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1. Introduction

The scope of identification theory is to construct algorithms for automatic
model building from observed data. In these lectures we shall only discuss the
case where the data are collected in one irrepetible experiment and no prepa-
ration of the experiment is possible (i.e. we cannot choose the experimental
conditions or the input function to the system at our will).

The observed variables, usually classified as ”inputs” (u ) and ”outputs”
(y), are measured at discrete instants of time ¢ and collected in a string
of data of finite duration 7. These data are called a ”time series” in the
statistical literature. There is a preselected model class, say the class of finite-
dimensional linear time-invariant systems of a given order and the problem
is generally formulated as that of inferring a ”"best” mathematical model in
the model class on the basis of the observed data. There may be a variety
of different reasons to build models. Here we shall be chiefly interested in
model building for the purpose of prediction and control. This means that
the identified model should be useful for prediction or control of future i.e.
not yet observed, data.

Essential features of the Identification Problem.

1. There are always many other variables besides the preselected ”inputs”
and ”outputs” which influence the time evolution of the system and hence
the joint dynamics of y and u during the experiment. These variables
represent the unavoidable interaction of the system with its environment.
For this reason, even in the presence of a true causal relation between
inputs and outputs there always are some unpredictable fluctuations of
the values taken by the measured output y(¢) which are not explainable
in terms of past input (and/or output) history.

We cannot (and do not want to) take into account too many of these
variables explicitely in the model as some of them may be inaccessible to
measurement and in any case this would lead to complicated models with
too many variables. We need to work with models of small complexity and
treat the unpredictable fluctuations in some simple ”aggregate” manner.
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2. Models (however accurate) are of course always mathematical idealiza-
tions of nature. No physical phenomenon, even if the experiments were
conducted in an ideal interactions-free environment can be described ez-
actly by a set of differential or difference equations and even more so if
the equations are a priori restricted to be linear, finite-dimensional and
time-invariant. So the observables, even in an ideal ”disturbance-free”
situation cannot be expected to obey exactly any linear time-invariant
model.

If we accept the arguments above it is clear that one essential issue to be
addressed for a realistic formulation of the problem is a satisfactory notion of
non-rigid, i.e. approximate, mathematical modeling of the observed data. The
meaning of the word ”approximate” should here be understood in the sense
that a model should be able to accept as legitimate, data sets (time series)
which may possibly differ slightly from each another. Imposing rigid ”exact”
descriptions of the type F(u,y) = 0 to experimental data has been criticized
since the early beginnings of experimental science. Particularly illuminating
is Gauss’ general philosophical discussion in [27] sect. III, p. 236.

More to the point, there has been a widespread belief in the early years of
control theory that identification was merely a matter of describing (exactly)
the measured data by linear convolution equations of the type

y(t) =D h(t = T)u(r) (L.1)

or, equivalently, by matching exactly pointwise harmonic response data with
linear transfer function models. Results have always been poor and extremely
sensitive to the data. New incoming data tend to change the model drastically,
which means that a model determined in this way has in fact very poor
predictive capabilities. The reason is that data obey exactly rigid relations of
this kind ”with probability zero”. If in addition the model class is restricted
to be finite-dimensional, which of course is what is really necessary for control
applications, imposing the integral equation model (1.1) on real data normally
leads to disastrous results. This is by now very well-known and documented
in the literature, see e.g. [65, 70, 35, 20]. The fact, expressed in the language
of numerical analysis, is that fitting rigid models to data invariably leads to
ill-conditioned problems.

Gauss idea of describing data by a distribution function is a prime example
of thinking in terms of (non-rigid) approximate models'. Other alternatives
are possible, say using model classes consisting of a rigid ”exact” model as a
”nominal” object, plus an uncertainty ball around it. In this case, besides a
”nominal” model, the identification procedure is required to provide at least

L' A vulgar belief attributes to Gauss the invention of least squares, which is
historically wrong. In Gauss’ work least squares come out as a solution method
for optimally fitting a certain class of density functions to the observed data.
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bounds on the magnitude of the relative "uncertainty region” around the
nominal model. This type of modeling philosophy is motivated by use in H*°
control applications. Here one should provide a mathematical description of
how the ”dynamic” uncertainty ball is distributed in the frequency domain,
rather than, as more traditionally done, in the parameter space, about the
”nominal identified model”.

In addition to the above we need also to introduce a mathematical de-
scription of the data. The data at our disposal at some fixed time instant
represent only partial evidence about the behaviour of the system; we do
not know the future continuation of the input and output time series, yet all
possible continuations of our data must carry information about the same
physical phenomenon we are about to model, and hence the possible contin-
uations of the data cannot be ”totally random” and must be related to what
we have observed so far. So, in order to discover models of systems, we have
to work with models of uncertain signals.

Mathematical descriptions of uncertain signals can be quite diverse. Pos-
sible choices are stochastic processes, deterministic signals with uncertainty
bounds, etc. The crucial difference between theories of model building relates
to the quantitave method for modeling uncertain signals they use?.

In these lectures we shall eventually take the ”classical” route and model
uncertainty with the apparatus of probability theory. In this framework iden-
tification is phrased as a problem of mathematical Statistics.

One could argue that the basic problem of identification is, much more
than designing algorithms which fit models to observed data ( the easy part),
the quantification of dynamic uncertainty bounds or the description of the
dynamic errors incurred when using the model with future data. Any sensible
identification method should provide some mathematical description of how
uncertainty is distributed in time or frequency about the nominal identified
model. In this respect the stochastic approach offers a very nice solution.
In this setup (at least in the linear wide-sense setting) model uncertainty
turns out to be equivalent to additive random disturbances i.e. identifying
model uncertainty is equivalent to identifying models for ” partially observed”
stochastic processes. We shall discuss this point further in the following.

1.1 Stationary signals and the Statistical Theory of Model
building

Since identification for the purpose of prediction and control makes sense
only if you can use the identified model to describe future data, i.e. different
data than those employed for its calibration, at the roots of any data-based
model building procedure there must be a formalization of the belief that

2 For this reason we would probably not classify as identification ” exact modeling”
where the data are ”certain” signals assumed to fit exactly some finite set of
(linear) relations.
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future data will continue to be generated by the same “underlying
mechanism” that has produced the actual data.

This is a vague but basic assumption on the nature of the data, which are
postulated to keep being ”statistically the same” in the future. Besides be-
ing inherent in the very purpose of collecting data for model building this
assumption offers the logical background for assessing the quality of the iden-
tified model, by asymptotic analysis, i.e. by comparing finite-sample results
with the "best achievable” model which could theoretically be identified with
data of infinite lenght. One could probably say that Statistics as a discipline,
is founded on asymptotic analysis, and that the wide use of Statistics and
of probabilistic methods in identification is mainly motivated by the large
body of effective asymptotic tools which can be applied to assess some basic
7quality” features of the estimated model.

Classical Statistics traditionally starts by postulating some ”urn model”
whereby the data are imagined as being ”drawn” at random from some uni-
verse of possible values in a "random trial” where ”nature” chooses according
to some probability law the current ”state” of the interactions and of the ex-
perimental conditions.

It has been argued that the abstract ”urn model” of probability the-
ory looks inadequate to deal with situations like the one we have envisaged,
where there is just one irrepetible experiment and there is really no sam-
ple space around from which the results of the experiment could possibly
have been drawn. This critique comes from a tendendency to confuse physi-
cal reality with mathematical modelling. In effect the "urn model” is just a
mathematical device which is not required to have any physical meaning or
interpretation and can be used to model anything.

The critique has at least the merit of bringing up an important issue.
It should be admitted that in large sectors of the literature the stochastic
framework is often imposed dogmatically to practical problems (the user is
normally left alone wondering if his problem is ”stochastic” enough to be
authorized to apply algorithm A, or his data are instead ”determinstic” and
he should apply algorithm B instead ) and often statistical procedures are
pushed to extremes where there really seems to be no physical ground for
their applicability.

Yet there is a vast number of situations where a formal justification for the
adoption of the probabilistic description of uncertain data can be given. For-
mal arguments leading to a probabilistic description of certain types of data
could for example be based on the notion of ”stationarity”, a mathematical
condition meant to capture the idea that future data should be ”statistically
the same” as past data. One possible line of reasoning is briefly elaborated
upon below.

Let z := {z(¢) }+ez be a discrete-time signal (i.e. a sequence of real num-
bers). A function of z is just a real-valued function f(z) := f(z(¢);t € I),
f: RT — R where I is a subinterval of Z, possibly infinite. The shift o is
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the map defined on real sequences as [oz](t) := z(t + 1), t € Z so that the
iterated application of o, say

[0'2](s) == 2(t +5), t,s€EZ

transforms a signal z into its ”translation by ¢ units of time” z; := {z(¢t +
$) }sez- Let us denote by f;(2) the result of applying f to the shifted sequence
oz, ie let fi(z) = f(z(t+s);s € I) = f(z),t €€ Z.

Definition 1.1. A signal z will be called

— Strict-sense stationary if the Cesaro limit

T
, 1
Am ;ft(z)

exists for all bounded measurable functions f;
— Wide-sense stationary if the limit exists for f(z) = z(0) (so that fi(z) =
2(t)) and for all quadratic forms® in z.

The two conditions for wide-sense stationarity are normally found in the
literature under a variety of different names. They describe the minimum
amount of structure on the data which is necessary to do a (rudimental)
asymptotic analysis of an identification algorithm for linear time-invariant
models. The strict-sense notion is introduced mostly for conceptual reasons.
Both notions generalize in a natural way to vector-valued sequences.

The purpose of the following paragraphs is to show that (strict-sense)
stationary signals admit stationary stochastic processes as a natural mathe-
matical description.

First take f(z) := I4(2(0)) where I4 is the indicator function of a Borel
set A CR (Ia(z) =1if v € A and 0 otherwise). Then the nonnegative
number

1 T
vr(A) == 11 T4(2(1))
t=0
is just the relative frequency of visits of the signal z to the set A. In fact, for
each fixed T the function A — vy (A) is a probability measure, i.e. a countably
additive set function on the Borel sets of the real line. This follows simply
from the relation I 4, = > 14, which is valid for any sequence of disjoint
sets Ay. For a stationary sequence we have vp(A4) — vp(A) as T — oo. Tt
then follows readily that

Lemma 1.1. The set function A — vo(A) is a probability measure on R.

3 i.e. for all real functions f such that f(az) = o®f(2).
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More generally, take
f(2) = 1a(2(0)) 1, (2(71)) - . - La,, (2(70))

where 71 ...7, are arbitrary time instants and A, Ay ... A, arbitrary Borel
sets of the real line and consider the relative frequency

T
vr(A Ay, T, Ay ) = TLH ZIA(z(t))IAl(z(tJrTl)) o da, (2(E+T))
t=0

of a visit to the set A followed by a visit, 7, instants later, to the set Aj,
To instants later to the set As etc.. and 7, instants later to the set A,. By
stationarity vr(A, A1, 71,... Ap, ) — Un(A A1, 71, Ap,Tn) as T — oo.
An easy generalization of Lemma 1.1 leads to the following statement.

Lemma 1.2. The set function (A x Ay... X Ay) = vp(A A1, 11, .. Ay Th)
is a probability measure on R™* for all time lags 71 ... T,. In fact the family
{Vk }rez, is a consistent family of probability distributions in the sense of
Kolmogorov, i.e.

l/n(Av AluTla ey Ran) = anl(Aa Ala T1y.-- Anfla’rnfl)
for all Borel sets A, A ..., A,_1 and time lags 71 ...,Tp.

It follows by a famous theorem of Kolmogorov that there is a bona - fide
probability measure v on the ”sample space” R” of all real sequences, which
is the (unique) extension of the family of finite dimensional distributions
{vk }rez, associated to a stationary signal z by the construction illustrated
above. This measure is invariant with respect to the shift ¢ acting on the
sequences of R%. In other words, tha pair (R%,v) (with the natural family of
measurable sets) defines a stationary stochastic process z.

The moral of the story is that every stationary signal can be interpreted
in a canonical way as a "representative” trajectory of a stationary process?.

In other words,

Proposition 1.1. For a stationary signal z there always exists an "urn
model” i.e. a probability space {2, A,u} and a stationary process z :=
{z(t,w)|t € Z,w € 2} defined on it such that z is a representative tra-
jectory of z, i.e.

z(t) =z(t,w) teZ

for some elementary event @ in the "good” set of probability one guaranteed

by Birkhoff’s theorem.

4 Tt is well known that almost all trajectories of a stationary process z are sta-
tionary signals in the sense of Definition 1.1. This is essentially the famous D.G.
Birkhoff’s ergodic theorem, see e.g. Doob [19], p. 465. A "representative” trajec-
tory is just a trajectory belonging to the set of trajectories of v-probability one
where the Cesaro sums converge. Note that the process z need not be ergodic
(i.e. "metrically transitive” according to the old terminology).
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So we are authorized if we wish, to think legitimately of a stationary se-
quence of data as being ”drawn” from a population according to a stationary
probability law. We shall call this probability measure the true (probability)
law of the data.

All of the above is of course mostly of ”theoretical interest” and only
serves the purpose of justifying the introduction of probabilistic and statisti-
cal language in identification. Very often in practice one can make verifiable
statements only about the first and second order moments of the observed
data and so in the following we shall normally work under the assumption of
wide sense stationarity only. Moreover we shall assume throughout that the
time averages of all signals have been subtracted off so all data will be as-
sumed to be zero mean hereafter. Hence a wide-sense stationary signal (which
we shall now assume m-dimensional) is just a sequence z for which the limit

A T%l ;za +7)2(t) = Ao(r) (1.2)

exists for all 7 € Z.

Proposition 1.2 (Wiener). The function Ay := 7 — Ag(7) is a bona-fide
covariance function (i.e. a symmetric positive definite matriz function)

Proof. The function Ag is the discrete-time version of ¢(x) in Wiener’s Gen-
eralized Harmonic Analysis [73].

From this result, much in the same spirit of the strict-sense Proposition
1.1 stated above, one may draw the conclusion that a wide-sense stationary
signal admits as a atural probabilistic model a stationary wide-sense stochas-
tic process. Here, following [19] ”wide-sense process” means the equivalence
class of stochastic processes (defined say on the probability space (R™)% )
with zero mean and all having the same covariance function. In certain cases
it may be appropriate to take as a representative of the equivalence class the
unique Gaussian process with (zero mean and) given covariance function. Of
course the additional strict-sense probabilistic structure provides only illu-
sory extra information (besides second-order) unless the data provide actual
evidence for the choice of Gaussian distributions.

A blanket assumption during the rest of these notes will be that the input-
output data extend in the future do form a stationary® signal z; we shall call
Ag the true covariance of this signal.

Remarks. Note that for (wide-sense) stationary signals which decay to zero
as T — oo the true covariance function is identically zero. This is not para-
doxical, as a signal of this kind may intuitively be regarded as a ”transient”
phenomenon settling eventually to a zero steady state.

5 ”Stationary” will mean wide-sense stationary hereafter.
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The spectral distribution function of the signal is a monotonic Hermitian
matrix function Fy defined on the unit circle of the complex plane {{ = 7%}
by the ”Fourier-like” representation formula valid for any covariance function

Ao(T) = / eITdFy(e7%) (1.3)
(Herglotz Theorem). If the A (7) form a summable sequence (so that Ag(7) —
0 as 7 — 00) the spectral distribution function admits a density @y,

Fofe?) = Fo(e) = [ aa(eM)g

w1

In general when the covariance function does not decay to zero, for example

when there are periodic components in z, the distribution function has jumps

and the density function describes only the absolutely continuous part of Fj.

Persistently exciting signals of order n are classical examples of periodic

stationary signals whose distribution function is a staircase function with
exactly n jumps.

The statistical approach to identification. As we have argued in this section
a reasonable mathematical description of the measured data is to model it as
a finite tract of a trajectory of a stationary (wide-sense) stochastic process.
The identification problem is then naturally formulated as the problem of
recovering the "true” law of the process i.e. its true covariance or spectral
distribution function® from the measured data. This of course is just the
prototypical problem of Statistics.

Naturally the family of all possible ”true descriptions” is an exceedingly
general infinite-dimensional object and to make the problem solvable one has
to choose, perhaps on the basis of some available a priori information, a man-
ageable subclass which should be describable in terms of a finite number of
real parameters. In fact, we shall ask that the model class should be compati-
ble with finite dimensional prediction and control schemes. Although we keep
the meaning of the term rather vague at this stage, it is very well-known that
”finite-dimensional” wide-sense stationary processes can only be linear com-
binations of quasi-periodic (i.e. sums of sinusoids with random amplitudes)
and purely-non-deterministic processes with a rational spectral density. There
is then very little choice for the model class. If we are interested in finite-
complexity models of ”truly random” (purely-non-deterministic) signals, then
we must restrict to rational spectral densities.

5 Of course, more generally, in a stric-sense formulation one tries to ”infer” the
true probability law of the underlying process.
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1.2 Input-Output models

Very often in ”input-output” experiments one is not interested in modeling
the input signals and would like to concentrate just on recovering a (causal)
relation between inputs and outputs.

In the present wide-sense stochastic setup the input-output relation has
in general a linear structure of the type

y(t) = Ely(t) |u(s);s < t]+v(t) (1.4)

where E[y(t)|u(s);s < t] is the best (in the sense of minimum variance
of the error) estimate of the output y(¢) based on the past of u up to time
t. By Wiener filtering theory it known that this estimate is described by a
causal and stable linear convolution operator with a rational transfer function
F(¢). The additive term v(t) is the relative ”estimation error”, a stationary
process with rational spectrum, uncorrelated with the past of u, which models
precisely the uncertainty due to disturbances etc. superimposed to the input-
based prediction, F({)u(t), of y(t).

The structure of the ”input-output” model class which results from the
assumptions of joint wide-sense stationarity and rational joint spectrum for
the input and output processes is quite explicit indeed. Note that it comes
out, as a formal consequence of the probabilistic setting used to describe
our data. There is no arbitrariness or "user choice” at this stage, except of
course for the choice of the order or the structure parameters of the transfer
function. Note incidentally that identifying the model uncertainty in (1.4)
means identifying a dynamic model for the additive noise process v.

A typical route which is commonly taken is to estimate the transfer func-
tion F' and the noise model for v as if u was a deterministic sequence. Some-
times in the literature it is even ”assumed” that u is a ”deterministic” signal.
This of course cannot be the real intention since it would lead to the rather
absurd consequences that

EY y(tu(s) = Y [Ey(t)]u(s) =0

t,s

i.e. the input and output signals would be completely uncorrelated.

Estimation of the nominal input-output transfer function is generally to be
understood as being ” conditional on the past observed history of ”. Although
this may at a first sight look like a reasonable thing to do, it may lead to
serious errors whenever hidden feedback links are present influencing the way
in which the input variable is manufactured (i.e. introducing in u ”stochastic
components” correlated with the past of y).

In fact, if there is feedback from y to u the very notion of ”input” looses
its meaning since, as shown e.g. in [29], the input variable u(t) is then also
determined by a dynamical relation of the form (1.4), involving now the
”output” process y playing in turn the role of an exogenous variable (”input”)
to determine wu.
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The appropriate setup for discussing these matters is within the theory
of feedback and causality between stationary processess [33]. We shall not
adventure into this subject in these introductory notes. We shall just content
ourselves of recalling, as it has been argued in several places in the literature,
that identification in the presence of feedback (and of course in the absence
of any other specific information on the feedback loop) is essentially equiv-
alent to identification of the joint process [y, '), in the sense of modeling
the joint dynamics of the signals on the basis of the observed time-series
{ly(t)’,u(t)']’}. Tt is also for these reasons that we shall choose to restrict the
scope of our discussion only to time-series identification in the rest of the

paper.

2. State Space Models of Stationary processes

From the previous section it has been seen that wide-sense stationary
processes with a rational spectral density matrixz provide a natural class of
finitely-parametrized stochastic models for the identification of a wide class
of observed data.

It is very well known that these processes are precisely those admitting
finite-dimensional state-space descriptions (or realizations) with constant pa-
rameters. It is then natural to pose the identification problem directly in
terms of recovering state-space models of y. There are different approaches
to identify models of this kind and we shall discuss some recent methods (the
so-called ”subspace methods”) in some detail later in sections 6 and 7.

In any case it is well-known that even if we restrict to minimal models i.e.
models of the smallest possible dimension of the state space, there are in gen-
eral many non-equivalent (minimal) state-space representations of the same
process y. This is a significant departure from the usual deterministic linear
modeling setup and brings up model choice or identifiability questions which
should be understood well before discussing the choice of a particular statis-
tical methodology for model building. Therefore in this and in the following
two sections we shall have to review the basic facts about finite-dimensional
state-space models of stationary random processes.

Consider a stationary stochastic system

z(t+1)
(2) { y(t)

where {w(t)} is p-dimensional normalized white noise , i.e.

Ax(t) + Bw(t)
Cz(t) + Dw(t)

E{w(t)w(s)'} = I6s E{w(t)} = 0.

In this paper we shall think of (2.1) exclusively as a representation of the
output process y. This representation involves auxiliary variables such as the
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state process x and the generating white noise w which are introduced for the
purpose of giving the model a particular structure. These auxiliary variables
play the role of ”parameters” which may be eliminated producing a different
model structure. For example, by eliminating = from the equations (2.1) one
obtains an ”input-output” representation whereby y appears as the result of
processing the white noise signal w through a linear time-invariant filter

- - (22)

of transfer function
W(z)=C(zI — A)"'B+ D. (2.3)

We shall for the moment make the assumption that the matrix A is stable,
i.e. the eigenvalues of A all lie inside the unit circle (|A(A)| < 1) and that
the input noise has been applied to the system for an infinitely long time, i.e.
starting at ¢ = —oo. In these conditions the effect of initial conditions has
died off and the system is in statistical steady state. Then

w)= Y AT
and i
y(t) = Z CA'"™'"IBw(j) + Dw(t)

In particular, x and y are jointly stationary”.

The system 2.1 can be regarded as a linear map defining « and y as linear
functionals of the input noise w. In fact, since the matrix A has been assumed
stable, this map will be a causal map. In order to capture these properties
in a precise way it is convenient to think of the (components of ) z and y
as elements of the infinite dimensional Hilbert space of second order random
variables

H(w) = spanf{w;(t) | t € Z;i =1,2,...,p} (2.4)

with inner product (§,7) = E{&n}. Here span denotes the closure of the
vector space generated by linear combinations of the elements listed inside
the brackets. The Hilbert space H(w) is called the ambient space of the
stochastic system (X). It comes equipped with a unitary Shift operator U
which is the extension of temporal translation i.e. Ud'w(t) = d'w(t + 1)
of the generating random variables a’w(t) of the space. More generally, the
symbol H(y) is used to denote the Hilbert space generated by a wide-sense
zero mean process y. If the process is stationary then H(y) is equipped with

7 Stationarity here is always meant in the “wide sense” of second order statistics.
In particular z and y being jointly stationary means that the covariance matrix
E{[z(t)'y(t)')'[z(s)'y(s)’]} depends only on t — s.
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the unitary shift of the process, U. The pair (H(y),U) is called a stationary
Hilbert space. By definition a stationary Hilbert space contains all translates
Ut¢ of any random variable ¢ which belongs to it.

The past subspaces of x and y

H; (z) = span{zi(s)|s<t;i=1,2,...,n} (2.5)
H; (y) = span{yi(s)|s<t;i=1,2,...,m} (2.6)
are both contained in H; (w) (causality) and hence the future space of w
H; (w) =spanf{w;(s) | s > t;i =1,2,...,m}

will be orthogonal to (i.e. uncorrelated with) both H, (x) and H; (y).
The finite dimensional subspace of H(w)

X =span{x;(t), x2(t),...,zn(t)} tE€Z,

is called the state space of the system 2.1 at the instant ¢.

In the following we shall always suppose that (A, B,C, D) in (2.3) is a
minimal realization of W. In other words we shall assume that (A, B) is
reachable and (C, A) is observable. Then, setting

P =E{z(0)z(0)'},

it follows from stationarity that P = E{xz(t)z(t)'} for all ¢, and hence the
first equation in 2.1 yields

P =APA + BB/, (2.7)

which is a Lyapunov equation. Since [A\(A)| < 1thesum P = ~7° ; AYBB'(A'),
converges and converges to the reachability grammian of X. But (A, B) is
reachable, and hence P > 0. This implies that {x1(¢),z2(t),...,z,(t)} is a
basis in X;.

Notations. We shall use the symbol V to denote vector sum of subspaces, +
to denote direct sum and @ to denote orthogonal vector sum. The orthogonal
complement of a subspace A in the ambient space under consideration will be
denoted by AL. The future spaces always contain the present while the past
does not [this convention will be followed generally with the only exception
of Markov processes where both past and future must contain the present).

Several subspace constructions in the following are defined at some fixed
reference time; by stationarity however they carry over to arbitrary time
instants and we shall always implicitly mean that the relevant definition is
extended by stationarity to the whole time axis.

Normally the reference time will be taken to be ¢t = 0. To simplify nota-
tions the subscript ¢ = 0 will normally be dropped. The symbols Ht and H~
will denote the future and past spaces at time 0 of the process y. The orthog-
onal projection onto a subspace S will be denoted E® or E[.|S]. For Gaussian
random variables this coincides with the conditional expectation given the
o-algebra generated by S. Operators like E® or U applied to vectors will act
componentwise in an obvious way.



GEOMETRIC METHODS FOR STATE SPACE IDENTIFICATION 13

The Coordinate-free viewpoint. The coordinate-free or geometric viewpoint
lies at the grounds of the identification methods which will be discussed in
the last sections.

The main idea here is that building state-space models of a random
process (i.e. stochastic realization) is essentially a matter of constructing a
space X with properties which make it the stochastic analog of a determin-
istic state space. Once this first basic step is done, the rest is just a matter
of choosing coordinates in X and the causality structure of the model. The
basic notion in this respect is the following.

Definition 2.1. Let X be a subspace of some large stationary Hilbert space
H of wide-sense random variables containing H(y). Define

Xt = UtX, X; = vsStX& Xt+ = stth-

A Markovian Splitting Subspace X for the process y is a subspace of H
making the vector sums H=V X~ and HT VvV XT conditionally orthogonal
(i.e. uncorrelated) given X, denoted,

H VX LH"VX'T|X. (2.8)

The subspace X is called proper, or purely-non-deterministic if there are
vector white noise processes w and W such that 8

H VX =H (w), H"VX'T=H"(w)

Any basis vector x(0) := [21(0),22(0),...,2,(0)] in a Markovian splitting
subspace X generates a stationary Markov process x(t) := U'z(0),t € Z
which serves as a state of the the process y. If X is proper the Markov process
is purely non determinstic and can be represented by a linear equation of the
type z(t + 1) = Ax(t) + Bw(t) where A has all its eigenvalues strictly inside
of the unit circle.

The fundamental characterization in this setting is the following.

Theorem 2.1. [66, 47, 49] The state space X of any stochastic ralization
(2.1) is a Markovian Splitting Subspace for the process y.

Conversely, given any proper Markovian splitting subspace X, to any
choice of basis ©(0) = [21(0),22(0),...,2,(0)]" in X there corresponds a
stochastic ralization of y of the type (2.1) with generating input noise w.

8 This is equivalent to requiring that
NeH, vV X; = {0}, and N, H, v X;" = {0}.

Obviously in this case y must also be purely non determinstic [68].



14 Anders Lindquist and Giorgio Picci

There are formulas expressing the coefficient matrices A, B, C, D in terms
of x and y. They will be given in Theorem 2.2 below.

A Markovian splitting subspace is minimal if it doesn’t contain (properly)
other Markovian splitting subspaces. Countrary to the deterministic situation
minimal Markovian splitting subspaces are non unique. Two very important
examples are the forward and backward predictor spaces (at time zero):

X_:=E" H* X, =B H- (2.9)
for which we have the following characterization [49].

Proposition 2.1. The subspaces X_ and X are the unique minimal split-
ting subspaces contained in the past H~, and, respectively, in the future HT,
of the process y.

The causality of the representation (2.1) can be expressed geometrically
as the orthogonality relation

Hf (w) L X7V H (y) (2.10)

for all t € Z. One also says that X is a forward model or that it evolves
forward in time. Note in particular, that E{z(t)w(t)’'} = 0.

Backward or Anticausal realizations are models where instead the past of
the driving white noise is orthogonal to the future of the state and output
processes. These models are useful in several instances and are as legitimate
representations of y as the forward models studied so far. As a matter of fact,
a random signal has no ”preferred direction of time” or causality built in and
admits many different sorts of causality structures, see [67].

Theorem 2.2. [48, 47] Any choice of basis vector x(0) in a (finite dimen-
sional) proper Markovian splitting subspace X generates a stationary vector

x(t) }

Markov process z(t) = U'z(0) ,t € Z such that the joint process { y(t—1)

is also Markov. The joint process admits a forward representation

zt+1) ] _[A O 2(t) B

[ y(t) } B [ C 0 ] [ yi—1) |t o |v® (2.11)

where w(t) is the generating white noise process of H- VX~ i.e. H-VX™ =
H~(w) and

A= Ex(t+ 1)z(t)P~* B = Ex(t+ 1)w(t) (2.12)

C = Ey(t)z(t) P! D = Ey(t)w(t)’ (2.13)

Dually, let £(0) be another basis in X and let (t) = U'Z(0)t € Z be the
corresponding stationary vector Markov process. The joint process { Zg; }

s also Markov and admits a backward representation
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t-1)1_T[4 0 z(t) Bl _ ..
where w(t) is the generating white noise process of HYV X+, e HTVXT =
H*(w) and

< 8

where P = Ex(t)Z(t)’.
Taking Z(t) as the dual basis of x(¢), i.e.

Ex(t)x(t) =1
which implies -
z(t) = P 'a(t), P=P1,

the matrices of the backward representation (A, B,C, D) are related to (A, B, C, D)
by a one-to-one transformation. In particular,

A=A (C'=APC'+BD (2.17)

The formulas are asymmetric because of the asymmetry in the definition
of past and future of y. This asymmetry is needed in order to avoid unnec-
essarily high state space dimension due to the overlap of past and future
spaces of the process. For example, with the symmetric choice of including
the present both in the future and in the past, a p-dimensional white noise
process w (which is Markov) would admit its present space (spanned by w(0)
) as a minimal Markovian splitting subspace and hence admit a minimal re-
alization with a state space of dimension p. The choice here is to have the
present only in H (y).

3. Spectral Factorization

The covariance sequence of the output process y of the system (2.1), i.e.
A(t) == BAy(t + K)y(k)'} = B{y(H)y(0)}
is readily computed. We see that
A(t) = CA™IC" fort >0, A(0)=CPC' + DD’ (3.1)

where,

C' = APC' + BD'. (3.2)
is exactly the same ”backward” C' matrix of (2.17) and

A(—t) = A(t) = C(A)~tC" for t > 0.
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Therefore it follows that the infinite block Hankel matrix
A1) A2) A@3)
A(2)  A(3) A(4)
H:=1 43) A@4) A(5)

admits a facorization

/

c c
CA con
m= | CA? C(A")? (3.3)

and hence has finite rank bounded above by the dimension n of the state
space X; of the system Y. Whether or not rankH = n depends on the
reachability of the pair (A4,C’), which is equivalent (given that (4,C) is
observable by assumption) to stochastic minimality of the system (2.1) viewed
as a representation of the output process y [47, 49, 50]. Note that

Proposition 3.1. The backward state-output matriz C is uniquely deter-
mined by the forward parameters (A, C) and is invariant for all stochastically
minimal realization (2.1) of y having the same (observable) (A, C) pair.

We noted in the previous section that the output process y of (2.1) is
a purely non-deterministic process. It is well known that this property is
equivalent to

ay(t) ¢ Hy (y) acR™
i.e. for no a € R™ oa’y(t) can be exactly equal to a linear combination of

components of past variabes y(t — 1), y(t — 2), ... of the process. From this it
can be easily shown that the block Toeplitz matrix

A(0) A1) AQ) o AR)
ALY A(0) A1) o Alk—1)

T | AR AQY A0) - A(k-2) (3.4)
A(:If)’ A(kz—l)’ A(k:—2)’ o A0)

is (strictly) positive definite for all k.

For a purely non-deterministic process the spectral distribution is ab-
solutely continuous [68] and admits a density. In our case the m x m spectral
density of y can even be computed as an ordinary Fourier transform i.e.

Bz)= Y Alt)z".

t=—o0
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Since A is stable the series is absolutely convergent in a neighborhood of the
unit circle {|z] = 1} of the complex plane and clearly has the property

P(1/z) = ()
which sometimes is called para-Hermitian symmetry. We may write
D(z) = D1 (2) + D1(1/2) (3.5)

where @ (z) is the ”causal” (i.e. analytic outside of the unit circle) component
of &(z), given by

D, (2) = %A(O) + Az A(2)2z72 4 (3.6)
= Czl—-A)7C + %A(O). (3.7)

The positivity condition of the sequence of Toplitz matrices (3.4) is equivalent
to positive semidefiniteness of @(z) on the unit circle i.e.

D, () + D (779 >0 0€[-—n,7] (3.8)

which can be rewritten as Red, (e/%) > 0. From this, since @, has by con-
struction all of its poles strictly inside the unit circle it is seeen that it is a
positive real function. We shall call @ the positive real part of P.

Proposition 3.2. The transfer function W of any state space representation
of the process y of the type (2.1) is a spectral factor of @, i.e.

W ()W (1)2) = &(2). (3.9)

There is a very straightforward proof of this result in case of a stable
A matrix, based on the well-known formula for computing the output spec-
trum of a linear time-invariant filter with stationary input (this formula is
sometimes called the Wiener-Kintchine theorem).

There is however also a purely algebraic proof based on an astute de-
composition of the product W (z)W(1/z)" which works in general for proper
rational transfer functions and does not require stability of A and station-
arity of the signals involved (of course in this case the “spectrum” @(z) is
defined by the formulas (3.5) plus (3.7) and need not have a probabilistic
meaning). The decomposition is based on a famous trick apparently invented
by Kalman and Yakubovich, namely the identity

P—APA = (21— A)P(z"'T1 = A") + (2] — A)PA' + AP(2~'1 - A'). (3.10)
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Proof. A straightforward calculation shows that

W)W (1/z)) = [C(zI — A" 'B+D|[B'(z ' - A)"'C" + D]
= O(zI-A)'BB'(z'1-A)'C’
+ C(zI—A)'BD +DB'(2~'1 - A)~'C' + DD’

so, in view of (2.7), (3.10),

W()W(1/z) = CPC'+ DD’ +C(zI — A~ (APC' + BD')
+ (CPA' +DB)(z'1 - A '’
= &,.(2)+D,(1/2). (3.11)

where the last equality follows from (3.2).

Note that (3.11) only requires existence of a solution to the Lyapunov
equation P = APA’ + BB’. In case A is stable this is of course guaranteed.
In addition, W has all its poles inside the unit circle. Such a W is called a
stable or, better, analytic spectral factor.

We shall need to consider also antistable or coanalytic (i.e. analytic in
{|z| < 1} ) spectral factors i.e. (rational) solutions of W (2)W(1/z) = &(z),
having all poles ouside of the unit circle. These spectral factors are in one-to-
one correspondence with the stable factors G(z) of the transpose spectrum
&(z)' by the formula

W(z) = G(1/z)
so that W(2)W(1/2) = G(1/2)G(z) = &(z).

By the same reasoning as done for stable spectral factors, antistable spec-
tral factors turn out to be exactly the transfer functions of backward realiza-
tions of y, i.e. state-space representations of the form (2.14). For the transfer
function of a backward model (2.14) can be written

W(z)=C("'T—A)'B+D

where the A matrix is stable, i.e. has all eigenvalues inside of the unit circle.
Since the realization (3.7) of @, induces a natural transpose realization for
the transpose @, (z)’, namely

B, (2) = Ol — A)1C7 + %A(O), (3.12)

we see that the dual choice of basis of Theorem 2.2 for the backward models
is a natural one. Hence by just switching symbols according to the correspon-
dence

As A Co 0,
one obtains characterizations of the family of antistable spectral factors and
the corresponding backward models which are completely analogous to those
for stable spectral factors and forward realizations.
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An important observation to keep in mind is that even though we assumed
minimality of the realization (4, B,C) in 2.1, the pair (A4,C") may not be
reachable and hence

D (2)=C(2I — A)~IC" + %A(O)

may not be a minimal realization. This would imply that the McMillan de-
gree of the spectrum is smaller than what appears from the spectral fac-
torization equation (namely 2n). In fact, we have the following proposition
for the McMillan degrees of rational functions, whose proof can be found in
Anderson’s paper [5].

Proposition 3.3. Let 6{-} denote McMillan degree. Then:

(i) If the rational matrices Z1 and Zs have no poles in common, then
6(Zy + Z2) = 6(Z1) + 6(2Z2).

(i1) If W1 and Wy are rational matriz functions of compatible dimensions,
then

S(WilWa) < 6(Wh) + 6(W2).
Applying this to
W)W (1/2) = B(2) = By (2) + Do (1/2),

we have
5OV) > %5(@) 5. (3.13)

If we have equality, we say that W is a minimal spectral factor .

Well-known examples of minimal stable spectral factor are the minimum
phase , sometimes also called the outer, and the mazimum phase spectral
factors, denoted W_(z) and W, (z) respectively. Both W_(z) and W, (z) are
stable (i.e. analytic in {|z] > 1}) but the first has no zeros outside of the
closed unit disk while the second has instead no zeros inside the open unit
disk.

Dually, there are unique minimal antistable (or co-analytic) spectral fac-
tors with all the zeros outside or, respectively, inside of the unit circle,
denoted® W, and W_ respectively. The factor W, is commonly called con-
Jugate minimum-phase or co-outer.

Theorem 3.1. All stable rational spectral factors can be constructed by post-
multiplying the minimum phase factor by a stable rational matriz function
Q(z) such that

Q()Q("1) =1L

9 The rationale for the subscripts will become clear from the partial order of
realizations which we shall see in a moment.
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Dually, all antistable rational spectral factors can be constructed by postmul-
tiplying the minimum phase factor by an antistable rational matriz function
Q(z) such that

Q)Q"Y =1

Transfer function like Q or @Q are called all-pass . Stable all-pass functions
are called inner. The result above goes back to Youla’s classical 1961 paper
[77].

4. Spectral Factorization and the LMI

Let us now consider the following inverse problem: Given a proper rational
spectral density @ i.e. an m x m parahermitian matrix of (generic) full rank
m, positive semidefinite on the unit circle, consider the problem of finding all
minimal stable spectral factors W and the corresponding (minimal) realiza-
tions W(z) = D + H(zI — F)~!B. (The condition that @ is proper implies
that all rational spectral factors are proper so that they have representations
of this form). To solve this problem, first make the decomposition

B(z) = B (2) + D (1/2)

where @ (2) has all its poles strictly inside the unit disk (so it is the positive
real part of $(z)) and compute a minimal realization

D (2) =C(2I — A)~C" + J,

where clearly
J+J = A(0).

Note that A is a stable matrix. We shall solve the spectral factorization
equation (3.9), giving a procedure to compute (F, H, B, D) from the “data”
(4,C,C, A(0)).

The problem can actually be reduced to finding just the B’s and D’s since
F and H can be chosen equal for all factors.

Theorem 4.1. Let (A,C,C") be a minimal realization. There is a one-to-one
correpondence between minimal stable spectral factors of &(z), and symmetric
n X n matrices P solving the Linear Matrix Inequality

_ / ~ /
P—-APA" (C'—APC >0 (4.1)

M(P) := { C—CPA A(0)—CPC' |2

in the following sense:
Corresponding to each solution P = P’ of (4.1), necessarily positive def-
inite, consider the unique (modulo orthogonal transformations) full column

rank matriz factor { g ] of M(P),
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B

M(P) = { D

} [B'D'] (4.2)

and the rational matriz W parametrized in the form
W(z)=C(zI —A)'B+ D. (4.3)

Then (4.3) is a minimal realization of a stable minimal spectral factor of
&(z). Conversely, for each stable minimal spectral factor W, with minimal
realization D + H(zI — F)™'B we can choose a basis such that F = A and

H = C, and the corresponding pair { g ] together with the solution P = P’

of the Lyapunov equation (2.7) salisfy the matriz equation (4.2) and hence
the Linear Matriz Inequality (4.1).

Proof. Let P = P’ be a solution of (4.1) and B, D be computed as in (4.2).
Then P solves the Lyapunov equation (2.7) and hence P > 0. Then forming
the product W(z)W(1/z)" it follows from the equation (3.11) above that
W = D + (2 — A)~1B is a stable spectral factor. Note that (A, B) must be
reachable for otherwise the McMillan degree of W, would be §(W) < n =
+6(®) which contradicts (3.13). Therefore W = D+ (zI — A)~!B is a minimal
spectral factor.

To show the converse, assume W = D+ H (zI — F)~! B is a minimal stable
spectral factor. Then a P = P’ > 0 exists solving the Lyapunov equation
BB’ = P— FPF’ and hence from the spectral factorization equation and the
Kalman-Yakubovich identity we get

D1 (2) + D1 (1/2) =W()W(1/2) =
BB BD' [ (="' -F)"'H
_ -1 —
[ HT=F) I][DB’ DD’ { I -
HPH' + DD’ + H(zI — F)""(FPH' + BD')+
+(HPF' + DB (="' — F')~"'H'.

We first argue that without loss of generality we can take FF = A and H = C.
This follows readily since the equality above implies that @, is also realized
by a matrix triple of the form (F,G, H). Now since we are considering only
spectral factors for which §(W) = 6(®.), this realization must also be min-
imal and then the pairs (F, H) and (A, C) must be similar. In fact we may
take ' = A and H = C for all minimal spectral factors.

It is then obvious that (P, B, D) satisfy (4.2) and hence (4.1) has a positive
definite solution (namely P).

The equations (4.2) are sometimes called the positive real equations, for
reasons to be explained below, and can be written

P—APA" C'—APC' | [ B
C—CPA A(0)—CPC' |~ | D

M(P)

][B’ D']>0




22 Anders Lindquist and Giorgio Picci

The linear function M : R™*" — R2"X2" depends only on (A, C,C, A(0))
which are given.

One immediate consequence of Theorem 4.1 is that the dimension of the
minimal spectral factors can be computed from the rank of the corresponding
matrix M(P). In fact if we agree to keep

rank [ g ]

full, it follows immediately from the the factorization above that the corre-
sponding W (z) is m x p where p = rank M (P).
It can be shown [25] that the set of solutions to the LMI (4.1)

P.={P|P =P, M(P) >0}

is closed, bounded and convex. Later we shall show that there are two special
elements P_, P, € P so that

P_.<P<L<P, foralPeP

where P; < P, means that P, — P; > 0 is positive semidefinite.

For completeness, we also state the following well-known result. We have
made it appear as a corollary to Theorem 4.1 although historically things
went quite the other way.

Positive Real Lemma (Kalman-Yakubovich-Popov). The family P is non-
empty if and only if D is positive real, i.e. (5.8) holds.

Therefore, in our case, P # 0.

The Dual Positive-Real Equations. A dual of Theorem 4.1 providing a one-
to-one and onto pararmetrization of minimal antistable factors in terms of
the solutions P of the dual Linear Matriz Inequality
S P—-A'PA C - APC
— 1L g :

MP):=\ o _cpa a0 —cpcr |20 (4.4)
can readily be obtained by replacing the realization @, (z) = C(21—A)~'C"+
J, by the transpose realization representing @ (z)’ and repeating verbatim
the proof above, see also [48].

Then to each P € P, solution set of the dual Linear Matrix Inequality
(4.4) there corresponds an antistable minimal spectral factor

W(z)=C(z'1-A)'B+D,

where B, D are determined by the analog of the matrix factorization (4.2).
In the following we shall assume that

R(P) := A(0) — CPC" >0 (4.5)
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for all P € P. This means that all minimal state space models of y have a
full-rank additive noise term in the output equation (DD’ > 0). This condi-
tion serves here only the purpose of avoiding the use of pseudo-inverses and of
simplifying the exposition. We shall see in a moment that (4.5) implies that
P(z) is (generically) of full rank m. It is curious that a natural characteriza-
tion of the spectra for which this condition holds seems still to be an open
question in the literature (see however the forthcoming paper [52]). Under

this assumption, if 7 := —(C’ — APC")R™!, a straight-forward calculation
yields
I'T I 0] [ -AP) o0
RGP
where ~ B
A(P)=APA' — P+ (C' — APC")R(P)"'(C — CPA), (4.6)

Hence, M(P) > 0 if and only if P satisfies the Riccati inequality
A(P) <0, (4.7)

and
p =rank M (P) = m + rank A(P).

If P satisfies the algebraic Riccati equation
A(P) =0, (4.8)

rank M (P) = m, the corresponding spectral factor W is square m x m. These
P form a subfamily Py in P. If P ¢ Py, W is rectangular.

From spectral factors to stochastic realizations. We now examine the converse
of Proposition 3.2. Let W and W be two minimal square stable and antistable
spectral factors. It is easy to see that such factors play the role of transfer
functions of ”shaping filters” of the type (2.2) for the process y. To see this we
just need to manifacture two white noise processes w and w serving as input
white noise processes in the two filters, the filter with transfer function W
being causal (stable) and the other anticausal and hence represented in the
time domain by a convolution operator integrating the input ”backwards in
time”. Since W and W are square and invertible transfer functions, the white
noise processes can be generated by passing y through the ”whitening filters”
W=t and W1 (The general idea is just the same as the classical ”whitening-
shaping” filter dicotomy of Bode and Shannon.) It can be shown!® that the
whitened processes w,w are in fact well-defined functionals of the history of
Y.

In particular, since W_ is outer, the corresponding white noise process
w_ is a causal functional of y, i.e. w_(t —1) € H; (y) for all ¢, so that we ac-
tually have H; (w_) = H, (y). For this reason, w_ is called the (normalized)

10° A precise statement of this requires spectral representation theory and can not
be given here. For a similar argument see Rozanov’s book [68], chapter 7.
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forward innovation process of y [74]. Similarly the white noise process w is
an anticausal functional of y, i.e. w (t) € H; (y), so that H,' (wy) = H; (y)
for all ¢; w is called the (normalized) backward innovation process of y.

Once the white noise inputs are determined, it is rather obvious that
a minimal realization (A, B,C,D) of W and (from the dual LMI) a dual
minimal ralization (A’, B,C, D) of W will provide two minimal state-space
stochastic realizations of the process y, the first one being causal and the
second anticausal. The state processes of the two realizations will have as
covariance matrices the unique solutions of the Lyapunov equations (2.7)
and, respectively,

P=A'PA+ BB

In force of Theorem 4.1, each solution P of the Positive-real equations (4.1) in
Po will then automatically be interpretable as the state covariance matrix of
the state-space realization of y corresponding to the deterministic realization
(A, B,C, D) of W. Dually any solution P of the dual Positive-real equations
(4.4) will be the state covariance of a backward state-space realiztion. In
other words, the P (and P) matrices solutions of he LMI (for the time being
belonging to the subsets Py and Py) have the meaning of state covariances
of minimal forward and backward realizations of y.

This picture however generalizes also to all minimal (nonsquare) spectral
factors. The only difficulty in the generalization is the nonuniqueness of the
white generating noises w and w associated to the spectral factors. The diffi-
culty can be overcomed by selecting the input noises in a fixed ambient space,
which is small enough to make the w’s unique but also big enough to allow
a solution w of the convolution equation y = Ww for each minimal spectral
factor W (and W).

Proposition 4.1. [50] There exists a fized "universal” stationary Hilbert
space H D H(y) such that for each minimal spectral factor W the convolution
equation y = Ww has a unique (modulo orthogonal transformations) solution
w with the property H(w) C H.

Assume that the dimension of a minimal stochastic realization of y is n.
Then the "universal” stationary Hilbert space H can be chosen equal to the
orthogonal sum

H=H(y)® H(2)

where z is a fized n-dimensional normalized white noise process uncorrelated
with y.

Hence, in order to construct all possible minimal shaping filter representa-
tions of y we need, besides the process y itself, n additional ”exogenous”
independent white noise generators. The filters for the actual generation of
the noise processes are discussed in [50], sect. 5.2.

Once we know how to construct the w or w processes we can associate

to each minimal spectral factor W (W) a minimal stochastic realization of
y by just picking a (minimal) realization (A, B, C, D) of W (resp. a minimal
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realization (A, B,C, D) of W). The state vector of the realization will be a
causal or anticausal functional in the past or future space of the white noise
processes w or w. Clearly if we choose all w ’s in a fixed universal Hilbert
space H, the state spaces X of these realizations will all be subspaces of H.

Theorem 4.2. Let (A, C,C, A(0)) be a minimal realization of ®(z). There
are bijective maps between the following sets

1. W : The minimal stable spectral factors W (defined modulo right multi-
plication by a constant orthogonal matriz)

2. P :The solutions P of the Linear Matriz inequality (4.1)

3. X : The minimal Markovian splitting subspaces for y in a fized universal
Hilbert space H as described in Proposition 4.1.

Proof. The one-to-one and onto correspondence between W and P has been
described already in Theorem 4.1. The correspondence between X and P is
established through a particular choice of basis in the state space which will
be described in the next section.

Of course we have a dual version of this result in which the antistable spectral
factors W and the solutions of the dual Linear Matrix Inequality P replace
‘W and P.

4.1 Ordering, (A,C) pairs and uniform choice of basis in X

In this section we shall make explicit the correspondence between state covari-
ance matrices P solutions of the LMI (4.1) and Markovian splitting subspaces
in X. In fact we shall establish a correspondence between P’s and stochastic
state-space realizations of y. This correspondence is intimately related to the
notion of a uniform choice of basis in the family of minimal splitting subspaces
X, which will be defined below. This notion will be useful for understanding
the geometric approach to identification and the idea of stochastic balancing.

Recall [50, sect. 6] that in the family of minimal Markovian splitting
subspaces X one can introduce a natural partial order (denoted <), defined
in terms of the cosine of the angle that each X makes with the future space!!
HT, a subspace X3 being "greater” than X if it is "closer” (i.e. it makes a
smaller angle) with the future than Xj.

According to this definition the forward and backward predictor spaces,
X_ and X, defined in (2.9) are naturally the smallest and largest element
in the family X with respect to the partial order.

"1 The (cosine of the) "angle” between subspaces is defined e.g. in [4, vol. T] p. 69.
It is just the smallest canonical correlation coefficient of the two subspaces of
random variables X and H'. The "angle” is the largest principal angle between
the two subspaces. For these notions in a finite-dimensional setting one may
consult e.g. [32].
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Consider a minimal causal realization (2.1). By minimality the compo-
nents of the n—vector x(0) must form a basis in the relative splitting sub-
space X. Now, we recall from [49], [50], that two families of bases, say {«(0)}
and {Z(0) }, for the family X (i.e. each vector z(0) is a basis in one X and
similarly for each Z(0)) are called uniformly ordered, (or, for short, uniform)
respectively in the forward or in the backward sense, if whenever X; < X5
and z;(0) are bases in X;, (i = 1,2), there holds

EX125(0) = 21(0) (4.9)

or, respectively,
EX221(0) = 72(0) (4.10)

the vectors Z;(0) being bases for the subspaces X;, (i = 1,2).

Uniformly ordered bases can be constructed easily. For example pick a
basis x4 (0) in the "largest” state space X, then it can be easily seen by
using the splitting property of X that the family

z(0) :=EXz,(0), XeX

is a forward-uniform basis [50]. It also follows from the definition that for
all bases z(0) in a forward-uniform family, and, respectively, for all Z(0) in a
backward-uniform family we have the invariant projection property

EX-2(0) = z_(0) (4.11)
EX+z(0) = z,(0) (4.12)

where z_(0) is the basis relative to the forward predictor space X_ in the
first family and Z(0) is the basis relative to the backward predictor space
X in the second family.

Proposition 4.2. [50] A forward-uniform choice of bases in X establishes a
lattice isomorphism between X and the corresponding family of state covari-
ance matrices P := {P = Ex(0)x(0)’| x(0) basis in X}, the latter set being
endowed with the natural partial order of positive semidefinite matrices. This
is equivalent to saying that X1 < Xo & P; < Ps.

In a backward-uniform choice the ordering of the corresponding state
covariance matrices P = {P = Ez(0)z(0)'| (0) basis in X} is reversed,
namely, X, < Xo < Py < Py

Proof. We shall prove only the implication =. For the reverse consult [50],
p- 282-283. Everything descends from the orthogonality

22(0) — EX125(0) = 22(0) — 21(0) L z1(0)

which is equivalent to the defining (4.9). From this it follows that the covari-
ance matrix of z2(0) — z1(0) is equal to P, — P; and hence P, > P;. The
backward case follows by symmetry.
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In particular, the bases x_(0) in X_ and 24 (0) in X in a forward-uniform
choice, will have the smallest and, respectively, the largest state covariance
matrices P_ and P, in P. For a backward-uniform family it will instead
happen that P_ is maximal and P, is minimal.

That P_ and P, are the covariance matrices of bases in the forward
and backward predictor spaces can be seen also directly from the invariant
projection property (4.11, 4.12). In fact z_(0) and z(0) are essentially the
"forward and backward steady—state Kalman filter” estimates of any (0)
(respectively, Z(0)) in a uniform family the bases. For, the first vector can
be expressed as z_(0) := EX-x(0) which is in turn equal to Efz(0) by the
splitting property. Hence x(0) —2_(0) L z_(0) € H~ so that P— P_ > 0 for
all P € P. A completely analogous argument shows that Z,(0) = EZ " z(0)
and that P — P, >0 for all P € P.

The most useful properties of uniform bases are summarized below.

Proposition 4.3. [50] If {z(0)} is a forward-uniform family of bases in X
then, for each x(0), the corresponding dual basis Z(0), uniquely defined in X
by the condition Ex(0)Z(0) = I, defines a backward-uniform family in X.

Proposition 4.4. [50] All causal minimal realizations of y corresponding
to a forward-uniform family of bases are described by the same (A, C) pair.
Conwversely, a choice of bases in the subspaces X € X yielding state equations
with the same (A, C) pairs is forward-uniform.

Likewise, all anticausal realizations corresponding to a backward-uniform
family of bases are described by the same (A, C) parameters and conversely.

Therefore choosing the realizations of spectral factors in ‘W in such a
way that the A and C matrices are the same (Theorem 4.1) is exactly the
same thing as choosing a forward uniform basis in X. Dually, keeping the
A, C matrices invariant over the family of all minimal realizations of spectral
factors W € W is the same thing as having the corresponding state vectors
Z(0) related as in a backward uniform choice of basis.

The only backward-uniform family of bases we shall encounter in the
following will be the dual bases of a forward family. Since these are related
by the transformation z(0) = P~'x(0) so that

P =Ez(0)z(0) = P~* (4.13)
it follows immediately that

Proposition 4.5. The solution sets P, P of the Linear Matriz Inequality
and of its dual (4.4) are related by the transformation P = P~ In particular,
the mazimal element in P is Py = P_:l.

The following result says that choosing a uniform basis is after all as easy
as choosing one basis in a particular X.
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Proposition 4.6. An arbitrary basis x(0) in a minimal splitting subspace X
can be uniquely extended to the whole family X in a uniform way (either in
the forward or backward sense).

Proof. First, compute Z,(0) by projecting #(0) := P~1z(0) onto X, i.e.,
7,(0) := EX+ P~12(0) and then go back to the "primal”, i.e. let . (0) =
P7'7,(0). Note that the projection of 2(0) onto X, is not invariant in a
forward uniform basis.

Once x4 (0) and (by a dual argument) Z_(0) are found, they can be used
to generate two (dual families of uniform bases in X, say z(0) and z(0), by
setting 2(0) := EXz(0), and 2(0) := EXZ_(0). It is immediate to check that
z(0) and z(0) are indeed dual bases and are related by the transformation
z(0) = P~12(0) where P = Ez(0)z(0)".

5. Finite-Interval realizations of a stationary process

Since in identification data are always finite we need to examine the problem
of modeling the process y (which will still be assumed stationary and with a
rational spectral density as in the previous two sections) on a finite interval.
There seems to be no reason to worry about this since a stationary realization
of the type (2.1) does of course describe the process also on any finite interval
[0, T']. In this case however we must specify the initial conditions vector x(0)
at time zero, which is an essential extra parameter for a complete description
of the process. The initial condition must in principle be estimated if the
model class is chosen to consist of stationary realizations (2.1).

As we shall see there are non-stationary finite-interval realizations where
the initial state is automatically fixed to zero and we do not need to worry
about its estimation.

5.1 Forward and backward Kalman filtering and the family of
minimal stationary realizations of y

Let us recall the structure of the Kalman filter for a minimal (forward) sto-
chastic realization (2.1). Assume we are observing the output of the system
starting at some finite time ¢ty and define

Hyyy ) = span{a'y(s);a € R™,tg < s < t}.
Then, the Kalman estimate
#(t) = EHron z(t) (5.1)
is given by!?
2 Because of joint stationarity of x,y all time-varying quantities below depend

on the time difference ¢ — to. To keep notations simple we write this difference
simply as t.
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T(t+1)=Az(t) + K(@t)[y(t) — Cz(t)]; &(tg) =0, (5.2)
where the Kalman gain matriz K (t) is given by
K(t) = [AQ(t)C" + BD'|[CQ(t)C" + DD'|™*
Q(t) being the error covariance matrix
Q(t) = E{[z(t) — 2(t)][z(t) — 2(¢)]'}

which is the solution of the matriz Riccati equation

Qt+1) AQ(t)A—
— [AQ(t)C" + BD'|[CQ(t)C' + DD'|'[AQ(t)C’ + BD') + BB’
Q) = P=E{z(0)z(0)}

(5.3)
This Riccati equation depends on P, B and D, and consequently it varies
with different realizations X', i.e. with different P € P. We shall now replace
this Riccati equation with an invariant version, which depends only on the
invariant parameters A, C, C and A(0) of the spectral density of . In this way
we shall prove that the estimate (5.1) is the same for all forward stationary
realizations of y.
To this end, note that from the orthogonality x(t) — Z(t) L &(t) it follows
that Q(t) = P — II(t), where

II(t) == E{z(t)z(t)'}.
Then the Riccati equation (5.3) can be written

P—I(t+1) = APA — AII(H)A’
— [C" — AII($)C)[A(0) — CIL(H)C') 1 [C — AIT(H)C') + BB'.

because C' = APC’ + BD' and A(0) = CPC’' + DD'. But P satisfies the
Lyapunov equation
P = APA' + BB/,

and therefore
HOt+1)=1I(t)+ A(1(t)) II(0) =0, (5.4)

where A : R™*™ — R™*™ is given by
A(P) = APA— P+ (C'— APC")(A(0) — CPC")"Y(C" — APC")'.

This is precisely the same quadratic function A introduced in the previous
section. Moreover we can write,

K(t) = [0' ~ A(H)C'[AQ) ~ CI(1)C'] ™,

which also depends only on (A, C, C, A(0)) and on the solution of the Riccati
equation (5.4). The transient (forward) innovation process
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e(t) :=y(t) — Cz(t) t>to,
is also invariant. It is in fact a white noise process of covariance matrix
R(t) = A(0) — CII(t)C’,
i.e. E{e(t)e(s)'} = R(t)6:s. Hence we have shown the following fact.

Proposition 5.1. Let (A, C,C, A(0)) be a minimial realization of the spec-
tral density matriz of the stationary process y. Then y has a non-stationary
realization

Bt+1) = Ai(t)+ B(b)e(t) i(to) =0, (5.5)
y(t) = Ci(t) + D(t)e(t) (5.6)

on {t > to}, where the state Z(t) is the orthogonal projection onto Hy, 1) (the
minimum variance one-step ahead estimate) of the state x(t) of any minimal
stationary realization of y in the uniform basis induced by (A, C), B(t) :=
K(t)R(t)Y2, D(t) := R(t)Y/? and e(t) := —R(t)"'/2e(t) is a normalized m-
dimensional white noise process: the normalized transient innovation process
of y on {t >to}.

The state of the Kalman Filter realization (5.5, 5.6) is a non-stationary
process. In effect, since EXtto-0y(t + k) = EHton CAF(t) = CA*2(t) for all
k > 0, the components of Z(t) span the ”finite-memory” predictor space

X,  :=Efron g (5.7)

Relation with the forward stationary innovation model. This is well-known.
Since each realization X' is a minimal realization, by standard Kalman Fi-
tering theory I1(t) — II,, > 0 as t — oo. Then I, satisfies the algebraic
Riccati equation

A(P)=0

S0 since it is also symmetric and positive definite, I1,, € Py C P. Moreover
Q(t) — Qs > 0, where Qo = P — I, and hence

P>1l... (5.8)

for all P and therefore we see that P = Il,,. Now let tg — —o0 in
the Kalman filter. Then Z(t) converges by the (wide-sense) martingale con-
vergence theorem [18] to the steady state Kalman filter estimate z_(t) =
EH: 2(t). Moreover both B(t) and D(t) converge to constant matrices which
indeed satisfy the Positive-Real lemma equations for P = P_.

Dually, we construct a backward Kalman filter based on a minimal back-
ward model
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(t) = A'z(t+1)+ Bu(t)
y(t) = Cz(t+1)+ Dw(t)

assuming we can observe y(t) only in the interval {¢ < T'}. Define the finite
future space

(5.9)

Hy ) = span{a’y(s);a € R™,t < s < T}.
and the backward Kalman estimate,
Z(t) = EMeriz(t) (5.10)

Then an analysis that is completely symmetric to the one presented above,
projecting over the future, yields a backward Kalman filter which can be
written as a backward non-stationary realization of the stationary process y,

(t) = AZ(t+1)+ B(t)et) z(T) =0, (5.11)
y(t) = Cx(t+1)+ D(t)e(t) '
on {t < T}, where B(t) := K(t)R(t)'/?, D(t) := R(t)"/? and €(t) :=
—R(t)~"'/2&(t) is a normalized m-dimensional white noise process: the nor-
malized backward transient innovation process of y on {t < T'}.

The backward Kalman gain,

K(t) = [C" = A'II(t)C'][A(0) — CIT(t)C'] Y, (5.12)
is now computed from the solution of the dual Riccati equation
II(t—1)=II(t) + A(II(t)) II(T) =0, (5.13)
where A : R"*" — R™¥" is defined as
A(P) = A'PA— P+ (C' — A'PCY(A(0) — CPC')"M(C’ — A'PCTY.

which is again the same function A introduced in the previous section.

The state Z(t) is the orthogonal projection onto Hp g (the minimum
error-variance "filter” estimate) of the state Z(¢) of any minimal stationary
backward realization of y in the uniform basis induced by (A’,C). As T —
+o00 Z(t) converges to Z (t) and the backward transient model tends to the

steady state backward model,

{ Ti(t—1) = Az (t)+Biwg(t—1)
y(t=1) = Czi(t)+ Dywi(t—1)

with state covariance P, .
In analogy to (5.7) the state Z(¢) now spans the backward predictor space

X, :=Een g, (5.14)
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The backward form of the ”forward Kalman Filter” and the ”forward form”
of the backward Kalman Filter. Exactly as it happens in the stationary setup,
the joint processes [#(t)" y(t — 1))’ and [Z(¢)’ y(t)]’, being Markov processes,
admit both a causal or forward and an anticausal or backward represen-
tation. Unfortunately the name of ”backward Kalman Filter” given to the
representation (5.11) refers to both circumstances that Z(t) is a basis in the
backward predictor space (i.e. is an estimate based on the future of y) and
to the anticausal structure of the realization. These two facts are strictly
speaking unrelated and, although it may look a bit unnatural, there is also a
causal form of the backward Kalman Filter representation (5.11),

T(t+1) = I+ 1)AII(t) Z(t) + By(t)e (t)

y(t) = [CH(t+ 1A+ D@)BE)I(t) " Z(t) + Dy (t)ey(t) (5.15)

where B (), D (t), e+ (t) have expressions which may be derived by the stan-
dard procedure explained e.g. in [48]. Of course the validity of the causal form
above is subjected to the existence of the inverse IT(t)~! which requires ¢ " far
enough” from the endpoint ¢t = 7. As shown in [48] and is visible in the last
statement of Theorem 2.2, whenever we change causality structure it is con-
venient to go to the dual basis, namely define

By (t) := IT(t) " a(t) (5.16)
and substitute into (5.15), which assume the simpler form

T(t+1) = Az (t) + By(t)es (1)
y(t) = Cay(t) + Dy (t)es (D).

The appearence of the C' matrix in the output equation is due to the fact
that

(5.17)

[CII(t+1)A+ D(t)B()]24(t) = E[y(t)]i4()] =
E(y()i,())[Eip ()i ()] a4 () = Bly(t)z(t))a4.(b),

where, after inserting (5.10), the last member can be computed easily as

By(H)(EMenz()) = By(t)a(t) = By(t)(Az(t + 1) + Bw(t))’
CPA' + DB =C.

Note the last identity is identical to (2.17).

5.2 Finite-interval realizations

The situation of interest is really when both the past and the future spaces are
finitely generated. To discuss this context it is better to recall some general
facts from the geometric theory.
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Consider the class of Markovian Splitting Subspaces at time t, Xy, for the
process y on the interval [0, T]. These subspaces make the joint finite past
and future spaces conditionally orthogonal (i.e. uncorrelated) given X, i.e.,

Higy V X0, L Hyrp V Xpmp| Xe (5.18)

where the symbols have an obvious meaning.
It is standard [49, 50] to show that the forward and backward finite-
memory predictor spaces,

Xt— = EH[O’t)H[t7T] and Xt-i— = EH[t’T] H[O,t)a

are such Markovian splitting subspaces. In fact these predictor spaces are also
minimal splitting, exactly as in the stationary theory. The following represen-
tation theorem (proven in [55]) relates the finite predictor spaces to Kalman
filter realizations.

Theorem 5.1. Let (2.1) be any minimal stationary realization of the process
y and let X be the relative state space. Then

X, =U'X, 0<t<T (5.19)

18 a Markovian splitting subspace for the process subordinated by y on the
interval [0,T) which is minimal if t is far enough from the endpoints of the
interval. Here ”far enough” means t > v. and T —t > v, where v, and v,
are the reachability and observability indices of the pairs (A,C") and (A,C)
respectively.

Under the same conditions on t and T — t, the finite memory predictor
spaces Xt, and XH coincide with X,_ and XH and in fact we have the
representation formulas

th = EH[O’t)Xt and Xt+ = EH[t’T] Xt. (520)
which hold for any stationary splitting subspace X .

One consequence of the representation formulas (5.19) is that for any
choice of basis z(0) in a minimal stationary state space X, the process

&(t) .= Bfong(t), tel0,T) (5.21)

is the state process of a finite-interval realization of y which is minimal for all
times t ”far enough” from the endpoints of the interval. Of course the relative
state equations, either in the forward or in the backward representation, are
nothing else but the Kalman filter equations for {y(¢)}, described previously.
This in a sense is not big surprise.

What is more interesting for identification is the following converse state-
ment. It says that every basis in a finite memory predictor space is the Kalman
filter of a uniformly ordered family of minimal stationary realizations. Hence
picking a basis in the finite memory predictor space is the same thing as
picking a legitimate (A, C') pair of a minimal stationary realization of y.
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Theorem 5.2. Fiz any minimal stationary splitting subspace X and assume
that t is far enough from the endpoints of the interval [0,T] in the sense
explained before. Then, to a basis vector &(t) in )A(t, there corresponds a
unique basis x(t) in X; for which (5.21) holds. As X wvaries in the family of
all minimal stationary splitting subspaces X the bases x(t) corresponding to
a fized &(t) describe a (forward) uniformly ordered family.

Consequently a choice of basis in X,_ defines uniquely a matriz pair
(A, C) of a minimal stationary realization of the process y.

A dual statement holds for the backward predictor space: any choice of
basis z(t) in X,y defines uniquely a matriz pair (A,C) corresponding to a
uniform family of minimal backward stationary realization of y of which x(t)
is the Kalman Filter estimate given the finite future of y.

Proof. The statement follows from the representation (5.20) and the mini-
mality of X; as a splitting subspace for Hyg;y and H[; 7). Minimality in this
sense in particular implies that the constructibility operator,

Ct =k

is injective [49]. In other words there are unique random variables zj(t) € X
which are projected onto the components & (t); k= 1,...,n.
The uniform order follows from the identity

i(t) := Efong(t) = BHooEA 2(¢).

It follows from this identity and from injectivity of C; that all x(¢)’s must
have the same projection onto the infinite past Ef+ x(¢). But this projection
is the same as EXt-x(t) and so the bases x(t) have the invariant projection
property (4.11). The rest is immediate.

The following concept will play a role in identification.

Definition 5.1. Two basis vectors (t) in X,_ and Z(t) in )A(tt are coher-
ent if the corresponding (A,C) and (A,C) pairs are such that A = A" and
(A,C,C, A(0)) is a minimal realization of the spectral density matriz of y.

Proposition 5.2. Two basis vectors (t) in X;_ and &(t) in Xiy are coher-
ent if and only if

#(t) == EX-a, (1) (5.22)
where & (t) is the dual basis of Z(t) defined in (5.16).

Proof. Consider the causal version, #(t), of the (unique) backward Kalman
Filter corresponding to the uniform family of stationary backward models
attached to the pair (A4, C) (or to Z(t)). Clearly Z(t) is coherent with 2 (¢) if
and only if this causal nonstationary model has a time-invariant (A4, C') pair
coincident with the (A, C') pair of #(t). But then by the uniqueness theorem
5.2 &4 (t) must coincide with Z(t).
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Remark. As we shall see later, the main idea of ”subspace methods” identi-
fication is to recapture the stationary A, C and A, C parameters of the process
from the dynamic equations satisfied by the bases Z(¢) and Z(t) chosen in the
finite-memory predictor spaces. As we have seen before these equations can
be written as the Kalman Filter realizations (5.5, 5.6) or 5.11) where A,C
and A, C appear explicitly. However it should be stressed that the station-
ary parameters A, C and A, C appear in the Kalman-Filter equations exactly
because the bases #(t) and Z(t) have been obtained by projection of some
stationary state z(t) of the process. In identification, where we are actually
attempting to recover the stationary dynamics of y, we do not have a station-
ary state-space model for y at our disposal. Instead we can pick the bases in
the predictor spaces X, X (t+1)—» - - - at different time instants and compute
the difference equations relating the bases at different time instants.

Of course one could in principle pick a basis arbitrarily at different time
instants but this would naturally yield time-varying A and C parameters in
the state equations. In fact, picking bases arbitrarily at each instant ¢ yields
time-varying A and C' matrices which are not even similar to the stationary
parameters we are looking for. So the question arises of choosing bases Z(t)
and Z(t) at different instants ¢ € [0, 7] in such a way that their time evolution
is of the Kalman Filter type encountered so far, in particular described by
difference equations with constant matrices A and C. In this case, by Theorem
5.2, A and C will be equal to the corresponding parameters of a stationary
model (in fact, of the whole uniformly ordered family of stationary models
corresponding to the basis, see Theorem 5.2 ).

Now the Kalman Filter equations describe the propagation in time of
the projection #(t) onto the past Hjyy, of a stationarily time-shifted state
variable x(t) = U'z(0). Recall that the maps,

Ci = Eg([f’t) Xy — X, O = Eg([i’ﬂ C X, — Xy

are the constructibility and observability operators of X, [49, 50] and that
minimality of X; implies that C;, O; are invertible in their respective co-
domains (we have used this argument already in the proof of Theorem 5.2

above). We may define then a forward and backward conditional shift operator
U(t) and U(t), by setting

U(t) = Ct_t,_lUCt_l : Xt— — X(t+1)_ (523)
and . R R
Ut) =0 U0 Xy — Xo1yt (5.24)
so that
i(t+1)=Efoengt4+1) = EfosvUz) =U1)i(t)

(t—1)=Efe1mgt —1) = Efenu=tz) = U)xt).

8P
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It is not difficult to show (but we shall not do it here) that the definition

of U and U is independent of the minimal stationary splitting subspace X
entering in the equations (5.23, 5.24). This specific form of propagation in
time, say for the basis Z(t), is equivalent to the relative state equations being
of the Kalman filter type, in particular involving A and C matrices which
stay constant in time.

Proposition 5.3. Let (t) be a basis in X,_ and 2(t + 1) be an arbitrary
basis in X41)—. Then 2(t+ 1) is the conditional shift of Z(t), i.e. 2(t+1) =

2t +1) =U#)2(t) if and only if
E[2(t+1)|2(t)] = Az(t), Eyt)2(t+1) =C

where A is the state-transition matriz of the uniform choice of bases deter-
mined by &(t) and C is the corresponding backward state-output matriz.
 Dually, let &(t) be a basis in Xy and Z(t — 1) be an arbitrary basis in
X(t—1)+- Then z(t—1) is the conditional shift of Z(t), i.e. Z(t—1) = Z(t—1) =
Ut)z(t) if and only if

BE(t — 1)|5(t)] = A'5(t), By@)it—1) =C

where A’ is the state-transition matriz of the (backward) uniform choice of
bases determined by Z(t) and C is the corresponding forward state-output
matriz.

Proof. (if). By the Markovian splitting property every family of bases {£(t);t €
[0,7]} in the predictor spaces {X;_;¢ € [0,T]} forms a Markov process. It
is also easy to see that the past space span{Z(s);s <t} coincides with Hjy )
for all t > 0. Hence

E[(t + 1)] Hiouy | = E[5(t + D] 2(t)] = Az (1)
which is by assumption equal to
Elz(t+1)[z(t)] = E[&(t + 1)] Hg ) -
Therefore 2(t + 1) and (¢t + 1) have the same orthogonal projection onto
H[Qﬂg) ie.
EH00 (3(t+1) —2(t+1)) =0

so that, letting ;™ := [y(¢)'y(t—1)"...y(0)’]" and taking into account also the
second condition in the statement of the proposition involving C' = Ey(t)&(t+
1)’ (this identity follows since CZ_(t+1) = E[y(t) |z_(t+1)] where z_ (t+1)
is the dual basis of Z(¢t + 1)), we have

EY, 3(t+1) =EY, 2(t+1) =
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We denote the constructibilty matrix on the right by 2. Now clearly 2(t+1) =
Mz (t + 1) for some nonsingular matrix M and by substituting in the first
member of the equality yields 2M' = 2 which is equivalent to M = I since
(for t large enough ) £2 has independent columns. So 2(t + 1) coincides with
the conditionally shifted basis &(¢t + 1).

(only if). Pick any z(t) in the stationary uniform family of bases corre-
sponding to 2 (t) (x(t) = C; *#(t), see Theorem 5.2). Then

L(t+1) =U@)2(t) = E[z(t + 1) Ho,¢41) ]

is precisely the Kalman Filter estimate of the stationary state process x at
time ¢ 4+ 1. So the formulas follow from the derivations of the Kalman Filter
equations at the beginning of the section.

The proof of the second half of the proposition involves completely similar
arguments and is skipped.

6. Estimation, partial realization and balancing

We shall now concentrate on the statistical problem of describing an observed
m-~dimensional time series

{Y0,v1,Y2,--- Y1}, (6.1)

by a finite-dimensional state-space model of the type (2.1) studied in the
previous sections.

To put the methods discussed in this paper into perspective we should
say that there are also different choices of the model class which are widely
used in identification. One may choose,

1. A parametric class of spectral density functions; say all the rational spec-
tra @(z) of fixed McMillan degree n.

2. A parametric class of (rational) minimal shaping filter representations,
in other words models consisting of a pair: minimal spectral factor W,
plus input white noise w. Expressing W as a polynomial matrix fraction,

W(z)=A(z"1)7'B(=™")

gives the model the familiar form of a linear difference equation
y(t) + > Apy(t—k) = Byw(t — k) (6.2)
k=1 k=0

i.e. an "ARMA” model, parametrized by the coefficients { Ay, B} of the
matrix polynomials (A(z7!), B(27!)). As we have seen at the end of
section 4, for square W’s the input noise is uniquely determined by the
output signal y.
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3. Minimal state-space realizations of the type (2.1). These objects are the
most ”"structured” kind of representation of the signal and can be reduced
to the previous kind of models by eliminating the auxiliary variables (z
and w). They will be our primary object of interest.

For each model class there is a problem of unique parametrization, i.e. of
making the correspondence: parameter — model, generically bijective. The
solution of this problem via the theory of canonical forms constitutes an
important chapter of identification theory which has attracted much interest
in the early seventies but is now a bit obsolete since balanced canonical forms
[58], [59], which will be introduced later, are a much simpler and robust
alternative.

Moreover, while a spectral density is a unique (wide-sense) probabilistic
description of a signal, a family of different minimal spectral factors or state-
space models (neglecting the indeterminacy inherent in the choice of basis)
give rise to the same spectrum. For this reason when the model classes (2)
and (3) are used it is necessary to specify a representative factor or min-
imal realization to get a 1:1 correspondence with the spectrum. Normally
one chooses to describe a spectrum by its (unique) minimum phase spectral
factor or forward innovation models i.e. or the corresponding causal ”steady
state Kalman Filter” realization. These models are 1:1 with the spectrum
if we disregard the intrinsic indeterminacy in the input white noise (which
is only defined modulo constant real orthogonal transformations) and the
arbitrariness in the choice of basis in the relative state space X _.

The model classes described above are wide-sense. In case the signal y
is believed to be Gaussian they can equivalently be interpreted as defining
the spectrum or the covariance function of a family of Gaussian probability
laws for the underlying stochastic process. These probabiliy laws are uniquely
determined by a corresponding model and are then also parametrized by the
parameters {A, C, C, A(0)}, {Ay, By} and (A, B, C, D) respectively.

We shall consider two conceptually different approaches that are used to
fit models to the data,

— The "direct” approach, based on the principle of minimizing a suitable
function which measures the distance between the data ' and the prob-
ability law induced by the model class. Well-known and widely accepted
examples of distance functions are the likelihood function of the data ac-
cording to the particular model, or the average squared prediction-error of
the observed data corresponding to a particular choice of a model in the
model class. Minimization of these criteria can (except in trivial cases) only

3 This terminology is a bit misleading. In reality one minimizes a suitable ”fi-
nite sample” approximation of a distance function between the true law of the
data and the law induced by the model class. An example of distance func-
tion between probability measures which can be used to this purposse is the
Kullback-Leibler distance.
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be done numerically and hence the direct methods lead to iterative opti-
mization algorithms in the space of the parameters, say the space of mini-
mal (4, B,C, D) matrix quadruples, which parametrize the chosen model
class.

— A two steps procedure which in principle can be described as identification
of a rational model for the spectrum (or covariance) of the observed data,
followed by stochastic realization. Here the first step is estimation of the
parameters (A, C,C) of a minimal realization of the spectral density ma-
trix of the process. From the spectral density matrix a state-space model
(typically the forward innovation model) is then computed by solving the
Linear Matrix Inequality, or the Riccati equation as seen in section 4.
The difference with the first approach is that the estimation of (A, C, C) is
not done by optimizing a likelihood or other distance functions but simply
by matching second order moments. In other words, let

{Ag, A1, ... A} (6.3)

be a finite set of sample m X m covariance matrices estimated in some
(as yet unspecified) way from the m-dimensional sequence of observations
(6.1). The problem is of finding a minimal value of n and a minimal'# triplet
of matrices (A, C, C), of dimensions n x n, m x n and m x n respectively,
such that

CAFIC = A, k=1,2,...,v (6.4)

This is an instance of estimation by the method of moments described in
the statistical textbooks e.g. [13, p. 497], which is a very old idea used
extensively by K. Pearson in the beginning of the century. The underlying
priciple is close in spirit to the wide-sense setting that we are working
in. It does not necessarily guarantee minimal distance between the ”true”
and the model distributions but rather imposes that the parameters to
be estimated match exactly the sample second order moments. These can
easily be chosen at least ”consistent” (i.e. tending to the true second order
moments as the sample size goes to infinity) so the method gives consistent
estimates in the sense that v true moments Ag(7) 7 =1,2,...,v will be
described exactly as T — oo. In other words the first v lag values of the
true covariance function will be matched exactly.

Some may argue that estimation by the method of moments is in general
"non-efficient” and it is generally claimed in the literature that one should
expect better results (in the sense of smaller asymptotic variance of the es-
timates) by direct methods. In practice this is true only to a point since the
likelihood function or the average prediction error are computable only if we
assume Gaussian models (or linear predictors which amounts to the same)

14 Recall that (A,C,C) is minimal if (A, C) is completely observable and (A4, C")
is completely reachable.
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and this in the long run is equivalent to matching covariances anyway. In addi-
tion there is the structural handicap of iterative optimization methods which
may get stuck in local minima and hence provide sub-optimal parameter es-
timates, a rather hard phenomenon to detect. The two-steps approach offers
in this respect the major advantage of converting the nonlinear parameter es-
timation phase which is necessary in maximum-likelihood or prediction-error
model identification into a partial realization problem, involving essentially
the factorization of a Hankel matrix of estimated covariances, and the solu-
tion of a Riccati equation, both much better understood problems for which
efficient numerical solution techniques are available.

6.1 Positivity

A warning is in order concerning the implementation of the method of mo-
ments described above in that it introduces some nontrivial mathematical
questions related to positivity of the estimated spectrum.

In determining a minimal triplet (A4, C,C) interpolating the partial se-
quence (6.3) so that CA*~1C" = A, k = 1,2,...,v, we also completely
determine the infinite sequence

{Ag, A1, Ao, Ag, ..} (6.5)

by setting A, = CA*~1C" for k = v + 1,v + 2, .... This sequence is called a
minimal rational extension of the finite sequence (6.3). The attribute “ratio-
nal” is due to the fact that

1 1 _
Z(z) = §/lo + Az 4 Az = 5/10 +C(2I — A~ (6.6)

is a rational function. In order for (6.5) to be a bona fide covariance sequence,
however, it is necessary, but not sufficient, that the Toeplitz matrix

Aoy Ay Ay A,
AL Ay A e Ay,

T=1 . . . . (6.7)
A A Ays . A

be nonnegative definite. In fact, it is required that the function (the spectral
density corresponding to (6.5))

B(z) = Ao+ Y M(F+27F) = Z(2) + 2(z71) (6.8)
k=1

be nonnegative on the unit circle. This is equivalent to the function Z(z)
being positive real. Consequently, the interpolation needs to be done subject
to the extra constraint of positivity.
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The constraint of positivity is a rather tricky one and in all identification
methods which are directly or indirectly, as the subspace methods described
below, based on the interpolation condition (6.4) it is normally disregarded.
For this reason these methods may fail to provide a positive extension and
hence may lead to data (A, C, C) for which there are no solutions of the LMI
and hence to totally inconsistent results.

It is important to appreciate the fact that the problem of positivity of
the extension has little to do with the "noise” or ”sample variability” super-
imposed to the covariance data and is present equally well for (finite) data
extracted from a true rational covariance sequence. For there is no guaran-
tee that, even in this idealized situation, the order of a minimal rational
extension 6.5 of the first v covariance matrices of the sequaence, would be
sufficiently high to equal the order of the infinite sequence and hence to gen-
erate a positive extension. A minimal partial realization may well fail to be
positive because its order is too low to guarantee positivity.

Neglecting the positivity constraint amounts to tacitly assuming that

Assumption 6.1. The covariance data (6.3) can be generated exactly by
some (unknown) stochastic system whose dimension is equal to the rank of
the block Hankel matrix

A Ay Ay A,
Ao As Ay N |

=] " R (6.9)
/1# A#_H AlH_Q cen Azﬂ_l

where p = [5].

This assumption is not ”generically satisfied” and it can be shown that
there are relatively “large” sets of data (6.3) for which it does not hold.
It is not even enough to assume that the data is generated from a “true”
finite-dimensional stochastic system: the rank condition is also necessary.
Otherwise, for a minimal triplet (A,C,C) which satisfies the interpolation
condition (6.4), the positivity condition will not be automatically fulfilled,
and the matrix A may even fail to be stable [10].

Following [55], we define the algebraic degree of the sequence (6.3) to be
the minimal degree of any realization (??) satisfying (6.4) and the positive
degree to be the minimal degree of a rational extension (??) for which, in
addition, Z(z) is positive real. Then Assumption 6.1 can also be written in
the following equivalent form.

Assumption 6.1’. The positive degree of (6.3) is equal to the algebraic
degree.

The fact that this equality cannot a priori be assumed to hold for generic
covariance data can now be illustrated by the following fact.
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Theorem 6.1. [11] In the case m = 1, the generic value of the algebraic

degree of (6.3) is [”TH], whereas there is no generic value for the positive
degree. In fact, for each p = [”T“L [”TH] +1,...,v, there is a nonempty open

set of covariance data for which the positive degree is precisely p.

The correct approach would in principle require to compute a rational
positive extension of the finite covariance sequence (6.3), of minimal McMil-
lan degree. Although there are methods to compute positive extensions, the
most famous of which is the so-called "maximum-entropy” extension, based
on the Levinson algorthm, these methods produce functions of very high
complexity, in fact generically of the highest possible degree (v in the case
m = 1). Unfortunately there are no algorithms so far which compute positive
extensions of minimal degree. A stochastic model reduction step would then
be necessary but this is again, a rather underdeveloped area of system theory.
For a discussion of these matters see [55].

In these notes we shall be content with discussing the deterministic partial
realization aspect of the method, therefore tacitly assuming that the condi-
tions described in Assumption 6.1 hold. There is standard software available
for checking positivity (i.e. solvability of the LMI) of the partial realization.
Whenever positivity fails one may try to add more covariance data so as
to allow for an increase of the order (algebraic degree) of the partial real-
ization. Once a positive triple (A4,C,C) is estimated, the computation of a
state-space model is in principle just a matter of solving the LMI or the
appropriate Riccati equation, as seen in section 4..

Historical remarks. The two-steps procedure was apparently first advocated
in a systematic way by Faurre [21]; see also [22, 23]. More recent work is based
on Singular Value Decomposition and canonical correlation analysis [2] and
is due to Aoki [9], and van Overschee and De Moor [60]. There are versions of
the algorithms based on canonical correlation analysis which apply directly
to the observed data without even computing the covariance estimates [60].

The work of van Overschee and De Moor introduces an interesting ”geo-
metric” approach based on state-space construction and on the choice of
particular bases in the state space. The system matrices are computed after
the choice of basis by formulas analog to (2.12). This procedure on one hand
makes very close contact with the geometric state-space construction ideas
discussed in sections5.2 and 2. On the other hand it seems completely unre-
lated to the partial realization and covariance extension approach mentioned
above.

In the rest of this paper we shall study the geometric ” Subspace-methods”
approach of [60] and show that it is very much related to the basic partial
realization plus stochastic realization idea. In fact we shall show that the two
approaches are equivalent and lead to exactly the same formulas.
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6.2 The Hilbert Space of a Stationary signal

In section 2. we have described an abstract model-building procedure based
on geometric operations on certain subspaces of random variables constructed
from linear statistics of the present and past histories of a stochastic process
y. In practice instead one has just a collection of observed data,

{y07y1a"'ayt7"'ayT} (610)

with y, € R™, measured during an experiment. We shall assume that the
sample size T' is very large and that the data have been preprocessed so as
to be compatible with the basic assumption of (wide-sense) stationarity and
zero mean of the previous sections. This in particular means that we can pick
N large enough so that the time averages

1 N+to
!
N1l ; Yirryy 720 (6.11)
=to

are practically independent of the initial time ¢o and arbitrarily close to a
bona-fide stationary covariance matrix sequence (the ”true” covariance of the
signal).

Under these assumptions on the data, the stochastic state-space theory
of the sections 2.-5. can be translated into an isomorphic geometrical setup
based on linear operations on the observed time series and can then applied
to the problem of state-space modeling of the data.

In this section we shall briefly review the basic ideas behind this corre-
spondence. For clarity of exposition we shall initially assume that T = oo
and that the data collection has started in the infinitely remote past (so that
the time series is actually doubly infinite).

For each t € Z define the m x oo matrices

y(t) = [Ye: Y1, Yoo, - -] (6.12)
and consider the sequences y := {y(t) |t € Z}. This sequence will play a very
similar role to the stationary processes y of the previous sections.

Define the vector space ) of all finite linear combinations

Yi={) ajy(ty)  ar €R™, t; €7} (6.13)

Note that the vector space ) is just the row spaces of the family of semi-
infinite matrices (6.12) or, equivalently the rowspace of the infinite Hankel
matrix
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This vector space of scalar semi-infinite sequences (rows) can be equipped
with an inner product, which is first defined on the generators by the bilinear
form

T

. . 1 .
(a'y(k), by (j)) = lim 7 > aykyiy b= d' Aok — j)b,  (6.14)
t=0

and then extended by linearity to all finte linear combinations of elements of
Y. This inner product is nondegenerate if the Toeplitz matrix T}, constructed
with the true covariances {4 (0), Ag(1), ..., Ag(k)}, is a positive definite sym-
metric matrix for all k [55]. Note also that the limit does not change if in the
limits of the sum (6.14) ¢ = 0 is replaced by an arbitrary initial instant ¢g, so
that

(a'y (), by (5)) = (a'y(to + k), 0"y (to + j))

for all tg (wide-sense stationarity). We also define a shift operator U on the
family of semi-infinite matrices (6.12), by setting

Udy(t):=dy(t+1) t€Z, a€eR™,

defining a linear map which is isometric with respect to the inner product
(6.14) and extendable by linearity to all of Y.

By closing the vector space ) with respect to convergence in the norm
induced by the inner product (6.14), we obtain a Hilbert space 1> Y =
closure{Y} to which the shift operator U is extended by continuity as a
unitary operator.

As explained in more detail in [55], this Hilbert space framework is iso-
metrically isomorphic to the abstract ”stochastic” geometric setup used in
the previous sections. Now as stated formally in Propositionl.1 and in the
subsequent generalization, we can formally think of the observed (infinitely
long) time series as a regular sample path of a wide-sense stationary stochas-
tic process y, having covariance matrix equal to the true covariance function
Ap(.), equal to the limit of the sum (6.11) as N — oco. Then, at least as far
as first and second order moments are concerned, the sequence of "tails” y
defined in (6.12) behaves exactly like the abstract stochastic counterpart y.
In particular all second order moments of the random process can equiva-
lently be calculated in terms of the tail sequence y provided we substitute
expectations with ergodic limits of the type (6.14). Since we only worry about
second order properties in this paper, we may even formally identify the tail
sequence y of (6.12) with the underlying stochastic process y. This requires
just thinking of "random variables” as being semi-infinte strings of numbers
and the expectation of products E{&n} as being the inner product of the

15 Note that the symbol ) denotes a real inner-product space which need not be
closed with respect to the inner product structure defined by (6.14). Since we
will not have much use for the completed space in the following, we shall not
introduce special symbols for it.
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corresponding rows & and 7. For reasons of uniformity of notation the inner
product 6.14 will then be denoted

(&, m) = E{&n}, (6.15)

Here as usual we allow E{-} to operate on matrices, taking inner products
row by row.

Hence all defintions and results in the geometric theory of stochastic re-
alization can be carried over to the present framework. The orthogonal pro-
jection of & onto a subspace H of the space Y will still be denoted E[{|H].
Whenever H is given as the rowspace of some matrix of generators H, we
shall write E[£ | H ] to denote the projection expressed (perhaps nonuniquely)
in terms of the generators. It is clear that for finitely generated subspaces we
have the representation formula

E[¢|H] = E(H)[E(HH ) H (6.16)

and in case of linearly independent rows we can substitute the pseudoinverse
# with a true inverse.
A (stationary) stochastic realization of y is a representation of the type

{ x(t+1) = Ax(t)+ Bw(t)

y(t) = Cx(t)+ Dw(t) (6.17)

where {w(t)} is p-dimensional normalized white noise , i.e. E{w(t)w(s)’'} =
Its E{w(t)} =0, etc.

Remark 6.1. Tt should be kept in mind that the various linear operations in
(6.17) hold in the sense of the metric of the space ) defined above and are to
be understood as ”asymptotic equalities” between sequences. In particular,
nothing can be said about the particular sample values, say y;, x:, w; taken
on by the time series involved in the model at a specific instant of time. This
is similar to the interpretation that is given to the model (2.1) in case of bona
fide stochastic processes, where the linear model can be expected to hold for
each particular sample value only with probability one.

6.3 Identification based on Finite Data

For data of finite lenght T the inner product (6.15) must be approximated
by a finite sum

T
E{&n} = 7= i 1 > & (6.18)
t=0

which makes the ”expectation” operator E essentially the same thing as
ordinary Euclidean inner product in R7.
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Assume N < T is large enough for the time average in the ergodic limit
(6.11) to be sufficiently close to the true covariance and for all subscripts
below to make sense. Fix a "present” time ¢ = k and define the two mk-
dimensional ”random vectors” (i.e. block Hankel matrices of dimension mk x
(N + 1)) formed by stacking the output data as

Y(O) Yo Yy oo YN
_ y(1) Y1 Y2 o YnN41
Y, = ) = ; . . (6.19)
L Y(k - 1) Ye—1 Yk ° Yk+N-1
Y(k) Yk Yk+1 - Y+N
N y(k+1) Ykl Ykt2 - YktN41
| ¥(2k 1) Yok—1 Y2k Yok4N-1

The relative rowspaces Y, , Y,j generated by the rows of the m x (N + 1)
matrices y(t) for 0 <t < k, and k <t < 2k respectively, are the "past” and
”future” spaces of the data at time k. Since the tail matrix sequences we can
form with the observed signal are necessarily finite, these vector spaces can
describe in reality only finite past and future histories of the signal y at time
k. For simplicity of notations we use symbols that are not informative of this
fact'S.

For later use let us define also the "augmented” future at time k ( a
m(k+ 1) x (N + 1) block Hankel matrix )

Y+
+ N k
Y[k,2k] T |: y(2k) :| )

the relative rowspace will be denoted Y o1)-

6.4 The partial realization problem

In order to avoid trivial difficulties having to do with the fact that the rank
of a finite Hankel matrix with too few rows or columns need not be equal to
the algebraic degree of a finite sequence (6.3), we shall assume that the index
k is chosen far enough from the endpoints k = 0 or k = v. There is in fact
no loss of generality in assuming that we have v = 2k 4 1 sample covariance
estimates,

{Ag, Ay, ..., Ao} (6.21)

16 More accurate notations would be,

Yy, o= Yor Y= Yo
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and that the present time k has been chosen to be the "middle point” of the
lag sequence of the covariance estimates (6.21).

A block Hankel matrix of stationary covariances can always be given
the meaning of cross covariance matrix of the finite future and past of the
underlying signal at time ¢ = k,

!

Ay Ay s Ay Y(k) Y(k - 1)
Ay Az o A 1 y(k+1) y(k—2)
Hy = : : . : - N : :
Ay Mgy oo Agp y(2k —1) y(0)
= EY;(Y) (6.22)

where Y,; is the ”time reversal” of the vector Y, . The subscript k is attached
to denote the "present” time. Similarly using the available covariance data
we can form

Ay Ay e Ay A A4
Ay Az o My Apygo Ay
Hepr = : : : . : = : o Hy,
Ay Appr - Ao Aoy Ay
= E{UY (Y..)'} (6.23)
and
A Ay o Ay
A2 AS Ak+1
- . . : A Ay Ay
Hk+1 — : : .. : = ng
Ay Agg1 -+ Aggg
App1 Aggo -0 Aoy
= B{Y[ (Y} (6.24)

where o Hy, is the shifted Hankel matriz, of the same dimension as Hj but with
all entries shifted by one time unit i.e. with A;,; replacing A; everywhere.
We quote the following uniqueness result of partial realizations from [69].

Lemma 6.1. The sequence (6.21) has a unique rational extension of mini-
mal degree if and only if

rankHj, = rankHy | = rankHy 1 :=n (6.25)

Uniqueness is understood in the sense that if (Ay,Cy1,C1) and (Az, Cy, Cy)
both define minimal rational extensions of (6.21), then there is a nonsingular
n X n matriz T such that

Ay =T AT, Cy=CT, CL=T7'Cy. (6.26)
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Computing a minimal partial realization can be done essentially via a rank
factorization of the Hankel matrix Hy. The prototype algorithm, called the
Ho-Kalman algorithm is reviwed below.

The Ho-Kalman Algorithm. Start by a rank factorization of Hy,
Hy = 2.0, (6.27)

where both factors (2, £2; have n linearly independent columns. Since by
(6.25) colum_n — spanHj, = column — Sr_)an_H k+1 and, dually, row — spanHj, =
row — spanHj1 there exist matrices C, A, C, A such that

A
As _
. = chl, O'Hk = _QkA (628)
Ay,
and _ _
[ /11 /12 e Ak ] = C.Q,;, O'I‘I]€ = AQ,’C (629)

It is obvious from the last two equalities on the right that there must exist a
unique matrix A of dimension n x n such that

oHy, = 2, AS2.
In conclusion, the matrices
A = O om(2) " (6.30)
C = [M A o A J(2)7F (6.31)
C = [M Ay - A J(@2)7F (6.32)

are independent of the choice of the left- or right-inverses (denoted ~% or —F
r_espectively) and propagate the factorization (6.27) uniquely to Hyy; and
Hy. 11 according to the formulas,

Hk+1 = [ ch/ QkAQ;C ] = _Qk [ Cﬂ A.Q;f } = _Qk Qk-‘,—l (633)

and _
g oo 1_[ cC
LT, AQL | T | A

From these we obtain the following updating equations for the factors
'Qk—‘rl? 'Qk—‘rl,

} Q) = Qa1 2, (6.34)

C A C
Qk-‘rl = |: QkA :| ’ Qk-‘rl = |: QkA/ :| . (635)

Now once (6.28, 6.29) hold for some (A, C,C) and k big enough, they must
hold with the same (A,C,C) for all k = 1,... and then (6.35) can be inter-
preted as bona-fide recursions in k. From this we obtain precisely the classical
structure of the observabililty and reconstructability matrices
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/

C C
CA _ CA
2, = . 2 = . , (6.36)
CAk—l C‘v(A/)k—l

seen in the literature.

It is important to note that under the equal ranks assumption (6.25), to
each rank factorization (6.27) there corresponds a unique triplet (A,C,C). In
a sense fixing a rank factorization fixes the basis in the (deterministic) state
space of the partial realization. Actually we may amplify this statement in
the following way.

Theorem 6.2. Each rank factorization (6.27) of the finite Hankel matriz
Hy. satisfying the equal ranks assumption (6.25), determines a unique par-
tial realization (A, C,C, A(0)) of the corresponding covariance sequence. Un-
der Assumption 6.1 this realization defines a positive-real function Z(z) and
hence each factorization (6.27) determines also a unique uniformly ordered
family of stationary realizations of the processy, having the (same) (A, C,C)
parameters given in (6.30, 6.31, 6.32).

The uniformly ordered family of minimal realizations of y corresponding
to a given positive-real quadruple (A4, C,C, A(0)) was discussed in detail in
sections 4. and 4.1.

The ”subspace” identification procedure also produces uniformly ordered
families of stationary realizations by choosing bases in the finite-memory
predictor spaces.

6.5 Partial realization via SVD

One particularly convenient choice of the rank factorization of the Hankel
matrix, suggested in [76], later popularized in [44] and refined in [15, 16] is a
normalized Singular-Value factorization.

Let L, and Lg be the lower triangular Cholesky factors of the block
Toeplitz matrices

Ti— =E{Y,(Y.)}=L,(L,) TF =E{X (Y)}=LI(L)

and let
e = (L) 'Yy el = (LY (6.37)

be the corresponding orthonormal bases in Y, , chr respectively (i.e. the
finite interval forward and backward innovation vectors).
Introduce the normalized Hankel matriz:

Hy = (L)) Hy(Ly) " = E&f (e

and consider the Singular-Value decomposition (SVD) of Hy,
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Hy = Up 54V, (6.38)
where U;“ Vk are mk x mk orthogonal matrices and ﬁ’k is diagonal with
nonnegative elements!”

1>2012002...20m 20

We now do a numerical "rank determination” step which consists in setting
equal to zero the canonical correlation coefficients which are smaller than
a predetermined ”noise treshold level”. In this way we substitute for X a
diagonal matrix of rank n,

- 2y 0

M~

Y =diag{o; > 093> ... > 0,}

where

where the o}’s are significantly non-zero, and write (with some misuse of
noation) R
Hy = Up XV, (6.39)

where now U, and V}, are mk x n with orthonormal columns.

It is well-known that the ”truncated” matrix on the right-hand side of
(6.39) provides a best approximation of rank n of Hy in a variety of matrix
norms [32]. It is however to be stressed also that this approximation is no
longer Hankel, or if we prefer the euphemism, only ”approximately Hankel”.

Since the application of a rigorous Hankel approximation theory [1] would
lead to complications, this difficulty is ignored in the following. An analysis
of the additional errors involved in this approximation seems still to be an
open problem.

From (6.39) a rank factorization of Hj is naturally,

Q= L2, Q= L Vi3

which produces

A = xVPULLH) Yo WLy VR (6.40)
C = [M A Ay 1 (L) TvE P (6.41)
C o= [A Ay A L) TTUE (6.42)

These formulas provide a partial realization of the sequence (6.21) enjoy-
ing special properties. Before turning to the analysis of these properties we
remark that it may be desirable to rewrite them in a way which is more

17 These are the well-known sample canonical correlation coefficients of the two
random vectors Y,j' and Y, . In geometric terms they are the cosines of the the

principal angles between the subspaces Y, and Yk+.
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convenient from the numerical point of view, where the explicit computation
of the sample covariance matrices is not needed. The SVD computations can
be done directly on a suitable QR-type factorization of the Hankel matrices
representing the data. A number of other improvements can be introduced
for problems of high dimension making (6.40)-(6.42) a quite reliable and fast
computational scheme.

6.6 Stochastic Balanced Realizations: the stationary setting

We shall momentarily return to the abstract probabilistic setting of sections
2 and 3. Consider a stationary random process defined on the whole time axis
Z, with a rational spectral density @(z) represented as in (3.7). The following
definition has been introduced by Desai and Pal in [14].

Definition 6.1. A minimal realization (A,C,C,A(0)) of a m x m posi-
tive real matriz is called Stochastically Balanced!® if the minimal solutions
P_, P, of the dual Linear Matriz Inequalities (4.1), (4.4) are both equal to
the same diagonal matriz, i.e.

P7:2:]5+

where X = diag{o1,09,...,0,}. Whitout loss of generality we shall assume
that the oy ’s are ordered in decreasing magnitude, i.e. Ox4+1 > Of.

The motivation of this definition looks rather obscure at this stage and it
is not really clear what balanced realizations should be good for. Below we
shall provide an explanation based on [67].

Consider a minimal realization of y of the form (2.1) with (minimal) state
space X. We shall start our discussion by attaching to each random variable
¢ in X a pair of indices which quantify "how well” £ can be estimated on
the basis of the past or future history of the output process. We shall then
define a choice of basis in X which has some ”canonical” desirable properties
in this respect. Initially our discussion will be completely coordinate-free.

For a random variable £ € X we define the numbers,

e B
&= 0= e

called the future- and, respectively, the past- relative efficiency of £. The
numbers 74 (§) are nonnegative and < 1 and in the statistical literature are
commonly referred to as the ”percentage of explained variance” (of the ran-
dom variable being estimated). Clearly, the larger ny(€), the better (in the
senie of smaller estimation error variance) will be the corresponding estimate
EA"¢.

(6.43)

18 Or Positive-Real Balanced.
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The relative efficiency indices have also a direct system theoretic interpre-
tation in terms of the observability and constructibility operators associated
to X [49] [50], defined respectively as

O:X - HT, O¢ .=EH"¢ (6.44)
C:X—H", ce:=E" ¢ (6.45)

In terms of O and C the indices 14 (§) and n_(§) may be interpreted as
relative ”degree of observability” or as relative ”degree of constructibility” of
e X.

Recall that the observability ad constructibility operators, introduced in
geometric realization theory [49] play a somewhat similar role to the observ-
ability and reachability operators in deterministic systems theory to chara-
terize minimality of a state space. In fact the splitting property of a subspace
X can be shown to be equivalent to a factorization of the Hankel operator of
the process v,

H:= EH_|H+ cHY - H™

through the space X, as [49]
H=CO* (6.46)

a fundamental characterization of minimality being that X is a minimal split-
ting subspace if and only if the factorization (6.46) is canonical, i.e. C and
O are both injective operators. Equivalently (in the finite dimensional case)
O* = EX| g+ is surjective. Hence, for a minimal splitting subspace, both C*C
and O*O are invertible maps X — X.

It follows that in a minimal splitting subspace X there are two distinct
orthonormal bases of eigenvectors, say (&5,...&) and (&7,...€;,) in which
the operators O*O and C*C diagonalize, i.e.

O0*0 = diag{\} ... A}, 1>\
C*C =diag{\| ...\, }, 1> A7

>N >0 (6.47)

>
> .. >\ >0 (6.48)

the statistical interpretation being that the states in X can be ordered in two
different ways according to the magnitude of their future- and, respectively,
past- relative efficiency indices. It is in fact immediate from the definition
(6.43) that, in the ordering according to the index 7, the most observable”
states are just those which lie parallel to the vector ¢, having maximal index
04 (€) = A while the "least observable” states & being those parallel to the
direction &, having the smallest possible relative efficiency 7 (§) = Af. Of
course a completely similar picture corresponds to the ordering induced by
past-relative efficiency.

Assume for a moment that H™NH~ = 0 (which will be the case if, say, the
spectrum of the process is coercive [50]). Then a direction of ”very observable”
states in X, being at a small relative angle with the future subspace H™T, will
generally form a ”large” angle with the past subspace H~ and hence give
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rise to projections onto H~ of small relative norm i.e. to small n_(£). The
opposite phenomenon is of course to be expected in case a direction ”very
close” to H™ is selected. The idea of balancing in the stochastic framework
has to do with a choice of basis which roughly speaking, is meant to ”balance”
i.e. to make equal (if possible), the two ordered sets of efficiency indices. This
is meant to reduce as far as possible bad conditioning of the model in the
same sense as in determinstic balancing. There is here a substantial difference
with the deterministic case however, in that we have now a whole family of
minimal X which need to be considered simultaneously for the choice of a
balanced basis. For this reason the stochastic procedure will necessarily be
somehow less obvious than in the deterministic case.

In order to analyze the effects of choosing a basis x(0) in a minimal
splitting subspace X, we shall introduce the linear map Ty : R" — X,
defined by T,pya := a’xz(0). Note that if R™ is equipped with the inner
product < a,b >p:= a’Pb, where P is the covariance matrix of x(0), then
T (0) becomes an isometry. From this observation it is not hard to check that
T, (0) has the following properties,

Lemma 6.2. Let P be the covariance matriz of the basis x(0) in X. Then,

Tm_((l)) = PilT;(o) Tr0) = Ty P! (6.49)

where Z(0) is the dual basis of x(0).

Obviously the efficiency indices (6.43) can be expressed in terms of the
coordinates a, b, once a specific basis has been chosen. In particular the ex-
pressions of the numerators will be quadratic forms described by certain
symmetric positive—definite matrices which we shall call, respectively, Ob-
servability and Constructibility gramians (relative to that particular basis).
Provided they are expressed in dual bases, the two gramians, have a partic-
ularly simple expression that will be given in the Proposition below. Recall
(Proposition 4.6) that a basis in an arbitrary X can be extended together
with its dual, to the whole family of minimal splitting subspaces X in such a
way as to form a uniform basis.

Proposition 6.1. Let x(0) be a basis in the minimal splitting subspace X
and T(0) be its dual basis. Then the constructibility and observability gramians
relative to the bases x(0) and T(0) respectively, are given by

C*C = T})C CTyo) = P- (6.50)

00 = T},O OTyq) =Py =P;' (6.51)
where P_ and P, are the covariance matrices of x_(0) and Z,(0) in the
uniform basis induced by x(0).

In particular the two gramians are invariant over X, i.e. do not depend
on the particular minimal splitting subspace X .
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Proof. The formulas follow from the orthogonality of any minimal splitting
subspace to the so called ”junk” spaces, N~, NT (the subspace of H~ or-
thogonal to the future and, respectively, the subspace of HT orthogonal to
the past), see e.g. [50], Corollary 4.9. This leads to the identities

ce =BT =B ¢ Oe=E""¢ =pY+¢ (6.52)

the first of which, in force of (4.11), can be rewritten as C £ = a’z_(0) and
immediately leads to (6.50). The second follows by a similar computation,
using the dual invariant projection property (4.12).

Note that in the forward basis induced by z(0), the expression of the
observability gramian would instead be

O*0 := T}, 0" OT, ) = PP{' P (6.53)

which is no longer invariant.

The invariance of the two Gramians with respect to the particular state
space of the realization, pointed out in the proposition above, clarifies that
the notion of balanced realization given by Desai and Pal in terms of co-
variance matrices turns (luckily) out to be the correct generalization of the
deterministic idea to stochastic systems.

Theorem 6.3. There is a choice of basis £(0) := [Z1,...,&,] in X, such
that both the constructibility and observability gramians are represented by a
diagonal matriz. In fact, there is a diagonal matriz X, with positive entries

Y =diag{o1...0n}, 1>01>...20,>0 (6.54)
such that, in the uniform basis induced by z(0) in X, one has
C'C =X =00, (6.55)

where C*C is the constructibility gramian relative to the basis z(0) and 00
is the observability gramian relative to the dual basis of Z(0).

If the numbers oy are all distinct, this choice of basis is unique modulo
sign, i.e. for any other basis Z(0) := [Z1,...%,] leading to a diagonal struc-
ture of the form (6.55), one has &y = i, k=1,...,n.

Recall, as observed in subsection 4.1, that choosing bases uniformly in the
family of minimal state spaces X is equivalent to fixing a (minimal) realiza-
tion (A,C,C, A(0)) of the spectral density matrix. It follows that balanced
realizations are generically canonical forms with respect to system similarity
for (deterministic) realizations (A, C,C, A(0)) of the spectrum.

Corollary 6.1. There always exists a similarity transformation which brings
a minimal (positive-real) quadruple (A,C,C, A(0)) into balanced form. If
the numbers {o1,092,...,0,} are all distinct then the balanced realization is
unique up to a signature matriz (i.e. any two balanced realizations differ by
a change of basis given by a signature matriz).

For a much deeper discussion of balanced canonical forms see [58, 59].
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Algorithm for computing the change of basis matrixz bringing a minimal pos-
itwe realization (A, C,C, A(0)) into balanced canonical form.

1. Compute a square factorization of P_, i.e. let P_ = RR* where R is
square nonsingular, e.g. a Cholesky factor.

2. Do Singular Value Decomposition of R* Py R, i.e. compute the factoriza-
tion R*P,R = UX?U* where U is an orthogonal matrix and X? is
diagonal with positive entries ordered by magnitude in the decreasing
sense.

3. Define T := X'/2U*R~'. The matrix T is the desired basis transforma-
tion matrix.

4. Check: Compute

TP T =XY2U*R'P_.R*US'? =X
TP, T =X V2U*R* P, RUSV? =%

The meaning of the diagonal matriz X. Note that in force of (6.50),(6.51)
and (6.55), the numbers {o?,...,02} can be computed directly as the the
(ordered) eigenvalues of the ratio P_ Py

The following statement, which brings up the meaning of the entries of X
as the (nonzero) singular values of the Hankel operator of the process y, will
be reported here for completeness. It has been known for a long time [15],
[63]. The proof in the present setup is particularly simple.

Proposition 6.2. The entries of ¥ = diag{o1,...,0,} are invariants of
the process y, equal to the nonzero singular values of the Hankel operator
H. They coincide with the canonical correlation coefficients of the past and
future spaces H=, HY of the process y.

Proof. One just needs to notice that {o%,...,02} are the eigenvalues of
the operator C*CO* O, since

P_ PJ:I = T:(O)C*CTI(O)T;(O)O*OTi(O) = :(O)C*CO*OTE(O) (6.56)

and by (6.49) TE(O)T;(O) = I. On the other hand, the square of the nonzero
singular values of H are the nonzero eigenvalues of H*H, and it follows from
the factorization (6.46) that the non—zero eigenvalues of H*H are indeed equal
to those of C*CO*O.

That the singular values of the Hankel operator H coincide with the canon-
ical correlation coefficients of the process is also quite standard. A formal
verification can be found in [55].

In conclusion, in this section we have shown that the concept of stochastic
balancing can be seen as a natural generalization of the deterministic idea of
balancing of stable systems. In the geometric setting however the ”stability”
(which is necessary for deterministic balancing) of the model does not enter
at all, as the choice of a particular state vector x(0) has nothing to do with
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the choice of a particular stability (causality) structure of the corresponding
realization. The particular causality structure of the model influences instead
the computation of the "balancing” basis transformation #(0) = Tx(0) of
Theorem 6.3. This aspect is discussed in [67].

6.7 Stochastic Balanced Realizations: the case of finite data

The theory presented above only refers to the stationary case. The concept
of balancing which applies to identification, where data are always finite, is
that of finite time balancing.

Definition 6.2. A minimal realization (A,C,C,A(0)) of a m x m posi-
tive real matriz is called Stochastically Balanced at time k, if the solutions
P_(k), Py (k) of the dual Riccati equations (5.4), (5.18) started respectively
at t = 0 with initial condition II1(0) = 0, and at time T with II(T) = 0, are
both equal to the same diagonal matriz, i.e.

P_(k) = £(k) = Py (k)

where X(k) = diag{o1(k),02(k),...,on(k)}. Whitout loss of generality we
assume that the o(k)’s are ordered in decreasing magnitude, i.e. o;y1(k) >

The normalized SVD factorization (6.39) of a finite Hankel matrix leads
precisely to a finite-time balanced realization.

Proposition 6.3. The triple (6.40) is stochastically balanced at time k.

The proof will result from the discussion presented at the end of the next
section.

7. The ”Subspace Methods” Identification algorithm of
Van Overschee and DeMoor.

The general idea of the so-called ”subspace methods” for identification of
stochastic systems [60], is to operate directly on vector spaces generated by
the data.

The system-theoretical background which explains the procedure in (iso-
morphic) probabilistic terms is exposed in section 5., see in particular Theo-
rem 5.2. The procedure proposed in [60] consists of a number of steps which
conceptually can be described as follows.

Given the past and future data spaces ), y,j ,

1. Form the sample finite-memory predictor spaces Xpo = BV y,j and
Xps = BV Yy -
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2. Pick coherent bases %(k),%(k) in Xj_ and Xj. These bases will define
the state at time k of two finite-interval Kalman filter realizations of y.

3. Repeat step n.2 to get coherent bases x(k + 1), x(k — 1)for X(kﬂ), and
X(k—1)+-

4. Multiply the bases computed in step 3. by a suitable transformation
matrix so as they will correspond to %(k),x(k) conditionally shifted by
one time step ( see section 5. for the definition of the conditional shift).

5. Estimate the matrices (A4,C,C) by formulas of the type (2.12, 2.15).
These formulas hold for the finite-interval Kalman filter realizations also,
see Theorem 7.2 below.

To compute a stationary state-space model, say a forward stationary in-
novation model (A,C,B_, D_), starting from a realization of the spectrum
(A,C,C, Ay), the following additional steps are needed.

6. Check (A, C,C, Ay) for positivity. If positivity is not satisfied one may try
to re-run the algorithm by varying k and/or n.

7. If (A, C, C, Ap) is positive solve the Algebraic Riccati equation A(P) = 0
and find the unique stabilizing positive-definite solution P_.

8. Compute (B_, D_) by the formulas

_=(Ag—CP_C"Y? B_=(C'"-AP_C")(Ag—CP_C")"Y2. (7.1)

For pedagogical reasons we have chosen to follow closely the line of
thought of [60] albeit, as argued in [55] this procedure involves some re-
dundant computations which can be avoided. In the following sections we
shall discuss in detail the basic steps listed above and explain the reasons of
the redundancy.

The present time k will be assumed large enough troughout.

7.1 Choosing bases in the predictor spaces

We shall show that there is a one-to-one correspondence between full rank
factorizations of the Hankel matrlx Hy, and coherent choice of bases in the
finite-memory predictor spaces Xi_ and Xk+ This correspondence relates
the geometric approach of ”subspace methods” to the partial realization ap-
proach discussed in section 6.4.

Theorem 7.1. Let x(k), X(k) be n-dimensional bases for the finite memory
predictor spaces Xy and Xk+ and let

O4x(k) = B} [%(K)],  2i%(k) = BIY %(k). (7.2)
Then Hy, has the corresponding rank factorizations

Hp = QkA_;C = Ak(_z]/c
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for some mk x n matrices Ay, A, with linearly independent columns. If
%(k), x(k) are a coherent pair, then Ay = 24, and Ay, = 2.

Conversely, for each rank factorization (6.27) of the finite Hankel matriz
Hj., the n-vectors

x(k) = 2/(T,)7'Y, (7.3)
x(k) = QuTHY) (7.4)

are coherent bases for the finite-memory forward and backward predictor
spaces Xyi_ and Xy respectively.

Proof. That the factorizations of Hy, follow from (7.2) is a consequence of the
splitting property (5.18) at time k of Xj;_ and Xj4. In particular,

Vi LY X
which can be rewritten as,
Ey(t)y(s)" = E{E[y(t)[%(k)] E[y(s)[%(k)]'}

fort=k,...,2k—1and s =k —1,...,0. This relation arranged in matrix
form is the same as Hj, = 2, P(k)A}, where P(k) := Ex(k)x(k)’ > 0 and
Arx(k) = E[Y, |%(k)]. Letting Ay, := A, P(k) yields the first factorization
of Hy,. The fact that £2;, and Ay, are full rank is implied by observability and
constructibility (i.e. minimality) of X,_, since %(k) is a basis. Naturally an
analogous reasonig yields the other factorization.

Let %, (k) := P(k)~'x(k) be the dual basis of x(k) and assume that
E[x+(k)|%(k)] = x(k) ( Proposition 5.2). Since the components of x4 (k)
belong to the future we have Y, L % (k) |%(k) so that

Ay P(k) E{E[Y, [%(k)]x(k)'} = E{E[Y; [%(R)|E[% (k)% (%))}

B{Y; %, (k)} = B{Y;%(k)}P(k)"* = 2.

To show the converse, take any random variable in y,j , l.e. any linear
combination of the form o Y,j, a € RMk and project it onto Y, . Expressing
the projection in terms of the generators Y, of )}, , we obtain

EYe 'Y, = o Hy (T, )7'Y, = d' Qux(k)

and since the columns of (2, are linearly independent it follows that the
minimal splitting subspace Xp_ is spanned by the scalar components of x(k).
These are also linearly independent since %(k) has a positive definite variance
matrix. A dual reasoning for x(k) leads to the same conclusion.

That the two bases are coherent is shown in the proposition below.
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The variance matrices P(k) := Ex(k)x(k) and P(k) := Ex(k)x(k)" are
given by - - -
P(k) = 2/ (T;) "' 2, P(k) = Q(T) "

For future use we record also the formula,
Ex(k)x(k) = P(k)P(k). (7.5)

Proposition 7.1. The two bases (7.3) and (7.4) are coherent in the sense
explained in section 5. i.e. belong to the same uniform choice of bases, or,
which is the same, to the same triple (A, C,C).

Proof. We shall interpret ( with some foresight) x(k) as a dual basis in X,
and x(k) as a ”primal basis” in Xj_, the "primal” and dual corresponding
bases being,

%, (k) := P(k)"'x(k), x_(k):= P(k)"'x(k)
respectively. Using (7.5) we compute
E¥5, (k) = E{%: (R)%(k) P (K)"'5(K) = (k)™ P(k) P (k) P(k)"(k) = (k)

which is the projection condition in Proposition 5.2. So %X(k) and x(k) are
coherent.

Recall that in order to define the same triplet (A, C,C), the two state
vectors (7.3) and (7.4) must "match” i.e. be coherent in the sense explained
in section 5..

As we have just seen, a choice of basis (state) vectors in the two spaces
X)_ and Xk+ is related in a one-to-one way to rank-factorizations of the
Hankel matrix Hy. Note that by stationarity y admits also stationary re-
alizations of dimension n of the standard structure (2.1) (see Theorem 5.1)
and hence its spectrum is represented by some (minimal) triplet (A,C,C)
of degree n. Information about this triplet is encoded in the bases x(k) and
x(k), see Theorem 5.2.

We shall now describe a (conceptual) procedure to determine the triplet
(A, C,C) corresponding to an arbitrary choice of bases in the finite memory
predictor spaces X, X k+ as operated above.

The basic idea to compute the dynamics, and in particular the A matrix,
is to select bases in the "updated” predictor spaces )A((;Hl), and X(k71)+
constructed with one more observation in the past and one more observation
in the future, respectively.

Note however that this further basis selection must be done in such a way
as to keep (A, C) and (A, C) constant in time. This is the same as conditional
shifting defined in section 5.2. Once we know how to do this, the computation
of (A,C,C) is easy.



60 Anders Lindquist and Giorgio Picci

Theorem 7.2. Let x(k),X(k) be coherent bases in Xj_ and Xy and let
%X(k+1),x(k —1) be the corresponding conditionally shifted bases in X(k+1)_
and X(k_1)+. The corresponding minimal triple (A, C,C) can be computed by
the following formulas,

A = Ex(k+1)x(k)P(k)™
C = Ey
A" = Ex
C = Ey

where P(k) = Ex(k)k(k)" and P(k) = Ex(k)%(k)’.

Proof. The formulas follow readily from the finite interval Kalman filter real-
izations corresponding to %X(k), x(k). The fact that x(k) and %(k) are coherent
bases serves precisely the purpose of extracting the parameters (A4’, C') from
the backward Kalman filter corresponding to x(k).

How do we select conditionally shifted bases? It is obvious that the state-
ment of Theorem 7.1 applies as well to any block Hankel matrix constructed
with the available covariance data and in particular to the ”shifted” Hankel
matrices Hyy1 and Hy . defined in (6.23) and (6.24). Assume the rank condi-
tion (6.25) holds and consider the Hankel factorizations (6.33, 6.34), namely
Hy, = QkQLH, Hyi1 = 2418, induced by the factorization (6.27) at
time k. Corresponding to these factorizations introduce the n-dimensional
vectors,

x(k+1) = Q;€+1(T];+1)_1Y,;+1, )A_‘(k +1) = Qk(ﬂj)_lUYlJcr (7.10)
x(k—1) = Q/(T7)7'UY,, x(k—1) =2 (T5 ) U Y.
(7.11)

Now it follows from Theorem 7.1 above that (7.10) are basis vectors for
the forward predictor space at time k + 1 with memory k + 1: X(kﬂ), =
E[UY,2k-1)1V 1], and respectively for the backward predictor space at time
k+1 with memory of lenght & (in the future), defined as the orthogonal projec-
tion E[Y, |UY 1 2¢—1)]- By Theorem5.1 this projection is actually identical
to E[UY, (U 2x—17] = UEYV [Yik2k-1)] = UXp.

Dually (7.11) are basis vectors, respectively, for the forward predictor
space U*I)A(Ak, and for the backward predictor space with memory k + 1 in
the future, X,_1y4 := B[V V21

Proposition 7.2. The random vectors x(k + 1), x(k — 1) defined in (7.10)
and (7.11) are the conditionally shifted versions of (7.3) one step forward in
time and of (7.4) one step backwards in time.
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Proof. Let A and C be the n x n and n x m matrices in (6.30), (6.32). We
proceed to show directly that

Efx(k +1)|x(k)] = Ax(k) (7.12)

Ely(k)x(k+1)Y] = C (7.13)

so that by Proposition 5.3 and by Theorem 6.2 our claim will follow. In fact,

Ex(k 4+ 1)x(k)'P(k)~! =
Qi (Tn) T EY oy (V) (1) T 2 P(R) ™ =
Qs (T) T EY 5 (V) (2071
where the last equality follows since from the expression of P(k) given above,

/

O (T7) ' 2 P(k) =1

Now since
Ay Ay Ay,
o AL Ao Ap_q I, 0
T : - { 0 Ie-1ym }
Ay Ay 4o
we get,
T By = | 0
and finally,
T I L e P (e
(k—1)m (k—1)m

Qo H(2,)7 1 = A
The verification of (7.13) can be done along similar lines.
From the proof we obtain the following interesting statement,

Corollary 7.1. The Kalman-Filter realizations having as state vectors the
bases (7.3) and (7.4) in the finite-memory predictor spaces X and Xp.,
have the same A, C,C parameters as those computed by the partial realization
formulas (6.30, 6.31, 6.32) corresponding to the rank-factorization Hjy =
Q2. induced by (7.3) and (7.4) in the sense described in Theorem 7.1.

In other words, the ”"subspace methods” algorithm described at the be-
ginning of this section is equivalent to partial realization, for the formulas
(7.6, 7.7, 7.9) produce exactly the same (A, C,C) matrices as the partial
realization formulas (6.30, 6.31, 6.32) applied to the corresponding Hankel
factorization.
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Note that the conditionally shifted bases %(k 4 1) and X(k — 1) can be
computed from the sole factorization (6.27) since 241 and {2 are uniquely
determined from (6.27) as

Qi1 = 2 " Hey1, Qi = Hy (2,)7F
so that

x(k+1) = Q7 Hu (T ) 'Y, (7.14)
x(k—1) = () "Hy (T ) 7' U Y. (7.15)

Change of basis. If we pick arbitrarily an n-dimensional basis s(k + 1) in

X(k+1)_ the basis transformation matrix M taking s(k + 1) into the condi-

tionally shifted basis at time £+ 1 can be obtained by the following reasoning.
First notice that the first members of both expressions

E[UYx(k+1)] = 2%x(k+1)
EUY/|s(k+1)] = Qs(k+1),

are equal to E[UY,JCF\Y,;H} by the splitting property. Obviously they must
be equal so that 2;%(k 4+ 1) = 2s(k + 1) and

%(k+1) = (2) L es(k +1). (7.16)

which provides the change of basis formula in X (k+1)—- A similar formula can
be derived easily for the change of basis in the backward predictor space.

7.2 Skipping some redundant steps

As we have already warned the reader, the procedure for computing (4, C, C)
given so far is vastly redundant from a computational point of view. In prin-
ciple we can eliminate the computation of the backward bases completely
and reduce everything just to finding a basis x(k) in Xie.

Also there is no need to pick a basis at time k+1 in X k+1 and to convert it
to the conditionally shifted basis of %X(k), since the conditionally shifted basis
x(k+1) can be computed explicitely via formula (7.14). For, choosing a basis
x(k) induces a rank factorization (6.27) where the matrix (25 is determined
by %(k) as shown in (7.2) of Theorem 7.1 above.
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Reduced ”subspace” Algorithm.

Choose a basis %(k) in Xj_.

Compute the corresponding observability matrix 2 by (7.2).
Solve Hj = 2,02, to get (a unique) £2y,.

Compute the conditionally shifted basis x(k + 1) by (7.14).
Compute (A, C, C) by the following formulas,

A Ex(k 4+ 1)x(k) P(k)~! (7.17)
= By(k)x(k)P(k)~! (7.18)
C = Ey(k-1x(k) (7.19)

G D=

Q

where P(k) = Ex(k)x(k)' = 2/ (T;7) "' 42,

Note that (7.19 ), which formally is derived from the backward (or anti-
causal) form of the Kalman Filter realization with state X(k), can be rewritten
directly in terms of the dual basis x_ (k) = P(k)~'%x(k) whereby,

y(k—1) = C%_(k) + D_(k)e_(k — 1).

This reduced procedure should lead to a more effective numerical algo-
rithm than the variants of the original subspace algorithm of [60] which have
recently appeared in the literature.

7.3 The least squares implementation

If the "expectation” operator E is written explicitely as in (6.18), then the
formulas for (A, C, C) of Theorem 7.2 express exactly the solution of the two
dual least squares problems,

mip | [ &(5(_1:)1) ] - [ é‘ ]f<(/€)2 (7.20)
win | { ;Eii 3 } - { 2 }fc(k)n? (7.21)

where the norm is now ordinary Euclidean norm in R™. This equivalence can
be used in the actual computation of (A, C,C) requiring just a least-squares
equation solver. Good numerical implementations for lest-squares problems
are easily available. However we should notice that in this formulation we need
to compute explicitely all the basis vectors %X(k), x(k), %(k + 1), x(k — 1).

This rephrasing of the formulas of Theorem 7.2 is used in commercially
available codes. The appearence of least squares looks appealing to many and
there have been attempts to use the reformulation above also for theoretical
purposes. In this respect, there seems to be some confusion in the litera-
ture regarding the role played by the estimation residues of the least-squares
solution, say
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x(k+1) Al | é(k)
[ y(k) } - { c }X(’C) = { &(k)
in "proving” positive-realness of the estimated triple (4, C,C).
Although it is easy to check that

E [ éx(k) } (e (k)8 (k)] = [ P(k+1)— AP(k)A" C' — AP(k)C'

&(k) = C—CPA  A0) - CP(k)C } =0

there is obviously no guarantee that some P > 0 will satisfy the stationary
matrix inequality M(P) > 0. To draw this conclusion from the previous
expression requires existence of a positive limit of P(k) as k — oo which,
as is well known, is equivalent to assuming positivity of (A, C,C) from the
beginning.

7.4 Use of the SVD

Of course determinig rank and ”picking bases” in practice is a numerically
nontrivial affair. The basic numerical tool which helps in this respect is the
SVD. In particular the truncated SVD derived from (6.39) of the previous
section leads to the choice

O = LiULE? @ = L vim? (7.22)

These expressions are meant to be substituted for 2, (2, everywhere in
the formulas above in this section wehnever the purpose is to do actual com-
putations.

For the sake of clarity of exposition, in this section we shall assume
that the factorization (6.39) is ezact i.e. that X is made of the n nonzero
singular values of Hj,. From this particular choice of the factorization, the
n-dimensional bases for the finite-memory forward and backward predictor
spaces X),_ and Xk+ are seen to be

z(k) = VUL VYR (7.23)
a(k) = D PULEH YR (7.24)

~ We note immediately that in this basis the variance matrices P(k) and
P(k) are equal and diagonal,

Ez(k)z(k) = ), = Bz (k)z(k)'. (7.25)

In fact we shall see shortly that z(k) and z(k) are a (finite-time) balanced
basis.

Moreover, since U, Uy = I, = V|Vj by orthonormality of the columns of
Uy and V), we see that the bases are diagonally correlated i.e.

Bz(k)z(k) = 5,2 UL H Vi, 5% = 57 (7.26)
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Hence the vectors z(k) and z(k) are essentially the so-called canonical variates
of canonical correlation analysis [37]). The elements of X are the sample
canonical correlation coefficients of the finite past and future spaces YV, , y,j .
Their dimension n, i.e. the dimension of the predictor spaces, is in reality
determined numerically (or statistically) in the truncation step leading to
(6.39), by discarding the canonical correlation coefficients which are smaller
than a certain ”significance level”. So the statement about n-dimensional
realizability of y is really ”approximate”.

Proof of Proposition 6.3. According to the standard notations used in the
stationary setting x(k) = X_(k) and x(k) = x, (k) .For any choice of bases
%(k), x(k) it follows from the Kalman-Filter representations that the relative
variance matrices

P(k) = 2/(T;)) 7' 2 = P_(k), P(k) = Q(T{H) ™' 2 = Py (k)

are the solutions of the (Finite-interval) Riccati equations (5.4), (5.13). From
(7.25) we see that P(k) = X} = P(k), so, as announced in Proposition 6.3,
z(k),z(k) define a balanced realization at time k.

It should be stressed however that the formulas of Theorem 7.2 for
z(k),z(k), analog to (6.40), will not yield the stationary balanced triple
(A,C,C) described in section 6.6. For getting the system matrices in this
form we first need to solve the steady state Algebraic Riccati Equation ob-
tained with the estimated coefficients (A, C,C, A(0)), compute the maximal
and minimal solutions P_, P, and then apply to (A,C,C) the balancing

algorithm seen in section 6.6.
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