a circulant Toeplitz matrix. The problem considered in [12] is
to model the process fy.t/g given (estimated) C0;C1; : : : ;Cn, where n < N with an
efficient low-dimensional model. This is precisely a problem of the type considered
in Sect. 9.



312 A. Lindquist and G. Picci

Fig. 8 Three images modeled by reciprocal processes (original at bottom)

Solving the corresponding circulant maximum-entropy problem (with P D I),
n D 1, m D 125 and N D 88, Carli et al. [12] derived a bilateral model of the
images at the bottom row of Fig. 8 to compress the images in the top row, thereby
achieving a compression of 5:1.

While the compression ratio falls short of competing with current jpeg standards
(typically 10:1 for such quality), our approach suggests a new stochastic alternative
to image encoding. Indeed the results in Fig. 8 apply just the maximum entropy
solution of order n D 1. Simulations such as those in Fig. 4 suggest that much better
compression can be made using bilateral ARMA modeling.

An alternative approach to image compression using multidimensional covari-
ance extension can be found in the recent paper [39].
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