
Volume If Number 4 SYSTEMS & CONTROL LETTERS Janunn/ 19X2 

On a condition for minimality of Markovian 
splitting subspaces 

Given a stationary Gausicln \‘ector procos. consider a 

Markovian splitting subspacc .Y contained in the Frame spucc 

which is tither ob.scrvablc or construcriblc. Such an ,v tvill hc 

called rnlrcwd. In this paper WC show that a Markovian split- 

ting suhspacc is minimal if and only if it is rcduccd. This u’ah 

claimed in home carlicr papcrb hug thcrc arc nnnlrivial gapx in 

the proofs prexnted rhcrc. The proof ih based on a Icmma 

staling that 311 reduced .Y have quasi-equivalent .rtructural 

functions. This property is alao important in isomorphism 

theory for minimal splitting subspaws. 

K<I~IIw~~~: Stochaslic rcalizarion. Minimal )~I;LIC‘ .\pacc... Quasi- 

equivalence. Quahi-Gmilariry. State space isomorphi~m. 

1. The main result 

Let ( J( t ); I E W) be a real nz-dimensional sta- 
tionary Gaussian vector process which is centered 
and mean-square continuous, and let H be the 
Gaussian space [lo] generated by its components. 
This is a Hilbert space with inner product (E, 11) = 
E(&). Let H - and H + be the subspaces of H 
generated by {y(t); I SO] and (y(r):~<O) re- 
spectively. The stationarity of y implies that there 
is a strongly continuous group (U,; f E Iw } of 
unitary operators in H, called the shifr, such that 
Y,J~)=CJ,.Y~(O) for all r~lW and kzl.2 ,..., nr 
[12]. Now. in addition, we assume that y is purely 
nondeterministic, i.e. f) ,ERU,H - = 0, and strictly 
noncyclic, i.e. the subspaces H - f7( H + )I and 
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H l f’( H - )I are full range. (Here the superscript 
I denotes orthogonal complement in H. A sub- 
space Z of H is lull rmge if V,,,U,Z = H.) 

A (closed) subspace X of H is called a splirrittg 

subspace if 

(E-\ol, E,p)= (a,P) 

forallaEH-,/3EH+. (1) 

where E”X denotes the orthogonal projection of 
h E H on X. A subspace X is Murkouian if 
V,,,r/,X and V,,&,X are conditionally indepen- 
dent given X. A Markovian splitting subspace X is 
mit~itnal if it contains no other Markovian splitting 
subspace as a proper subspace, observable if X n 
(H+)‘=O,andconsrrucribleifXn(H-)I=O.It 
can be shown [ 131 that X is minimal if and only if 
it is both observable and constructible. 

Any minimal splitting subspace is contained in 
the jrunle space 

H%=(E” H+)V(E”‘H-). (21 

In fact, Ho is the closed linear hull of all minimal 
splitting subspaces [6-81. A Markovian splitting 
subspace is said to be reduced if XC H n and it is 
either observable or constructible. Clearly any 
minimal X is reduced. It is the purpose of this note 
to show that the converse is also true. 

Theorem. A Murkoviun splitling subspuce is re- 
duced if uttd ott!,- ij il is minimal. 

The problem of determining all minimal 
Markovian splitting subspaces has been studied 
extensively by Lindquist and Picci [5 - 81. 
Ruckebusch [ 13- 151 and others. The theorem 
stated above is useful. for the reduced X are in 
one-one correspondence to the minimal stable 
spectral factors [ 141. (Also see [6].) 

The theorem has an important corollary. To 
state it we need another definition. On each 
Markovian splitting subspace X there is a strongly 
continuous semigroup (fJ,( X); t 2 0) of contrac- 
live operators given by U,( X )< = E”U,,$; we shall 
call it the Murkov semigroup of X. (See [6-81.) 
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Corollary 1. Let X, and X2 be IWO minimal 
Murkovian splitting subspaces. Then U,( X,) und 
U,( X,) ure quasi-similar, i.e. there are quasi- 
invertible (injective with dense runge) mups M: 

Xl -. X, ond N: X2 - X, such that 

1 

MU,(X,)= U,(X2)M* (3a) 

u,VW’=WtX,) (3b) 

/or all t 2 0. 

This strengthens the state-space isomorphism 
results of [ 151. 

2. Background material 

It is shown in [6-81 that a subspace X is a 
splitting subspace if and only if X = S fl s for 
some pair (S, 9) of subspaces such that S 1 H . 
S>H’. and S and S intersect perpendicularly, 
i.e. S’lSI. The correspondence X - (S, S) is 
one-one, S and S being given by S = H V X and 
S= H + V X. To exhibit this correspondence we 
write X- (S, S). Moreover, X is Markovian if and 
only if the S and S satisfy the invariance condi- 
tions 

1 

V,SCS fortGO, (da) 

U,SCS fortaO, (4b) 

it is observable if and only if S= H ’ VS i and 
constructible if and only if S = H - V.?‘. 

From now on we shall only consider splitting 
subspaces contained in the frame space HO, for 
all reduced X belong to this class. Clearly we must 
then have 

1 

s- cscs,, (5a) 

s+ cscs-, (5b) 

where S_:=H-, S+:=HPVHO, .?+:=H’. 
and .!-:=H+VHO. It is not hard to see that 
(S- , S-) and (S, , S+) are pairs of perpendicu- 
larly intersecting subspaces satisfying (3) and the 
observability and constructibility conditions. 
Hence they define minimal Markovian splitting 
subspaces X- and X, respectively. It can be shown 
[6-81 that X- = I?” H + and X, = g”’ H ~, 
where the bar over E denotes closure. 

Next we shall reformulate these facts in terms 
of Hardy functions. Since the process .Y is mean- 
square continuous and purely nondeterministic. it 

has a spectral representation 

>j( t) =/= eiw’ dp(iw) 
-* 

(64 

where d3 is an orthogonal stochastic measure such 
that 

E{d?;(iw)dy(io)*} = &@(iw )dw (6b) 

(* denotes transposition and conjugation). The 
m X m-matrix function 0 is called the spectral 
density; suppose it has rank p G m. Now let :x2’ 
(:x1- ) be the Hardy space of p-dimensional row 
vector functions which are (double-sided) Laplace- 
transforms of functions in L{(R) which vanish on 
the negative (positive) real line. Any m Xp-matrix 
solution W of 

W(s)W(-s)‘=@(s) (7) 

(’ denotes transpose) is called a (full-rank) spectral 
factor; we say that W is stable if its rows belong to 
X’ and strict!,, unstable if they belong to :7i;. 
Any stable spectral factor has a unique decom- 
position 

W(s) = W- (s)Q(s), (8) 

where We is the outer spectral factor, i.e. the 
closed linear hull of {e’“’ W- ; t d 0) equals :?it , 
and Q is inner, i.e. Q is bounded and analytic in 
the open right half-plane and its values on the 
imaginary axis I are unitary matrices. Likewise 
any strictly unstable spectral factor W has the 
decomposition 

W(s) = W+(s@(s). (9) 

defined analogously to (8) only exchanging :?il 1 
r G 0 and right half-plane for :7izP, t 2 0, and left 
half-plane. Then p will be inner. Now, to any 
spectral factor W, there is a p-dimensional vector 
Wiener process (u( t ); t E W } defined by 

u(t) =/% vdfi(io); dii= W-‘,dg(lO) 

(where i”* is any left inverse of W). Let 4’1 be 
the class of all such u, and let 91 + and 31- be the 
subclasses of 5’1 corresponding to stable respec- 
tively strictly unstable W. 

It is well known [ 121 that, for eachfE L{(W), 

/qf( -t) du(t) =/” j(iw) dli(iw) (11) 
-2 
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where 1~ L$‘( I ) is the (double-sided) Laplace- 
transform off restricted to I. If u E 91, the Gaus- 
sian space generated by the components of u 
coincides with H so that for each 17 E H, there is a 
uniquefsuch that 9 equals (11). Then, by standard 
arguments, there is a unitary operator T,: H -+ 
,!$(I) such that T,q=]. Let H -(du) [ H+(du)l 
be the subspace of H consisting of those random 
variables (11) for which f vanishes on the negative 
(positive) real line. Then T,H-(du)=‘3i: and 
T,H+(du)=%;. 

Modulo trivial coordinate-transformations in 
R P, there is a one-one correspondence between 
07Lf and the class of subspaces S > H - satisfying 
(4a). and for each such pairing S = H -(du). Like- 
wise, the subspaces g> H + satisfying (4b) are in 
one-one correspondence with the 0 E (;21- in such 
a way that s= H -(da). The two subspaces S and 
.? intersect perpendicularly if and only if the 
structural function 

K(s):= P(s)-Lw(s) (12) 

is inner, where W corresponds to u and w  to ii. (It 
can be shown that (12) is independent of the 
choice of left inverse.) Due to perpendicular inter- 
section X = S 0 Sl, i.e. X= H-(du)BH-(da). 
But T,H-(dii)=‘&,+ and T,H -(dii) = :7il K. 
Hence T, X = 35( K ), where ‘si( K ) is the orthogo- 
nal complement of !l&+ K in ‘&+. 

Consequently any Markovian splitting subspace 
XC H q is characterized by a triplet (K, Q, p) of 
inner functions. By applying T, to the observabil- 
ity condition r= H + V S 1 and T, to the con- 
structibility condition S = H - V g’ it is not hard 
to see that X is observable if and only if (K, @)L 
= I, i.e. K and p are left coprime, and construct- 
ible if and only if (K, Q)R = I i.e. K and Q are 
right coprime. In the same way, applying the T,- 
map of X, to (5a) shows that Q must be a left 
inner divisor of Q, , the Q-factor of X, , i.e. there 
is an inner function J such that QJ = Q, . An 
analogous statement holds for Q and Q-, the 
P-factor of X- . (See Section7 in [8].) 

We shall denote by (Zz( K ); z 2 0) the semi- 
group on x(K) obtained from {U,(x); t > 0) un- 
der the image of T,, i.e. Z,(K) = T,U,( X)T;. Then 
2,( K)f= P%(K) eiw’/, where PYY denotes orthogo- 
nal projection on the subspace Y!., i.e. Z,(K) is the 
restricted shift on ‘X( K ). 
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3. The main lemma 

In the scalar case (m = 1) it is easy to prove the 
theorem, and this was implicitly done in Lindquist 
and Picci [5]. (See Section6). The proof is based 
on the following observation. 

Proposition 1. Let m = 1. Then all reduced 
Markovian splitting subspaces have the same struct- 
ural function K. 

It will be instructive to give an independent 
proof of this result, to pinpoint precisely what fails 
in the vector case. This will be done below. Now, 
given Proposition 1, the proof of the theorem is 
immediate: Let X be reduced. Then K = K + , the 
structural function of X, . Since X, is construct- 
ible, K and Q, are coprime. But Q is an inner 
divisor of Q+ , and therefore K and Q are also 
coprime. Hence X is constructible. By a similar 
argument, observability of X- implies observa- 
bility of X. 

In the vector case things are more complicated. 
Then Proposition 1 has to be repiaced by 

Main lemma. Reduced Markovian splitting sub- 
spaces have quasi-equivalent structural functions. 

Quasi-equivalence, a concept originally intro- 
duced by Nordgren [ll], can be defined in the 
following way for inner functions. Let K be a 
p Xp inner function. Set y0 = 1, and, for i = 
1.2,..., p, define y, to be the greatest common 
inner divisor of all i X i minors of K. Clearly y,- , 
divides y, so that k ,:=y,/y,-, is inner for i= 
1,2,... , p. The scalar inner functions k,, k ,,..., k, 
are the invariant factors of K. We shall say that 
two inner functions are quasi-equivalent if they 
have the same invariant factors. This is clearly an 
equivalence relation. (Quasi-equivalence is usually 
defined in a different manner. The equivalence 
between our definition and the original one is a 
theorem. See Fuhrmann [2,p. 2141.) 

For the proof of this result we shall need a 
series of lemmas. 

Lemma 1. Let X C H ’ be an observable Markovian 
splitting subspace with structural function K. Then 
there are inner functions G and J such that GK + = 
IdI, where (K, G), = I and (K, ,J)R = I. 
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Proof. Let J be the inner function defined at the 
end of Section 2. Then pK+ = KJ. Since X, is 
constructible, (K + , Q + )R = I. But Q + = QJ. and 
therefore (K + , J)R = I. From observability of X it 
follows that (K, p), = I. Then the lemma follows 
by setting G = @+. Cl 

Lemma 2. Let X C H q be a constructible Markovian 
splitting subspace with structural function K. Then 
there are inner functions R and P such that RK= 
K-P, where(K-,R), =Zand(K,P)R =I. 

Proof. Follows by an argument which is symmetric 
to that of Lemma 1, replacing X, by X- . 0 

Proposition 1 now follows from a theorem by 
Douglas, Shapiro and Shields [l]. Let F be inner 
and set T: = F*K. Then it is shown in [l] that 
:‘x( K) = pc ‘xl- T if and only if F and K are 
coprime. (Also see [2].) Therefore, if XC H q is 
observable, setting T = G*K it follows from 
Lemma 1 that 17i( K) = ‘3i( K,), for we also have 
T=J*K,. Hence. K = K, . A symmetric argu- 
ment based on Lemma 2 shows that K = K _ for 
all constructible XC HO, including X, . Hence 
Proposition 1 follows. However this proof does not 
work in the vector case (m > 1). since then the 
inner factors do not commute. 

Instead we shall use the fact that the restricted 
shifts Z,( K,) and Z,( K,) are quasi-similar if and 
only if K, and K, are quasi-equivalent [2;p. 2151. 
Let ‘3i” be the space of all p Xp-matrix functions 
which are bounded and anaiytic in the open right 
half-plane. Then, in particular all p X p inner func- 
tions belong to ‘3i”. An inner function will be 
called real if it takes real values on the real axis. 

Lemma3. Let K, and K, be real inner functions. 
Then K, and K, are quasi-equivalent if and only if 
there are A, B E ix‘” such that 

AK, = K,B 

where (K,. B)R = Z and (K,, A)L = 1. 

(13) 

Proof. (if): By Theorem 14-8 in [2], which is a 
version of the Nagy-Foias Lifting Theorem, there 
is a quasi-invertible N such that 

N%(6) =%(K,)N. (14) 

The transpose of a real inner function is also 
inner. Therefore, since K;A’ = B’K;, there is alsO 

a quasi-invertible M such that 

Z,( K;)M= MZ,( K;). (15) 

But an inner function and its transpose have the 
same invariant factors and are therefore quasi- 
equivalent. Hence, for i = 1,2, Z,( K,) and Z,( K,!) 
are quasi-similar, and consequently there are qua- 
si-invertible functions R , and R z so that, in partic- 
ular, Z,( K,)R, = R,Z,( K;) and R,Z,( K,) = 
x,(K;)R,. The operator R:=R,MR, is quasi- 
invertible [ 16,~. 701. Moreover 

Z,(K,)R = R,%K;)MR, 

= R,MZ,( K;)R, 

= RZ,( K,). (16). 

which together with (14) implies that Z,(K,) and 
Z,( K,) are quasi-similar. Then K, and K, are 
quasi-equivalent. 

(onb if): Follows from the first part of the 
proof of Theorem 15-9 in [2, p. 2151. 

Proof of main lemma. It follows from Lemmas 1 
and 3 that, for any observable XC H q , the struct- 
ural function K is quasi-equivalent to K, . In 
particular K _ and K + are quasi-equivalent. More- 
over, from Lemmas 2 and 3 it follows that any 
constructible XC H q has a K which is quasi- 
equivalent to K- . Cl 

4. Proof of the theorem 

Suppose that X- (S, J?) is a constructible 
Markovian splitting subspace such that XC HO, 
and let X, - (S,, S,) be a minimal Markovian 
splitting subspace contained in X. The existence of 
such an X, is insured by Prop. 4.3 in Lindquist 
and Picci [7]. We want to show that X, = X, which 
implies that X is minimal. To this end, note that 
X, c X implies that S, C S and 5, C c But by 
constructibility S = H - V 3’ and S, = H - VgIL, 
and therefore, since .!?’ C g,l, S C St. Hence St = 
S so that X, and X have the same T,-map. There- 
fore it follows from X, C X that ‘Ji( K,) C ‘x( K), 
and consequently ‘XI’ KC ‘X2+ K,. But then there 
must be an inner function 0 such that K= BK, 
[4, p. 691. NOW, since K and K, are quasi-equivalent 
(main lemma), det K = det K,, and consequently 
det 0 = 1. However, an inner function with this 
property must be a constant unitary matrix, and 

267 
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therefore ‘K( K,) = 3c( K ), which is equivalent to 
X, = X. By a symmetric argument we show that all 
observable XC H q must also be minimal. 

5. Corollaries 

The proof of Corollary 1 is an immediate conse- 
quence of the fact that X, and Xz have quasi- 
equivalent structural functions K, and K,, i.e. that 
Z,( K, ) and Z,( K2) are quasi-similar. 

There is a natural canonical form for C,(K) 
corresponding to minimal X, namely 

e,(K):=Z,(k,)$Z,(kz)~...~2,(k,) (17) 

which defines a semigroup on 

3i(k,) e3 X(k,) @I *.. eeqk,). 

Here k,. k, ,..., k, are the invariant factors of K. 
This is the Jordan form of Z,(K) [2, p. 2141. 

Corollary 2. All semigroups (Z,( K ); 12 0) corre- 
sponding to minimal X have the same Jordan form. 

Since (Z,( K )*; I 2 0) may be used as the basic 
semigroup in the differential equation realization 
of X [B], this is a useful fact. 

It can be shown that 2,( K )* and Z,( K’) are 
unitarily equivalent [2;Th. 13-2, p. 1911. This leads 
to the following useful fact. 

Corollary3. Let K be n real inner function. Then 
Z,(K)* and Z,( K ) are quasi-similar. If m = 1, they 
are unitarily equivalent. 

In this paper it has been convenient and natural 
to restrict attention to Markovian splitting sub- 
spaces X - (S, s) contained in the frame space 
Ho. However to insure that there are representa- 
tions S=H-(du) and s= H ‘(du) so that iso- 
morphism with 17i: and 1x; can be established it 
suffices to assume that X is proper, i.e. fl u,S = 0 

and f-l U,s= 0. All XC H q are proper under the 
assumption of strict non-cyclicity [6-B]. 

Corollas 4. Let X be a proper Markovian splirting 
subspace. Then U,( X)* and U,( X) are quasi-similar. 
If m = 1, they are unitarily equiualent. 
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6. Remarks 

The theorem presented in this note was first 
stated in [9], but there is a nontrivial gap in the 
proof which invalidates it for infinite-dimensional 
X. The same incomplete argument has also been 
used in [14.15]. As pointed out to us by A.E. 
Frazho, the proof in [6] of the same theorem 
(Lemma 3.7) is incorrect: A counter-example to 
the assertion of the second sentence of the if-part 
of this proof can be constructed based on 
Problem 9 in Halmos’ Hilbert Space Problem Book 
[3]. However, all these results are valid if attention 
is restricted to finite-dimensional X. 

A proof for the scalar case (m = I), valid also 
for infinite-dimensional X, is given in (51. How- 
ever, since at the time of its appearance we were 
not aware of the error in [9], this proof is a bit 
implicit. To interpret [5] correctly, exchange 
‘minimal’ for ‘reduced’ in Section 4. Then it is 
shown that all reduced X have the same YK( K) 
much along the lines of Section 3 of this note. 

One contribution of this paper is to extend the 
above results to the infinite-dimensional case. This 
could not be achieved by merely patching up the 
incomplete proofs of [9] and [6] (which inciden- 
tally are just a few lines), but a completely new 
approach had to be taken. This approach also 
spreads some further light on the structure of 
minimal Markovian splitting subspaces. 

7. An example 

To illustrate the main lemma we give a simple 
example. Let y be a 2-dimensional process with the 
rational spectral density 

O(s) = 
1 

(2 - I)(? -4) 

i 

17 - 2s? 
X 

-(s-t l)(s-2) 

-(s- 1)(s+2) 4-s’ 1 
1’ 

Then the structural functions of X- and X, can 
be seen to be 

K-(s)= (s+ l)l(s+2) 
1.6 
s+ 1.2 1 

and 

K+(s)= (s+ l)l(s+2) 
24/37 
s + 70/37 I 
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respectively. Both X- and X, have dimension3, 
but it can be shown that ‘X(K-)n%(K+)=O. 
However, as required by the main lemma, K- and 
K + have the same invariant factors, namely 

k,(s) =s (s- l)(s-2) 

and +)= (s+ 1)(s+2). 
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