
OOOS-1098(95)000195-6 

Auromuricu, Vol. 32, No. 5, pp. 709-733, 1996 
Copyright @ 1996 Elsevicr Science Ltd 

Printed in Great Britain. All righrs reserved 
OOOS-10!%/96 SlS.W+O.OO 
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Certain subspace identiJication methods cannot be expected to work for 
generic data since the positive-real requirement is ignored. The algorithms 
are analyzed in the context of stochastic realization theory. The original 

model reduction procedure of Desai and Pal is partially justified. 
Key Words-Identification; balanced realizations; approximate covariance extension; canonical 
correlation analysis; stochastic model reduction. 

Abstract- In this paper we analyze a class of state space iden- 
tification algorithms for time-series, based on canonical cor- 
relation analysis, in the light of recent results on stochastic 
systems theory. In principle, these so called “subspace meth- 
ods” can be described as covariance estimation followed by 
stochastic realization. The methods offer the major advantage 
of converting the nonlinear parameter estimation phase in tra- 
ditional ARMA models identification into the solution of a 
Riccati equation but introduce at the same time some nontriv- 
ial mathematical problems related to positivity. The reason for 
this is that an essential part of the problem is equivalent to 
the well-known rational covariance extension problem. There- 
fore, the usual deterministic arguments based on factorization 
of a Hankel matrix are not valid for generic data, something 
that is habitually overlooked in the literature. We demonstrate 
that there is no guarantee that several popular identification 
procedures based on the same principle will not fail to pro- 
duce a positive extension, unless some rather stringent assump- 
tions are made which, in general, are not explicitly reported. 
In this paper the statistical problem of stochastic modeling 
from estimated covariances is phrased in the geometric lan- 
guage of stochastic realization theory. We review the basic 
ideas of stochastic realization theory in the context of iden- 
tification, discuss the concept of stochastic balancing and of 
stochastic model reduction by principal subsystem truncation. 
The model reduction method of Desai and Pal (1982) [A real- 
ization approach to stochastic model reduction. Proc. 1st De- 
cision and Control Conj, pp. 1105-l 112.1, based on truncated 
balanced stochastic realizations, is partially justified, showing 
that the reduced system structure has a positive covariance 
sequence but is in general not balanced. As a byproduct of 
this analysis we obtain a theorem prescribing conditions un- 
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1. INTRODUCTION 

Recently there has been a renewed interest in state 
space identification algorithms for time series based 
on a two steps procedure which in principle can 
be described as estimation of a rational covariance 
model from observed data followed by stochastic 
realization. The method offers the major advan- 
tage of converting the nonlinear parameter estima- 
tion phase which is necessary in traditional ARMA 
models identification into a partial realization prob- 
lem, involving a Hankel matrix of estimated co- 
variances, and the solution of a Riccati equation, 
both much better understood problems for which 
efficient numerical solution techniques are avail- 
able. In this framework we can naturally accom- 
modate multivariate processes and there are indica- 
tions that the algorithms may work also with data 
containing purely deterministic components (van 
Overshee and De Moor, 1993). A drawback, how- 
ever, to be emphasized in this paper, is that, unlike, 
say, least-squares identification of ARMA models, 
these methods do not work for arbitrary data. 

This type of procedure was apparently first ad- 
vocated by Faurre (1969); see also Faurre and 
Chataigner (1971) and Faurre and Marmorat 
(1969). More recent work, based on canoni- 
cal correlation analysis (Akaike, 1975) (or some 
other singular-value decomposition) and the Ho- 
Kalman algorithm (Kalman et al., 1969), is due 
to Aoki (1990), Larimore (1990), and van Over- 
shee and De Moor (1993). In the modern versions 
of the algorithm canonical correlation analysis is 
performed directly on the observed data without 
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computing the covariance estimates (van Over- 
shee and De Moor, 1993). Numerical experience 
shows that the computation time needed to get the 
final model parameters estimates compares very 
favorably with traditional iterative prediction error 
methods for ARMA models. 

On the other hand there is a price to be paid for 
this simplification. These methods introduce some 
nontrivial mathematical problems related to posi- 
tivity. The reason for this is that an essential part 
of the problem is equivalent to the well-known 
“rational covariance extension problem”. There- 
fore the usual deterministic realization arguments 
based on factorization of a Hankel matrix are not 
valid for generic data, something that is habitually 
overlooked in the literature. Note that positivity 
is the natural condition insuring solvability of the 
Riccati equation required to compute state space 
models of the signal from the covariance estimates. 

Central in the procedures described above is the 
following classical problem of identification of a 
covariance sequence. Let 

W&Al,... ,A,} (1) 

be a finite set of sample m x m covariance matrices 
estimated in some unspecified way from a certain 
m-dimensional sequence of observations 

1YO~YI,Y2~.~~ .YrIo (2) 

and consider the problem of finding a minimal * 
triplet of matrices (A, C’, c) such that 

CAk-lC’=& k= 1,2,...,v (3) 

and such that the infinite sequence 

fAO> Al, A2,. I, (4) 

obtained from (1) by setting Ak := CAk-’ c’ fork = 
v + 1, v + 2,. , is a bonafide covariance sequence. 

In the literature the last condition is generally ig- 
nored. The remaining problem of finding a minimal 
triplet (A, C, 5) satisfying (3) is called the “minim31 
partial realization problem”. The triplet (A. C, Cl 
is usually computed by minimal factorization of a 
block Hankel matrix corresponding to the data (I ) 
as follows: 

(5) 

* Here (A. C, 0 is minimal if (A, C) is completely observable 

and (A, c’ ) is completely reachable. 

where i + j - 1 = v and the Hankel matrix H 
is chosen as close to square as possible by taking 
Ii - _jl 5 1. In fact, (3) holds if and only if (5) holds 
for all (i, j) such that i + j - 1 = v, and hence the 

minimal factorization must be made for a choice 
of (i, j) in which the Hankel matrix (5) has max- 
imal rank. The infinite sequence {Ao, A,, A2,, } 
obtained in this way by setting Ak := CAk-‘C’ for 
k = v + 1, v + 2,. is called a “minimal rational 
extension” of the finite sequence (1) and is in gen- 
eral not a covariance sequence. The dimension r of 
a minimal rational extension is called the “(alge- 
braic) degree” of the partial sequence (1). Clearly 
the degree r is also equal to the McMillan degree 
of the m x m rational matrix 

Z(z) = C(zZ - A)-‘? + AA 
2 

0. (6) 

and the elements of the infinite sequence (4) are the 
coefficients of the Laurent expansion 

Z(z) = iA0 + A,z_’ + n2z-2 f _. (7) 

aboutz= cu. 
The underlying identification problem is however 

a great deal more complicated than the classical 
partial realization problem. In fact, the requirement 
that (4) be a bonajide covariance sequence amounts 
to (4) being a positive sequence in the sense that, 
for every t E Z,, the block Toeplitz matrices T,, 

formed from the infinite sequence (4), be positive 
definite or, equivalently, that the matrix function 

cp (z) := Z(z) + Z( 1 /z)’ (9) 

be positive semidefinite on the unit circle, i.e. 

cP(e’“) > 0 8 E [0,2rr). (10) 

This property is equivalent to @ being a spectral 
density matrix. In fact, it will be the spectral density 
of the covariance sequence (4). Clearly (1) cannot 
be a partial covariance sequence unless T,, > 0, but 
this is not enough. 

From the point of view of identification there 
seem to be two possible routes to determine a model 
(A, C, c) from the finite covariance sequence (1). 
One that has been proposed in the literature is do 
minimal factorization (5) of a finite block Hankel 
matrix in balanced form (Aoki, 1990; van Overshee 
and De Moor, 1993). This yields a solution to the 
minimal partial realization problem, and, as will be 
shown in this paper, there is no a priori guaran- 
tee that this method will yield a positive extension. 
This fact has nothing to do with sample variability 
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(random fluctuations) of the covariance estimates 
(1), and to emphasize this point we initially assume 
that all strings of data (2) are infinitely long. A the- 
oretically sounder identification method, which will 
not be considered in this paper, could instead be to 
perform positive extension first and then to use a 
stochastic model reduction procedure on the triplet 
(A, C, c) of the positive extended sequence. 

The issues regarding positive extension are dis- 
cussed in Section 2, where the nontrivial nature of 
the positivity constraints are explained. The failure 
to take this difficulty into consideration has been 
pointed out by the authors of this paper at many 
scientific meetings in the last ten years. This has had 
no apparent effect, except for two recent papers, 
Heij et al. (1992) and Vaccaro and Vukina (19931, in 
which these problems are mentioned. Consequently 
this point will be strongly emphasized. We illus- 
trate our point on the identification procedure of 
Aoki (1990) and demonstrate that there is a hidden, 
and not easily tested, assumption without which the 
procedure will not be guaranteed to succeed. The 
punch line is that none of the subspace identifica- 
tion methods under consideration can be expected 
to always work for generic data but that some not 
entirely natural conditions on the data are needed. 

The analysis of the basic theoretical issues be- 
hind subspace identification is carried out in the ge- 
ometric framework of stochastic realization theory; 
see, e.g. Lindquist and Picci (1985) , Lindquist and 
Picci (199 1). In Section 3 we introduce some basic 
concepts from this theory and adapt them to the 
problem of identification. To this end, we first dis- 
cuss an idealized situation in which the time series 
(2) is infinitely long, i.e. T = co, and the available 
covariance data are given by the ergodic limit 

I 

1 Yt+&Y:+j = Ak-j 
r=o 

(11) 

for all k and i. Then the sample estimates in the 
sequence (1) are bonajide covariance matrices and 
the Toeplitz matrix TV formed from the data will 
be positive definite and symmetric. We introduce a 
Hilbert space of observed (infinite) strings of data 
{yt } , allowing us to use the geometric concepts and 
machinery of linear stochastic system theory as de- 
veloped in Lindquist and Picci (1985) and Lindquist 
and Picci (199 1) also for the statistical problem of 
identification. In this way we establish a correspon- 
dence which turns operations on random quantities 
defined on abstract probability spaces into proto- 
types of statistical algorithms involving computa- 
tions based on the observed data. Canonical cor- 
relations and balanced stochastic realizations are 
then analyzed in this setting in Section 4, and the 
basic concepts and principles used in the subspace 
identification methods, as well as in the model re- 

duction procedures of Desai and Pal, are translated 
into the more natural context of geometric stochas- 
tic realization theory. 

Although the explicit computation of covariance 
sequences can be avoided completely in the methods 
discussed in this paper, it is useful to think in terms 
of such objects. The realization theory developed in 
Sections 3 and 4 deals with an idealized situation 
which admits the construction of an exact infinite 
covariance sequence (4). Consequently, the difficult 
question of positivity is not an issue here. Nor is it 
the finite sample size per se which is the problem, 
but the fact that only a finite covariance sequence 
(1) could be constructed from the data (2) when T 
is finite. Therefore, we separate these issues by dis- 
cussing stochastic realization theory from finite co- 
variance data in Section 5 and subspace identtica- 
tion in Section 6. In this framework we show that 
the method of van Overshee and De Moor (1993) is 
valid under some rather stringent assumptions. We 
stress that we are only concerned with identification 
procedures for state space modeling of time series. 
“Subspace identification” methods for determinis- 
tic systems with measurable inputs or for spectral 
factors do not involve positivity, but stability may 
still be a problem. However, the algorithms of van 
Overshee and De Moor (1994a) and van Overshee 
and De Moor (1994b) also have a stochastic part, 
so the problem of positivity arises here too. 

Another idea behind the subspace identification 
methods considered in this paper is to disregard 
modes corresponding to “small” canonical corre- 
lation coefficients. This is called “balanced trunca- 
tion” and is in fact a stochastic model reduction 
procedure. In all such procedures there must be a 
guarantee that the reduced-degree matrix function 
(6) is positive real, and therefore the preservation of 
positivity in such reductions is a main concern of 
this paper. Section 7 is devoted to such issues. The 
model reduction procedure of Desai and Pal (1982) 
was never theoretically justified in their work or in 
their subsequent work Desai et al. (1985) and De- 
sai (1986). * Here we shall demonstrate that this 
reduction procedure produces a positive real, but 
not in general balanced, reduced model structure. 
In fact, the singular values of the truncated system 
are usually not equal to the r first singular values 
of the original system. 

It is an interesting fact that the procedure of De- 
sai and Pal does produce balanced truncations for 
continuous-time stochastic systems. A partial result 
in this direction was given by Harshavaradhana et 
al. (1984) who showed that the truncated function 

* In Desai et al. (1985) a different model reduction procedure, 
which is not relevant to subspace identification, is considered, 
namely “deterministic” model reduction of the minimum phase 
spectral factors. 
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is positive real and conjectured that it is balanced. 
We shall demonstrate that it is indeed balanced, 
a result that is actually already contained in the 
work of Ober (1991). The problem with the Desai- 
Pal procedure in discrete time depends on the fact 
that the spectral factors of the truncated approxi- 
mate spectrum behave differently than in continu- 
ous time. While in continuous time the realizations 
of the reduced spectral factors are proper subsys- 
tems, obtained by partitioning the matrices of the 
realizations of the factors of @, this is not the case 
in discrete time, contrary to early claims of Desai 
and Pal. As indicated in Ober (1991) a balanced 
truncation procedure is available in discrete time. 
but the systems matrices are no longer submatrices 
of those of the original system, and therefore it is 
not equivalent to the truncation procedure used in 
subspace identification. 

Several of the results of this paper have previously 
been announced in Lindquist and Picci (1994a) * 
and in Lindquist and Picci (1994b). 

2. POSITIVE, NONPOSITIVE AND APPROXIMATE 

FACTORIZATIONS OF THE HANKEL MATRIX OF 
COVARIANCES 

The solution to the minimal partial realiza- 
tion problem , i.e. the problem to find the triplet 
(A, C, C) satisfying (1) is in general not unique. 
This lack of uniqueness, studied in, for example, 
Kalman et al. (1969) Kalman (1979) and Gragg 
and Lindquist (1983), is not an issue in this pa- 
per. Therefore, to avoid this question altogether, 
we shall make the standard assumption that the 
algebraic degree of (1) equals that of 

{A& Al, . A,- 11 (12) 

so that we can use a Hankel matrix (5) based on 
this data, i.e. with i + j = v, allowing us to define 
the shifted Hankel matrix 

o(H)= [A;!, AizAfj 1::; :_’ j (13) 

uniquely. In this case the classical Ho-Kalman al- 
gorithm (Kalman et al., 1969) produces a minimal 
solution (A, C, C) which is unique up to a similar- 
ity transformation, 

As first pointed out by Zeiger and McEwen 
(1974) the minimal factorization on which the 
Ho-Kalman procedure is based may be performed 

* We warn the reader that a preliminary version of Lindquist 

and Picci (1994a), containing some erroneous statements, was 

accidentally published in place of the paper finally submitted 

for publication. The correct version can be obtained from the 

authors. 

by “Singular-value decomposition”, thereby fixing 
(A, C, C) uniquely; see also Kung (1978). In fact, 
the Hankel matrix H may be factored as 

H=UCV’ U’U=I=V’V, (14) 

where ,X is the square n x n diagonal matrix of the 
nonzero singular values taken in decreasing order. 
Setting Q := iJC’12 and fi := V,Z1’2 this leads to a 
factorization 

H = Qfi’ D’Q = 2 = fi’fi (15) 

of the type (5). Then a minimal realization (A, C, C) 
is obtained by solving 

RAfi’ = (T(H), Cff = p,(H), &’ = ,o*(H’), 

where a(H) is the shifted Hankel matrix (13) and 
pi(H) is the first block row of H. It follows that 
the triplet (A, C, C) must be given by 

,$ = I-“ZU’o(H) VI-‘/2 (16) 

C = p,(H) VC-1’2, (17) 

c = p1 (H’)U,X-1’2, (18) 

a form to which we refer as “finite-interval bal- 
anced”, since it is balanced in the sense that R’n 
and fi’fi are both equal to C, and that 

Aoki (1990) has proposed that this procedure be 
used also for identification of time series. The prob- 
lem with such a strategy is that this algorithm is a 
deterministic realization procedure and hence does 
not a priori insure that (6) is positive real, or even 
stable for that matter, even if the Toeplitz matrix 
T, is positive definite. In fact, it is shown in Byrnes 
and Lindquist (1982) that there are open subsets 
of the space of covariance data (1) for which A is 
not stable, and a fortiori the same holds for positiv- 
ity. In fact, like that in van Overshee and De Moor 
(1993), the procedure in Aoki (1990) is based on the 
following hidden assumption which is not entirely 
natural. 

Assumption 1. The covariance data (1) can be gen- 
erated exactly by some (unknown) stochastic sys- 
tem of dimension equal to rank H. 

Therefore, not only must we know that there ex- 
ists an underlying finite-dimensional system, but we 
must also have some upper bound for its dimen- 
sion. A conservative upper bound which will always 
suffice is [f]. 

Is this assumption natural? If the covariance data 
are really generated exactly from a “true” stochastic 
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system and there is a reliable estimate of its order 
which is no more than half of the length of the 
covariance sequence, then the assumption will hold. 
However, and this is an important point of this 
paper, one cannot expect Assumption 1 to hold for 
an arbitrary covariance sequence (1). 

To clarify this point, let us agree to call 
{Ao, Al, A2,. . . 1 a “minimal rational extension” of 

IAo, AI,. . . , A,} if the rational function (7) has 
minimal degree. By definition this is the algebraic 
degree of {ho, hi,. . . , A,,}. A rational extension is 
called positive if, for every /J > v, the block Toeplitz 
matrices TM formed from the corresponding infi- 
nite sequence (4) are positive definite. An extension 
with this property is called a “positive rational 
extension”. It is well known that the extension 

IAo, AI, A2,. . . } is positive if and only if (7) is pos- 
itive real, i.e. the rational function Z(z) is analytic 
in the closed unit disc and the matrix function 

@(z) = Z(z) + Z(l/z)’ (20) 

is nonnegative definite on the unit circle, making Cp a 
spectral density matrix. A minimal positive rational 
extension of the finite sequence (1) is one for which 
the dimension of the triplet (A, C, c) in (6) is as 
small as possible. 

Definition 1. The positive degree p of the finite co- 
variance sequence {At,, Al,. . . , A,} is the dimen- 
sion of any minimal positive extension. 

A well-known example of a positive extension is 
the “maximum entropy extension” (Whittle, 1963) 
corresponding to the spectral density Q(z) := 
W(z) W( 1 /z)‘, where the spectral factor W(z) is 
(modulo a multiplicative constant matrix) the in- 
verse of the Levinson-SzegG’ matrix polynomial 
of order v corresponding to the finite covariance 
sequence (1). Since the rational function W(z) 
generically has the McMillan degree equal to 
mv, it follows from spectral factorization theory 
(Anderson, 1958) that Z(z) has also degree mv. 
Consequently, the positive degree p is bounded 
from below by the algebraic degree r and from 
above by mv. 

As already pointed out, it is very common in the 
literature (Aoki (1990), van Overshee and De Moor 
(1993) and others) to disregard the positivity con- 
straint and to use algebraic rather than positive ex- 
tensions, usually computed by minimal factoriza- 
tion a block Hankel matrix such as (5), or by meth- 
ods which in principle are equivalent to this, even 
if the Hankel matrix is not explicitly computed. In 
fact, Assumption 1 may also be formulated in the 
following way. 

Assumption 2. The positive degree of (1) equals the 
algebraic degree. 

This assumption prescribes a property of the co- 
variance sequence (1) which is not generic. We can 
illustrate this point by considering the rational ex- 
tension problem for a finite scalar covariance se- 
quence (1). The positive degree p lies between the 
algebraic degree r and v. Note that neither the case 
p = v nor the case p < v are “rare events”, because 
there are open sets of covariance sequences (1) of 
both categories. In fact, it was shown in Byrnes 
and Lindquist (1996) that for each ~1 such that f i 
~1 I v there is an open set of covariance data in 
IF’ for which p = /_I. If the upper limit p = v is at- 
tained there are infinitely many nonequivalent mini- 
mal triplets (A, C, c) providing a positive extension, 
one of which is the maximum entropy extension. 
In fact, it can be shown that these v-dimensional 
extensions form an Euclidean space (Byrnes and 
Lindquist, 1989). This shows that the finite data (1) 
never contains enough information to establish a 
“true” underlying system. A similar statement can 
be made in the case when p < v. 

Example 1. Consider the case m = 1 and v = 2, 
i.e. consider a scalar partial covariance sequence 
{Ao,Ai,A2}. If Al = A2 = 0, we have r = p = 
0. Otherwise, we always have r = 1, whereas the 
positive degree can be either one or two. In fact, 
setting ~0 : = Ai/Aoandyr := (Af+Az)/(l-A:),it 
can be shown (Georgiou (1987); also see Byrnes and 
Lindquist (1996), where other examples are also 
given) that p = 1 if and only if 

IYOI 
IYII < - 

1 + I;Yol 

and p = 2 otherwise. 

In fact, it is not hard to construct examples for 
which the gap between algebraic and positive rank 
is arbitrarily large, as the following theorem shows. 

Theorem 3. Let n E Z+ be fixed. Then for an ar- 
bitrarily large v there is a stable rational function 
Z(z) of degree n, such that the Toeplitz matrix TV 
formed as in (8) from the coefficients of the Lau- 
rent expansion (7) is positive definite while TV+, is 
indefinite. 

Consequently, you cannot test the positivity of 
a rational extension of (1) by checking a finite 
Toeplitz matrix, however large is its dimension. 
The proof of Theorem 3 is given in Appendix A. 

Let us now return to the identification procedure 
of Aoki (1990). In practice the rank of H will al- 
ways be full, and to compute a partial realization of 
reasonable dimension the basic idea is to partition 
Z as 
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c= ‘30 
[ I 0 c2 ’ (21) 

where the singular values in Zz are smaller than 
those in &, perhaps close to zero, and then take 
& = 0 so that H is approximated by 

Cl 0 
HI=U o. 

[ 1 v’ = u,iE:, If,‘. (22) 

The matrix HI is a best approximation (given the 
rank) of H in (the induced) d2-norm, but it is 
in general not Hankel and hence cannot be used 
to determine a reduced order system. Of course, 
one may instead use Hankel-norm approximation 
(Adamjan et al., 1971), which produces another 
best approximation of H in f?z-norm that is Han- 
kel and has the same rank as HI. However, if 12 is 
“very small” compared to 11, then HI is close to 
H and hence approximately Hankel. For this rea- 
son, Aoki’s (1990) procedure is based on the orig- 
inal data H and a(H). Thus identifying HI with 
H in (22) and noting that Vi Vi’ = Z and l’i Vi’ = I. 
the same type of calculation as above yields the re- 
duced triplet (A,, C,, Cr) given by 

A, = C,“2U,‘u.(H)V,C;1’2, (23) 

C, = p, (HI V,~;“2, (24) 

C, = p, (H’W&“2. (25) 

It is not hard to see, and it is shown in Aoki 
(1990), that (23)-(25) is a “principal subsystem 
truncation in the sense that, if H is produced by 
a finite-dimensional system with (A, C, Cl having 
finite-interval balanced form (16~( 18), we have 

A,=A,1, c,=ci, f?r=C,. (26) 

where 

c=[c, c23. 

c= [Cl c2]. 127) 

In fact, since Ul U,’ = VI F’; = [Z. 01, this is seen 
by merely solving (16~(18) for (T(H), PI(H) and 
pi (H’) and inserting in (23)-(25). 

However, it must be shown that (26) corresponds 
to a stochastic system, i.e. that 

Zl(z) = Ci(zZ - A,,)-%‘; + ho 
2 (28) 

is positive real, provided of course that Z, defined 
by (6), is positive real. The question of stability was 
answered in the affirmative in Pernebo and Silver- 
man (1982) and is addressed in Aoki (1990). The 
crucial question of positivity, however, is not dis- 
cussed in Aoki (1990) and its validity is in doubt. 

Positivity will, however, be proven for a somewhat 
modified procedure described below. 

In fact, following Akaike (1975) Desai and Pal 
(1984) and Desai et al. (1985), instead of H we shall 
consider a normaiized Hankel matrix 

A = L;‘HL:? (29) 

where L- and L+ are lower triangular Cholesky 
factors of the Toeplitz matrices T_ and T+ of (1) 
and the corresponding sequence of transposed co- 
variances respectively; see Section 4 below. This is 
also the Hankel matrix considered in van Overshee 
and De Moor (1993). Taking the singular value de- 
composition of Z? instead of H, the singular values 
become the “canonical correlation coefficients”, i.e. 
the cosines of the angles between the past and the 
future of the process y. The systems matrices can 
be determined in a manner analogous to (16)-( 18) 
but now 

fi’T,-‘fz = 2 = &T_-‘fi (30) 

instead of (15) so the realization is not balanced in 
the same (deterministic) way as above. To see this, 
consider the singular value decomposition Z? = 
iifZ?l’ so that H = (L+t?),f(L_P)‘. Since H = 
Szh’ and this factorization is unique modulo coor- 
dinate transformation in state space, we may take 
R = L+ oz1f2 and d = L- i/%1/2. Then, (30) fol- 
lows from 6’ l? = Z = p’ P. As we shall see next, 
(30) corresponds to a more natural type of balanc- 
ing corresponding to a Hankel operator describing 
the interface between the past and the future of the 
time series y. 

3. STOCHASTIC REALIZATION THEORY IN THE 
HILBERT SPACE OF A SAMPLE FUNCTION 

In this section we introduce a mathematical 
framework which is suitable for the identifica- 
tion problem described above. We define a Hilbert 
space of observed (infinite) strings of data {JQ 1. 
This framework turns out to be isomorphic to that 
of geometric stochastic realization theory, thus 
allowing us to use the geometric concepts and ma- 
chinery of linear stochastic system theory as devel- 
oped in Lindquist and Picci (1985) and Lindquist 
and Picci (199 1) also for the statistical problem of 
identification. In this way we also establish a cor- 
respondence which converts operations on random 
quantities defined on abstract probability spaces 
into prototypes of statistical algorithms involving 
computations based on the observed data. 

In identification we have access only to a finite 
string of data 

~yo~yl,y2,.-.~YTl. (31) 

Here T may be quite large but, of course, always 
finite. To begin with, we shall, however, consider 
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the idealized situation that we are given a doubly 
infinite sequence of m-dimensional data 

{. . . I Y-~, Y-~, Y-~, yo9 Y], y2. y3.. 1 (32) 

together with a corresponding covariance sequence 
{Ak}kro, each matrix A& of the sequence being com- 
puted from the data (32) by an ergodic limit of the 
type (11). In Section 5 we then modify the theory 
to handle the situation of finite data (31): 

For each k E Z define the m x 00 matrix 

y(t) := CYl, yt+1,yr+2,* ..I (33) 

and consider the sequence y := {Y(?)}~~z. This ob- 
ject will be referred to as the m-dimensional sta- 
tionary time series constructed from the data (32). 
The space Y of all finite linear combinations 

1 UiYM a& E Iv, t/( E z 

is a real vector space and can be equipped with 
an inner product defined by linear extension of the 
bilinear form 

futy(k), &‘y(j)) := JiF_ j&fo$U’Y~+kY:ijb 
t-to 

= u’Ak_jb, (34) 

which clearly does not depend on to. This in- 
ner product is nondegenerate if the Toeplitz ma- 
trix Tk, constructed from the covariance data 

{Ao. Al, . . . , &}, is a positive definite symmetric 
matrix for all k. Here we shall assume that the se- 
quence ( Tk)kro is actually coercive, i.e. Tk > cl for 
some c > 0 and all k 2 0. (See Assumption 2 below 
for an alternative characterization.) We also define 
a “shift operator” U on the family of semi-infinite 
matrices (33), by setting 

Uu’y(t) = u’y(t + 1) t E z, u E lRm, 

defining a linear map which is isometric with re- 
spect to the inner product (34) and extendable by 
linearity to all of Y. In particular, the sequence of 
matrices {y(t) 1 corresponding to the time series y 
is propagated in time by the action of the operator 
U, i.e. 

.Yi(f) = u’yi(O), i=l,2 ,..., 112, tEZ, 

(35) 

where y; denotes the ith row component of y. Then, 
closing the vector space Y in the inner product (34), 
we obtain a Hilbert space H(y) := cl Y. The shift 
operator U is extended by continuity to all of H(y) 
and is a unitary operator there. 

As explained in more detail in Appendix B, 
this Hilbert space framework is isomorphic to the 
one described in Lindquist and Picci (1985) and 
Lindquist and Picci (199 1), and hence all results in 
the geometric theory of stochastic realization can 

be carried over to the present framework by merely 
identifying the time series y with a stationary 
stochastic process y. In particular, the subspaces 
H- and H+ of H(y) generated by the elements (33) 
for t < 0 and t 2 0, respectively, can be regarded 
as the past and future subspaces of the stationary 
process y. For reasons of uniformity of notation 
the inner product (34) will also be denoted 

as the frameworks are completely equivalent. Here 
we allow E ( - ) to operate on matrices of time series, 
taking inner products component-wise. Moreover, 
the coercivity condition introduced above insures 
that nrEzUcH- = 0 and nlEZUfH+ = 0, i.e. y is a 
purely nondeterministic sequence. 

As we have pointed out above, the subspace iden- 
tification methods of Aoki (1990) and van Overshee 
and De Moor (1993) are based on the assumption 
that the available data is generated by an under- 
lying stochastic system of finite dimension. More 
specifically, using the notations introduced above, 
we assume that the data are generated by a linear 
system of the type 

i 

x(t + 1) = Ax(t) + Bw(t), 

y(t) = Cc(t) + Dw(t) (37) 

defined for all t E Z, where w is some vector-valued 
normalized white noise time series * (say, of di- 
mension p), and (A, B, C, D) are constant matrices 
with A a stability matrix. Throughout this paper 
we shall assume (without restriction) that (A, B, C) 

linearly independent columns. 

is a minimal triplet and that the matrix 
B 

[ 1 D has 

The system is assumed to be in statistical steady 
state so that the n-dimensional state x and the m- 
dimensional output y are uniquely defined by (37) 
as linear causal functionals of the past input w. This 
clearly implies that x and y are jointly stationary 
time series so that in particular, the cross-covariance 
matrices of x(t) and y(s) will depend only on the 
difference I - S. We shall think of the system (37) 
as a representation of the output time series y. The 
state and input variables x and w are introduced in 
order to display the special structure of the dynamic 
model of y and are by no means unique. Such a 
representation is called a state space realization of 

Y. 

Remark 1. Despite the fact that the model (37) is 
defined in terms of sample sequences, all equalities 
must be understood in the sense of Hilbert space 
metric, just as in the case of models based on ran- 
dom variables. 

* This means that E{w(l)w(s)‘) = 16,. where cS,,~ is the Kro- 
necker delta. 

AUTO 32:5-D 
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The number of state variables n is called the di- 
mension of the realization. A realization is minimal 

if there is no other realization of y of smaller di- 
mension. In this case the covariance matrix of the 
state vector, 

P = E{x(t)x(t)‘} (38) 

is positive definite. Moreover as the matrix 
B 

[ 1 D 

is taken with linearly independent columns, the 
number of (scalar) white noise inputs p is also as 
small as possible. Clearly, the covariance sequence 
{Ao, Ai, AZ,. I of the output {y(t)} of a minimal 
model (37) is a rational sequence of degree n, i.e. 
represented as 

i 

Ak = CAk-' C’ k = 0, 1,2, . , 

where ? = APC’ + BD’, 

A0 = CPC’ + DD’. (39) 

In the following we shall need to assume that the 
corresponding spectral density@(z) satisfies the fol- 
lowing condition. 

Assumption 4. The spectral density Cp of the output 
process of the underlying system (37) is coercive in 
the sense that 

@(e”) > 0 for all0 E [0,27-r]. (40) 

In particular, y is a full-rank process, i.e. its com- 
ponents are linearly independent sequences. Recall 
that a positive real function Z such that a(z) := 
Z(z) + Z(z-' )’ satisfies (40) is called strictly posi- 
tive real. 

Let H(w) be the Hilbert space generated by W, i.e. 
the closure of the linear space spanned by the family 
{wi(t), i = 1 p, t E Z} with respect to the met- 
ric induced by the inner product (5, Q) = E{E ~1, 
where E {. } is defined by (36). Let H+ and H- be 
the subspaces of H(w) generated by the compo- 
nents of future {y(O), y( l), y(2). . I and past out- 
puts {y(--l),y(-2),y(-3). . 1, respectively. 

The subspace 

X := {a’x(O) 1 a E W”} (41) 

is invariant under coordinate changes of the 
type (A, B,C) - (TAT-‘, TB, CT-‘) and is a 
coordinate-free representation of the realization 
(37). Such an object is called a Markovian split- 
ting subspace in Lindquist and Picci (1985) and 
Lindquist and Picci (1991). Next, define the sta- 
tionary Hankel operator of y, H : H+ - H- as 

H := EH- lH+, (42) 

where EH-h is the orthogonal projection of h onto 
H- The splitting subspace property of X is equiv- 
alent to the commutativity of the diagram 

H+ ?t H- 

o*\. rc 

x 

i.e. to the factorization 

3f- = co*, (43) 

where the operators 0 := EH+ IX and C := EH- lx 

are the observability and constructibility operators, 
respectively, relative to the splitting subspace X. 
It can be shown that the splitting subspace X is 
minimal if and only if 0 and C are both injective 
(see, e.g. Lindquist and Picci, 1991). 

The system (37) is a forward or causal realization 
of y in the sense that the subspace H+ (w), generated 
by the future of W, is orthogonal to X and H-, i.e. 
to the present state and past output. Corresponding 
to (37) there is another realization 

i 

f(t - 1) = A’_t(t) + l%(t - l), 

r(t - 1) = C%(t) + &(t - 1). 
(44) 

which is backward or anticausal in the sense that 
the subspace H- (tt), generated by the past of $‘, is 
orthogonal to X and H+. Like x(O), z(O) is a basis 
in X, i.e. 

X := {a/z(O) I a E IV). (45) 

In fact, X(0) is the dual basis of x(O) in the sense 
that E{x(O).?(O)‘} = I. Hence 

p = p-’ X(O) = P_‘x(O). (46) 
The particular notations used in (37) and (44) reflect 
the special meaning of the parameters (A, C, c). 

Computing the covariance matrix of the output us- 
ing the dual realizations (37) and (44), it is in fact 
readily seen that (A, C, c) is precisely a triplet real- 
izing the positive real part (6) of the spectral den- 
sity matrix Q(z) of the time series y. There are in- 
finitely many minimal factorizations (43), one for 
each Markovian splitting subspace, but the basis in 
each state space X can be chosen so that the triplets 
(A, C, c) are the same for each minimal X. This 
is called a uniform choice of bases (Lindquist and 
Picci, 199 1). 

Important examples of minimal splitting sub- 
spaces are the forward and backward predictor 
spaces 

X- = EH-H+ X+ = EH+H-, 

(47) 

which are the orthogonal complements of the null 
space of the Hankel operator (42) and of its adjoint, 
respectively. 

Fixing a uniform choice of bases, and thus the 
triplets (A, C, c), the splitting subspace X- has the 
forward stochastic realization 

x_(t + 1) = Ax-(t) + B-w-(t), 

y(t) = Cx-(t) + D-w-(t), 
(48) 
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with state covariance P- , and X+ has the backward 
realization 

I 

#?+(t - 1) = A’2+(t) + B+3+(t - l), 

y(t - 1) = &+(t) + b+@+(t - I), 
(49) 

with state covariance p+ . 
These two stochastic realizations will play an im- 

portant role in what follows. In fact, an important 
interpretation of these realizations is that 

x_(t + 1) = Ax-(t) + B_D?[y(t) - Cx-(t)] 
(50) 

is the unique steady-state Kalman filter of any min- 
imal realization (37) of y in the fixed uniform choice 
of bases. Moreover, if P+ is the state covariance ma- 
trix (38) corresponding to the forward counterpart 
of (49), i.e. P+ = @+)-I, then 

P_ I PI P+ (51) 

for the state covariance of any minimal realization 

(37). 
In the same way 

Z+(t - 1) = A’x+(rf + B+Iq’[y(t - 1) - CZ+(t)l 

is the backward steady-state Kalman filter of all 
minimal backward realizations (44), and 

for an arbitrary backward minimal realization (44), 
where p_ is the backward counterpart of P-. 

4. CANONICAL CORRELATIONS AND BALANCED 
STOCHASTIC REALIZATION 

In this section we characterize the properties of 
minimal factorizations of the (stationary) Hankel 
operator (42) of a time series admitting a finite- 
dimensional realization of the type (37). Equiva- 
lently, we study certain factorizations of the infinite 
Hankel matrix of the corresponding infinite covari- 
ante sequence {As, Ai, AZ,. . . 1. Some portions of 
this section can be found in an equivalent but some- 
what different setting in Section 2 of Desai et al. 
(1985). Here we need to recall the basic concepts 
and set notations. This will be done in the geomet- 
ric framework of Section 3, thereby providing sev- 
eral new insights. 

To obtain a convenient matrix representation 
of the Hankel operator H we shall introduce or- 
thonormal bases in H- and H+. To this end it will 
be useful to represent past and future outputs as 
infinite vectors in the form 

y(--1) 
I 1 y(-2) 

Y- = L"r"']n Y+ = i'"']. (52) 

Let L- and L+ be the lower triangular Cholesky 
factors of the infinite block Toeplitz matrices 

T- := E{y_y’_} = L-L:, T+ := Ety+y:} = L+L: 

and let 

v := LI’y_, P := L;‘y+ (53) 

be the corresponding orthonormal bases in H- and 
H+, respectively. Now, (39) implies that 

rAi ~~ A~ . ..i 
A2 Aj A4 . 

Hm:=Eiy+y’_I = A3 A4 As .__ 
I 

1 . . . . . . . . . . . . J 

(54) 

and therefore we have the following representation 
result, which can be found in Desai et al. (1985). 

Proposition 1. Let y be realized by a finite dimen- 
sional model of the form (37). Then, in the or- 
thonormal basis (53) the matrix representation of 
the Hankel operator ti is 

&, = L;‘E{y+y’)LI= = L;‘Rh’LI=, 

(55) 

where 

a=[!~] and fi=[giZ]. (56) 

Note that, with a uniform choice of bases, we 
obtain the same matrix factorization (54) for H,, 
irrespective of which X (i.e. which minimal realiza- 
tion of y) is chosen. 

Recall that the adjoint 0* of the observability 
operator 0 is defined as the unique linear operator 
H+ - X such that (05, h) = (5, O*h) for all 5 E 
X and h E H+. Orthogonality implies that 

(EH+ 5, A) = (5. A) = (5. EXh), 

and therefore O* = EX I H+ . In the same way, we 
see that C* = EXIT-. The finite-rank linear op- 
erators 0*0 and C*C are defined on X and are 
the coordinate-free representations of the observ- 
ability and constructibility gramians. The splitting 
subspace X is observable if and only if 0* 0 is full 
rank and constructible if and only if C*C is full 
rank. The following representations show that these 
gramians are related to P- and p+, the state co- 
variances of the forward and backward steady-state 
Kalman filters (Picci and Pinzoni, 1994). 
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Proposition 2. Let x(O) and X(0) be the conjugate 
basis vectors in a minima1 splitting subspace X as 
defined above. Then, in a uniform choice of bases, 

0*0 a’Z(O) = a’F+x(O) (57) 

and 

from which (59) follows. A symmetric argument 
yields (60). 

C*Ca’x(O) = a’P_.F(O), (58) 

i.e. C*C and O*O have matrix representations P_ 

and p+,, respectively, independently of X. 

To interpret this result in the context of balanced 
realization theory one should note that the matrix 
representations of 0* and C* are the transposes of 
those of 0 and C if and only if x(0) is an orthogonal 
basis, i.e. P = ii = I. Moreover, it follows from (59) 
that 

O*Ou’x(O) = u’Q’T,-‘Rx(O), 
Proof It is shown in Lindquist and Picci ( 1991) 
that, since X is minimal, 

EHm a’x(0) = u’x- (0), 

showing that R’T;‘!A is a matrix representation of 
0*0, in harmony with the analysis at the end of 
Section 2. In the same way, (60) yields 

and therefore C*Cu’x(O) = u’f?‘T~‘fi~(0), 

C*Cu’x(O) = EXu’x_(0) = E”u’P_.Z_(O). 

But, since the bases X(0) and X_ (0) are chosen uni- 
formly 

and hence fi’T:‘fi is a matrix representation of 
C*C. Together with Proposition 2 this yields the 
following explicit formulas for P- and p+: 

EXu’x-(0) = ~‘$0) a E R”. R/T,-‘fl = P+, &T_-‘fi = p_, 

(62) 
and consequently (58) follows. The proof of (57) is 
analogous. 

The factorization (5.5) can also be derived from 
(43) and the following useful matrix representations 
of the observability and constructibility operators. 

Now, let {al, ~2, a~, } be the singular values 
of the Hankel operator H. Since rank H = n, 
a; = 0 for i > n. The nonzero singular values 

I 2 UI 2 a2 2 o-3. 2 cTn > 0 (63) 

Proposition 3. Let x(O) and X(O) be basis vectors 
for the minima1 splitting subspace X given by (41) 
and (45). Then 

0 u’x(0) = u’R’L;%, 

and 

0* b’ij = b’L;Qx(O) 

(59) 

are the cosines of the angles between the subspaces 
H- and H+; they are known as the canonical cor- 
relation coejicients of y (Hotelling, 1936; Ander- 
son, 1958). Obviously crl < 1 if and only if H_ n 
H+ = 0. The squares of the canonical correlation 

Cu’x(0) = u’!a’LITv, C* b’v = b’L~‘~zX(O), 

(60) 

where R and fi are given by (56). 

coefficients are the eigenvalues of 3f*ti 

3J*3iY zi = flfzi, 

which, in view of (43) may be written 

O*OC*C(O*~i) = U,‘(O*si), 

Proof Since, in view of (37) 

y+ = Rx(O) + terms which are orthogonal toX 

and V = L;‘y+, we have 

E{Gx(O)‘} = L;‘RP (61) 

Consequently, for any a E R”. the usual projection 
formula * yields 

and, therefore, as was also demonstrated in Picci 
and Pinzoni (1994) 

h{O*OC*C} = {a?, a; )___, a;}, (64) 

I.e. a:, pi,. _, CT: are the eigenvalues of O*OC*C. 
But, in view of Proposition 2, this is precisely the 
coordinate-free version of the invariance condition 

Ou’x(0) = E”+u’x(O) = u’E{x(O)?‘}P 

and 

{a:,o;,...,a,2} =h{P_F+} 

of Desai and Pal (1984). 

0* b’D = EXb’V = b’E{?x(O)‘}P-‘x(O) 

* If Ej E H(w) and the subspace Z c H(w) is spanned by 

the components of the full-rank random vector z, then Ez$ = 

E(~z’)(Elzz’l)-‘z. 

This suggests that an appropriate uniform choice 
of bases would be the one that makes P- and p+ 
equal and equal to the diagonal matrix of nonzero 
canonical correlation coefficients. 

In fact, in view of Proposition 1, the infinite nor- 
malized Hankel matrix fiW is the matrix represen- 
tation of the operator 3f’ in the orthonormal bases 

i.e. 

(65) 
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(53). Therefore, & has the singular-value decom- 
position 

& = u,.Z:,v; = &XV’, (66) 

where C is the diagonal n x n matrix consisting of 
the canonical correlation coefficients 

2 = diag{al, o-2,03, . . , a,,}, (67) 

and ,& is the infinite matrix 

CO 
La= 00 . 

[ 1 

Moreover U, and V, are infinite orthogonal ma- 
trices, and U and V are 00 x n submatrices of U, 
and V, with the the property that 

U’U=I= v’v. (68) 

We now rotate the orthonormal bases (53) in H+ 
and H- to obtain u := UA3 and v := VLv, respec- 
tively. Note that E {uv’} = .Z:,. What makes these 
orthonormal bases useful is that they are adapted 
to the orthogonal decomposition * 

H- v H+ = [H- n (H+)‘] 

@Ho $ [H+ n (H-1’1, (69) 

where Ho := A’_ v X+ is the so-called frame space 
(Lindquist and Picci, 1985; Lindquist and Picci, 
1991), in the sense that 

X- =span{vi, ~2,. . . , v,} 

X+ =span{ui, 242,. . . ,u,). 

This is true since X- is precisely the subspace of 
random variables in H- having nonzero correla- 
tion with the future H+ and, dually, X+ is the sub- 
space of random variables in H+ having nonzero 
correlation with the past H-. Since therefore 

Iv,+1, vn+2, vn+39.. . 1 and L+I, 4,+2, un+3,. . . 1 
span H- n ( Hf)l and H+ n (H- )I, respectively, 
these spaces will play no role in what follows. 

Now define the n-dimensional vectors 

r ~11% i 
ii2 

02 v2 
z= 

i-i 

= .PV’LZ’p_, 

a; %, 

r uff2w 1 
i/2 

&G= 
a2 u2 I i 1 = cW’L;‘y+, (70) 

o;%, 

From what we have seen before, z is a basis in X_ 
and Z is a basis in X+, and they have the properties 

E{zz’} = c = E{E’}. (71) 

* The symbols v and @ denote vector sum and orthogonal 
vector sum of subspaces. 

In fact, we even have more as seen from the follow- 
ing amplification t of a theorem by Desai and Pal 
(1984, Theorem 1). 

Theorem 5. The basis vectors 

x_(O) = z, Z+(O) = Z (72) 

in X- and X+, respectively, belong to the same 
uniform choice of basis, i.e. to the same choice of 
triplets (A, C, C), and in this uniform choice 

P_ = c = F+. (73) 

If the canonical correlation coefficients 1 cri , (fz, ~3, 
a,) are distinct, this is, modulo multiplication 

with a signature matrix * , the only uniform choice 
of bases for which (73) holds. 

Such a choice of (A, C, C) is know as “stochasti- 
tally balanced”, and, in the case of distinct canon- 
ical correlation coefficients, it defines a canonical 
form with respect to state space isomorphism in (6) 
by fixing the sign in, say, the first element in each 
row of C. Such canonical forms have also been stud- 
ied by Ober (1991). 

Proof It follows from (55) and (66) that 

E{Zz’) = E2. (74) 

Now, choose (A, C, C) so that Z+(O) = Z, and let 
the bases in the other splitting subspaces be cho- 
sen accordingly so that the choice of bases is uni- 
form. We want to show that x- (0) = z. To this end, 
first note that x+ (0) = X:-‘i+ (0) and that X- (0) = 
EX-x+(O); see Lindquist and Picci (1991). Then, 
by usual projection formula and the fact that z is a 
basis in X- 

x_(O) = Z-‘E{Zz’}C-‘z, 

which, in view of (74), yields x- (0) = z as claimed. 
Hence (73) follows from (71). 

Next, suppose that (QAQ-i, CQ-‘, CQ’) is 
another uniform choice of bases which is also 
stochastically balanced. Since then x_(O) = Qz 
and, as is readily seen from the backward sys- 
tem (44), X+(O) = QeTZ so that P- = QXQ’ and 
p+ = Q-TZQ-‘, (73) yields 

QEQ’ = C and QmTZQ-’ = C, 

from which we have 

QC2 = C2Q. 

Since C has distinct entries, it follows from Corol- 
lary 2, p. 223 in Gantmacher (1959) that there is 

t A priori there is no reason why choosing bases in X- and 
X+ would lead to the same (A, C, c). This important property 
is explicitly mentioned in Theorem 5. 
* A signature matrix is a diagonal matrix of f I. 
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a scalar polynomial Q?(Z) such that Q = cp(C2). 
Hence Q is diagonal and commutes with Z so that, 
by QZQ’ = Z:, we have 

QQ’ = I. 

Consequently, since Q is diagonal, it must be a sig- 
nature matrix. 

In view of (72) and (46), the first of relations (60) 
and (59), respectively, yield 

.z = !$TI’Y- z = UT,-‘Y,. (75) 

Consequently, in view of (71) (30) holds also for 
the case of an infinite Hankel matrix. This can, of 
course, also be seen from (62). 

Note that the normalization of the block Hankel 
matrix H, is necessary in order for the singular val- 
ues to become the canonical correlation coefficients, 
i.e. the singular values of J-f. In fact, if we were to 
use the unnormalized matrix representation (54) of 
3f instead, as may seem simpler and more natural, 
the transpose of (54) would not be the matrix rep- 
resentation of 3f* in the same bases, a property 
which is crucial in the singuiar value decomposition 
above. This is because (54) corresponds to the bases 
y- in H- and y, in H+, which are not orthogonal. 
As we shall see in the next section, this holds also 
in applicable parts for the finite-dimensional case 
studied in Section 2, and therefore the normalized 
Hankel matrix Z?, defined in Section 2, is preferable 
to the unnormalized H. 

Formulas, such as (16)-(18) expressing A, C, C 
in terms of the Hankel matrix H,, can be easily 
derived from basic principles. In fact, standard cal- 
culations based on the forward model (37) and the 
backward model (44) yield 

A = E{X(l)X(O)‘W-‘, (76) 

c = E{y(O)x(O)W’, , (77) 

c= E{y(-l)x(O)‘}P-’ = E(y(-1)x(O)‘} (78) 

for any dual pair of bases x(0) and R(0). 

Proposition 4. The triplet (76)-(78) corresponding 
to the stochastically balanced bases (70) can be 
computed by means of the formulas 

A = ~-“2U’L-‘~(H,)L-TV~-‘12 + I (79) 

C = pi (H,)LITVI-“2, @W 

c = pI (H;)L;TUC-“2, (81) 

where H, is the unnormalized Hankel matrix (54) 
CJ(H,) is obtained from H, by deleting the first 
block row, and pr (H,) is the first block row. 

Proof: First, in (76) and (77). we take x(O) to 
be X- (0). By the Kalman filter representation 

H- for all a E JR”, a’[x+(I) -x-(I)] i UH- > 
we have 

Elx_(l)x_(O)‘] = E(x+ (lb-@)‘I 
= p,-‘E{X+(l)x_(O)‘}. 

But, (A, C, C) is stochastically balanced, and there- 
fore, by Theorem 5 and (70), P- = C = p+, x_ (0) = 

C1’2V’L~‘y_ arid_?+++ 1) = C”*U’L;‘a(y+), where 
a(_~+) is obtained from Y+ by deleting the subvec- 
tor corresponding to time t = 0. Consequently, in 
view of (76) 

A = C-“2U’L;‘E{~(y+)y:}L~TV~-“2, 

which is identical to (79). Likewise, from (80) 

C = E{y(O)y-}LI ‘KY”=, 

which yields (80). Finally, taking X(0) to be i+(O) 
in (78), a symmetric argument yields (81). 

Note that (79)-(81) are obtained by applying 
the Ho-Kalman algorithm to H, factorized corre- 
sponding to the singular-value decomposition (66). 

5. STOCHASTlC REALIZATION FROM FINITE 
COVARIANCE DATA 

In this section we modify the realization theory 
of Section 4 to the case that only a finite segment 

MO),y(l),y(2), ,Y(V)l> (82) 

of the time series {y(t) } is available. We still define 
each y(t) as the semi-infinite string (33) of data, and 
therefore we can form, via the ergodic limit (1 I), an 
exact partial covariance sequence 

1AO,AI,AZ... .A,l. (83) 

The corresponding realization problem, which is 
purely theoretical and is intended to prepare for 
the more realistic identification situation with finite 
strings of observed data (Section 6), is therefore the 
partial stochastic realization problem mentioned in 
Section 2. We retain the crucial Assumption 1, im- 
plying that the data (82) is the output of some min- 
imal “true” system (37) of dimension n and that v 
is large enough for n to equal the positive degree of 
the partial sequence (83). 

Now, suppose that v = 2~ - 1, and partition the 
data into two matrices 

representing the past and the future, respectively, 
and define the corresponding (finite-dimensional) 
subspaces Y; and Y,? spanned by the rows of y; 
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and y: , respectively, as explained in Section 3. Since 
the data size T will be important in the consider- 
ations that will follow, we denote the finite block 
Hankel matrix H of Section 2, relative to the data 
(84), by H,, i.e. 

HT = ay;(y;)‘l. (85) 

Let TO be the smallest integer T such that rank 
HT = n. It is well-known that TO is the maximum 
of the observability and constructibility indicies of 
(A, C, c), so n is an upper bound for TO. As pointed 
out in the beginning of Section 2, we need T > TO 
to be certain that the factorization of HT yields a 
unique (A, C C). 

Next, we shall consider the class of minimal split- 
ting subspaces for Y; and Yq, i.e. the subspaces 
X, admitting a canonical factorization 

Y,’ 5 Y,- 

o;\ yc, 

Xr 

of the finite-interval Hankel operator 

3fr := EC Iy;. (86) 

It is standard (Lindquist and Pi&, 1985; Lindquist 
and Picci, 1991) to show that the forward and back- 
ward predictor spaces 

8 _ = EY; Y,” T and &+ = EYG YF 

are such minimal splitting subspaces. The proof of 
the following theorem is deferred to Appendix D. 

Theorem 6. Let X be a minimal Markovian split- 
ting subspace for the stationary time series {y(t)}. 
Then, if T > TO 

XT:= UTX (87) 

is a minimal splitting subspace for Y; and Y,+, and 

Xr- = EY;X l-t &+ = Ey=XT. (88) 

Conversely, any basis a(~) in XT- has a unique 
representation * 

Z(T) = E';x(T), (8% 

where X(T) is a basis in X,, and any basis ;(T) in 
Xr+ has a unique representation 

f(~) = EY:Z(~), (90) 

with Z(T) a basis in X,. As X varies over the family 
X of all minimal Markovian splitting subspaces, 
the corresponding x(0) [Z(O)] constitute a uniform 
choice of bases. 

The stochastic realizations corresponding to the 
finite-interval predictor spaces XT_ and Xr+ are 

* With slight misuse of notations, the orthogonal projection 
operator applied to a vector will denote the vector of the 
projections of the components. 

nonstationary. However, taking advantage of the 
representations (89) and (90) we shall be able to ex- 
press these realizations in such a way that they can 
be parameterized by the stationary triplet (A, C, C) 
corresponding to one uniform choice of bases, both 
for the forward and the backward settings. In fact, 
if the bases .?(T) and .?(T) are chosen so that X(T) 
and Z(T) in representations (89) and (90) -are dual 
bases in X,, i.e. E{x(T)_?(T)} = I, then the same 
choice of (A, C, C) is used for all X E X. Such a 
choice of bases in Xr_ and Xr+ is called coherent. 

The realizations generated by these coherent 
bases are precisely the (transient) forward and 
backward Kalman filters. In fact, the vector Z(T) 
is the one-step predictor of x(r) based on Y; and, 
as shown in Appendix C, it evolves in time as the 
Kalman filter 

a(t + 1) =A%) + K(t)[y(t) - CZ(t)]; 

i(O) = 0, (91) 

where the gain K(t) is given by 

K(t) = (% - AP_(t)C’)(Ao - CP_(t)C’)_1 

(92) 

and the filter estimate covariance 

P_(t) = E{i(r)i(r)‘} (93) 

is the solution of the matrix Riccati equation 

t 

P-0 + 1) = AP_(t)A’ + (el - AP-(t)C’) 

(AI-J - CP- (t)C’)-’ cc’ - AP- (t)C’)‘. 

P_(O)) = 0. (94) 

Symmetrically, in terms of the backward system 
(44) corresponding to (37), the components of 

I =EYTZ(~) (95) 

form a basis in &+ and are generated by the back- 
ward Kalman filter 

?(t - 1) = A’&) + R(t)[y(t - 1) - G(t)], 

i(2T - 1) = 0, (96) 

with 

&:(t) = (C’ - A’P+(t)P)(A, - CP_(t)C’)_‘, 

(97) 

where 

F+(t) = E{?(t);(t)‘} (98) 

is obtained by solving the matrix Riccati equation 

{ 

F+(r - 1) = A’F+(r)A + (C’ - A’F+(r)c) 
(A0 - cY+ (r)P)-l (C’ - A’F+ (r)C’)’ 

p+,(2T- 1) = 0. (9% 

Now, it is well known that both 

v(r) = (A0 - CP_(r)C’)-1’2[y(r) - Ciqr)] 
(W 
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and 

C,(t) = (A0 - @+(t)i;‘)-“2[y(t - 1) - &t)] 

(101) 

are normalized white noises, called the forward and 
backward (transient) innovation processes, respec- 
tively. Consequently, we may write the Kalman fil- 
ter (91) as 

i 

_?_(I + 1) = II.?(t) + B_(t)v(t), 

y(t) = CW) + D_(t)v(t), 
(102) 

where D_(t) := (A0 - CP_(t)C’)“2 and B_(t) := 
K(t)D- (t). Likewise. the backward Kalman filter 
(91) may be written 

i 

+?(t - 1) = A’;(t) + B+(t)W - I), 

y(t - 1) = G(f) + D+(t)g(t - 1). (103) 

where b+(t) := (A0 - CP+(t)i;‘)“2 and B+(t) := 
k(t)D+(t). Comparing with (37) and (44). we see 
that (102) and (103) are stochastic realizations, 
which unlike (37) and (44) are time-varying and de- 
scribe the output y only on the interval [O, 27 - 1 I. 
In fact, since 

P - P_(t) = E{[x(t) - _Z.(t)l[x(t) - 3t)l’I 2 0. 

and, for the same reason, p - p+(t) 2 0, we have 

P_(t) I PI P+(t) := I’+(t)_‘. 

(104) 

so we see that the predictor spaces .?_ and J?r+ 
are extremal splitting subspaces, just as X_ and X+ 
in (51). 

It is now immediately seen that the finite-interval 
counterparts of equations (76)-(78) are given by 

A = E{~(T + l)_?(~)’ lP_ (T)~‘, (105) 

C = E{JJ(T)~(T)‘IP_(T)-‘, (106) 

c = E{y(T - l);(T)’ iii, (T)-I 

= E{y(T - l)i(T)’ 1. (107) 

In complete analogy with the stationary frame- 
work in Section 4, the canonical correlation coeffi- 
cients 

1 2 (Tl(T) 2 CTz(T) 2 . . 2 C*,(T) > 0 

(108) 

between the finite past Y; and the finite future Y,+ 
are now defined as the singular values of the opera- 
tor HT given by (86). To determine these we need a 
matrix representation of _!Mr in some orthonormal 
bases. Using the pair (lOO)-( 101) of transient in- 
novation processes for this purpose, we obtain the 
normalized matrix (29) which we shall here denote 
I&. Singular value decomposition yields 

where UT lJ: = I = VT VG, and .ZT is the diagonal 
matrix of canonical correlation coefficients. As in 
Section 4 it is seen that 

Z(T) = cj’2v;(L;)-‘y;, 
Z(T) = c;“f&(L;)-‘y; (110) 

are bases in fr- and 2r+, respectively, and that 

E~z(T)z(T)‘I = C, = E{Z(T)Z(T)]. 

U11) 

Here L; and L,+ are the finite-interval counterparts 
of L- and L+, respectively, and they are of course 
submatrices of these. Note that HT, as defined by 
(85), is now given by 

HT = L;lj,(L;)‘. (112) 

We observe that, in analogy to Theorem 5, Z(T) 
and Z(T) are coherent bases, and the correspond- 
ing triplet (A, C, C) is a finite-interval stochastically 
balanced realization, i.e. 

P-(T) = IT = p+(T). (113) 

The following finite-interval modification of Propo- 
sition 4 is essentially the canonical singular-value 
decomposition version of the Ho-Kalman algo- 
rithm applied to the finite block Hankel matrix HT, 

and the proof is analogous. 

Proposition 5. The finite-interval stochastically 
balanced triplet (AT, C,, Cr), obtained from (105)- 
(107) by choosing the bases Z(T) = Z(T) and 
if(~) = Z(T), iS given by 

A, = ~:T”~U:(L=)-‘~(H,)(L;)-~V~/,CT”~, 

CT = p,(HT)(L;)-TVTZ;“2, 

CT = p,(H;)(L;)-TUTC;“2, (114) 

where the operators a(. ) and p I (. ) are defined as 
in Section 2 and in Proposition 4. 

Note that the triplet (A,, C,, C,) actually varies 
with T. but that, for each T, it is similar to the 
stochastically balanced triplet (A, C, C) of Section 
4, i.e. there is a nonsingular matrix Qr so that 

(A,, C,, C,) = (QJQ;‘, CQ;‘. CQ:). 
(115) 

It is easy to check that, in the uniform choice of 
bases corresponding (115), the stationary predictor 
spaces X_ and X+ will have the state covariances 

P- = QJQ; and p+ = QiTZQ;‘, 

(116) 

analogously to the situation in the proof of Theo- 
rem 5. The fact that these state covariances are not 
diagonal and equal is a manifestation of the fact 
that the triplet (A,, C,, Cr) is not stochastically bal- 
anced in the sense of Section 4. It is well known 
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that P_(t) and p+ (t) tend monotonically to P_ and 
ij+, respectively, as t - 00, and therefore we have 
the following ordering: 

P-(T) := 2, I P_ 5 @+)-I I (p+(T))-' := 2;'. 

Since the number n of nonzero singular values 
(108) is in general too large to yield a reasonable 
model, we must consider what happens when some 
of the smallest singular values are set equal to zero. 
The truncation procedure employed by van Over- 
shee and De Moor (1993) is equivalent to the prin- 
cipal subsystem truncation presented in Section 2, 
except that, and this is very important, the singular- 
value decomposition is performed on the normal- 
ized block Hankel matrix &, which is the natural 
matrix representation of the operator Hr. It will 
be shown in Section 7 that such a truncation will 
preserve positivity in the stationary case (Theorem 
10). In order to carry this result over to the case of 
finite T, we need to assume that the spectral den- 
sity Cp of the time series {Y(r)} is coercive so that 
Assumption 2 is fulfilled, i.e. that the function Z is 
strictly positive real. 

The following theorem is a corollary of Theo- 
rem 10, to be proved in Appendix D, shows that 
principal subsystem truncation preserves positivity 
provided T is chosen large enough. 

Theorem 7. Suppose that the spectral density Cp of 
the time series {Y(t)} is coercive. Then, there is an 
integer TI > TO such that, for T 1 ~1, the princi- 
pal subsystem truncation ((A,)ii, (CT)i, (CT)i) of 
(AT, C,, CT) is a minimal realization of a strictly 
positive real function (28). 

6. SUBSPACE IDENTIFICATION 

The analysis in Sections 3-5 is based on the ide- 
alized assumption that we have access to an infinite 
sequence (32) of data. In reality we will have a$rzite 
string of observed data 

IYO, Yl, Y2,. . . , YNI, (117) 

where, however, N may be quite large. More specif- 
ically, we assume that N is sufficiently large that 
replacing the ergodic limits (11) by truncated sums 
yields good approximations of 

{Ao, Al, A2 * *. , A,), (118) 

where, of course, Y K N. This is equivalent to say- 
ing that T := N - v is sufficiently large for 

to be essentially the same as the inner product (34). 
In this section, therefore, we shall use the finite- 

interval realization theory of Section 5 as if we had 
a finite time series 

{y(O), y(l), y(2),. . . , y(v)), (120) 

while substituting the semi-infinite string (33) of 
data by 

y(t) = [y,, Y,+I,. . . , YT+,I for r = 0, 1,. . . , v. 
(121) 

In particular, in this case the inner product becomes 
merely that of a finite-dimensional Euclidean space 
so that the block Hankel matrix & can be written 

HT = &Y:(Y;)‘. 

where 

YT-2 YT-1 . . . YT+,-2 
v; = . . . . *. and 

* . . . 

YO Yl . . . YT 

r YT Y,+1 . . . YT+T 1 
v: = 

YT+l Y,+2 . . . 

*. 

Y2T-1 y2T . . . yT+Zr-1 

Consequently, the identification of a minimal sta- 
tionary state space innovation model describing the 
data (117) can be performed in the following steps: 

(1) 

(2) 

(3) 

Perform canonical correlation analysis-on the 
data y;, yf to obtain, from (110) the state 
VeCtOrs k(T) = z(T) and i+(T) = Z(T) and, 
from (109) the corresponding common state 
covariance matrix CT, i.e. the diagonal matrix 
of the (finite interval) canonical correlation co- 
efficients (108). 
Given the singular value decomposition (log), 
compute via (114) a minimal realization 
(A, C, C). This realization will be in finite- 
interval balanced form, i.e. (113) will hold 
instead of (73). 
To obtain a state space model (37) for y we 
need to compute the matrices B and D. Note 
that such matrices will exist if and only if 
(A, C, C, Ro) defines a positive real function 
(6), or, in other words, if and only if there is a 
symmetric positive definite P = P’, such that 

M(P) := 
P - APA’ c’ - APC’ 
c _ cpA’ Ao _ cpc’ 1 2 0. (122) 

(See, e.g. Faurre et al. (1979) or Willems 
(197 l).) For each P satisfying (122), B and D 
can be determined (in a nonunique way) by a 
full rank factorization of M(P), i.e. 

[ B’ D’ ] = MU’). (123) 
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(4) In particular, the (stationary) forward in- 
novation model (48) can be determined in 
this way once the state covariance P- = 

E{x-(t)x-(t)‘] has been determined. Ob- 
taining P- amounts to finding the minimal 
solution of the algebraic Riccati equation 

P =APA’ f (c’ - APC’) 

(A0 - CPC’)-‘(c’ - APC’)’ (124) 

or, alternatively, taking the limit in the Ric- 
cati equation (94) as 1 - w with initial con- 
dition P_(T) = 1,. (The corresponding dual 
procedures yield p+.) Again, in both cases, a 
positive definite P_ can be found if and only 
if (A, C, c, Ao) defines a positive real function 
(6). In fact, in general, {P-(t)}rz~ may not 
even converge unless this positivity condition 
is fulfilled and may in fact exhibit dynamical 
behavior with several of the characteristics of 
chaotic dynamics (Byrnes et al., 1991; Byrnes 
et al., 1994). 

Assuming that Assumption 1 holds, this pro- 
cedure is consistent in the sense that, for T fixed 
but sufficiently large (see Section 2), we will have 
rankHT = n as T - w, and the triplet (A, C, c) 
will be uniquely determined from the data and 
similar to the triplet (A, C, c) of the “true” gener- 
ating system. Hence, in particular, in the limit as 
T- w, at least in theory positivity will be guar- 
anteed. If fi is an upper bound for the order of the 
“true” system, we may choose T to be any integer 
larger than ri. 

In practice, however, T is finite, and even if we 
had a true system generating exact data, the spec- 
tral estimate a’~, although converging to the true 
spectrum Cp as T - w may in principle fail to be 
positive for any finite T if there are frequencies w 
for which Q (e’“) = 0. Positivity for a suitably large 
T can however be guaranteed if the “true” spec- 
trum is coercive. The following proposition, which 
also applies to Aoki’s (1990) method discussed in 
Section 2, is proved in Appendix D. 

Proposition 6. Suppose that the conditions of As- 
sumptions 1 and 4 are fulfilled. Then, there is a To E 

Z+ such that, for T 2 TO, the triplet (A, C, c) de- 
fined by (114) yields a function (6) which is strictly 
positive real. 

However, in practice, rank H, normally will keep 
increasing with T, even for very large T, so that 
one must resort to some kind of truncation of the 
Hankel singular values. As we have pointed out in 
Section 5, setting all canonical correlation coeffi- 
cients @,.+I (T), (Tr+~(-r), equal to zero for some 
suitable r, as is done in, for example, van Overshee 
and De Moor (1993), is equivalent to principal sub- 

system truncation. An important issue is therefore 
under what conditions such a procedure will insure 
positivity. Here we must distinguish between prob- 
lems generated by the sample fluctuations of the 
data due to finite sample size T, as considered in 
Proposition 6, and the system theoretical question 
of preserving positivity under truncation, as consid- 
ered in Theorem 7. Even if we had an infinite string 
of data generated by a “true” high-dimensional sys- 
tem, such a truncation procedure may fail if T is 
smaller than that dimension. 

Combining Theorem 7 with Proposition 6, we 
immediately obtain the following result, which jus- 
tifies this approximation procedure, provided the 
rather stringent Assumption 1 holds and we have 
coercivity, and provided T and T are sufficiently 
large. 

Theorem 8. Suppose that the conditions of As- 
sumptions 1 and 4 are fulfilled. Then, there are pos- 
itive integers TO and TI > TO such that, for T z TO 

and T 2 ~1, the triplet (All, Cl, cl), obtained from 
(27) by taking H := Hf in (23)-(25), is a minimal 
realization of a strictly positive real function (28). 

We note that, in van Overshee and De Moor 
(1993), the large Hankel matrix 

& =(v=)‘(E{v=(v=)‘~)-‘EIy=(y;)‘} 

x (E{y;(yT)‘l)-‘y; 

is used in place of &. This leads to a procedure 
which is equivalent to the one described above. 
Moreover, the computation of a second singular- 
value decomposition in van Overshee and De Moor 
(1993), based on Hr+l := E(yG+l (y;+l)‘f, together 
with a subsequent change of bases, is actually re- 
dundant, as can be deduced from the following 
proposition. In fact, a considerable amount of com- 
putation is needed in van Overshee and De Moor 
(1993) to compensate for the fact that taking Z(T + 
1 ), computed from a second singular-value decom- 
position, as a basis in _%ci7+1)- would lead to a 
Kalman filter model with time-varying parameters. 

Proposition 7. To each coherent pair of bases i.(T) 

and $(T) in the finite-interval predictor spaces gT- 
and $T+, there corresponds a minimal factorization 

HT = fi,fi; (125) 

of the block Hankel matrix HT. Here 

&i_(T) = EY;y+ T and &;(T) = E’Gy;, 

(126) 

Conversely, given a minimal factorization (125), 

Z(T) = bk(T;)-‘y; and ;(T) = !&(T,?-‘y: 

(127) 

is a coherent pair of bases in zr_ and fT+. 
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ProoJ: Let _?(T) and B(T) be a coherent choice of 
bases in ,&. and $T+. Then, for any X, as defined 
in Theorem 6, there is a unique pair (X(T), Z(T)) 

of dual bases such that (89) and (90) hold. Let Qr 
and fi, be the matrices defined via 

EXTy: = &X(T) and EXTy; = &Z(T). 

(128) 

Then, the splitting property (Lindquist and Picci, 
1985; Lindquist and Picci, 1991) of X, with respect 
to Y; and Y++ yields 

EIy,+(y;)‘l = EIEX’y;(EX’y;)‘l, 

which, in view of (128) is the same as (125). Apply- 
ing E ‘; and E ‘: to, respectively, the first and sec- 
ond equations of (128) the splitting property yields 
(126). 

As for the converse statement, equations (127) 
follow from the construction in the proof of Theo- 
rem 6, from which it also follows that the resulting 
bases a(~) and ;(T) are constructed from the same 
(A, C, C‘, and are therefore coherent. 

As soon as the parameters (A, C, C) have been 
fixed by a particular choice of X(T) in the represen- 
tation (89) in Theorem 6, we must choose .?(T + 1) 

as 

HT + 1) = E&+IUX(T) (129) 

to stay within the same uniform choice of bases. 
More specifically Proposition 7 implies that R, and 
& are uniquely determined once X(T) has been 
selected. Hence, (A, C, C) is uniquely determined 
by the Ho-Kalman algorithm so that 

I- > 1 

n c 
T+I = I I &A' 

L A 

is prescribed, as is 

.?(T + 1) = 6;(&,)-‘y;,,. (130) 

Of course, this analysis is purely conceptual, 
demonstrating that the step determining S(T + 1) 
by an extra singular-value decomposition, as in 
van Overschee and De Moor (1993), is actually re- 
dundant. If we actually were to determine .?(T + 1) 

as described above, we would better compute &+I 
from QT+t = G;L&+t, where the left inverse is 
very easily obtained from the singular-value de- 
composition of HT. 

We stress that Assumption 1, although quite lim- 
iting, is absolutely crucial in insuring that the sub- 
space identification algorithms mentioned above 
will actually work. Note that for generic data these 
algorithms may break down for any fixed T. The 
same is true for all other subspace methods which 
deal with identification of covariance models (or 
equivalent) involving stochastic signals. 

On the other hand, Assumption 1 introduces a 
quite unrealistic condition which, as we have seen 
in Section 2, is untestable. Moreover, we have abso- 
lutely no procedure to estimate To and TI in Propo- 
sition 8, as the proof is based only on continuity 
arguments. 

7. STOCHASTIC MODEL REDUCTION 

As we have already pointed out, some truncation 
procedure or stochastic model reduction technique 
may have to be employed in the partial stochas- 
tic realization step in order to keep the dimension 
of the model at a reasonable level. To justify any 
such procedure one must either assume that there is 
an underlying “true” system of sufficiently low or- 
der, i.e., invoke Assumption 1, or to perform ratio- 
nal covariance extension (Kalman, 198 1; Georgiou, 
1987; Kimura, 1987; Byrnes et al., 1995; Byrnes and 
Lindquist, 1996) to extend the covariance sequence 
(83) to an infinite one. The latter can be done in 
many ways, one of which is the maximum entropy 
extension. 

In either case, the truncation problem is equiva- 
lent to approximating a positive real matrix func- 
tion 

1 
Z(z) = C(zl- A)-‘? + -A 

2 O (131) 

of a degree n which is often too large, by another 
positive real matrix function Zr of lower degree. 
In this section we shall investigate how this can be 
done and also how such an approximation affects 
the canonical correlation structure. 

One main question to be addressed is whether 
the principal subsystem truncation (26) preserves 
positive realness and balancing, and hence the lead- 
ing canonical correlation coefficients, as originally 
claimed by Desai and Pal (1982). As it turns out, 
the answer is affirmative to the first but not to the 
second of these questions. This also explains the na- 
ture of the subspace-identification approximation 
obtained by setting some canonical correlation co- 
efficients equal to zero. 

It is instructive to first consider the continuous- 
time counterpart of this problem since the latter 
is simpler and exhibits more desirable proper- 
ties. Also, it has been widely believed that the 
continuous-time results are valid also in the present 
discrete-time setting, which in general is not true. 

It is well-known (see, e.g. Faurre et al., 1979) that 
an m x m matrix function Z with minimal realiza- 
tion 

Z(s) = C(sl- A)-‘? + IR 
2 (132) 

is positive real with respect to the right half plane if 
and only if there is a symmetric matrix P > 0 such 
that 



726 A. Lindquist and G. Picci 

M(P) := 
-AP-PA’?-PC’ 

c-CP R 
‘(133) 

where here we assume that R is positive definite and 
symmetric. In this case there are two solutions of 
(133) P- and P+, with the property that any other 
solution of (133) satisfies 

P- SPSP+. (134) 

These extremal solutions play the same role as P_ 

and P+ in the discrete-time setting, and 

rankM(P_) = m = rankM(P+). 
(135) 

If the state space coordinates are chosen so that 
both P- and p+. := P;, are diagonal and equal, 
and thus, by (65), equal to the diagonal matrix X 
of canonical correlation coefficients, we say that 
(A, C, c) is stochastically balanced. 

Now, suppose that C is partitioned as in (21) with 
a,,, < a,., and consider the corresponding princi- 
pal subsystem truncation (27). Using the stochas- 
tic realization framework, Harshavaradhana et al. 

(1984) showed that 

Z,(s) = C,(sl - A,$?; + IR 
2 

(136) 

is a minimal realization of a positive real function 
and conjectured that (A, ,, Cl, c, ) is stochastically 
balanced. We shall next show that this conjecture 
is true, as has already been done by Ober (199 1) in 
a framework of canonical forms. 

First, note that positivity is easily proved by in- 
serting (21) into (133) to yield 

-A,,C, -&A;, * c; - C,C; 

[ - 

* * z I), 

c,-C,Cl * R I (137) 

where blocks which play no role in the analysis are 
marked by an asterisk. Consequently, 

MI(&) = 
-A,,X, -&A;, c; -&C; 

c, _ (-,z, R 1 2 0. (138) 
Since, in addition, it can be shown that A,, is sta- 
ble (Pernebo and Silverman, 1982; Harshavarad- 
hana er af., 1984), i.e. has all its eigenvalues in the 
open left half plane, (136) is positive real, but it re- 
mains to prove that (Al,, C,, c,) is a minimal re- 
alization. This was done in Harshavaradhana et 
al. (1984). It is important to observe here that, 
contrary to the situation in the discrete-time set- 
ting, rank M, (X,) =rank M(C) = m and rank 
M,(C;‘) = rank M(E-,) = m, important facts 
that will be seen to imply that the reduced system 
is stochastically balanced. 

Recall that in the continuous-time setting the 
spectral density @((s) = Z(s) +2(-s)’ is coercive if, 

for some E > 0, we have @((s) 2 ~1 for all s on the 
imaginary axis. This is equivalent to the condition 
that R > 0 and Cp has no zeros on the imaginary 
axis (Faurre et al., 1979, Theorem 4.17). 

Theorem 9. Let (132) be positive real (in the 
continuous-time sense) with (a(s) := Z(s) + Z(-S) 
coercive, and let (A, C, c) be in stochastically bal- 
anced form. Then, if or+, < o,., the reduced system 
(All, CI, c,) defines a positive real function (136) 
for which it is a minimal realization in stochasti- 
tally balanced form, and Ql, (s) := Z,(s) + Z1 (--s) 
is coercive. 

Proof We have already shown that Z, is positive 
real, and we refer the reader to Harshavaradhana 
et al. (1984) for the proof that (A,,, C,, 61) is a 
minimal realization of Z, It remains to show that 
Cp, is coercive and that (A,, , C,, C, ) is stochastically 
balanced, i.e. that PI_ = C, = P;,‘, where P, _ and 
PI + are solutions to the algebraic Riccati equation 

A,,P, + P,A;, + (c’ - P,C;)R-‘(C’ - P,C;)’ = 0, 

(139) 

such that any other solution PI of (139) satisfies 
P, _ I P, 5 P,+. To this end, note that since M, (C, 1 
and M, (C,,) have rank m, both 11 and Z;’ satisfy 
(139). Therefore, as is well known (Molinari, 1977) 
and easy to show, Q := 2;’ - Cl satisfies 

r,Q + Qr; + QC;R-‘C,Q = 0, 

fl40) 

where 

I-, = A,, - (c’ - X,C;)R-‘C,. (141) 

Since @ is coercive, C- ’ - C = P+ -- P_ > 0 (Faurre 
et al., 1979, Theorem 4.17) so that U, < 1. Hence 
Q > 0, and therefore (140) is equivalent to 

T,Q-’ + Q-‘r, + C;R-‘CI = 0. 

(142) 

Now, since (C,, A,,) is observable, then, in view 
of (141), so is (C,, r,). Since, in addition, the Lya- 
punov equation (142) has a positive definite solu- 
tion Q-‘, rl must be a stability matrix. Therefore, Z, 
is the minimal (stabilizing) solution PI _ of (139). In 
the same way, using the backward setting, we show 
that 4 + := P;: = C,. Consequently, (A,,, Cl, CL) 
is stochastically balanced. Since P, + - PJ _ > 0, @, 

is coercive. 

Let us now return to the discrete-time setting. Let 
us recall that, if (A, C, c, &) is a minimal realiza- 
tion of (131), the matrix function Z is positive real 
if and only if the linear matrix inequality (122) has 
a symmetric solution P > 0. Conversely, given the 
positive real rational function (13 1) with the prop- 
erty that @l(z) = Z(z) + Z(z-’ )’ is the spectral den- 
sity of the time series y, the state covariance P of 
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any minimal stochastic realization (37) of y satis- and only if (T, < 1, which in turn is equivalent to 
fies (122) and the matrices B, D in (37) satisfy (123). H- n H+ = 0. Consequently, given the full rank 
Consequently, as pointed out in Section 5, the ma- condition As > 0, coercivity is equivalent to the 
trices B and D can be determined via a matrix fac- past and the future spaces of y having a trivial in- 
torization of M(P) once P has been determined. tersection. 

Now, if (A, C, C) is in stochastically balanced 
form, Theorem 5 implies that M(C) 1 0. In view 
of (67) and (27), M(z) may be written 

[ 

z, - A,,Z,A;, - A,2&4;2 * c -Au&C; - A12&C; 

* * * 

c, - C,Z,A;, - C2&A;2 * A0 - cl&c; - c2z*c; 1, 

where, as before, the blocks which do not enter the 
analysis are marked with an asterisk. Since M(C) 1 
0, this implies that 

Theorem 10. Let (13 1) be positive real, and let 
(A, C, c) be in stochastically balanced form. Then, 
the reduced-degree function (145) obtained via 
principal subsystem decomposition (28) is posi- 
tive real. Moreover, if Z is strictly positive real, 
then so is Z,, and (A,,, C,, c,, fA0) is a minimal 
realization of Z, . 

For the proof we need the following lemma, the 
proof of which is given in Appendix D. 

where 

M1(cl) = [ 
2, - A,*&A;I c; - A,,C& 
c’1 - C*zIA;, A0 - c,c,c; I 

(144) 

is the matrix function (122) corresponding to the 
reduced triplet (A , ,, C,, C,). Therefore, M(.E, ) 1 0, 
so if we can show that A,, is stable, i.e. has all its 
eigenvalues strictly inside the unit circle, it follows 
that 

1 
Z,(z) = C*(zl- A,,)-‘C’; + -Al) 

2 
(145) 

is positive real. As we shall see below, this is true 
without the requirement needed in continuous time 
that a,+, < a,. 

For (A,,, C,, C,) also to be balanced, 2, would 
have to be the minimal solution P, _ of M, ( Pl ) 1 0, 
which in turn would require that rank M, (1, ) = 
rank M(C) = m. Due to the extra positive semidef- 
inite term in (143), however, this will in general not 
be the case and therefore Z, 2 P,_ will correspond 
to an external realization, as will &-, I: P,+; see 
Lindquist and Picci (1991J 

To show that (A, ,, C,, C, ) is minimal we need to 
assume that + is coercive, or, equivalently, that Z 
is strictly positive real. It is well known (Faurre et 
al., 1979, Theorem A4.4) that this implies that 

P+ - P- > 0. (146) 

In fact, if ho > 0, which in particular holds if y is 
full rank, (146) is equivalent to coercivity. Coerciv- 
ity also implies that 

Ao-CP-C’ >o. (147) 

Remark 2. With (A, C, c) in balanced form, P_ = 
C = p+ and, in view of (46), P+ = Z-‘. Hence, 
(146) becomes X-’ > C, which obviously holds if 

Lemma 1. Let the matrix function Z be given by 
(131), where AO > 0, but where (C, A) and (C, A’) 
are not necessarily observable, and suppose that 
(122) has two positive definite symmetric solutions, 
P, and Pz, such that 

9 - P, > 0. (148) 

Then, Z is strictly positive real. 

Proof of Theorem 10. To prove that Z, is positive 
real it remains to show that A,, is stable. To this 
end, we note that P is the reachability gramian of 
(37). In particular, if (A, C, cl is stochastically bal- 
anced, the reachability gramian of the system (48) 
equals z so, in view of Theorem 4.2 in Pemebo and 
Silverman (1982), A,, is stable. By Remark 2, coer- 
civity of 9 implies that Z-’ - C > 0, from which it 
follows that C;’ - z, > 0 and that A0 > 0. More- 
over, By construction, M, (2,) 10 and M, (z;’ ) 2 
0. Therefore, by Lemma 1, Z, is strictly positive real 
if Z is. 

To prove minimality, we prove that (C,, A, 1) is 
observable. Then, the rest follows by symmetry. By 
regularity condition (147) 

A0 - C,C, C; 2 A0 - CX’ > 0, 

and consequently, since M, (2, ) > 0, Z, satisfies the 
algebraic Riccati inequality 

A,,P,A;,-P, + (c’; - A,,P,C;) 

(A, - C,P,C;)-‘(c; - A,,P,C;)’ 10, 

but in general not with equality. Now, since A,, is 
stable, (A; ,, C;) is stabilizable. Moreover, given con- 
dition (40), we have proved above that the reduced- 
degree spectral density Cp 1 is coercive. Therefore, by 
Theorem 2 in Molinari (1975), there is a unique 
symmetric P, _ > 0 which satisfies (149) with equal- 
ity and for which 

Tl_ := All - (c; - A,,P,-C;)(Ao - C,P,_C;)-‘C, 
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is stable. It is well known (Faurre et al., 1979) that 
PI - is the minimal symmetric solution of the linear 
matrix inequality MI (PI) 2 0, i.e. that any other 
symmetric solution P’ satisfies PI 2 PI-. We also 
know that MI(.E;‘) 2 0. Next, since ,X;’ - ,X’ > 
0, a fortiori it holds that Q := 1;’ - PI- > 0. A 
tedious but straight-forward calculation shows that 
Q satisfies 

T= L 1 -A12(z+A22)-’ 0 

0 Z 0 
0 -C2(Z + A$ Z 

we obtain 

f’-(Q-’ - C;R-‘Cl)-‘T;_ - Q 2 0, 

from which it follows that 

Q-’ - C;R-‘C, - T;_Q-‘T,- I 0. 

(149) 

(cf. Faurre et al. (1979), pp. 85 and 95). 
Now, suppose that (CI, A,,) is not observable. 

Then, there is a nonzero a E C“ and a h E Q1, such 
that [C’, AZ - A’ ‘]a = 0. and therefore, in view of 
(149) 

Cl - A,.z’A; * 6; - A,C’c; 
TM(.Z)T’ = * * * 

’ t, - C,C, A; * Ati - C,C,C; 1 

and consequently. if M,(P) is the the matrix func- 
tion (122) corresponding to the reduced-order sys- 
tem, M,(a’) 2 0 and rank M,(C’) 5 rank M(C). 

To prove Theorem 11 we observe that (A,, C,, I?,., 
A,) is precisely what one obtains if one transforms 
(A, C, c, Ao) by the appropriate linear fractional 
transform to the continuous-time setting and then, 
after reduction, back to discrete time again as sug- 
gested in Ober (1991). The proof is deferred to Ap- 
pendix D. 

(1 - Ih12)a*Q-‘a I 0. 8. CONCLUSIONS 

But, h is an eigenvalue of the stable matrix A 1 I, im- 

plying that 1 A] < 1, so we must have a = 0 contrary 
to assumption. Consequently, (C’, A’,) is observ- 
able. 

A remaining question is whether there is some 
balanced order-reduction procedure in discrete time 
which preserves both positivity and balancing. That 
this, is the case in continuous time implies that the 
answer is affirmative, but the reduced system cannot 
be a simple principal subsystem truncation. 

The purpose of this paper is to analyze a class of 
popular subspace identification procedures for state 
space models in the theoretical framework of ra- 
tional covariance extension, balanced model reduc- 
tion, and geometric theory for splitting subspaces. 
We have pointed out that these methods are based 
on the hidden Assumption 1 which is not entirely 
natural and which is in general untestable. 

Theorem 1 1. Let (6) be strictly positive real and let 
(A, C, C) be in stochastically balanced form. More- 
over, given a decomposition (27) such that o;+’ < 
o;, let 

A,. = A” - Al2U + A22e4*,, 

c,. = C’ - c2tz + A22)-bI2,. 
- - - 

c,. = c, - czu + 42r’4,, 

A,() = Ao - C2(1+ /422)-Y; - C2(1+ &PC;. 

The procedures of Aoki (1990) and van Overshee 
and De Moor (1993) can be regarded as prototypes 
for this class of algorithms. We point out that they 
are essentially equivalent to the Ho-Kalman algo- 
rithm in which the basic factorization is performed 
by singular-value decomposition of a block Hankel 
matrix of finite covariance data, as in Aoki (1990), 
or of a normalized version of this matrix, as in van 
Overshee and De Moor (1993). The latter normal- 
ization is natural in that it yields a matrix represen- 
tation of the abstract Hankel operator of geometric 
stochastic systems theory in orthonormal coordi- 
nates and allows for theoretical verification of the 
truncation step. 

Then, (A,., C,., C,, A,o) is a minimal realization of a 
strictly positive real function 

1 
Z,.(z) = C,(zZ - AJ’C’ + --A&. I” 2 

(150) 

Moreover, (A,, C,., C,., A-O,) is stochastically bal- 
anced with canonical correlation coefficients 
u,,oz,.-.,or. 

To understand why this reduced-order system 
does preserve both positivity and balancing, note 
that for 

A major problem with these algorithms is that 
they are based on realization algorithms for deter- 
ministic systems. Therefore, they require that the 
positive degree of the data equals the algebraic de- 
gree. To achieve this, one must assume that the data 
are generated exactly by an underlying system and 
that the amount of data is sufficient for constructing 
an accurate partial covariance sequence the length 
of which is sufficient in relation to the dimension of 
the underlying system. Hence, it is absolutely cru- 
cial that a reliable upper bound of the dimension 
of the “true” underlying system is available. 

We stress that these stringent assumptions are 
not satisfied for generic data, as was pointed out in 
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Section 2. In fact, in Byrnes and Lindquist (1996) 
it is shown that the positive degree has no generic 
value. In fact, just for the moment considering the 
single-output case, for each p, such that r I p 5 v, 

there is a nonempty open set of partial covariance 
sequences having positive degree p in the space of 
sequences of length v. Secondly, for any r, it is pos- 
sible to construct examples of long partial covari- 
ante sequences having algebraic degree r but having 
arbitrarily large positive degree (Theorem 3). 

In Section 7 we proved an open question con- 
cerning the preservation of positivity in the orig- 
inal (discrete-time) model reduction procedure of 
Desai and Pal (1984). Unlike that of the later pa- 
per (Desai et al., 1985), this procedure is equivalent 
to the principal subsystem truncation used in van 
Overshee and De Moor (1993), but not to the one 
in Aoki (1990). We prove that positivity is preserved 
provided that the original data satisfies Assumption 
1, justifying setting the smaller canonical correla- 
tion coefficients equal to zero. Unlike the situation 
in continuous time, this truncation does not pre- 
serve balancing. The validity of the corresponding 
procedure of Aoki (1990) has not been settled. 

The contribution of this paper is to provide the- 
oretical understanding of these identification algo- 
rithms and to point out possible pitfalls of such pro- 
cedures. Hence, the primary purpose is not to sug- 
gest alternative procedures. Nevertheless, we would 
like to point out that a two-stage procedure equiva- 
lent to covariance extension followed by model re- 
duction would work on any finite string of data, 
thus eliminating the need for Assumption 1. How- 
ever, we leave open the question of how such a 
procedure should be implemented with respect to 
the data. The approximation would then of course 
depend on which covariance extension is used, a 
maximum-entropy extension or some other. 
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APPENDIX A. PROOF OF THEOREM 3 

We first give a proof for the special case n = 1. Consider a 
scalar function 

with a scalar sequence (4), such that A0 = 1. Now it is well 
known (see, e.g. Schur, 1918; ?) that TV is positive definite if 
and only if 

Iy,‘rJ<I r=O.l.2 ,..., v-l, (A.21 

where (~0, ~1, ~2,. ) are the so-called Schur parameters. 
There is a bijective relation between partial sequences (1) 
and partial sequences Iyo, ~1,. , yv-l } of the same length 
(Schur, 1918; Akhiezer, 1965). In Byrnes et al. (1991), it was 
shown that the Schur parameters of (A.]) are generated by 
the nonlinear dynamical system 

(A.3) 

and that T, becomes singular precisely when there is finite 
escape. It was also shown in Byrnes et al. (1991) that (cr,} is 
generated by a linear system 

[:::]=[‘i”iq[:;]* (A.4) 

where a, = v,/u, and K := (a+b)( I +ab)-‘. If K is greater than 
one in modulus, the coefficient matrix of (A.4) has complex 
eigenvalues and is thus, modulo a constant scalar factor, similar 
to 

[ 

cos0 sin0 
- sin 0 cos 0 1 ’ 

where 0 := arctan-. Hence, LY, is the slope of a line 
through the origin in W* which rotates counter-clockwise with 
the constant angle 0 in each time step. Consequently 

arctan c++ 1 = arctan 01, + 8. 

Moreover, assuming that LUO > 0, the Schur condition y, < 1 
will fail as soon as a,+! becomes negative or infinite, as can 
be seen from the first of recursions (A.3). Hence, (A.2) holds 
if and only if 

arctanoc, < IT. 
2 (A.5) 

Therefore, for a small E > 0, take a = 1 - E and b = 

I + t, yielding a stable Z. Then, K = & > I and 0 = 

arctan (&m). We may choose E so that 

3 3 
-<e<-, 
v+ 1 1’ 

where 3 := ? - arctanao. Then, (A.5) holds so that TV > 0, 

but we also have 

arctana,+~ > z 
2 

so that TV+1 % 0. 

Next, let n be arbitrary. Consider the scalar function 

I (V,,(Z) + f(a+ b)cy,,-I(z) 
Z(z) = - 

2 p,(z) + i(a+b)p,-l(z)’ 

where {‘p, \ and (I&, ] are the Szegii polynomials of 
the first and second kind, respectively (Akhiezer, 1965). 
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The function Z has the property that its first n Schur 
parameters, {ye. yt.. , yn-r 1, are precisely the data 
which uniquely determines pn, ~l#-t, q,, and IJ.+-~ 
(Georgiou, 1987; Kimura, 1987; Byrnes et al., 1994). Now, 
in Bymes et al. (1994), it is shown that the remaining Schur 
parameters are generated by 

t 

&+I = 1 - ;+._, 
o(o= $a+b). 

Yr+1 = -YtW 
1 - YL 

Hence, we have reduced the problem to the case n = 1. If we 
choose the initial Schur parameters sufficiently small so that 
pm(z) and 9+-i (z) are approximately z” and z”-’ 

9%!(z) + CrOQ)n-I (2) 

is stable if we choose a := 1 - 2.~ and b := I+ E for some small 
E > 0. Then K > 1 and the proof for the case n = 1 carries 
through with a trivial modification. 

APPENDIX B. THE HILBERT SPACE OF A SAMPLE 
FUNCTION 

Let y = (y(r) ltre be a zero-mean wide-sense-stationary 
stochastic process defined on a probability space {n, d, P], 
such that the limit (11) exists for almost all trajectories {y, = 
y(t, w); t = 0, 1,. . ) . It is relatively easy to show that whenever 
the limit exists, the mxm matrix function k - A& obtained from 
a particular trajectory is then a bona fide covariance function. 
(The continuous-time analog of this property was observed 
already by Wiener (1933)) If, moreover, the sample limit is 
(almost surely) independent of the particular trajectory and, 
hence, necessarily coincides with the “ensemble” covariance 
function, we shall call such a process second-order stationary. 
Conditions for second order stationarity are given, for example, 
on p. 210 in Hannan (1970). It is obvious from Birkholf’s 
ergodic theorem that any (zero-mean) strictly stationary ergodic 
process is also second-order ergodic. 

In this Appendix we shall show that the properties of the 
Hilbert space structure associated to a stationary time series 
y, defined on p. 10, are identical to those of the Hilbert space 
induced by a second-order ergodic process. * 

The two frameworks, i.e. the statistical “time-series” struc- 
ture and the “probabilistic” structure, are in fact isomorphic. 
To see this, pick a “representative” trajectory of y, i.e. one in 
the subset of n (of probability one) for which the limit (11) 
exists. Clearly there will be no loss of generality in assuming 
that the probability space n of y is the “sample space”, of 
all possible trajectories of y, i.e. the set of all semi-infinite se- 
quences w = {coo. wi, ~2,. }. W, E It”‘. With this choice, $I 
will be the usual o-algebra of cylinder subsets of R and the 
tth random variable of the process y(t), is just the canonical 
projection function 

y(t, w) : w - W,. 

Let us arrange the tails of the observed sample trajectory of 
the process in a sequence of m x 00 matrices y := {y(k)]kzo 
as in (33). For w in the subset of n where the time averages 
converge, define the map T,, 

r, : a’y(t) - a’yw r 2 0 a E ut” 

associating the ith scalar components of each m-dimensional 
random vector y(t) of the process to the corresponding ith 

* For a process of this kind the Hilbert space H(y) is the 
closure in Lz (n, d. P) of the linear vector space generated by 
the scalar random variables o - yi(t, w) (Rozanov, 1963). 

(infinite) row of the m x 00 matrix y(t) constructed from the 
corresponding sample path ly(t, w); t E %I. By second-order 
ergodicity, the set of all such w E n will have probability 
measure one and the map Tw will in fact be norm preserving, 
since by construction we have 

A,-,V = Ey(t)y(s)’ = EYWYW’. 

where A, is the covariance matrix of y. The map r, can then 
be extended by linearity and continuity to a unitary linear 
operator Tw : H(y) - H(y) which commutes with the action 
of the natural shift operators (both of which we denote U), in 
these two Hilbert spaces: 

H(y) %y) 

j-w 1 1 Tw 

H(y) ky) 

This isomorphism allows us to employ exactly the same for- 
malism and notations used in the geometric theory of stochastic 
systems (Lindquist and Picci, 1985; Lindquist and Picci, 1991) 
in the present statistical setup, where we build estimates of the 
parameters of models describing the data in terms of an ob- 
served time series instead of stochastic processes. This provides 
a remarkable conceptual unity and admits a straightforward 
derivation in the style of stochastic realization theory of the 
formulas in the paper van Overshee and De Moor (1993), there 
obtained with considerable effort through lengthy and formal 
manipulations. 

APPENDIX C. THE INVARIANT FORM OF THE 
KALMAN FILTER 

Given a stationary stochastic system (37), the Kalman filter 
is usually determined via the matrix Riccati equation 

Q (t + 1) = AQ(t)A’ - [AQ(r)C’ + BD’] 

lCQ(r)C’ + DD’I-‘[AQ(t)C’ + ,‘I’ + BB’, 

(C.1) 

where Q(O) = P := E{x(O)x(O)‘]. Here 

Q(t) = EItx(0 - .WlbW -WI’). 

and the Kalman gain is given by 

(C.2) 

K(t) = [AQ(t)C’ + BO’][CQ(t)C’ + DD’]-‘. 

(C.3) 

These equations of course depend on P, B and D, which vary 
as the splitting subspace X varies over X, whereas (A, C, c) is 
invariant if a uniform choice of bases is made. 

However, as we shall see, the gain K depends only on the 
triplet (A, C. c) and hence one should be able to replace (C.1) 
and (C.3) with equations which also only depend on (A, C, c),, 
and hence are invariant over X. Clearly, in view of Theorem 
6, P-(t), as defined by (93), has this property. Moreover, 

Q(r) = P - P-(t) 

and, consequently, in view of (39), and the Lyapunov equation 

P = APA’ + BB’, 

P, B and D in (C.1) and (C.3) can be eliminated to yield pre- 
cisely (94) and (92). A symmetric argument yields the backward 
equations. 

It is easy to see that as Q(r) - Qa, monotonously, P_(t) - 

P-, and hence P t P-, as should be. 

AUTO 32:5-E 
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APPENDIX D. SOME DEFERRED PROOFS 

Proof of Theorem 6. Since X is a splitting subspace for the 
infinite past H- and the infinite future H+, by stationarity, 
X, splits H; := UrH- and H,’ := lJTH+. But Y; c H; 
and YT+ c H,‘. and hence X, splits Y; and Y= also (see, e.g. 
Lindquist and Picci. 1985; Lindquist and Picci, 1991). Now. 
using the projection formula in the footnote of page 718, we 
have for any b’y: E Y= 

=b’R,C=l;(T;)--‘y; 

=b’&& 

where R, and fi, are appropriate finite-dimensional observ- 
ability and constructibility matrices (19) of full rank. If T > To, 

there is a minimal factorization H = Cl,@, such that 5 := 
@(T;)-‘y; has n components, and 

E{&!j’) = &CT-)-‘& > 0. T T 

Therefore, since the components of 5 belong to iT-, dim .%- t 
n = dim X, so, since tT_ is minimal, X, must also be minimal 
and TT_ be spanned by the components of 5. 

Next, from the backward system (44) we see that 

YT _ = &Z(T) + terms orthogonal toX,, 

and therefore. by the same projection formula, 

EYT- U'.Y(T) =a'E{x(~)x(~)'}~2;(T,-)-'y; = 0'5. 

Consequently, EY; X, = {U’S 1 a E Et”) = tT-, establishing 
the first of identities (88). The second follows from a symmetric 
argument. 

The representation formula (89) follows from the minimal- 
ity of X, as a splitting subspace for YT and Y;, which, in 
particular, implies that the constructibility operator, 

is injective (Lindquist and Picci, 1985; Lindquist and Picci, 
1991). In other words, for each k = 1,2,. , n, there is a unique 
random variable ,Q(T) E X, whose projection onto Y; is 
.x?~(T). To show that x(O) form a uniform choice of bases as 
X varies over X, first take X to be the stationary backward 
predictor space X+ and let x+ (T) be the unique basis in UTX+, 
such that %T) = EY;.x+(~). Now, let X E X be arbitrary. 
Then, since X, is a splitting subspace for Y; and U’X+ C 
UTH+ (Lindquist and Picci, 1991, Proposition 2.l(vi)), we have 

Z(T) = EY; Y+(T) = EY~E6.~+(~), 

and therefore, by the uniqueness of the representation (89), 
s(O) = EX.y+ (0) for all X E X, which is a well-known charac- 
terization of uniform choice of bases (see Section 6 in Lindquist 
and Picci (1991)). A symmetric argument in the backward set- 
ting yields the corresponding statement for (90). 

Proof of Proposition 6. Suppose that the underlying system 
prescribed by Assumption 1 has a positive real function 2 of 

MacMillan degree n, and let (1) be a corresponding partial 
covariance sequence , where v is large enough for the Hankel 
matrix H, defined by (5), to have rank n. Let (A. C, c) be the 
triplet determined from H via (16H18). Likewise, let HT be 
the Hankel matrix obtained by exchanging the covariance data 
by estimates 

of type (119), and let (AT, Cr. CT) be the corresponding triplet 
obtained via (16)-(18). We want to prove that 

Zr(z) := Cr(zl- AT)_‘?T + fAor 

is strictly positive real for a sufficiently large T. Now, if 

degZr f degZ, replace X by 
X0 

[ 1 o o , U by [ Cr 01, V by 

[ V O], and C-’ by 
I 1 “0’ 8 in (16x18) in the appropri- 

ate calculation so that (A. C, c) and (AT. CT, CT) have the 
same dimensions. This will not affect Z and Zr. By con- 
tinuity, (AT, CT, CT, AOT) can be made arbitrarily close to 
(A. C, c. A,-,) in any norm by choosing T sufficiently large. 
Thus, the same holds for 

max IIZ(e”) - ZT(e”) II 
BE[0,2nl 

and hence, since e(z) := Z(z) + Z(z-I)’ satisfies (40), so will 
@T(Z) := Zr(z) + ZT(Z-I)’ for sufficiently large T. Moreover, 
since Ih( < 1, we have (A( < 1 by continuity for 
sufficiently large 2’. Consequently, there is a TO such that 2~ 
is strictly positive real for T 2 To. 

Proof of Theorem 7. Let Z, defined by (6), be strictly positive 
real, and let (A. C, c) be chosen in stochastically balanced 
form. Then, by Theorem 10, Z,, defined by (145) in terms of 
the principal subsystem truncation (A,, , C,, c, ), is also strictly 
positive real. We want to prove that this property is carried 
over to rational matrix function 

ZT,(Z) = (C,)1(zl- (AT)I,)-'(CT)I) + $0 

for T sufficiently large. 
To this end, let QT be defined by (115). Since the canonical 

correlation coefficients (108) tend to the canonical correlation 
coefficients (63) as T - m, XT - C. Moreover, as explained 
in the text preceding Theorem 7, the Riccati solution P-(f) 
tends to QJQ, as t - 00 if the initial condition is taken to be 
P_(T) = Z,. Consequently, for any E > 0, there is a sufficiently 
large T, such that II& - 811 < $ and II& - QJQ:ll < 5 so 
that [[I: - QJQ:ll < E. Hence, QT tends to a limit Qm with 
the property Z = QmxQk. Using the same argument in the 
backward direction, the second of relations (116) shows that 
Qm also satisfies C = Q;%Q;‘. Consequently, by the same 
argument as in the proof of Theorem 5, Qm is a signature 
matrix, and hence in particular diagonal. Therefore 

- ((Q&,A(Q&‘. C(Qm)fi,.~(Qm);,) 

as T - m, 

where ( Qm) I 1 is the corresponding truncation of the signature 
matrix, and consequently, by continuity, ZT, - Z,. Hence, 
since Z, is positive real, then so is ZT, for T sufficiently large. 

Proof of Lemma 1. Let us first consider the case when (A, C, c) 
is a minimal triplet. Then, Z is positive real by the Positive Real 
Lemma, and the linear matrix inequality (122) has a minimal 
and a maximal solution, P- and P+, respectively, which, in 
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particular, have the property that P- I PI and & 5 P+. Then, 
in view of (148), P+ -P- > 0, and therefore 2 is strictly positive 
real (Faurre et al., 1979, Theorem A4.4) 

Next, let us reduce the general case to the case consid- 
ered above. If (CA) is not observable, change the coordi- 
nates in state space, through a transformation (A. CC) - 
(QAQ-‘, CQ-‘, Q?), so that 

C=[&O] A= “; [ 1 
C=[E *I, 

where (C, d) is observable. Then, if PI and 4 have the corre- 
sponding representations 

P,=[h :] I$=[” ;I, 

it is easy to see that pi and 4 satisfy the reduced version 
of the linear matrix inequality (122) obtained by exchanging 

(A, C.c) for (2, C, &) and that, in this new setting, (148) 

holds, i.e. & - pi > 0. If (5, A’) is not observable, we proceed 
by removing these unobservable modes. First note that &’ 
and p?’ satisfy the dual linear matrix inequality obtained by 

exchanging (2.6.6) by (a’, ?, 6. Then, changing coordinates 
in state space so that 

e=[E*] d’= ‘I’ 9 
[ I &[c?o], 

with (?, A’) observable, and defining 

we see that (2. C, ?, TAO) is a minimal realization of Z. More- 
over, pi and 4 satisfy the corresponding linear matrix inequal- 
ity (122) and have the property (148) in this setting. Hence, 
the problem is reduced to the case already studied above. 

Proof of Theorem 11. It is well-known that the discrete-time 
setting can be transformed to the continuous-time setting via 
a bilinear transformation s = $$, mapping the unit disc onto 
the left half plane so that 

z(S) = &, 5 ( 1 (D.1) 

is positive real in the continuous-time sense if and only if 
Zd is positive real in the discrete-time sense. It is not hard 
to show (see, e.g. Glover, 1984; Faurre et al., 1979) that, if 
(Ad. Cd, Cd, iAs) and (A,., C,., cc. ;R) are realizations Of Zd 
and Z,, respectively, we have 

I 

A, = (Ad + I)-’ (Ad - I), 

C, = ‘bCd(Ad + I)-‘, 

cc = d’G(A; f I)-‘, 

R = I\0 - Cd(Ad + I)-‘c; - S(A; + f)-‘C; 
0.3 

and inversely 

I 

Ad = (I - A,)-’ (I+ A,), 

Cd = &C,(z - A,)-‘, 

6,, = d&z - A:)-‘, 

A0 = R + C,(I - A,.)-‘c; + &I - A;.)-‘Cl. 
(D.3) 

Under this transformation the observability gramian and the 
constructibility gramian (i.e. the observability gramian of 
(C, A’)) are preserved so that (Ad, Cd, Cd, fl\o) is a min- 

imal realization if and only if (A,, Cc, cc,. ;R) is (see, e.g. 
Glover, 1984, p. 1119). Moreover, coercivity is preserved, and 
the solution sets of the corresponding linear matrix inequal- 
ities (133) and (122) are identical. (This is because P is the 
reachability gramian of a spectral factor and this gramian is 
also preserved.) 

Therefore, Theorem 11 is a straight-forward consequence of 
Theorem 9. In fact, transforming the problem of Theorem 11 
via (D.2) to the continuous-time setting, all the requirements of 
Theorem 131 are satisfied. Then, performing principal subsys- 
tem decomposition in the continuous-time setting and trans- 
forming the reduced-order positive real function thus obtained 
via (D.3) back to discrete time, the desired result is obtained. 


