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1. Introduction

The theory of modeling, estimation and signal processing in the setting of linear systems
and second-order random processes is often presented as a disparate collection of topics
and methods and it has been felt that a more conceptual and unified framework is needed,
both for economy of basic principles and also in view of the applicability to more general
situations.

In this paper we present a comprehensive theory for linear state-space modeling of
random processes and discuss applications to estimation. The emphasis is on coordinate-
free representations and on geometric methods based on elementary Hilbert space con-
cepts.

The theory presented here should be regarded as a natural and logically consistent
way of building up linear stochastic systems theory. Traditionally there has been little
attention paid even to the most elementary structural concepts in linear stochastic sys-
tems, like, for example, minimality. This has lead to derivations of filtering algorithms
by formula manipulations without deeper understanding of why the estimates satisfy
recursive equations and whether the algorithms obtained are of minimal complexity, etc.
It is a fact that many structural properties important in dynamic estimation, such as, for
example, the existence of recursive (i.e. differential-equation type) solutions, the mini-
mality of filtering algorithms, and processing of specific observed signals, possibly with a
noncausal information pattern, are best formulated and understood in a coordinate-free
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form, using the geometric language of Hilbert space theory. The use of coordinates may
sometimes only obscure the basic issues.

All this motivates us to study the geometric structure of stochastic models and to
investigate the natural geometric formulations of some of the system-theoretic properties
mentioned above. This is basically the scope of the approach initiated in [1, 44, 47] and
developed in [26-34, 48-51] into a geometric theory of stochastic realization, leading to
a extensive literature in the past fifteen years; see, e.g., [5, 6, 11, 12, 23, 24].

The introduction of coordinate-free geometric descriptions is based on factoring out
equivalent models with respect to a natural equivalence relation existing among models.
In this respect, the basic viewpoint taken in this paper is to regard a stochastic model,
say a state-space model of the form{

dx = Axdt + Bdw
dy = Cxdt + Ddw

(1.1)

(which will be discussed in much greater detail in Section 3 below), merely as a mecha-
nism for generating trajectories of the output process y, which is considered as the only
dynamical variable given and fixed in advance. Other variables in the model, like the
state process x and the generating noise w, even if physically motivated, are regarded as
auxilary variables which may be modified or even eliminated provided the model gen-
erates the same process y. This viewpoint, which underlies stochastic realization theory
and has been implicit in much of our previous work, provides the natural equivalences
on which the geometric theory is founded. Note the obvious difference to classical input-
state-output models in the deterministic setting, where the input function is an external
variable (like y) which is assigned from the outside and cannot be substituted by other
variables.

The classification of dynamic variables described above is part of a general view
of stochastic modeling according to which different models of a random process y are
just different mathematical representations of y corresponding to different choices of
auxilary variables. The auxilary variables are introduced in order to convey in explicit
form certain additional statistical information regarding the process, useful in particular
types of applications.

The auxilary dynamic variables which enter in a stochastic state-space model are of
two types. The state, which is defined by the Markovian splitting property of rendering
the past and future evolutions of the joint output-state process conditionally indepen-
dent at each time t, given the current state at time t, and the generating noise, i.e.
a white (Wiener) process which generates y when filtered by a suitable deterministic
input-output map. A Markovian splitting variable for, say, a stationary mean-square
continuous process y, produces a representation of y as a memoryless function of a
Markov process. Generating noises lead instead to representations of y as a functional
of a white noise process. The latter concept is classical in probability theory and is
encountered already in the Wold representation (also called Wold’s decomposition) of
discrete-time stationary processes, whereby y is expressed as the output of a particular,
causal and causally invertible, linear system driven by white noise.

Under the equivalence mentioned above the state variables correspond to certain fun-
damental geometric quantities which are called Markovian splitting subspaces and the
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generating noises correspond to scattering pairs of incoming and outgoing subspaces for
the unitary shift group attached to the stationary (or stationary-increment) process y.
Most of the important properties of state-space systems which make them useful both
as models of random signals and as filtering algorithms are intrinsic defining properties
of these subspaces. For example, the Markovian property of a subspace X is just the
coordinate-free version of recursiveness, i.e. of the property that any basis in X propa-
gates in time as the solution of a stochastic differential equation. Likewise, to say a that
a Markovian splitting subspace X is internal (i.e. X is contained in the subspace gen-
erated by the output process) is to say that the input noise w of any state-space model
corresponding to X is constructible from the process y by means of a suitable whiten-
ing filter and hence the state-space model itself can be viewed as a recursive algorithm
processing y.

The geometric approach leads to a very clear notion of minimality and to geometric
conditions for observability, constructibility, minimality of spectral factors, etc., which
provide economy of representation and which play important roles in many questions
of stochastic systems theory. There is a fundamental representation of Markovian split-
ting subspaces in terms of scattering pairs which clarifies the role of causality in the
representations.

In the linear-stationary setting, it is common to consider only causal state-space
models (1.1) where A is assumed to be a stability matrix (i.e. with eigenvalues strictly
inside the left half plane) and therefore with x, and hence y a function of the past noise
only. This is both natural and useful in the context of classical estimation problems
with a causal information pattern, but less so in more general situations. The geometric
representation of Markovian splitting subspaces by scattering pairs introduces a more
symmetric treatment of past and future and leads naturally, after a choice of basis x in
X, to the simultaneous consideration of pairs of state-space models, called the forward
and backward realizations, in which the same state process x is expressed both as a
causal and as a anticausal function of the generating noises. In fact, this simultaneous
consideration of the two models turns out to be quite useful, for example, in testing
minimality of a model.

The geometric theory of stochastic realization, besides providing general and natural
tools for studying linear stochastic systems and estimation problems, also provides a
better understanding of the fine structure of the solution set of the Riccati equation.
It is probably not so widely known that, together with linear-quadratic control and
Kalman filtering, state space modeling of random processes is an area in which the Riccati
equation in various forms, both differential and algebraic, but especially in the form of
a quadratic matrix inequality, plays a very fundamental role. The Riccati equation
enters into stochastic modeling because of the quadratic nature of the problem, which is
essentially based on spectral factorization. Very roughly speaking, state space models of
a random process are based on realizations in the deterministic sense of pairs of spectral
factors (here assumed to be rational) of the process to be represented.

The study and classification of state space models, in particular the characterization
of minimality etc., must then involve the study and classification of spectral factors and
hence of the entire family of solutions of a corresponding quadratic inequality of Riccati-
type. This need to consider the whole solution set of an algebraic Riccati inequality is
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a peculiar feature of the stochastic modeling problem. The classification of particular
subclasses of models, for example the so-called internal realizations, leads to the study
of certain subsets of the solution set of the algebraic Riccati inequality. For example,
internal models correspond to extreme points at which the algebraic Riccati inequality
becomes an algebraic Riccati equation. In this context the reader should note that the
results on the local structure of the solution set P of the algebraic Riccati inequality, the
geometry of the invariant sets for the corresponding Riccati differential equation, and
the relation to zeros of spectral factors, discussed in Sections 10 and 11, are based on
a geometric notion of partial ordering and on the notion of tightness of the ordering of
minimal Markovian splitting subspaces. These concepts are introduced in a geometric
framework and have a very natural interpretation in terms of the underlying noncausal
estimation problem. It seems much less natural (and much harder) to develop these
concepts in a purely matrix-theoretic context.

Since this is a rather long paper, we shall provide the reader with a ”navigation
chart” through the various sections. The first part of the paper, consisting of Section
3, 4 and 5, deals with stochastic realization theory. Section 3 motivates the geometric
approach and introduces the notions of Markovian splitting subspace and Markovian
representation in the context of stationary increments processes and not necessarily
internal realizations. This is a wider class of models than covered in [33] , which deals
with stationary processes and internal models only. Section 4 extends the basic geometric
theory of stochastic realization based on scattering pairs, as presented in [33], to the
noninternal, stationary-increments setting. The concept of minimality is introduced and
geometric characterizations of minimality are given. Ruckebusch [48-50] has studied the
stochastic realization problem from a somewhat different, but conceptually similar, angle,
and the early development of the theory has profited from important cross-fertilization.

Section 5 ties up the geometric theory to spectral factorization and the computation
of the generating processes (i.e. input noises) of the resulting state space models, thereby
translating the geometry of Section 4 to an isomorphic coordinate-free description in the
frequency domain. The inner triplet of a Markovian splitting subspace is introduced
and minimality is characterized in terms of various coprimeness conditions. Forward-
backward pairs of realizations are discussed and related to the corresponding pairs of
spectral factors.

Next, in Section 6, a partial ordering of minimal Markovian splitting subspaces is
introduced and a fundamental approximation theorem bounding a minimal Markovian
splitting subspace from above and from below by internal minimal Markovian splitting
subspaces is presented (Theorem 6.11). Based on this ordering one can equip the family
X of minimal Markovian splitting subspaces with a natural uniform choice of bases. This
leads to the parametrization of minimal stochastic realizations by n×n state covariance
matrices P .

In Section 7 this parametrization is first analyzed in the framework of the classical
Anderson-Faurre theory of “stationary covariance generation”[3, 10]. The parametriza-
tion of X by the solution set P of an algebraic Riccati inequality is discussed. This set
consists of the state covariance matrices of minimal models in a given uniform choice
of bases and the ordering of X becomes the positive semidefinite ordering of symmetric
matrices.
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In Section 8 , after all necessary tools have been introduced, we study a fundamen-
tal noncausal estimation problem which serves as a motivation and provides stochastic
interpretations for the results described in the rest of the paper. The solution of this
problem, presented in geometric terms, is given by the tightest pair of internal minimal
Markovian splitting subspaces, bounding a given X (Theorem 6.11), and their vector
sum is the local frame space of X. The local frame space serves as a minimal state space
for the noncausal estimator.

In Section 9 the geometric conditions for tightness of subspaces are reformulated
in terms of state covariance matrices P ∈ P. The results give necessary and sufficient
conditions for a pair of solutions (P1, P2) of the algebraic Riccati equation to be the
tightest bound for a given P ∈ P. In fact, this tightest frame of P can be computed as
the limits as t → ±∞ of the solution of the corresponding Riccati differential equation
initialized at P (0) = P . This interesting result, which emanates from the invariant-
sets decomposition of P mentioned above, is presented in Section 10. It also provides a
computational tool for constructing the noncausal filter, thus generalizing the role of the
Riccati equation in Kalman filtering and giving a very natural filtering interpretation to
all the solutions of the algebraic Riccati equation.

Section 11, the last section, gives a different characterization of the tightest frame
about P ∈ P in terms of the zeros of the corresponding minimal spectral factor W (s).
The relation between zeros and the local frame spaces is given in Theorem 11.4 . As a
byproduct of the analysis we get a simple geometric description of the local frame space
of any minimal realization (Theorem 11.5) and an explicit computation of its dimension.

The results presented in Sections 9-11 were first announced in an IMA plenary lecture
in Glasgow in September, 1988 and have appeared in condensed form in two conference
proceedings [35, 36]. Independently, Michaletzky [39] recently presented results on zeros
of spectral factors some of which are similar to ours. Finally, we would like to thank
Paul Fuhrmann for some advice helpful in proving Lemma 6.7 and Christopher Byrnes
for alerting us to the fact that our results on zeros of spectral factors are connected to
geometric control theory.

2. Hilbert spaces of random variables

The geometric theory of linear stochastic systems is formulated in terms of subspaces of
certain Hilbert spaces H of zero-mean second-order random variables, having the inner
product

〈ξη〉 = E{ξη} (2.1)

where E denotes mathematical expectations. Such Hilbert spaces may be constructed
from any underlying finite or infinite set M of second order random variables by taking
the closure in the Hilbert space topology (2.1) of the space of all finite linear combinations
of elements in M . For example, to set notations, if {z(t) ; t ∈ R} is a stationary m-
dimansional vector process, M := {zk(t) ; t ∈ R, k = 1, 2, . . . ,m} defines the Hilbert
space H(z), and if it is a m-dimensional vector process with stationary increments then
M := {zk(t)− zk(s) ; t, s ∈ R, k = 1, 2, . . . ,m} generates the Hilbert space H(dz).

Given any subspace X of H we shall denote by EXη the orthogonal projection of
η ∈ H onto X. In terms of Hilbert spaces of Gaussian random variables this may
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be interpreted as the conditional expectation given the random variables generating X.
If z is a random vector, EXz will denote the random vector with components EXzi.
Moreover, we shall write A ⊥ B to denote that two subspaces A and B are orthogonal
and A ⊥ B|X to denote that they are conditionally orthogonal given X, i.e. that

〈α− EXα, β − EXβ〉 = 0 for all α ∈ A, β ∈ B (2.2)

Finally, A∨B is the closure of the set {α +β|α ∈ A, β ∈ B}, A⊕B is orthogonal direct
sum, and C := A�B is the subspace such that B ⊕C = A. Sometimes we write H �A
as A⊥.

The following proposition can be found e.g. in [33].

Proposition 2.1. The following statements are equivalent

(i) A ⊥ B|X

(ii) B ⊥ A|X

(iii) (A ∨X) ⊥ B|X

(iv) EA∨Xβ = EXβ for all β ∈ B

(v) (A ∨X)�X ⊥ B

(vi) EAβ = EAEXβ for all β ∈ B.

Hilbert spaces generated by random processes, such as H(z) and H(dz), come nat-
urally equipped with a time structure. We define the past space H−(z) of H(z) as the
subspace generated by {z(t) ; t ≤ 0} and the future space as the subspace generated by
{z(t) ; t ≥ 0}. The past space H−(dz) and the future space H+(dz) are defined anal-
ogously. We shall only consider processes which are continuous in mean-square. Then
there is a strongly continuous group {Ut ; t ∈ R} of unitary operators on H(z) and H(dz)
called the shift induced by z or dz, respectively, defined by extending the operators Ut

Utzk(s) = zk(s + t) (2.3)

and
Ut[zk(s)− zk(τ)] = zk(s + t)− zk(τ + t) (2.4)

to H(z) and H(dz) respectively in the standard way [46]. The shift Ut has the adjoint
U∗
t = U−t. In terms of the shift we have the invariance properties

U∗
t H−(z) ⊂ H−(z) and UtH

+(z) ⊂ H+(z) (2.5)

for t ≥ 0, respectively,

U∗
t H−(dz) ⊂ H−(dz) and UtH

+(dz) ⊂ H+(dz) (2.6)

Invariances of this type will play an important part in this paper. We refer the reader
to Appendix A for details.
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3. Stochastic models and Markovian representations

A basic object of our study are linear stochastic systems of the type

(Σ)

{
dx = Axdt + Bdw
dy = Cxdt + Ddw

(3.1)

defined for all t ∈ R, where w is a p-dimensional vector Wiener process, and A, B, C, D
are constant matrices with A being a stability matrix , i.e. having all its eigenvalues in the
open left half-plane. The system is in statistical steady state so that the n-dimensional
state process x and the increments of the m-dimensional output process y are jointly
stationary. We shall think of Σ as a representation of the (increments of the) process
y; such a representation will be called a (finite-dimensional) stochastic realization of dy.
The number of state variables n will be called the dimension of Σ, denoted dim Σ.

Systems of this type have been used in the engineering literature since the early
1960’s as models for random signals. An alternative but, as we shall see below, not
entirely equivalent way of representing the signal dy is obtained by eliminating the state
x from (3.1). In this way we obtain a scheme which generates dy by passing white noise
dw through a shaping filter with rational transfer function

W (s) = C(sI −A)−1B + D (3.2)

as explained in Appendix B. This produces a stationary increment process dy with the
spectral representation

y(t)− y(s) =
∫ ∞

−∞

eiωt − eiωs

iω
W (iω)dŵ (3.3)

and hence with the rational spectral density

W (s)W (−s)
′
= Φ(s) (3.4)

where prime (
′
) denotes transpose. In other words, W is a spectral factor of Φ, which,

in view of the fact that A is a stability matrix, is analytic, i.e. has all its poles in the
open left halfplane.

However, the model Σ is more than just a representation of a stochastic process
in terms of white noise. Much more important in applications is that the model (3.1)
contains a state process x which serves as a dynamical memory for dy. A formalization
of this idea will be the starting point for the geometric theory developed in this paper.
Before getting into this, however, we shall present some preliminary observations about
stochastic models.

3.1. Minimality and nonminimality of models

We shall say that Σ is minimal if dy has no other stochastic realization of smaller
dimension. Occasionally, as for example in noncausal estimations, we shall also need to
consider nonminimal Σ. Therefore, it is important to understand the relation between
deg W , the McMillan degree of W , and dim Σ.
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Before turning to this point, we need to recall a few well-known facts about the state
process x. Since A is a stability matrix, we have

x(t) =
∫ t

−∞
eA(t−τ)Bdw(τ) (3.5)

from which it is seen that the state process is a stationary wide-sense Markov process
with a constant covariance matrix

P := E{x(t)x(t)
′} =

∫ ∞

0
eAτBB

′
eA

′
τdτ (3.6)

which clearly satisfies the Lyapunov equation

AP + PA
′
+ BB

′
= 0 (3.7)

From (3.6) it is seen that P is the reachability Grammian for the pair (A,B), and
therefore the system Σ is reachable if and only if P is positive definite (P > 0), i.e. if
and only if {x1(0), x2(0), . . . , xn(0)} is a basis in the space

X = span{x1(0), x2(0), . . . , xn(0)} (3.8)

consisting of all linear combinations of the components of x(0). The space X will play a
fundamental role in what follows, being the abstract representation of Σ in the geometric
theory. We should, however, immediately alert the reader to the fact that X and Σ
cannot be equivalent representations, as trivially there may be redundancy in Σ due to
nonreachability which cannot be seen in X. The following proposition makes this point
more precise and gives a preview of some facts concerning X and W to be studied in
detail in Section 5.

Proposition 3.1. Let dy be a stationary-increment process with a rational spectral
density Φ having a finite-dimensional stochastic realization Σ of type (3.1) with spectral
factor W given by (3.2), and let X be the state space (3.8). Then

1
2
degΦ ≤ degW ≤ dimX ≤ dim Σ (3.9)

Moreover, deg W = dimX if and only if (C,A) is observable, and dimX = dim Σ if and
only if (A,B) is reachable.

The statements concerning the last of inequalities (3.9) follows immediately from the
preceding discussion while those concerning the second inequality are a consequence of
Theorem 5.13 in Section 5.5 below. The first inequality in the chain is proved in [2].

From Proposition 3.1 we may learn several things about stochastic realizations. First,
for Σ to be minimal it is not sufficient that Σ is both observable and reachable. For this
we must also have

deg W =
1
2

deg Φ (3.10)

A W satisfying this condition will be called a minimal spectral factor [2, 3]. Secondly,
reachability plays no role in the geometric theory since the basic object of it is X and
not Σ.
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3.2. The idea of state space and Markovian representations

There is a trivial equivalence relation between realizations of dy corresponding to a
change of coordinates in the state space and constant orthogonal transformations of
the input Wiener process dw, which we would like to factor out before undertaking the
study of the family of (minimal and nonminimal) stochastic realizations. The equivalence
classes are defined by

(A,B,C,D, dw) ∼ (T1AT−1
1 , T1BT−1

2 , CT−1
1 , DT−1

2 , T2dw) (3.11)

where T1, is an n× n nonsingular matrix and T2 is a p× p orthogonal matrix. Clearly,
the state space X , defined by (3.8), is an invariant of this equivalence, and we shall look
for conditions under which this invariant is complete in the sense that there is bijective
correspondence between equivalence classes Σ] and spaces X. Since realizations Σ and Σ̃

such that

[
B
D

]
dw =

[
B̃

D̃

]
dw̃ give rise to the same X, an obvious necessary condition

is that

rank

[
B
D

]
= p. (3.12)

Moreover, as pointed out in Section 3.1, it is necessary to consider only models Σ for
which

(A,B) reachable. (3.13)

We shall prove that under these two conditions the above one-one correpondence holds.
We proceed to characterize these X spaces. Given a realization Σ, first denote by H

and H0 the spaces of random variables

H := H(dw) H0 := H(dy) (3.14)

and let {Ut; t ∈ R} be the shift induced by dw, i.e. the strongly continuous group of
unitary operators on H such that

Ut[w(τ)− w(σ)] = w(τ + t)− w(σ + t). (3.15)

Obviously X and H0 are subspaces of H, H0 being doubly invariant for the shift, so that
Utx(τ) = x(τ + t) and

Ut[y(τ)− y(σ)] = y(τ + t)− y(σ + t) (3.16)

Next define

X− := H−(x), X+ := H+(x), H− := H−(dy) and H+ := H+(dy) (3.17)

Now solving (3.1) we have

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bdw(τ) (3.18a)

y(t)− y(0) =
∫ t

0
CeAτdτx(0) +

∫ t

0
[
∫ t

0
CeA(τ−σ)Bdσ + D]dw(τ) (3.18b)
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Therefore, since H+(dw) ⊥ H−(dw) ⊃ H− ∨X−,

EH−∨X−
λ = EXλ for all λ ∈ H+ ∨X+ (3.19)

which is, as pointed out in Section 2, the conditional orthogonality

H− ∨X− ⊥ H+ ∨X+|X. (3.20)

This is the state space property of the subspace X which will play a central role in what
follows. In general, given a Hilbert space H of random variables containing H0 with
a shift {Ut} satisfying (3.16), a subspace X of H is said to be a Markovian splitting
subspace if it satisfies the conditional orthogonality relation (3.20) with X− and X+

defined as
X− := ∨t≤0UtX and X+ := ∨t≥0UtX (3.21)

Note that (3.20) implies that
X− ⊥ X+|X (3.22)

and
H− ⊥ H+|X (3.23)

A subspace X is said to be Markovian if it satisfy (3.22) with X− and X+ given by
(3.21) and splitting if it satisfies (3.23). Note that, in general, (3.22) and (3.23) do not
imply the joint conditional orthogonality relation (3.20), and therefore being a Markovian
splitting subspace is a more stringent condition than being both a Markovian space and
a splitting subspace.

In view of (3.5), H− ∨X− ⊂ H−(dw) which is purely nondeterministic (p.n.d.); see
Appendix A. Hence the subspace H−∨X− is also p.n.d. In the finite-dimensional case it
can be shown (as will be done below) that H− ∨X− is p.n.d. if and only if H+ ∨X+ is.
In general we say that the Markovian splitting subspace is proper if both these conditions
hold.

We shall now give a precise statement describing the parametrization of equivalent
classes [Σ] of realizations in terms of Markovian splitting subspaces. To this end, we
need the following definition.

Definition 3.2. A Markovian representation of dy is a triplet (H, {Ut}, X) where X is
a Markovian splitting subspace in the Hilbert space

H = H0 ∨ span{UtX; t ∈ R}, (3.24)

called the ambient space of the representation, {Ut} is a shift on H such that (3.16)
holds, and span denotes closed span. A Markovian representation is said to be internal if
X ⊂ H0, in which case H = H0, and proper if X is proper. The dimension of a Markovian
representation is the dimension of X. When there is no reason for misunderstanding, we
shall write (H,U,X) for short.

Theorem 3.3 There is a one-one correspondence between equivalence classes [Σ] of
stochastic realizations of dy satisfying conditions (3.12) and (3.13) and proper finite-
dimensional Markovian representations (H, {Ut}, X) of dy under which H(dw) = H
and the state x(0) = {x1(0), x2(0), . . . , xn(0)} of each Σ ∈ [Σ] is a basis of X.
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Proof. We showed above that A being a stability matrix implies that H− ∨X− is p.n.d.
In [25] it was shown that to each realization Σ there corresponds a backward realization
with Ā similar to−A

′
. (See (3.30) below.) Hence applying the same argument in reversed

time, we also have H+ ∨X+ p.n.d., i.e. X is proper. Consequently, it follows from the
construction above that to each equivalence class [Σ] of realizations there corresponds
a unique proper Markovian representation, of the same dimension as Σ, having the
stated properties. It remains to show that to each finite dimensional, proper Markovian
representation (H, {Ut}, X) of a process dy with stationary increments there corresponds
a realization Σ satisfying (3.12) and (3.13) and such that {x1(0), x2(0), . . . , xn(0)} is a
basis of X and H(dw) = H. To this end, set S := H− ∨X−. Then, by assumption S is
p.n.d. Moreover, S is full-range because of (3.24). Therefore, there is a Wiener process
dw uniquely defined modulo multiplication by a constant orthogonal matrix T2, such
that S = H−(dw) and H = H(dw); (Theorem A.2). Let {ξ1, ξ2, . . . , ξn} be a basis in X.
Then, since X is Markovian,

x(t) =




Utξ1

Utξ2
...

Utξn


 −∞ < t <∞ (3.25)

is a stationary, p.n.d., vector Markov process. From (3.19) we see that there is a matrix
function Φ(t) such that

ESx(t) = EXx(t) = Φ(t)x(0) for t ≥ 0 (3.26)

Moreover, for t, s ≥ 0,

ESx(t + s) = ESEUtSx(t + s) = ESΦ(s)x(t) = Φ(s)Φ(t)x(0), (3.27)

that is, Φ(t) is a continuous semigroup on Rn, and hence of the form eAt with A being
an asymptotically stable n× n matrix. Stability follows from the fact that

‖ ESx(t) ‖ = ‖ EU−tSx(0) ‖ → 0 as t→∞ (3.28)

because S is p.n.d. Then, by the same argument as in [34, Theorem 3.1], it is seen that
there is a constant matrix B such that

x(t)− x(0)−
∫ t

0
Ax(s)ds =

∫ t

0
Bdw(s) (3.29)

i.e. x(t) satisfies a stochastic differential equation of type (3.1). Since x(0) is a basis in
X, (A,B) must be reachable. Next, we note that, because of finite dimensionality of
x the process y is conditionally Lipschitz with respect to S [34] and therefore it has a
semimartingale representation as in (3.1). Clearly, condition (3.12) holds, for otherwise
H−∨X− would be a proper subspaces of H(dw) contrary to the construction. (A similar
construction can be found in [37].) ✷

Consequently, we have reduced stochastic realizations of dy to geometric objects in
Hilbert space. We shall commence our study of this in Section 4 where a geometric
characterization of all Markovian representations will be given.
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3.3. Anticausal stochastic realizations

As will be quite clear from the geometric theory to follow, there is complete symmetry
in stochastic realization theory under reversal of time. In fact, in [25] it was shown that
there is a natural one-one correspondence between (forward) stochastic realizations Σ
and backward stochastic realizations

(Σ̄)

{
dx̄ = Āx̄dt + B̄dw̄
dy = C̄x̄dt + D̄dw̄

(3.30)

with Ā is antistable, i.e. having all its eigenvalues in the right open halfplane, in the
sense that (Ā, B̄, C̄, D̄, dw̄) is uniquely determined by (A,B,C,D, dw) and vice versa
and that Σ and Σ̄ have the same state space, i.e.

span {x̄1(0), x̄2(0), . . . , x̄n(0)} = X (3.31)

Such a stochastic system Σ̄ evolves backward in time and its spectral factor

W̄ (s) = C̄(sI − Ā)−1B̄ + D̄ (3.32)

is coanalytic, i.e. it has all its poles in the open right half plane.
Naturally, there is a backward version of Proposition 3.1 so that

1
2

deg Φ ≤ deg W̄ ≤ dimX ≤ dim Σ̄ (3.33)

where W̄ is called a minimal coanalytic spectral factor if the first inequality is satisfied
with equality. Also, deg W̄ = dimX if and only if (C̄, Ā) is observable and dimX =
dim Σ̄ if and only if (Ā, B̄) is reachable. In accordance with Kalman’s definitions [19],
we shall say that the backward system Σ̄ is constructible if (C̄, Ā) is observable and
controllable if (Ā, B̄) is reachable.

This duality between forward and backward, between causal and anticausal, will
emerge very naturally in the geometric theory.

4. Geometric theory of Markovian representations

Although the primary concern in stochastic systems theory is the study of finite-dimensional
systems Σ of type (3.1) the geometric theory and many of the results and concepts based
on it hold under more general conditions. Observability and constructability, as well as
minimality of W and W̄ will be given simple geometric characterizations which make
sense also in the infinite dimensional case. In fact, the concept of dimension plays a sec-
ondary role in the geometric theory. Therefore, unless otherwise stated, no assumption
of finite-dimensionality will be made, and when so is done it is for technical reasons.

4.1. The fundamental representation theorem

The following theorem, which is a generalization of the corresponding results first pre-
sented in [28, 29], provides basic geometric description of the class of Markovian repre-
sentations.
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Theorem 4.1. Let H ⊃ H0 be a Hilbert space of random variables with a shift {Ut}
satisfying (3.9), and let X be a subspace of H such that

H = H0 ∨ span {UtX ; t ∈ R} (4.1)

Then (H,U,X) is a Markovian representation if and only if

X = S ∩ S̄ (4.2)

for some pair (S, S̄) of subspaces of H such that

(i)

{
H− ⊂ S
H+ ⊂ S̄

(ii)

{
U∗
t S ⊂ S for t ≥ 0

UtS̄ ⊂ S̄ for t ≥ 0
(4.3)

and
(iii) H = S̄⊥ ⊕ (S ∩ S̄)⊕ S⊥ (4.4)

where ⊥ denotes the orthogonal complement in H. Moreover, the correspondence X ↔
(S, S̄) is one-one. In fact, {

S = H− ∨X−

S̄ = H+ ∨X+ (4.5)

Finally, X is proper if and only if both S⊥ and S̄⊥ are full range, or, equivalently, both
S and S̄ are p.n.d.

Proof. (if) By Proposition 2.4 and Theorem 3.2 in [33], (iii) is equivalent to the conditions

S ⊥ S̄ | X (4.6)

S ∨ S̄ = H (4.7)

where X is given by (4.2). Now, together with (4.2), (i) and (ii) imply that

H− ∨X− ⊂ S and H+ ∨X+ ⊂ S̄ (4.8)

and therefore (3.20) follows from (4.6). (only if): Define S and S̄ by (4.5). Then (i) and
(ii) hold. Moreover, (3.20) is the same as (4.6), and the definition (4.1) of H insures
that (4.7) holds. It remains to show that X is given by (4.2). However, this follows from
Theorem 3.1 in [33]. (one-one): By Theorem 3.1 in [33] and (3.20), there is only one
pair (S, S̄) satisfying (4.6) and (4.8), namely that defined by (4.5). The last statement
of the theorem, finally, follows from the fact that S [S̄] is p.n.d. if and only if S⊥ [S̄⊥]
is full range. ✷

In the sequel, we shall write X ∼ (S, S̄) to exhibit the one-one correspondence of
Theorem 4.1, and we shall call (S, S̄) the scattering pair representation of X. This
terminology comes from the fact that S and S̄ are incoming and outgoing subspaces for
the unitary group {Ut} in the sense of Lax-Phillips [21]. Note that Theorem 4.1 provides
a different scattering framework for each Markovian splitting subspace X. Let us define
the multiplicity of a proper Markovian representation (H,U,X) with X ∼ (S, S̄) to be
the common multiplicity of S, S̄ and H. (See Theorem A.1.).
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Figure 4.1: The splitting geometry

The geometric interpretation of Condition(iii) of Theorem 4.1 is that S and S̄ inter-
sect perpendicularly as depicted in Figure 4.1. It is clear from this condition that (4.2)
can be replaced by

X = ESS̄ = ES̄S (4.9)

Alternative geometric characterizations of perpendicular intersection can be found in [33].
In particular, S and S̄ intersect perpendicularly if and only if S̄⊥ ⊂ S, the orthogonal
complement S � S̄⊥ being precisely equal to X.

Given a Markovian representation (H,U,X), for each t ≥ 0, let Ut(X) : X → X be
the compressed shift

Ut(X) = EXUt|X (4.10)

Note that, since S̄⊥ is a U∗
t -invariant subspace of S, its orthogonal complement in S,

which is precisely X, is invariant for the adjoint of the restricted backward shift U∗
|S .

This is the same as saying that ESUt|X = Ut(X), and so {Ut(X); t ∈ R} is a strongly
continuous semigroup, i.e.

Ut(X)Us(X) = Ut+s(X) (4.11)

and, if X is proper, Ut(X) tends strongly to zero as t→∞; see, e.g., [33; Thm 6.2]. In
particular, if (H,U,X) is finite-dimensional and corresponds to the stochastic realization
(3.1), EXa

′
x(t) = a

′
eAtx(0) for any a ∈ R, i.e.

Ut(X)a
′
x(0) = a

′
eAtx(0) (4.12)

and consequently Ut(X) plays the role of eAt in the geometric theory. A dual argument
exchanging S and S̄ yields the backward semigroup Ut(X)∗ = EXU∗

t|X , which corre-

sponds to the matrix representation e−A
′
t. These are the semigroups which govern the

dynamics of the forward and backward models corresponding to X, mentioned in Section
3, and to be reintroduced in Section 5.5.
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4.2. Geometric characterizations of minimality

We say that a Markovian splitting subspace is minimal if it contains no other Marko-
vian splitting subspace as a proper subspace. A minimal Markovian representation is
a Markovian representation for which X is minimal. Now the inclusions S̄⊥ ⊂ S and
S⊥ ⊂ S̄ together with condition (i) of Theorem 4.1 imply that the scattering pair (S, S̄)
of a Markovian splitting subspace must satisfy the constraints

S ⊃ H− ∨ S̄⊥ S̄ ⊃ H+ ∨ S⊥ (4.13)

Moreover, it is obvious from the representations (4.2) and (4.5) that we have the inclusion
X1 ⊂ X2 of Markovian splitting subspaces if and only if there is a subspace inclusion
of the corresponding (S, S̄) pairs, i.e. S1 ⊂ S2, S̄1 ⊂ S̄2. Therefore, in order to achieve
minimality, in view of (4.2), we should reduce S and S̄ as much as possible but without
violating the constraints (4.13). The following theorem, which is a generalization to the
not necessarily internal case of a result in [29] appearing as Theorem 3.3 in [33] , provides
a procedure for this reduction.

Theorem 4.2. Let (H,U,X) be a Markovian representation and let X ∼ (S, S̄). Set

S̄1 := H+ ∨ S⊥ (4.14a)
S1 := H− ∨ S̄⊥

1 (4.14b)

where ⊥ denotes the orthogonal complement in H. Then X1 ∼ (S1, S̄1) is a minimal
Markovian splitting subspace such that X1 ⊂ X, and (H1, U,X1) is a minimal Markovian
representation with H1 = S1 ∨ S̄1. If (H,U,X) is proper, so is (H1, U,X1) and H1 = H.
In particular, multiplicity is preserved.

Proof. The proof that X1 ∼ (S1, S̄1) is a minimal Markovian splitting subspace such
that X1 ⊂ X is the same as that of Theorem 3.3 in [33]. From this and Theorem 4.1, it
follows that (H1, U,X1) with H1 = S1 ∨ S̄1 ⊂ H is a minimal Markovian representation.
It remains to prove the last statement of the theorem. To this end, suppose (H,U,X)
is proper. As a corollary of the proof in [33] we have that X0 ∼ (S, S̄1) is a Markovian
splitting subspace and that S̄1 ⊂ S̄. From Theorem 4.1 it follows that S = H− ∨ X−

0

and that span{UtS; t ∈ R} = H, and therefore H is also the ambient space of X0.
Moreover, S̄⊥

1 ⊃ S̄⊥ so S̄⊥
1 is full range. Therefore (H,U,X0) is a proper Markovian

splitting subspace, which, using the same argument again for the next step of reduction,
in turn implies that (H,U,X1) is a proper Markovian representation. ✷

Example 4.3. It is immediately seen that (H0, U,H−) is a Markovian representation and
that H− ∼ (H−, H0). Applying Theorem 4.2 we obtain S1 = H− and S̄1 = H+∨(H−)⊥,
and in view of (4.9), the corresponding Markovian splitting subspace is

X1 = EH−
[H+ ∨ (H−)⊥] = EH−

H+

Moreover, S1 ∨ S̄1 = H0. Therefore, the predictor space

H+/− := EH−
H+ (4.15)
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is an internal Markovian splitting subspace and H+/− ∼ (H−, (N−)⊥), where

N− := H− ∩ (H+)⊥ (4.16)

This subspace will play an important role below. ✷

Example 4.4 In the same way, applying Theorem 4.2 to the Markovian representation
(H0, U,H+), we see that the backward predictor space

H−/+ := EH+H− (4.17)

is an internal minimal Markovian splitting subspace, and with

N+ := H+ ∩ (H−)⊥ (4.18)

we have H−/+ ∼ ((N+)⊥, H+). ✷

Corollary 4.5. A Markovian representation (H,U,X) with X ∼ (S, S̄) is minimal if
and only if

S̄ = H+ ∨ S⊥ (4.19a)
S = H− ∨ S̄⊥ (4.19b)

From this corollary and Conditions (i) and (iii) of Theorem 4.1 we see that any
minimal X must be orthogonal to the two subspaces N− and N+, defined by (4.16) and
(4.18) respectively. This implies that

EH0X ⊂ H✷ (4.20)

where the frame space H✷ is defined by the orthogonal decomposition

H0 = N− ⊕H✷ ⊕N+ (4.21)

By Theorem 4.1, H✷ is an internal Markovian splitting subspace with representation
H✷ ∼ ((N+)⊥, (N−)⊥). In general, H✷ is nonminimal. In fact, it is easy to check (see
(4.25) below), that

H✷ = H+/− ∨H−/+ (4.22)

and that H✷ is the closed linear hull of all internal minimal Markovian splitting subspaces
[33]. Decomposition (4.21) partitions the output space H0 into three parts. The subspace
N− is the part of the past H− which is orthogonal to the future H+, and N+ is the part
of the future which is orthogonal to the past. Consequently, the inclusion (4.20) reflects
the fact that the spaces N− and N+ play no role in the interaction between past and
future and hence in minimal state space construction. The following result, which has
interesting interpretations in Kalman filtering (see Section 7.4 below), provides further
support to this interpretation.

Lemma 4.6. Let X be a Markovian splitting subspace. Then

EH−
X = H+/− (4.23)
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if and only if X ⊥ N−, and
EH+

X = H−/+ (4.24)

if and only if X ⊥ N+.

A simple proof of this lemma follow the lines of [33; Theorem 3.5].
Conditions (4.19) of Corollary 4.5 can be interpreted as minimality conditions on S

and S̄ respectively. The systems-theoretic interpretations of these conditions is that of
observability and constructibility respectively. In fact, applying the decomposition

A = EAB ⊕ (A ∩B⊥) (4.25)

(which is easily seen to hold for any pair of subspaces A and B with B⊥ being the
orthogonal complement of B in any space H containing both A and B) to X and H+ or
H− we obtain

EXH+ ⊕ [X ∩ (H+)⊥] = X = EXH− ⊕ [X ∩ (H−)⊥] (4.26)

In these two decompositions of X,X ∩ (H+)⊥ is the unobservable space of X, i.e. the
subspace consisting of all elements in X which are orthogonal to the future H+, and
hence unobservable in a sense which is the natural generalization of that of deterministic
systems theory [19]. Symmetrically, X ∩ (H−)⊥ is called the unconstructible subspace
of X. Consequently, X is said to be observable if X ∩ (H+)⊥ = 0 and constructible
if X ∩ (H−)⊥ = 0. In accordance with this terminology, EXH+ and EXH− are the
observable and constructible subspaces of X respectively [48].

Theorem 4.7. Let X ∼ (S, S̄) be a Markovian splitting subspace. Then X is observable
if and only if (4.19a) holds and constructible if and only if (4.19b) holds.

The proof follows precisely the lines of that of Theorem 4.1 in [33]. As a corollary
to this theorem we have a theorem first presented by Ruckebusch [48] with a different
proof.

Theorem 4.8. A Markovian splitting subspace is minimal if and only if it is both
observable and constructible.

Corollary 4.9. Let X be a Markovian splitting subspace, and let N− and N+ be defined
by (4.15) and (4.17). Then, if X is observable, X ⊥ N−, and, if X is constructible,
X ⊥ N+.

Proof. Condition (4.18b) and S̄ ⊃ H+ implies that N+ = H+ ∩ (H−)⊥ ⊂ S̄ ∩ (H−)⊥ =
S⊥, which is orthogonal to X by Condition (iii) of Theorem 4.1. Hence constructibility
of X implies X ⊥ N+. The rest follows by symmetry. ✷

The following theorem, which has important systems-theoretical consequences to be
discussed in Section 5.4, states that the minimality conditions of Theorem 4.8 can be
relaxed in that either the observability or the constructibility condition can be replaced
by the corresponding weaker condition of Corollary 4.9. In a sense, this theorem is a
geometric version (and generalization) of Proposition 3.1. In fact, as we shall see in
Section 5.4, the condition X ⊥ N+ is equivalent to the spectral factor W being minimal.
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Theorem 4.10. Let X be a proper Markovian splitting subspace. Then the following
condition are equivalent.

(i) X minimal

(ii) X observable and X ⊥ N+

(iii) X constructible and X ⊥ N−

We shall here give a proof along the lines of [33; p.823] for the case that H+/− and
H−/+ are finite-dimensional. The proof for the general case requires some concepts to
be introduced in Section 5 and will therefore be postponed and proved as a corollary to
Theorem 5.4.

Proof (finite-dimensional case). It follows trivially from Theorem 4.8 and Corollary 4.9
that (i) implies (ii) and (iii). Conversely, if (ii) or (iii) hold, X is orthogonal to both N−

and N+ (Corollary 4.9), and therefore, since

H− = H+/− ⊕N− and H+ = H−/+ ⊕N+ (4.27)

(decomposition (4.25)), the splitting condition H− ⊥ H+|X can be replaced by the
reduced condition

H+/− ⊥ H−/+|X (4.28)

where N− and N+ have been removed from the past and the future. Now, introduce
the corresponding (reduced) observability operator O : X → H−/+ and constructibility
operator C : X → H+/− defined by

O := EH−/+

|X and C := EH+/−
|X (4.29)

respectively. Then, in view of (4.26),

kerO = X ∩ [(H+)⊥ ⊕N+] = X ∩ (H+)⊥

since X ⊥ N+, and hence O is injective if and only if X is observable. Likewise, C is
injective if and only if X is constructible. Moreover, in view of (4.26) and the assumptions
X ⊥ N− and X ⊥ N+, Lemma 4.6 implies that ImO = H−/+ and ImC = H+/− (if they
are finite dimensional), and consequently O and C are always surjective. Now, suppose
(ii) holds. Then O is bijective, and hence invertible. Now, it is easy to see that the
reduced splitting condition (4.28) is equivalent to the factorization

OC∗ = O− (4.30)

where O− is the reduced observability operator of H+/−, i.e. O− := EH−/+

|H+/−

(Proposition 2.1(vi) ), which of course is also bijective, since H+/− is minimal and
hence observable. Therefore, it follows from (4.29) that C∗ = O−1O− is bijective, and
consequently X is also constructible. Hence (i) holds (Theorem 4.8). A symmetric
argument shows that (iii) implies (i). ✷

The following corollaries will be needed later.
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Corollary 4.11. Let dimH+/− =: n < ∞. Then all minimal Markovian splitting
subspaces have dimension n.

Proof. Since C : X → H+/− is a bijection, X must have the same dimension as H+/−.✷

Corollary 4.12. A Markovian splitting subspace X is observable [constructible] if
and only if O [C], defined by (4.29), is injective with dense range (or bijective in the
finite-dimensional case).

Corollary 4.13. Let X be a Markovian splitting subspace such that X ⊥ N+. Then

Ut(X)O∗ = O∗Ut(H−/+) (4.31)

Proof. Let ξ ∈ H−/+. Then, since ξ ∈ S̄, X⊥ = S⊥ ⊕ S̄⊥ and UtS
⊥ ⊂ S⊥ for t ≥ 0

(Theorem 4.1), Ut(X)O∗ = EXUtE
Xξ = EXUtξ. But, since X ⊥ N+, this equals

EXE(N+)⊥Utξ = O∗Ut(H−/+)ξ because Utξ ⊥ (H+)⊥. ✷

Corollaries 4.12 and 4.13 imply that minimal X have similar Ut(X) in the finite-
dimensional case and, as we shall see in the next section, quasi-similar Ut(X) in the
general case [41].

5. Construction of Markovian representations

In this section we tie up the geometric notion of Markovian representation with analytic
and coanalytic solutions of the spectral factorization problem

W (s)W (−s)
′
= Φ(s) (5.1)

where Φ is the m × m incremental spectral density of dy. To begin with, we shall
only assume that the m-dimensional stationary increment process dy is mean-square
continuous and p.n.d. and that the spectral density Φ is full rank almost everywhere on
the imaginary axis I. Later, in Section 5.5, we shall consider the case when Φ is rational.
(See Appendices B and C).

5.1. From Markovian representations to spectral factors

Given a proper Markovian representation (H,U,X) of multiplicity p ≥ m with X ∼
(S, S̄), there is a pair (dw, dw̄) of p-dimensional Wiener processes such that H(dw) =
H(dw̄) = H and {

S = H−(dw)
S̄ = H+(dw̄)

(5.2)

(Theorem A.1 in the Appendix.) These processes are called the generating processes of
the Markovian representation, and they are uniquely determined modulo multiplication
by a constant p× p orthogonal matrix.

By (5.2), every random variable in S [in S̄] can be represented by a stochastic integral
(B.1) of a causal function f ∈ L2

p(R) [an anticausal function f̄ ∈ L2
p(R)] with respect

to dw [dw̄]. In particular, this naturally leads to representations of dy by means of a
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causal and an anticausal input-output map driven by the white noise processes dw and
dw̄, respectively. The most efficient way to study these representations in the current
stationary framework, is by spectral-domain techniques. To this end, recall that there
are two unitary maps Iw and Iw̄ from L2

p(I) to H establishing unitary isomorphisms
between S and S̄ and the Hardy spaces H2

p and H̄2
p respectively. (See Appendix C.) In

fact, under each of these isomorphisms the shift Ut becomes multiplication by eiωt, as
can be seen from (B.12), and, recalling (C.1),

IwH2
p = H−(dw) = S and Iw̄H̄2

p = H+(dw̄) = S̄ (5.3)

Moreover, since I−1
w Iw̄ is a unitary operator which commutes with the shift on L2

p(I), it
can be represented by a multiplication operator

I−1
w Iw̄ = MK (5.4)

where MKf = fK and K is a unitary p × p matrix function on I [13, 15, 52]. An
isometry which sends analytic functions to analytic functions is called inner. A p × q
matrix function V on I such that H2

pV is dense in H2
q is called outer [52]. Functions

with the corresponding properties with respect to the conjugate Hardy space H̄2
p will be

called conjugate inner and conjugate outer respectively.

In the Appendix C we introduce the modified Hardy spaces W2
p and W̄2

p consisting
of the p−dimensional row vector functions g and ḡ respectively such that χ̄hg ∈ H2

p and
χhḡ ∈ H̄2

p , where χh(iω) = (eiωt−1)/iω and χ̄h(iω) = χh(−iω). For reasons explained in
Appendix C, a spectral factor W with rows in W2

p will be called analytic and a spectral
factor W̄ with rows in W̄ 2 coanalytic.

Lemma 5.1. Let (H,U,X) be a proper Markovian representation with generating pro-
cesses dw, dw̄. Then there is a unique pair (W, W̄ ) of spectral factors, the first being
analytic and the second coanalytic, such that

dŷ = Wdŵ = W̄d ˆ̄w (5.5)

Moreover the matrix function K defined by (5.4) is inner, and satisfies

W = W̄K (5.6)

In particular,
d ˆ̄w = Kdŵ (5.7)

Proof. For a fixed h > 0, define two m× p matrix-valued functions W and W̄ on I with
rows

Wk = χ̄−1
h I−1

w [yk(−h)− yk(0)] (5.8a)
W̄k = χ−1

h I−1
w̄ [yk(h)− yk(0)] (5.8b)

for k = 1, 2, . . . ,m. Then

y(−h)− y(0) =
∫ ∞

−∞

e−iωh − 1
iω

W (iω)dŵ(iω) (5.9a)

y(h)− y(0) =
∫ ∞

−∞

eiωh − 1
iω

W̄ (iω)d ˆ̄w(iω) (5.9b)
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from which we see that W and W̄ are spectral factors, independent of the choice of h in
the definitions (5.8), and that (5.5) holds. (See Appendix C). In fact from the spectral
representation (B.19) and from (B.21) we obtain

E{[y(h1)− y(0)][y(h2)− y(0)]
′} =

∫ +∞

−∞
χh1(iω)Φ(iω)χ̄h2(iω)

dω

2π

and by making the same computation starting from, say, (5.9b) we obtain instead
∫ +∞

−∞
χh1(iω)W̄ (iω)W̄ (iω)∗χ̄h2(iω)dω/2π

Since the functions {χh; h ∈ R} are dense in L1(I), by comparing the two expressions we
indeed get Φ(iω) = W̄ (iω)W̄ (iω)∗ a.e. Conversely, if W and W̄ satisfy (5.5) and hence
(5.9), they satisfy (5.8), proving uniqueness. Since the components of y(−h) − y(0)
belong to H−, for h > 0, and hence to S, it follows from (5.9a) and (5.3) that the rows
of χ̄hW belong to H2

p . In the same way, we see that H+ ⊂ S̄ implies that the rows of
χhW̄ belong to H̄2

p . That K is inner follows from perpendicular intersection. In fact, in
view of (5.2), S̄⊥ ⊂ S may be written H−(dw̄) ⊂ H−(dw), for H−(dw̄)⊕H+(dw̄) = H.
Therefore, it follows from (5.3) and (5.4) that H2

pK ⊂ H2
p , showing that K is inner.

Moreover, for any f ∈ L2
p(I), I−1

w Iw̄f = fK, i.e.
∫

fd ˆ̄w =
∫

fKdŵ

proving (5.7). Then (5.6) follows from (5.5) and (5.7). ✷

It follows from the analysis above that the spectral factors W and W̄ are uniquely
determined by the subspaces S and S̄, once a specific choice of generating process dw, dw̄
has been made. According to Theorem A.1, this amounts to say that W and W̄ are
determined by S and S̄ modulo right multiplication by a constant p × p orthogonal
matrix. The equivalence class of m× p spectral factors

[W ] = {WT ; T orthogonal p× p matrix} (5.10)

will sometimes be denoted by the symbol WmodO(p), where O(p) is the p-dimensional
orthogonal group, or merely WmodO if the dimension of W need not be mentioned.

Hence, given a proper Markovian representation (H,U,X) with X ∼ (S, S̄), we
determine a unique (modO) pair (W, W̄ ) of m × p spectral factors, one being analytic
and corresponding to S, and the other coanalytic and corresponding to S̄. In terms of the
splitting geometry the analyticity of W reflects the condition S ⊃ H−, the coanalyticity
of W̄ the condition S̄ ⊃ H+, and K being inner the perpendicular intersection between
S and S̄. We shall call a triplet (W, W̄ ,K) where W and W̄ are m× p spectral factors
for some p ≥ m and K is a p × p matrix function satisfying the equation W = W̄K a
Markovian triplet if W is analytic, W̄ coanalytic and K inner.

In view of (5.4), K is uniquely determined by the Markovian representation (H,U,X)
modulo right and left multiplication by orthogonal constant matrices, and we shall call it
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the structural function of (H,U,X). It follows that the Markovian triplets corresponding
to a Markovian representation are all related by the equivalence

(W, W̄ ,K) ∼ (WT1, W̄T2, T
−1
2 KT1) ; T1, T2 ∈ O(p) (5.11)

We shall denote the corresponding equivalence class of Markovian triplets
(W, W̄ ,K) modO or [W, W̄ ,K].

Note that if the proper Markovian representation (H,U,X) is internal, then its multi-
plicity p equals m so that W and W̄ are square and hence, since Φ is full rank, invertible.
There are two square spectral factors of particular importance, namely the outer spec-
tral factor W− and the conjugate outer spectral factor W̄+. As explained in Appendix
C, the outer property implies that the corresponding Wiener process, in view of (5.5)
uniquely defined as dû− := W−1

− dŷ and dˆ̄u := W̄−1
+ dŷ, satisfy H−(du−) = H− and

H+(dū+) = H+, and consequently, du− is the (forward) innovation process of dy and
dū+ the backward one.

We shall see in Section 5.4 that there are proper Markovian representations only
if the frame space H✷ ∼ ((N+)⊥, (N−)⊥), defined in Section 4.2, is proper, which is
equivalent to (N+)⊥ and (N−)⊥ being p.n.d. (Theorem 4.1). In this case, there are
two m-dimensional Wiener processes dū− and du+ such that H−(du+) = (N+)⊥ and
H+(dū−) = (N−)⊥ (Theorem A.1) and a corresponding analytic spectral factor W+

such that dŷ = W+dû+ and a coanalytic one W̄− such that dŷ = W̄−dˆ̄u− (Lemma 5.1).
Then the two predictor spaces H+/− and H−/+, defined in Section 4.2, have Marko-
vian triplets (W−, W̄−,K−) and (W+, W̄+,K+) respectively, where K− := W̄−1

− W− and
K+ := W̄−1

+ W+. The condition that (N−)⊥ and (N+)⊥ are p.n.d. is equivalent to the
strict noncyclicity introduced in Section 5.4.

5.2. From spectral factors to Markovian representations

Conversely, we shall now proceed to show that all Markovian representations can be
constructed starting from Markovian pairs of spectral factors. To this end, we first have
to give a procedure for constructing the generating processes of X ∼ (S, S̄) starting from
(W, W̄ ,K). In the internal case this is a simple matter since W and W̄ can be inverted
in (5.5) yielding unique dw and dw̄. In general, the systems (5.5) are underdetermined,
introducing nonuniquiness in the corresponding generating processes.

Lemma 5.2. All p-dimensional Wiener processes dw satisfying

dŷ = Wdŵ (5.12)

are given by
dŵ = W �dŷ + dẑ (5.13)

where W � is the right inverse
W � = W ∗Φ−1 (5.14)

of W (asterisk denoting conjugation and transposition) and dz is any p-dimensional
stationary increment process with incremental spectral density

Π := I −W �W (5.15)
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and such that H(dz) ⊥ H0. The processes dz and dw are related by dẑ = Πdŵ. Moreover,
Π(iω) is a p× p orthogonal projection matrix for almost all ω ∈ R.

Proof. First note that since Π(iω)2 = Π(iω) and Π(iω)∗ = Π(iω), Π(iω) is an orthogonal
projection matrix. Let dŵ be a solution to (5.12). Then W �dŷ = (I − Π)dŵ and we
obtain formula (5.13) where

dẑ = Πdŵ (5.16)

Now E{dẑdẑ∗} = Π2dω = Πdω, and hence Π is the incremental spectral density of dz.
Moreover, E{dŷdẑ∗} = WΠdω = 0 implying the orthogonality H(dz) ⊥ H0. Conversely,
given a process dz with a spectral density (5.15) and with H(dz) ⊥ H0, define dw by
formula (5.13). Then dw is a Wiener process and Wdŵ = dŷ. ✷

Consequently, given a Markovian triplet (W, W̄ ,K), by Lemma 5.2 we can construct
pairs of generating processes

dŵ = W �dŷ + dẑ (5.17a)
d ˆ̄w = W̄ �dŷ + dˆ̄z (5.17b)

where the spectrum of dz is given by (5.15) and that of dz̄ is

Π̄ := I − W̄ �W̄ (5.18)

We now build the space H corresponding to the Markovian representation so that H =
H(dw) = H(dw̄). Of course, in order to do this, we must choose dz and dz̄ in such a
way that

H(dz̄) = H(dz) (5.19)

Note that in this case the multiplication operators MΠ and MΠ̄ both represent the
projection EH⊥

0 from H onto the doubly invariant subspace H⊥
0 = H(dz̄) = H(dz).

More specifically, IwMΠI−1
w = Iw̄MΠ̄I−1

w̄ , i.e. MΠI−1
w Iw̄ = I−1

w Iw̄MΠ̄. Therefore, in view
of (5.4),

KΠ = Π̄K (5.20)

from which we see that Π̄d ˆ̄w = KΠdŵ, i.e.

dˆ̄z = Kdẑ. (5.21)

The following theorem describes the relation between Markovian representations and
Markovian triplets (W, W̄ ,K).

Theorem 5.3. There is a one-one correspondence between proper Markovian represen-
tations (H,U,X) and pairs ([W, W̄ ,K], dz) where [W, W̄ ,K] is an equivalence class of
Markovian triplets and dz is a vector stationary-increment process ( defined modO) with
spectral density Π := I −W �W such that H(dz) ⊥ H0. Under this correspondence

H = H0 ⊕H(dz) (5.22)

and
X = H−(dw) ∩H+(dw̄) (5.23)
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where (dw, dw̄) are the generating processes given by (5.17).

Proof. Given a Markovian representation (H,U,X), we have shown above that there
is a unique equivalence class [W, W̄ ,K] of Markovian triplets and a corresponding pair
of generating processes (dw, dw̄), defined modO and consequently a unique dẑ = Πdŵ
having the required properties. Conversely, given a triplet (W, W̄ ,K) and a process
dz with the stated properties, we define (dŵ, d ˆ̄w) by (5.17) and set S := H−(dw) and
S̄ := H+(dw̄). Then since (W, W̄ ,K) is a Markovian triplet, W is analytic implying that
S ⊃ H−, W̄ is coanalytic implying that S ⊃ H+, and K is inner which is equivalent to
perpendicular intersection. Hence, by Theorem 4.1, X = S ∩ S̄ is a Markovian splitting
subspace with ambient space H = H0⊕H(dz), for the invariance condition (ii) is trivially
satisfied. The shift is induced by dy and dz. ✷

At this point we have designed a spectral-domain framework, isomorphic to the
geometric framework of Markovian representations, in which all random variables have
concrete representations as functions in certain subspaces of H2

p or H̄2
p . We shall next

introduce a general functional model for Markovian splitting subspaces which is of the
type studied in [21] and [13] in connection with deterministic scattering theory and
linear systems in Hilbert space. Using this representation the characterization of various
structural conditions of Markovian splitting subspaces (observability, constructibility
and minimality) takes a very elegant form which is actually independent of any finite
dimensionality assumption. These questions will be studied in Section 5.4.

Theorem 5.4. Let X be a proper Markovian splitting subspace with structural function
K and generating processes (dw, dw̄). Then,

X =
∫

H(K)dŵ =
∫

H̄(K∗)d ˆ̄w (5.24)

where H(K) := H2
p�H2

pK and H̄(K∗) := H̄2
p�H̄2

pK
∗. Moreover, X is finite dimensional

if and only if K is rational, in which case dimX equals the McMillans degree of K.

Proof. By Theorem 4.1 and (5.4),

X = S � S̄⊥ = H−(dw)�H−(dw̄) (5.25)

Therefore the first of equations (5.24) follows from (5.3) and (5.4). A symmetric argu-
ment yields the second equation. For a proof of the last statement, see [33]. ✷

5.3. The structure of Markovian triplets

The Markovian triplets (W, W̄ ,K) contain all the system-theoretic information needed
for the construction of explicit stochastic-differential equation representations for dy. In
particular, the structural function K determines the state space and hence the state
equations, while W and W̄ serve as the transfer functions of two stochastic realizations
having the same state space determined by K, namely a causal one driven by the forward
generating process dw and an anticausal driven by the backward generating process dw̄.
We shall now investigate the relation between W, W̄ and K.
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A Markovian triplet is called tight if K is uniquely determined by W and W̄ . This
is always the case for internal Markovian representations, for then K = W̄−1W . In the
noninternal case nontightness is due to modes of the state process which evolve inde-
pendently of dy, and there are geometric conditions to exclude this modeling anomality,
which, however, will not be discussed in this paper. In fact, tightness will be implied by
either observability or constructibility, which conditions, as we shall see below, are equiv-
alent to the coprimeness of the factorizations W = W̄K and W̄ = WK∗ respectively.
Such coprime factorizations are known to be unique (modO) [13]. Consequently, W̄ and
K are uniquely determined by W in the observable case, and W and K are uniquely
determined by W̄ in the constructible case.

Constructing K in the noninternal case starting from W and W̄ can be regarded
as a dilation problem. Given an arbitrary m × p analytic spectral factor W , define
Q := W−1

− W. Then Q∗Q = W �W is the multiplicative operator corresponding to the
orthogonal projection EH0 , and

dû− = Qdŵ. (5.26)

In the internal case H = H0,W is square and Q is inner and m×m so that dŵ can be
determined directly by inverting (5.26) to yield dŵ = Q∗dû−. However, in the noninternal
case when H �= H0, Q is an analytic m × p partial isometry with Q∗Q = W �W and
solving (5.26) for dw is then equivalent to finding an analytic (p−m)×p matrix function

P such that

[
Q
P

]
is a p× p inner dilation of Q. For, by unitarity, we get

[
QQ∗ QP ∗

PQ∗ PP ∗

]
=

[
I 0
0 I

]
and Q∗Q + P ∗P = I (5.27)

from which we see that P should be chosen a full rank analytic solution of the spectral
factorization problem

P ∗P = Π (5.28)

Similarly, we construct a p × p inner dilation of Q̄ := W̄−1
+ W̄ where W̄+ is the conju-

gate outer spectral factor. This is achieved precisely by choosing a full-rank coanalytic
solution P̄ of the spectral factorization problem

P̄ ∗P̄ = Π̄ (5.29)

Then defining the (p−m)-dimensional Wiener processes

dη̂ = Pdŵ and dˆ̄η = P̄ d ˆ̄w (5.30)

we obtain the representations

dŵ = Q∗dû− + P ∗dη̂ (5.31a)
d ˆ̄w = Q̄∗dˆ̄u+ + P̄ ∗dˆ̄η (5.31b)

which are equivalent to (5.17). From this it follows that in order for (5.19) to hold we
must have H(dη) = H(dη̄). In other words, there must be a (p−m)× (p−m) unitary
matrix functions Θ such that

dˆ̄η = Θdη̂ (5.32)
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Therefore, we can base our construction of the generating processes (dw, dw̄) on the
choice of a single (p−m)-dimensional Wiener process dη, once P and P̄ have been fixed.

Now comparing (5.7), (5.13) and (5.32) we obtain the following formula for the struc-
tural function:

K = Q̄∗T0Q + P̄ ∗ΘP (5.33)

where T0 is the unitary function
T0 = W̄−1

+ W− (5.34)

representing the interface between the past and future, which is uniquely defined by the
process dy. Formula (5.33) represents K as the sum of an internal part, K̂ := Q̄∗T0Q,
and the external part, K̃ := P̄ ∗ΘP . While K̂ is always uniquely determined by W and
W̄ , K̃ is unique only when (W, W̄ ,K) is tight.

5.4. Spectral conditions for minimality

Next we turn to characterizations of minimality and to the family of minimal Markovian
representations. As we wish to remain for a while in the general, possibly infinite-
dimensional setting, we need a condition to insure that the process dy admits proper X.
To this end, we quote the following result from [33].

Proposition 5.5. Set T0 := W̄−1
+ W−, and let N− and N+ be given by (4.16) and

(4.18). Then the following statements are equivalent.

(i) All minimal Markovian splitting subspaces are proper

(ii) Both N− and N+ are full range

(iii) There are square inner functions J1, J2, J3 and J4 such that

T0 = J1J
∗
2 = J∗

3J4

If Condition (iii) holds, we say that T0 is strictly noncyclic [13; p.254]. In particular,
this condition always holds when Φ is rational [33]. From (5.6) or (5.33) it is immediately
seen that T0 has a factorization

T0 = Q̄KQ∗ (5.35)

a different one for each proper Markovian splitting subspace X. We shall refer to
(K,Q, Q̄) as the inner triplet of X.

Theorem 5.5. Let X be a proper Markovian splitting subspace with inner triplet
(K,Q, Q̄). Then X is constructible if and only if K and Q are right coprime, i.e. they
have no nontrivial common right inner factor, and X is observable if and only if K∗ and
Q̄ are right coprime, i.e. they have no nontrivial common right conjugate inner factor.

Proof. By Theorem 4.7, X is constructible if and only if S = H− ∨ S̄⊥, i.e. H−(dw) =
H−(du−) ∨H−(dw̄), which under the isomorphism Iw takes the form

H2
p = (H2

mQ) ∨ (H2
pK) (5.36)
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For (5.36) to hold, Q and K must clearly be right coprime. Conversely, suppose that
Q and K are right coprime, and consider the right member of (5.36). Clearly it is a
full-range invariant subspace of H2

p , because H2
pK is, and therefore, by the Beurling-Lax

Theorem [14], it has the form H2
pJ where J is inner. But then J must be a common right

inner factor of Q and K, and hence J = I, concluding the proof of the constructibility
criterion. The proof of the observability part is by symmetry. ✷

Theorem 5.5, which was first presented in the internal setting in [29], allows us to
interpret minimality in terms of the factorization (5.36) of T0. In fact, by Theorem 4.8,
X is minimal if and only if this factorization is reduced as far as possible in the sense
that no further cancellations are possible. The reduction procedure of Theorem 4.2 could
be interpreted in terms of such cancellations.

Corollary 5.6. Let X be an observable proper Markovian splitting subspace with an-
alytic spectral factor W . Then its Markovian triplet (W, W̄ ,K) is tight and W̄ and K
are the unique (modO) coprime factors of

W = W̄K (5.37)

such that W̄ is m × p coanalytic and K is p × p inner. Similarly, if X is constructible
with coanalytic spectral factor W̄ , its Markovian triplet (W, W̄ ,K) is tight, and W and
K∗ are the unique (modO) coprime factors of

W̄ = WK∗ (5.38)

The proof follows from the uniqueness of the coprime factorizations (5.37) and (5.38);
see [13; p.254].

The structural functions of two minimal proper Markovian splitting subspaces may
be quite different (in the multivariate case). In fact, they may not even take values in the
same space, being matrices of different sizes. If they are finite dimensional, they have the
same degree (Theorem 5.4 and Corollary 4.11). In the general case, there are still some
important invariants, namely the nontrivial invariant factors. Recall that the invariant
factors of a p×p inner function K are p scalar inner functions k1, k2, . . . kp defined in the
following way. Set γ0 = 1, and, for i = 1, 2, . . . , p define γi to be the greatest common
inner divisor of all i× i minors of K. Then set ki := γi/γi−1 for i = 1, 2, . . . , p. Clearly,
these functions are inner, for γi−1 divides γi. The following theorem is a generalization
of [ 31]; also see [51, 11] for related results.

Theorem 5.7. Let T0 be strictly noncyclic. Then all internal minimal Markovian
splitting subspaces have the same invariant factors; let us denote them

k1, k2, k3, . . . , km (5.39)

Moreover, a Markovian splitting subspace of multiplicity p is minimal if and only if m
invariant factors are given by (5.39) and the remaining p−m are identically one.

Proof. Let X be an arbitrary minimal Markovian splitting subspace with structural
function K and multiplicity p. Let K+ denote the structural function of H−/+, which
of course has multiplicity m, being internal. Corollaries 4.12 and 4.13 (together with
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Corollaries 4.8 and 4.9) imply that Ut(H−/+) is a quasi-affine transformation of Ut(X),
i.e. that there is an injective operator T such that TUt(H−/+) = Ut(X)T . Now,
Ut(X)Iw = IwSt(K), where St(K) is the shift eiωt in H2

p compressed to H(K), and
therefore Ut(X) is similar to St(K). Similarly, Ut(H−/+) is similar to St(K+), but it is
a simple calculation to see that it is also similar to

K̂+ =

[
K+ 0
0 Ip−m

]
(5.40)

where Ik is the k × k identity. The inner functions K̂+ and K are the same size, p× p,
and St(K̂+) is a quasi-affine transformation of St(K). Therefore, we can apply Theorem
4 in [41] to see that K̂+ and K are quasi-equivalent, which is equivalent to having the
same invariant factors [13]. Conversely, we want to show that any X ∼ (S, S̄) whose
structural function is quasi-equivalent to K̂+ is minimal. To this end, apply the two-
step reduction algorithm of Theorem 4.2 to X. First consider the Markovian splitting
subspace X0 ∼ (S, S̄1) obtained after the first step. Then X0 ⊂ X, and hence, since
they have the same S-space, H(K0) ⊂ H(K), where K0 is the structural function of X0

(Theorem 5.4). Therefore H2
pK ⊂ H2

pK0 so there must be an inner function J such that
K = JK0 (see, e.g., [13, 52]). Next, consider X1 ∼ (S1, S̄1) with structural function
K1, obtained in the second step. Then X1 is minimal and X1 ⊂ X0, and therefore
H̄(K∗

1 ) ⊂ H̄(K∗
0 ), for X0 and X1 have the same S̄-space. Consequently, H̄2

pK
∗
0 ⊂ H̄2

pK
∗
1 ,

and hence there is a conjugate inner function J̄ such that K∗
0 = J̄K∗

1 , i.e. K0 = K1J̄
∗.

Combining the two factorizations we obtain

K = JK1J̄
∗ (5.41)

where both J and J̄∗ are inner. In particular,

detK = detJ · detK1 · detJ̄∗

i.e. a product of scalar inner functions. However, X1 is minimal and hence, by the
first part of the proof, K1 has the same invariant factors as K̂+, and, by assumption, as
K. Therefore, detK = detK1, and consequently, detJ = detJ̄∗ = 1, which implies that
J = J̄∗ = I. This implies that X1 = X0 = X, proving that X is minimal. ✷

Corollary 5.8. Let X1 and X2 be two minimal Markovian splitting subspaces. Then
Ut(X1) and Ut(X2) are quasi-similar [41], or, in the finite-dimensional case, similar.

As another corollary to Theorem 5.6 we have that Theorem 4.10 holds without the
finite-dimensionality assumption.

Proof of Theorem 4.10 (general case). It remains to show that (ii) or (iii) implies (i).
Suppose that (ii) holds. Then O∗ is injective with dense range (Corollary 4.12), and
therefore Ut(H−/+) is a quasi-affine transformation of Ut(X) (Corollary 4.13). Then it
follows from the proof of Theorem 5.7 that K and K̂+ have the same invariant factors
and hence that X is minimal. A symmetric argument shows that (iii) implies (i) also.✷

In view of Theorem 4.10, we shall say that an analytic spectral factor W is minimal
if we have S ⊥ N+ for a corresponding S-space. This is a consistent definition, for if S1
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and S2 both correspond to W they differ only by the choice of dz, which is orthogonal to
H0 and hence to N+. Moreover, it can be seen that minimality thus defined reduces to
minimality of degree, as in Section 3, whenever W is rational [33]. Likewise, we say that
a coanalytic spectral factor W̄ is minimal if any corresponding S̄-space is orthogonal to
N−. We can now state the following corollary of Theorem 5.3, which of course has a
symmetric “backward” counterpart. This type of minimality was also discussed in [49].

Corollary 5.9. Let T0 be strictly noncyclic. Then there is a one-one correspondence
(mod O) between minimal Markovian representations (H,U,X) and pairs (W,dz) where
W is a minimal spectral factor and dz is a stationary increment process with the prop-
erties prescribed in Theorem 5.3.

Proof. By Theorem 4.10, X is minimal if and only if X is observable and S ⊥ N+, i.e.
W is minimal. From the observability condition S̄ = H+ ∨ S⊥ (Theorem 4.7) we see
that W̄ is determined once W has been chosen (Lemma 5.1). ✷

5.5. Forward and backward realizations

Given a Markovian representation (H,U,X) determined by its Markovian triplet (W, W̄ ,K)
and its generating processes (dw, dw̄), in this section we shall derive two stochastic re-
alizations having the same state space X ∼ (S, S̄), namely a forward realization Σ
corresponding to S with transfer function W and generating noise dw, and a backward
one Σ̄ corresponding to S̄ with transfer function W̄ and generating noise dw̄. There
are several reasons why it is natural and useful to study such pairs (Σ, Σ̄) of stochastic
realizations. There is an intrinsic symmetry between past and future in the geometric
theory which naturally carries over to the state-space representation Σ and Σ̄. Recall,
for example, that minimality is characterized by the two conditions of observability and
constructability which are symmetric with respect to direction of time. As we shall see,
observability is a property of Σ and constructibility a property of Σ̄. In applications
to noncausal estimation it is natural to consider, not only backward models, but also
nonminimal representations which are best understood in terms of pairs (Σ, Σ̄).

To avoid entering into technical questions, we shall consider only finite-dimensional
Markovian representations, referring the reader to [32, 33] for a procedure to tackle the
general case. The Markovian triplets will therefore consist of rational functions.

Consequently, let the structural function K be a rational p × p inner function of
degree n, and let

K(s) = I − B̄
′
(sI −A)−1B (5.42)

be a minimal realization, i.e. (A,B) and (A
′
, B̄) are reachable. Since (W, W̄ ,K) is

defined modulo orthogonal transformations, we can always choose a version of K such
that K(∞) = I. Since K is analytic, the eigenvalues of A lie in the open left complex
halfplane.

Theorem 5.10. Let (H,U,X) be an n-dimensional Markovian representation with gen-
erating processes (dw, dw̄) and structural function K given by (5.42), and consider the
vector Markov processes x and x̄ defined by

x(t) =
∫ t

−∞
eA(t−τ)Bdw(τ) (5.43a)
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x̄(t) = −
∫ ∞

t
eA

′
(τ−t)B̄dw̄(τ) (5.43b)

Then x(0) and x̄(0) are two bases in X. The processes x and x̄ are related by the linear
transformation

x̄(t) = P−1x(t) (5.44)

where P := E{x(t)x(t)
′} is the unique solution of the Lyapunov equation

AP + PA
′
+ BB

′
= 0 (5.45)

Moreover
B̄ = P−1B (5.46)

and
dw̄ = dw − B̄

′
xdt (5.47)

We need the following lemma, the proof of which can be found in Section 8 of [33].

Lemma 5.11. Let K be a rational inner function with minimal realization (5.42), and let
H(K) and H̄(K) be the subspaces defined in Theorem 5.4. Then, the rows of (iω−A)−1B
form a basis in H(K) and the rows of (iω + A

′
)−1B form a basis in H̄(K∗).

Proof of Theorem 5.10. Since A is a stability matrix, the integrals (5.43) are well-defined.
In view of Proposition 5.4, Lemma 5.11 implies that x(0), as defined by (B.18), is a basis
in X. But, in view of (B.9), (B.18) defines the same process as (5.43a). The proof that
x̄(0) is a basis is analogous. Hence P > 0, and P̄ := E{x̄(0)x̄(0)

′} > 0. It follows from
(5.43) that P and P̄ are the unique positive definite solutions of the Lyapunov equations
(5.45) respectively

A
′
P̄ + P̄A + B̄B̄

′
= 0 (5.48)

because (A,B) and (A
′
, B) are reachable. Next, proceeding along the lines of [12; Lemma

5.1] we note that
K(s)−1 = I + B̄

′
(sI −A−BB̄

′
)−1B

and that
K(−s)

′
= I + B

′
(sI + A

′
)−1B̄

But K is inner so we must have K(s)−1 = K(−s)
′
, and consequently there is a regular

n× n matrix T such that (A + BB̄
′
, B, B̄

′
) = (−TA

′
T−1, T B̄, B

′
T−1). In particular,

this implies that T satisfies the Lyapunov equation (5.45), and hence we must have
T = P . Also B = TB̄ so (5.46) holds. Next, multiplying (5.45) from left and right by P−1

and comparing with (5.48) we see that P̄ = P−1. Hence, we must have x̄(0) = P−1x(0)
from which (5.44) follows. Finally, (5.47) is obtained from (5.7), (B.13) and (B.18). ✷

Theorem 5.12. Let dy be a stationary-increments process with rational spectral density
and let (H,U,X) in Theorem 5.10 be one of its finite-dimensional Markovian represen-
tations. Then, for a fixed choice of bases in X as described in Theorem 5.10, there are
unique matrices C, C̄ and D such that

dy = Cxdt + Ddw (5.49a)
dy = C̄x̄dt + Ddw̄ (5.49b)
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Moreover, D = W (∞) = W̄ (∞) and C and C̄ are m× n matrices such that

C̄ = CP + DB
′

(5.50)

and, the spectral factors W and W̄ have realizations

W (s) = C(sI −A)−1B + D (5.51a)
W̄ (s) = C̄(sI + A

′
)−1B̄ + D̄ (5.51b)

Proof. Since X ∼ (S, S̄) is finite dimensional, dy is conditionally Lipschitz with respect
to S, i.e. the conditional derivative

z(t) = lim
h↓0

1
h
EUtS [y(t + h)− y(t)]

exists [34]. Moreover, the components of z(0) belong to ESH+ which, by Theorem 4.1
and Proposition 2.1(iv), is contained in X. Consequently, since x(0) is a basis in X,
there is a unique m × n matrix C such that z(0) = Cx(0), that is z(t) = Cx(t) for all
t ∈ R. Moreover, in view of the fact that S = H−(dw), there is a D such that dy has
the semimartingale representation

dy = zdt + Ddw (5.52)

[34], which is the same as (5.49a). But x is given by (5.43a) and therefore S must
correspond to the spectral factor (5.51a). In particular, W (∞) = D. Next, inserting
dw = dw̄ + B

′
x̄dt, obtained from (5.47), (5.44) and (5.46), into (5.49a), we obtain

dy = (CP + DB
′
)x̄dt + Ddw̄

where (5.44) has been used. This is the corresponding backward semimartingale repre-
sentation with respect to S̄ = H+(dw̄), and hence (5.49b) and (5.50) as well as (5.51b)
have been established. ✷

Combining the representations of Theorems 5.10 and 5.12, we have now constructed
a forward stochastic realization

(Σ)

{
dx = Axdt + Bdw
dy = Cxdt + Ddw

(5.53)

corresponding to the analytic spectral factor W and the forward generating process dw
and a companion backward realization

(Σ̄)

{
dx̄ = −A

′
x̄dt + B̄dw̄

dy = C̄x̄dt + Ddw̄
(5.54)

corresponding to the coanalytic spectral factor W̄ and the backward generating process
dw̄. At this point it should be emphasized that the forward and backward character
respectively of the (5.53) and (5.54) is a consequence of the splitting property

H = H−(dw̄)⊕X ⊕H+(dw) (5.55)

32



    

In fact, the future input noise in (5.53) is orthogonal to present state X and past out-
put H− ⊂ H−(dw) making the system forward, and the past input noise of (5.54) is
orthogonal to present state and future output H+ making (5.54) a backward system.

Instead of starting from a state space realization (5.42) of K, we might have K given
in a matrix fraction description

K(s) = M̄(s)M(s)−1 (5.56)

where M, M̄ are p× p-matrix polynomials with detM(s) having all its zeros in the open
left complex half plane and detM̄(s) having all its zeros in the open right halfplane.
Since K is inner, K−1 = K∗ and hence M and M̄ must satisfy

M(−s)
′
M(s) = M̄(−s)

′
M̄(s) (5.57)

From (5.6) we see that WM = W̄M̄ which function we shall name N . Since WM is
analytic in the right half plane and W̄M̄ in the left, N(s) must be an m × p matrix
polynomial. Therefore

W (s) = N(s)M(s)−1 (5.58a)
W̄ (s) = N(s)M̄(s)−1 (5.58b)

which matrix fractions representations may not be coprime. In conclusion, in the rational
case, a Markovian triplet corresponds uniquely to three matrix polynomials (M, M̄,N)
of which M and M̄ are related by the spectral factorization relation (5.57). The proof
of the following theorem follows the lines of the analogous result in [33].

Theorem 5.13. Let (H,U,X) be a Markovian representation with forward realization
Σ and backward realization Σ̄. Then the following statements are equivalent

(i) X observable

(ii) (C,A) observable

(iii) W̄ = NM̄−1 is coprime

Symmetrically the following statements are equivalent

(i) X constructible

(ii) (C̄, A
′
) observable

(iii) W̄ = NM̄−1 is coprime

Corollary 5.14. A stochastic realization Σ is minimal if and only if (i) (C,A) is
observable, (ii) (A,B) is reachable, and (iii) (A,PC

′
+ BD

′
) is reachable.

Note that minimality of a stochastic realization is a condition that involves both the
forward and the backward realization. Moreover, the minimal realizations are charac-
terized by the numerator polynomial matrix N , W and W̄ having the same zeros. We
shall return to this in Section 11.
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Theorems 5.13 and 4.10 suggest a procedure for determining a coprime factorizaton
of W = W̄K for any analytic rational spectral factor.

Corollary 5.15. Let W be an analytic rational spectral factor, let W = NM−1 be a co-
prime matrix fraction representation, and let M̄ be the solution of the matrix polynomial
factorization problem (5.57) with all its zeros in the right half plane. Then the coprime
factorization problem W = W̄K has the solution K = M̄M−1 and W̄ = NM̄−1, where
the latter representation is coprime if and only if W is a minimal spectral factor.

Proof. Since W = NM−1 is coprime, the corresponding X is observable (Theorem 5.13).
Then K∗ and Q̄ are right coprime (Theorem 5.5), i.e. the factorization W = W̄K is
coprime. Then W̄ = NM−1 is coprime if and only if X is minimal (Theorem 5.13),
which in turn holds if and only if W is minimal (Theorem 4.10). ✷

6. Partial ordering of minimal Markovian representations

The purpose of this section is to study the structure of the family of minimal Markovian
representations. To this end, first we introduce a partial ordering on the set of minimal
Markovian splitting subspaces.

Definition 6.1. Given two minimal Markovian splitting subspaces, X1 and X2, let
X1 < X2 denote the ordering

‖ EX1λ ‖ ≤ ‖ EX2λ ‖ for all λ ∈ H+ (6.1)

where the norms are those of the respective ambient spaces H1 and H2.

This partial ordering has the following interpretation. If X1 < X2, then X2 is closer
to the future H+ than X1 (or, loosely speaking, contains more information about the
future than X1) in the sense that for every subspace A of H+ we have

α(X1, A) ≤ α(X2, A) (6.2)

where α(X,A) is the angle between the subspaces X and A [13, p.228]. This partial
ordering, which turns out to be the natural one, is much ”finer” than that proposed in
[50].

6.1. The partially ordered set X

The partial ordering (6.1) has actually a symmetric interpretation with respect to the
past.

Lemma 6.2. The relation X1 < X2 holds if and only if

‖ EX2λ ‖ ≤ ‖ EX1λ ‖ for all λ ∈ H− (6.3)

Proof. Since X1 and X2 are minimal, they are orthogonal to N− and to N+ (Theorem
4.11), and therefore, in view of (4.27), the condition (6.1) is equivalent to

‖ EX1λ ‖ ≤ ‖ EX2λ ‖ for all λ ∈ H−/+ (6.4)
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and the condition (6.3) to

‖ EX2λ ‖ ≤ ‖ EX1λ ‖ for all λ ∈ H+/− (6.5)

Now, for i = 1, 2, let Oi and Ci be the restricted observability and constructibility
operator respectively of Xi, as defined by (4.29), and let O∗

i and C∗i be their adjoints. By
Corollary 4.12, these operators are injective with dense range. Clearly, (6.4) holds if and
only if ‖ O∗

1(O∗
2)

−1λ ‖ ≤ ‖ λ ‖ on the dense domain of the bounded operator O∗
1(O∗

2)
−1,

i.e. if and only if ‖ O−1
2 O1 ‖ = ‖ O∗

1(O∗
2)

−1 ‖ ≤ 1. But, in view of the factorization
result (4.30), O1C∗1 = O2C∗2 , i.e. O−1

2 O1 = C∗2(C∗1)−1, and therefore, by continuity, (6.4)
is also equivalent to ‖ C∗2(C∗1)−1λ ‖ ≤ ‖ λ ‖ on the dense domain of this operator, and
hence to ‖ C∗2ξ ‖ ≤ ‖ C∗1ξ ‖ for all ξ ∈ H+/−, i.e. (6.5). ✷

Theorem 6.3. The family of minimal Markovian splitting subspaces has a unique min-
imal element X− and a unique maximal element X+, i.e.

X− < X < X+ (6.6)

for all minimal X, and these are precisely the predictor spaces

X− := H+/− = EH−
H+ (6.7)

X+ := H−/+ = EH+
H− (6.8)

defined in Section 4.

Proof. Since EX
|X+

is a projector,

‖ EXλ ‖ ≤ ‖ λ ‖ for all λ ∈ X+ (6.9)

But, ‖ EX+λ ‖ = ‖ λ ‖ for all λ ∈ X+ and consequently, in view of (6.4), X < X+.
Moreover, for each X �= X+, there is a λ in X+ for which strict inequality holds in (6.9),
which proves uniqueness. A symmetric argument using Lemma 6.2 gives the rest. ✷.

Whenever both X1 < X2 and X2 < X1 hold, we say that X1 and X2 are equivalent,
writing X1 ∼ X2. In Section 6.3 we shall see that, if at least one of X1 and X2 is
internal, X1 ∼ X2 implies X1 = X2. In the noninternal case, however, the equivalence
classes cannot be singletons. Indeed, noninternal Markovian splitting subspaces with the
same Markovian triplets are equivalent but may differ trivially by the choice of external
process dz. Hence, this equivalence factors out the uninteresting arbitrariness inherent
in the choice of probability space for dz.

Let us define X to be the family of all equivalence classes of minimal Markovian
splitting subspaces, and let X0 be the subset of those X which are internal (X ⊂ H0).
Then the order relation (6.1) makes X into a partially ordered set with a maximal and
minimal element. Note that each equivalence class in X0 is a singleton, and consequently
X0 is just a family of minimal X (Corollary 6.9).
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6.2. Ordering in terms of covariance matrices

In this section we shall illustrate the meaning of the partial ordering defined above in
terms of covariance matrices. This will require that the discussion in this subsection
be limited to the finite-dimensional case, i.e. to the case of rational spectral density Φ.
We shall parametrize X by a certain family of positive definite matrices. To this end,
following [6], we introduce a uniform choice of bases on X. Let x+(0) be an arbitrary
basis in X+ (see Theorem 5.10 for notations) and define

x(0) = EXx+(0) (6.10)

for every minimal Markovian splitting subspace X.

Lemma 6.4. The n-dimensional random vector x(0) is a basis in X.

Proof. Since O∗ := EX
|X+

is a bijection (Corollary 4.12)), it sends a basis into a basis.
✷

Now, to each basis vector x(0) we associate the covariance matrix

P = E{x(0)x(0)
′} (6.11)

which is symmetric and positive definite. For a fixed choice of x+(0), let P be the family
of all covariance matrices obtained as X varies over all minimal Markovian splitting
subspaces, and let P0 be the subfamily generated by the internal X. Note that P is
equipped with the natural ordering: P1 ≤ P2 if and only if P2 − P1 is nonnegative
definite.

Theorem 6.5. There is a one-one correspondence between X and P which is order-
preserving in the sense that P1 ≤ P2 if and only if X1 < X2.

Proof. To each λ ∈ X+, there corresponds a unique a ∈ Rn such that λ = a
′
x+(0). By

(6.10), EXλ = a
′
x(0), and hence

‖ EXλ ‖2= a
′
Pa (6.12)

Therefore, in view of the ordering condition (6.4), X1 < X2 if and only if P1 ≤ P2.
Moreover, from (6.12) we see that two X have the same P if and only if they are
equivalent, establishing the one-one correspondence between X and P. ✷

We shall return to a more thorough analysis of the set P in the context Anderson-
Faurre theory, in Section 7.

The symmetry between the future and the past allows us to introduce a uniform
choice of bases also by first choosing a basis x̄−(0) in X− and then observing that

x̄(0) = EX x̄−(0) (6.13)

is a basis in X for each minimal Markovian splitting subspace X. The following lemma,
to be used in Section 7, shows that the uniform choices of bases (6.10) and (6.13) can
be made consistently to reflect the forward-backward structure of Theorem 5.10.
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Lemma 6.6. Let x−(0) be the basis in X− corresponding to the uniform choice (6.10),
let P− be the corresponding covariance matrix, and set x̄−(0) := P−1

− x−(0). Then the
bases (6.10) and (6.13) are related by

x̄(0) = P−1x(0) (6.14)

where P is the covariance matrix of x(0).

Proof. First note that (6.14) is the unique basis in X for which E{x(0)x̄(0)
′} = I, i.e.

for which

〈a′
x(0), b

′
x̄(0)〉 = a

′
b for all a, b ∈ Rn (6.15)

But, inserting (6.10) in (6.15), the left member becomes

〈EXa
′
x+(0), b

′
x̄(0)〉 = 〈a′

x+(0), b
′
x̄(0)〉 = 〈a′

x+(0), EX+b
′
x̄(0)〉

which together with (6.15) implies that

x̄+(0) = EX+ x̄(0) (6.16)

In particular, we have
x̄+(0) = EX+ x̄−(0) (6.17)

Now, since X− ⊥ X+ | X (c.f.(4.28) and Theorem 6.3), the right member of (6.17) equals
EX+EX x̄−(0) (Proposition 2.1(vi) ) which together with (6.16) yields

EX+ x̄(0) = EX+EX x̄−(0)

But then, since O := EX+ |X is a bijection (Corollary 4.12), (6.13) follows with x̄−(0)
defined as in the lemma. ✷

6.3. Ordering and scattering pairs

One advantage with the geometric theory of Markovian representation is that it does not
require any finite-dimensionality assumptions. Of course, our definition (6.1) of ordering
is completely general, and therefore the results presented below in this section will be
independent of any rationality assumption on Φ.

In subsequent sections our analysis requires that the ordering between minimal X be
expressed in terms of geometric conditions of subspace inclusions. To this end, we need
the following lemma.

Lemma 6.7. Let X1 ∼ (S1, S̄1) and X2 ∼ (S2, S̄2) be two minimal Markovian splitting
subspaces. Then X1 < X2 if and only if

‖ ES1λ ‖ ≤ ‖ ES2λ ‖ for all λ ∈ H0 (6.18a)

or equivalently
‖ ES̄2λ ‖ ≤ ‖ ES̄1λ ‖ for all λ ∈ H0 (6.18b)
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Proof. To show that condition (6.18a) is equivalent to X1 < X2, we need to prove that
(6.1) implies (6.18a). To this end, first note that, in view of the splitting property (3.12),
(6.1) is equivalent to

‖ES1λ‖ ≤ ‖ES2λ‖ for all λ ∈ H+ (6.19)

Now, for i = 1, 2, let Zi be the orthogonal complement of H− in Si, i.e. Si = H− ⊕ Zi.
Then

‖ESiλ‖2 = ‖EH−
λ‖2 + ‖EZiλ‖2

so it only remains to prove that, if

‖EZ1λ‖ ≤ ‖EZ2λ‖ (6.20)

holds for all λ ∈ H+, then (6.20) holds for all λ ∈ H0. Therefore, suppose (6.20) holds
for all λ ∈ H+. Since Zi ⊂ (H−)⊥ := H0 �H− for i = 1, 2, it follows that

‖EZ1E(H−)⊥λ‖ ≤ ‖EZ2E(H−)⊥λ‖ for all λ ∈ H+

But, from the decomposition rule (4.25) and the fact that (H− ∨H+)⊥ = 0 we have

E(H−)⊥H+ = (H−)⊥

and consequently (6.20) holds for all λ ∈ (H−)⊥. The extension from (H−)⊥ to all of
H0 is then trivial. In fact, let η ∈ H0. Then there is a unique representation η = λ + µ,
where λ ∈ (H−)⊥ and µ ∈ H−. Moreover, EZiη = EZiλ for i = 1, 2 so if (6.20) holds
for all λ ∈ (H−)⊥ then it also holds for all η ∈ H0. This concludes the proof that (6.18a)
is equivalent to (6.1). A symmetric argument shows that (6.18b) is equivalent to (6.3).
Then the rest follows from Lemma 6.2. ✷

Theorem 6.8 Let X1 ∼ (S1, S̄1) and X2 ∼ (S2, S̄2) be minimal Markovian splitting
subspaces. Then:

(i) if X1, X2 ∈ X0, then

X1 < X2 ⇐⇒ S1 ⊂ S2 ⇐⇒ S̄2 ⊂ S̄1

(ii) if X1 ∈ X0, then

X1 < X2 ⇐⇒ S1 ⊂ S2 ⇐⇒ EH0S̄2 ⊂ S̄1

(iii) if X2 ∈ X0, then

X1 < X2 ⇐⇒ EH0S1 ⊂ S2 ⇐⇒ S̄2 ⊂ S̄1

Proof. First, prove that

if X1 ∈ X0, then X1 < X2 ⇐⇒ S1 ⊂ S2 (6.21a)
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using (6.18a). It is trivial that S1 ⊂ S2 implies X1 < X2, and to prove the converse,
we take λ ∈ S1 ⊂ H0 in (6.18a), thereby obtaining ‖ λ ‖ ≤ ‖ ES2λ ‖ which implies
that λ ∈ S2, and therefore S1 ⊂ S2. Obviously, by symmetry and (6.18b), (6.21a) has a
backward version, namely

if X2 ∈ X0, then X1 < X2 ⇐⇒ S̄2 ⊂ S̄1 (6.21b)

Secondly, prove that

if X2 ∈ X0, then X1 < X2 ⇐⇒ EH0S1 ⊂ S2 (6.22)

To see this, use (6.21b), noting that S̄2 ⊂ S̄1 if and only if S̄⊥
1 ⊂ S̄⊥

2 ⊕ (H1 � H0),
where H1 is the ambient space of X1. By the constructibility condition (4.18b), this is
equivalent to

S1 ⊂ S2 ⊕ (H1 �H0) (6.23)

from which follows that
EH0S1 ⊂ S2 (6.24)

Conversely, if (6.24) holds,

S1 ⊂ EH0S1 ⊕ EH1�H0S1 ⊂ S2 ⊕ (H1 �H0)

which is (6.23). The backward version of (6.22) reads

if X1 ∈ X0, then X1 < X2 ⇐⇒ EH0S̄2 ⊂ S̄1

Now, the last statement together with (6.21) and (6.22) covers all the cases of the corol-
lary. ✷

Corollary 6.9. Let X1 and X2 be equivalent minimal Markovian splitting subspaces.
Then, if one is internal, X1 = X2.

Proof. Suppose that X1 is internal. Then, by Theorem 6.8, X1 < X2 implies that
S1 ⊂ S2 and X2 < X1 implies that S̄1 ⊂ S̄2. Hence, by Theorem 4.1, X1 ⊂ X2. But,
since X2 is minimal, we must have X1 = X2. ✷

Theorem 6.8 will be instrumental in constructing the greatest lower internal bound
and the least upper internal bound for an arbitrary minimal Markovian splitting sub-
space. First, from statement (i) it is seen that the partial ordering of X0 is isomorphic to
subspace inclusion of the S (or S̄) spaces. For any X1 and X2 in X0, define sup(X1, X2)
to be the least element of X0 which majorizes both X1 and X2, and define inf(X1, X2)
to be the greatest element of X0 which is majorized by both X1 and X2.

Theorem 6.10. The family X0 is a complete lattice with

sup(X1, X2) ∼ (S1 ∨ S2, S̄1 ∩ S̄2) (6.25a)
inf(X1, X2) ∼ (S1 ∩ S2, S̄1 ∨ S̄2) (6.25b)

i.e. each subfamily of X0 has a least upper bound and a greatest lower bound.
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Proof. First we need to verify that, for any pair X1 and X2 in X0 the subspaces defined
in (6.25) also belong to X0, and that they are the sup and inf as defined above. Set
S := S1 ∨ S2 and S̄ := S̄ ∩ S̄2. Then, trivially, S ⊃ H− and S̄ ⊃ H+, and S and S̄ have
the required invariance properties. Moreover, the perpendicular intersection of the pairs
(S1, S̄1) and (S2, S̄2) implies that

S̄⊥ = S̄⊥
1 ∨ S̄⊥

2 ⊂ S1 ∨ S2 = S

i.e. (S, S̄) is also a perpendicularly intersecting pair. Consequently, by Theorem 4.1,
X ∼ (S, S̄) is an internal Markovian splitting subspace. It remains to show that it is
minimal. Constructibility of X1 and X2 implies that

S = H− ∨ S⊥
1 ∨ S⊥

2 = H− ∨ S⊥

i.e. X is constructible (Theorem 4.7). Moreover, from minimality of X1 and X2 we have
S̄1 ⊥ N− := H− ∩ (H+)⊥ and S̄2 ⊥ N− (Theorem 4.10) and consequently, S ⊥ N−

which together with constructibility implies that X is minimal and hence belongs to X0.
Now, it is an immediate consequence of Corollary 6.9 (i) that X is indeed the greatest
lower bound of X1 and X2. In the same way, we show that (6.25b) belongs to X0 and is
the least upper bound of X1 and X2. Finally, the arguments above clearly apply to an
arbitrary subfamily of X0. ✷

6.4. The tightest internal bounds

We are now in the position to prove a theorem which will be of major importance for
what follows. Given, any minimal Markovian splitting subspace X, we would like to
bound X from above and below by elements of X0 in the tightest possible way.

Theorem 6.11. Let X ∼ (S, S̄) be a minimal Markovian splitting subspace and define

S0− := S ∩H0 S̄0− := EH0S̄ (6.26a)
S0+ := EH0S S̄0+ := S̄ ∩H0 (6.26b)

Then X0− ∼ (S0−, S̄0−) and X0+ ∼ (S0+, S̄0+) belong to X0 and

X0− < X < X0+ (6.27)

Moreover,

X0− = sup{X0 ∈ X0| X0 < X} (6.28a)
X0+ = inf{X0 ∈ X0| X0 > X} (6.28b)

i.e. X1 < X0− and X2 > X0+ for any X1 and X2 in X0 such that X1 < X < X2.

Proof. First, we show that X0− ∈ X0. Trivially, S0− ⊃ H− and S̄0− ⊃ H+. The required
invariance property of S0− follows immediately from that of S. Moreover, since H0 is
doubly invariant under the shift {Ut}, UtS̄0− = EH0UtS̄ so that the right shift invariance
of S̄0− follows from that of S̄. Since, by perpendicular intersection S̄⊥ ⊂ S,

S̄⊥
0− = H0 � EH0S̄ = H0 ∩ S̄⊥ ⊂ H0 ∩ S = S0−
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so that (S0−, S̄0−) intersect perpendicularly. (Here we have also used formula (4.25).)
Next, we show that the observability of X carries over to X0−. In fact, if S̄ = H+ ∨S⊥,
or equivalently, S̄⊥ = S ∩ (H+)⊥, then

S̄⊥
0− = H0 ∩ S̄⊥ = H0 ∩ S ∩ (H+)⊥ = S0− ∩ (H+)⊥

i.e. X0− is observable (Theorem 4.7). Moreover, since S ⊥ N+, we have S0− ⊥ N+, and
consequently, X0− is minimal (Theorem 4.10). In the same way we show that X0+ ∈ X0.
Then, (6.27) follows from Theorem 6.8 (ii) and (iii). Also, if X0 ∈ X0 satisfies X0 < X,
then, by Theorem 6.8, S0 ⊂ S, which implies that S0 ⊂ S0−, i.e. X0 < X0−. Likewise,
if X < X0 ∈ X0, then EH0S ⊂ S0 so that S0+ ⊂ S0, i.e. X0+ < X0. ✷

6.5. Ordering and splitting (finite dimensional case)

We shall conclude this section with some useful alternative characterizations of ordering
in terms of splitting, valid in the finite-dimensional case.

Proposition 6.12. Let X1 and X2 be minimal Markovian splitting subspaces, at least
one of which is internal. Then, X1 < X2 if and only if

x1(0) = EX1x2(0) (6.29)

for any uniform choice of basis (6.10).

Proof. From (6.10) we see that (6.29) is equivalent to

EX1λ = EX1XX2λ for all λ ∈ X+ (6.30)

which, due to the fact that X1 and X2 are orthogonal to N+ := H+ � X+ (Theorem
4.10), can be extended to all λ ∈ H+. This in turn is equivalent to

EX1λ = EX1ES2λ for all λ ∈ H+ (6.31)

because of the splitting property of X2, i.e. to X1 ⊥ H+|S2, or equivalently, to
S1 ⊥ S̄2 | S2, which holds if and only if

S1 ⊥ H2 � S2 (6.32)

where H2 is the ambient space of X2. Now, first assume that X1 is internal. Then, (6.32)
is equivalent to S1 ⊂ S2, i.e. X1 < X2 (Theorem 6.8). Next, assume that X2 is internal.
The (6.32) is equivalent to S1 ⊂ S2 ⊕H⊥

0 , or, equivalently, EH0S1 ⊂ S2, i.e. X1 < X2

(Theorem 6.8). ✷

Proposition 6.13. Let X,X1, X2 be minimal Markovian splitting subspaces with X1

and X2 internal. Then, if X1 < X < X2,

X1 ⊥ X2 | X
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Proof. Let x(0), x1(0) and x2(0) be a uniform choice of bases in X,X1 and X2. Then,
applying Proposition 6.12 first to X1 < X2 and then to X1 < X and X < X2 we obtain
two representations for x1(0) yielding the equation

EX1x2(0) = EX1EXx2(0)

which is equivalent to X1 ⊥ X2 | X. ✷

7. Anderson-Faurre theory and the algebraic Riccati inequality

The classical theory of stochastic realization, initiated by Kalman [20] and developed
mainly by Anderson and Faurre [3, 10], deals primarily with the problem of constructing
all minimal shaping filters, that is all stable minimal spectral factors W (s) of a given
rational spectral density matrix Φ(s). The family of such W is parametrized by the solu-
tions P of a certain linear matrix inequality which, under certain invertibility conditions,
reduces to an algebraic Riccati inequality. To unify the theory and set notations, in this
sections we shall give a survey of some of these classical results. But thus will, at least in
part, be done in the framework of the geometric theory providing several new insights.

In Section 6 we parametrized the family X of minimal Markovian splitting subspaces
by a set P of covariance matrices. One of the main results of this section identifies the
set P with the solution set of the linear matrix inequality of Andersson-Faurre theory.
This also establishes a one-one correspondence between X and the family (of equivalence
classes) of minimal spectral factors.

7.1. The set P and the linear matrix inequality

Once a basis x(0) has been fixed in X there is, as explained in Theorem 5.10 and 5.12,
a corresponding pair of forward and backward realizations, (5.53) and (5.54) respec-

tively, which are unique modulo right multiplication of

[
B
D

]
and

[
B̄
D̄

]
by constant

orthogonal matrices.

Lemma 7.1. All forward-backward pairs (Σ, Σ̄) of stochastic realizations (5.53)-(5.54)
corresponding to a uniform choice of basis (6.10) have the same matrices A,C, and C̄.
Conversely, for any realization (5.53) [(5.54)] there is a choice of basis x+(0) in X+ so
that (6.10) holds.

Proof. Let X be arbitrary (finite-dimensional) minimal Markovian splitting subspace.
We want to prove that (A,C, C̄) corresponding to X equals (A+, C+, C̄+) corresponding
to X+. First note that (6.10) may be written

a
′
x(0) = O∗a

′
x+(0) for all a ∈ Rn (7.1)

where O is the restricted observability map (4.29), which in the present setting is a
bijection (Corollary 4.12). Moreover, by Corollary 4.13, we have

Ut(X)O∗a
′
x+(0) = O∗Ut(X+)a

′
x+(0)
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and, since the left member equals Ut(X)a
′
x(0) because of (7.1), this is, in view of (4.12),

equivalent to
a
′
eatx(0) = O∗a

′
eA+tx+(0)

Again applying (7.1), this is seen to be the same as

a
′
eAtx(0) = a

′
eA+tx(0)

yielding a
′
eAtP = a

′
eA+tP for all a ∈ R and t ≥ 0, where P , defined by (6.11), is

nonsingular. This proves that A = A+. Next, recall from [34] that

Cx(0) = lim
h↓0

ES [y(h)− y(0)]

But, since S ⊥ N+ (Theorem 4.10) and H0 = S+ ⊕N+, ES = ESSS+ , and therefore

b
′
Cx(0) = ESb

′
C+x+(0) = O∗b

′
C+x+(0)

for all b ∈ Rm where the splitting property has been used to obtain the last equality.
Then, as above, (7.1) implies that b

′
CP = b

′
C+P for all b ∈ Rm, and hence the identity

C = C+ has been established. In view of Lemma 6.6, we can use the same argument
in the backward formulation to show that C̄ = C̄−, corresponding to X−, which then
of course also equals C̄+. Finally, the last statement of the lemma follows immediately
from the fact that O∗ is a bijection and from Lemma 5.7, and hence x+(0) can be solved
uniquely in terms of x(0) from (6.10). Lemma 6.6 insures that x(0), and hence x+(0) is
uniquely determined by x̄(0). ✷

Since the parameters (A,C, C̄) are invariant, it should be possible to read them off
from the covariance description of the process y. To show that this is indeed the case we
shall compute the incremental covariance matrix of y. By using both of representations
(5.49) of Theorem 5.12 we have

dy(t)dy(τ)
′

= Cx(t)x̄(τ)
′
C̄

′
dtdτ + Ddw(t)dw̄(τ)

′
D

′

+Cx(t)dw̄(τ)
′
D

′
dt + Ddw(t)x̄(τ)C̄

′
dτ (7.2)

which as usually should be understood in the integrated form. Then, for t ≥ τ , we have

E{dy(t)dy(τ)
′} = CE{x(t)x̄(τ)

′}C̄ ′
dtdτ + DE{dw(t)dw̄(τ)

′}D′
(7.3)

since the last two terms of (7.2) vanish because of the orthogonality expressed in (5.55).
Consequently, the incremental covariance (7.3) can formally be written as Λ(t− τ)dtdτ ,
where Λ is an m×m matrix distribution given by

Λ(t) = CeAtC̄
′
+ Rδ(t) for t ≥ 0

where R := Φ(∞). To see this, first note that E{x(0)x̄(0)
′} = I. To obtain the second

term in (7.3) invoke (5.47) in Theorem 5.10 and the orthogonality in (5.55). For t ≤
0,Λ(t) = Λ(−t)

′
, and hence taking the double-sided Laplace transform we obtain the

spectral density Φ expressed in the form

Φ(s) = Φ+(s) + Φ+(−s)
′

(7.4)
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where the analytic matrix function Φ+ has the minimal realization

Φ+(s) = C(sI −A)−1C̄
′
+

1
2
R (7.5)

We note that Φ+ is the positive real part of Φ and can for example be obtained by partial
fraction expansion [3, 10].

It follows from Theorems 5.10 and 5.12 that P satisfies

AP + PA
′
+ BB

′
= 0 (7.6a)

PC
′
+ BD

′
= C̄

′
(7.6b)

DD
′
= R (7.6c)

or equivalently

M(P ) = −
[

B
D

]
[B

′
, D

′
] (7.7)

M : Rn×n → R(n+m)×(n+m) being the linear function

M(P ) =

[
AP + PA

′
PC

′ − C̄
′

CP − C̄ R

]
(7.8)

Notice that Lemma 7.1 states that the function M is invariant over all realizations. Thus
we see that P satisfies the linear matrix inequality

M(P ) ≤ 0 (7.9)

In fact, the following theorem states that every symmetric solution P of (7.9) is a legit-
imate state covariance.

Theorem 7.2. The set P of state covariances defined in Section 6 is precisely the set of
all symmetric solutions of the linear matrix inequality (7.9).

Proof. It remains to show that if P satisfies (7.9), then P ∈ P. To this end, we shall
first follow a computation in [3] to identify P with a spectral factor. Let P be a solution
of (7.9). Then there is a full rank factorization of −M(P ) producing matrices B and D
as in (7.7). Define

W (s) = C(sI −A)−1B + D (7.10)

Then a straightforward application of (7.6), using the standard trick of rewriting the
first of these equations as

BB
′
= (sI −A)P + P (−sI −A

′
)

yields
W (s)W (−s)

′
= Φ+(s) + Φ+(−s)

′
(7.11)

with Φ+ defined by (7.5). Therefore, in view of (7.4), and the fact that A is a stability
matrix, W is an analytic spectral factor. By Proposition 3.1, deg W ≥ 1

2Φ = n, with
equality if and only if W is a minimal spectral factor. Since deg W ≤ dimA = n, W must
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be minimal. As a consequence (A,B) is reachable and hence P , solving the Lyapunov
equation (7.6a), must be positive definite. Choosing an arbitrary dz of appropriate
dimension, (5.13) defines a generating process dw. This defines a minimal realization
(5.53) with the preassigned parameters (A,C, C̄) having covariance matrix P . By Lemma
7.1, there is a basis x+(0) ∈ X+ and a corresponding realization having parameter
(A,C, C̄) and state process x+ such that (6.10) holds. Hence P ∈ P. ✷

7.2. Spectral factorization and the positive real lemma

From Theorem 7.2 the original result of Anderson [3] on the so-called “inverse problem
of stationary covariance generation” follows.

Theorem 7.3 (B.D.O. Anderson). Given a minimal realization (A,C, C̄, 1
2R)of the

causal part Φ+(s) of a rational spectral density matrix Φ(s) as in (7.5), the family of all
analytic minimal spectral factors is parametrized by the solution set of the correspond-
ing linear matrix inequality (7.9) in the following sense. Given a symmetric solution P

of (7.9), take

[
B
D

]
to be the unique (modO) full-rank factor of −M(P ) as in (7.7)

and define W (s) (modO) as in (7.10). Then all such W are minimal spectral factors.
Viceversa, given an equivalence class [W ] of W as in (7.10) there is a unique symmetric
P > 0 solving (7.6) and hence (7.9).

In particular, it follows from this theorem and Theorem 7.2 that two finite-dimensional
minimal Markovian splitting subspaces are equivalent (in the sense defined in Section
6.1) if and only if they have the same analytic (coanalytic) spectral factor W (W̄ ) modO.

An analytic matrix function Φ+ satisfying (7.4) with Φ a spectral density is a so-
called positive real matrix function. Equations (7.6) are often called the positive real
equations because of the following classical result due to Yakubovich[55], Kalman[18],
and Popov[45].

Theorem 7.4 (Positive Real Lemma). The rational matrix function Φ+ with minimal
realization (7.5) is positive real if and only if the solution set P of (7.9) is nonempty.

Proof. The function Φ+ is positive real if and only if there is an analytic spectral factor
W such that (7.12) holds. However, Theorem 7.3 states that the (equivalence classes
of) analytic spectral factors are in one-one correspondence with the set P, and therefore
such a W exists if and only if P �= ∅. ✷

The geometry of the set P has been studied by Faurre [10]. The following theorem
summarizes what is known about the structure of P, as for example reported in [10] and
makes connection to the geometric theory presented in Section 6. It will be a basic point
of departure for subsequent analysis.

Theorem 7.5 (Faurre). Let P be the solution to the linear matrix inequality (7.9). Then
P is a closed, bounded, convex set with a maximal and a minimal element, P+ and P−,
respectively, equal to the covariance matrices of x+(0) and of x−(0) := EX−x+(0). Both
P− and P+ belong to P0.

Proof. It follows immediately from the linear matrix inequality (7.9) that P is closed
and convex. Theorem 6.6 states that the partially ordered set P and X are isomorphic.
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Therefore, since X has a maximal element, X+, and a minimal element, X−, in X0, given
by (6.8) and (6.7) respectively, there are corresponding P+ and P− in P0 having the
properties stated. From this it also follows that P is bounded. ✷

In Faurre’s work the existence of the maximal element P+ of P is proved by consid-
ering a so-called dual spectral factorization problem and a dual set P̄ of solutions which
turns out to be the family of all inverses P−1 of the elements of P, i.e.

P̄ = {P−1 |M(P ) ≤ 0} (7.12)

In our context this is actually the set of all state convariances of the backward model
(5.54) corresponding to the uniform bases obtained from (6.10) through the transforma-
tion (5.44). This is discussed in [25].

Proposition 7.6. Suppose R := Φ(∞) > 0. Then

P = {P | P ′
= P ; Λ(P ) ≤ 0} (7.13)

where Λ : Rn×n → Rn×n is the quadratic matrix function

Λ(P ) = AP + PA
′
+ (C̄ − CP )

′
R−1(C̄ − CP ) (7.14)

where (A,C, C̄, R) are given by (7.5).

Proof. Since R > 0, M(P ) can be block diagonalized as
[

I T
0 I

]
M(P )

[
I 0
T

′
I

]
=

[
Λ(P ) 0

0 R

]

where
T = (C̄ − CP )

′
R−1

From this it follows that (7.9) is equivalent to Λ(P ) ≤ 0. ✷

From now on we shall always assume that Φ is coercive, i.e. Φ has no zeros on the
imaginary axis I including the points at infinity. In particular this implies that R > 0.
Then the set P can be identified with the symmetric solutions of the algebraic Riccati
inequality

Λ(P ) ≤ 0 (7.15)

as stated in Proposition 7.6.

7.3. Stochastic realizations in standard form

As was done in [25], it is convenient in this situation to fix a representative in each
equivalence class of spectral factors by choosing the arbitrary orthogonal transformation
in the factorization of (7.7) so that

[
B
D

]
=

[
B1 B2

R1/2 0

]
(7.16)
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where R1/2 is the symmetric positive square root of R, and B2 is a full-rank matrix
chosen in some canonical way. Then (7.6b) can be solved for B1, i.e.

B1 = (C̄ − PC)
′
R−1/2, (7.17)

which inserted in (7.6a) yields
Λ(P ) = −B2B

′
2. (7.18)

Now, to each P ∈ P there corresponds in a one-to-one fashion an element in X, i.e. an
equivalence class of minimal Markovian splitting subspaces with a forward realization{

dx = Axdt + B1du + B2dv

dy = Cxdt + R1/2du
(7.19)

which is uniquely determined except for the arbitrariness of the possible external part of

the driving noise dw =

[
du
dv

]
as explained in Section 5. In Section 6, we defined P0 as

the subfamily of P corresponding to internal X. It should be clear from (7.19) that the
internal realization (7.19) are precisely those for which B2 = 0. Consequently, it follows
from (7.18) that P0 is precisely the symmetric solutions of the algebraic Riccati equation

Λ(P ) = 0 (7.20)

and that the internal realizations correspond to square spectral factors, as has already
been pointed out in Section 5.

7.4. Remarks on Kalman filtering

It is here natural to make contract with Kalman filtering. Given a linear observable (but
not necesserily minimal) stochastic system

(Σ)

{
dx = Axdt + Bdw
dy = Cxdt + Ddw

(7.21)

with state covariance P , the linear minimum-variance estimate

x̂(t) = E
H−

[0,t]
(dy)

x(t) (7.22)

for t ≥ 0, where H−
[0,t](dy) is the subspace generated by (the increments of) the observed

process y on the finite interval [0, t], is given by the Kalman filter

dx̂ = Ax̂dt + K(t)[dy − Cx̂dt] ; x̂(0) = 0 (7.23)

with the gain
K(t) = [Q(t)C

′
+ BD

′
]R−1 (7.24)

and the error covariance matrix function

Q(t) = E{[x(t)− x̂(t)][x(t)− x̂(t)]
′} (7.25)
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satisfying the matrix Riccati equation{
Q̇ = AQ + QA

′ − (QC
′
+ BD

′
)R−1(QC

′
+ BD

′
)
′
+ BB

′

Q(0) = P
(7.26)

It is well-known that, under the present conditions, Q(t) tends to a limit Q∞ ≥ 0 as
t→∞, thus defining a steady-state Kalman filter

dx̂ = Ax̂dt + K∞[dy − Cx̂dt] (7.27)

where the gain K∞ is constant and the system is defined on the whole real line. Let
the stationary process represented by this system be denoted x̂∞(t). Then, because the
innovation process

dν = R1/2[dy − Cx̂∞dt] (7.28)

is a Wiener process, (7.28) defines a stochastic realization{
x̂∞ = Ax̂∞dt + K∞R−1/2dν

dy = Cx̂∞dt + R1/2dν
(7.29)

of dy on the real line; for details, see e.g.[25]. By assumption the Markovian splitting
subspace X defined by Σ is observable, and hence Lemma 4.6 and Corollary 4.9 imply
that

EH−
X = X− (7.30)

Consequently, since
EH−

x(t) = x̂∞(t), (7.31)

x̂∞(0) is a generator of X−. As explained in Section 3, x̂∞(0) is a basis if and only if
the model (7.29) is reachable. We shall prove that reachability of (7.29) is equivalent
to minimality of the underlying model Σ. This is the content of the following “folk
theorem”.

Proposition 7.7. An observable system Σ is a minimal realization of y if and only if
its steady state Kalman filter (7.29) is reachable.

Proof. Let the dimension of X− be n. Then all minimal X have this dimension. (Corol-
lary 4.11). We have already seen above that (7.29) is reachable if and only if the dimen-
sion of x̂∞(0) is n. However, dimX ≤ dimx(0) = dim x̂∞(0), and consequently (7.29) is
reachable if and only if dimX ≤ n, from which the stated result follows. ✷

Now, suppose that the linear stochastic system Σ, regarded as a realization of y,
is minimal. Then, it follows from what has just been discussed that the steady-state
Kalman filtering estimate x̂∞ equals x−, the (forward) state process corresponding to
the predictor space X− in a uniform basis. To see this, compare (7.31) with (6.29) in
Theorem 6.12, remembering that, by splitting, EH−

λ = EX−λ for all λ ∈ S̄ ⊃ X.
With Σ being an arbitrary minimal stochastic realization, we would like to express the

Kalman-filtering equations in terms of the invariant parameters (A,C, C̄, R) determined
by the covariance of y. To this end, introduce a change of variables

Π(t) = P −Q(t) (7.32)
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and use the positive real lemma equations (7.6) to transform (7.24) and (7.26) into

K(t) = [C̄ − CΠ(t)]R−1 (7.33)

and
Π̇ = Λ(Π) ; Π(0) = 0 (7.34)

where Λ is the same function, (7.14), as in the characterization of P. The matrix Riccati
equation (7.34) is invariant in the sense that it is independent of the particular choice
of model Σ, in agreement with the property (7.30). Moreover, the equilibria of the
matrix differential equation (7.34) precisely constitute the solution set of the algebraic
Riccati equation (7.20), i.e. the set P0 of state covariances of internal realizations. As
t→∞, Π(t)→ P− ∈ P0. To see this, just note that

Π(t) = E{x̂(t)x̂(t)
′} (7.35)

as is immediate from (7.25) and (7.32). Then Q∞ = P −P− and since Q∞ ≥ 0, we have
an independent verification of the fact that P ≥ P− for all P ∈ P.

Analogously, starting from a minimal backward realization (5.44), we can define a
backward Kalman filter, the steady-state version of which can be identified with the
backward realization of X+. From this and (7.12) we deduce that P−1 ≥ P−1

+ , i.e.
P ≤ P+, for all P ∈ P, obtaining an independent proof of the ordering P ≤ P+. The
details of this analysis can be found in [25].

7.5. Summing up

In Section 6 we showed that the partially ordered set X of (equivalence classes of) min-
imal Markovian splitting subspaces can be parametrized by the family P of its state
covariance matrices under an arbitrary uniform choice of basis. Moreover, the one-one
correspondence between X and P is order-preserving so that

X− < X < X+ (7.36)

corresponds to
P− ≤ P ≤ P+ (7.37)

In this section we have identified P with the solution set of an algebraic Riccati equation,
the steady state Kalman filter with the forward realization (5.53) of X−, and the back-
ward steady-state Kalman filter with the backward realization (5.54) of X+. In the next
section we shall analyze a noncausal estimation problem, corresponding to a stationary
smoothing problem and show that it can be understood in terms of the equilibrium set
P0, giving filtering interpretations to all the elements of P0.

8. A noncasual estimation problem

Given a minimal noninternal realization

(Σ)

{
dx = Axdt + Bdw
dy = Cxdt + Ddw

(8.1)
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consider the problem of determining the estimates {x̂(t); t ∈ R} with components

x̂k(t) = EH0xk(t) ; k = 1, 2, . . . , n (8.2)

and a minimal recursive filter generating it. This is a steady-state smoothing estimate,
formed in analogy with the steady state Kalman filter. A theory for finite interval
smoothing can be developed using the same principles.

For simplicity, the process dy described by the model (8.1) will be assumed to be
coercive, i.e. its special density satisfies Φ(iω) > 0 for all ω including points at infinity.

8.1. A geometric problem formulation

Geometrically, the problem can be stated as follows. Let X ∼ (S, S̄) be the minimal
Markovian splitting subspace corresponding to (8.1). Then

X̂ = EH0X (8.3)

is the space spanned by the components of x̂(0), and

span{x̂1(t), x̂2(t), . . . , x̂n(t)} = UtX̂ (8.4)

Now, X̂ is in general non-Markovian, and consequently there is no stochastic differential
equation satisfied by x̂. Therefore we need to embed it minimally in a Markovian space.
This amounts to determining a subspace X0 such that

(i) X0 is an internal Markovian splitting subspace

(ii) X̂ ⊂ X0

(iii) X0 is minimal, in the sense that if X1 satisfied (i) and (ii) and X1 ⊂ X0 then
X1 = X0

This problem formulation has the following motivation. To such an X0, which is
in general a nonminimal Markovian splitting subspace of, say, dimension n0 ≥ n, there
corresponds a realization

{
dx0 = A0x0dt + B0du0

dy = C0x0dt + D0du0
(8.5)

of y, where x0(0) is a basis in X0 (Theorem 5.10). Since X0 is internal,

W0(s) = C0(sI −A0)−1B0 + D0 (8.6)

is a square spectral factor with D0 invertible, and thus

du0 = D−1
0 (dy − C0x0dt) (8.7)

so that x0 is computable by a filter driven by the observed process dy, i.e.

dx0 = (A0 −B0D
−1
0 C0)x0dt + B0D

−1
0 dy (8.8a)
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Because of (ii) there is an n× n0 matrix H such that

x̂(t) = Hx0(t) (8.8b)

Equations (8.8) constitute the “recursive” form of the estimator, which in view of (iii) is
of smallest possible dimension.

A few comments are in order concerning some of these formulas. First, since in
general X0 is a nonminimal Markovian splitting subspace, we cannot expect (C0, A0) to
be an observable pair, and hence (A0, B0, C0, D0) to be a minimal realization of W0(s).
Several procedures for determining the dimension n0 of X0 will be given in Sections 9–11.
Secondly, since, in general, the state evolution matrix

Γ0 = A0 −B0D
−1
0 C0 (8.9)

of the filter (8.8) has eigenvalues in both the right and the left open half planes, but,
due to coercivity, not on the imaginary axis (see Section 10), the state equation (8.8a)
requires some interpretation. Let T be a nonsingular matrix such that

T−1Γ0T =

[
Λ− 0
0 Λ+

]
(8.10)

where all eigenvalues of Λ−(Λ+) are in the open left (right) half plane. For example, the
Jordan form provides such a decomposition. Moreover, define[

ξ−
ξ+

]
:= T−1x0, T = [T−, T+], and

[
L−
L+

]
:= T−1B0D

−1
0 (8.11)

Then
x0(0) = T−ξ− + T+ξ+ (8.12)

where {
dξ− = Λ−ξ−dt + L−dy
dξ+ = Λ+ξ+dt + L+dy

(8.13)

Here the first of equations (8.13) could be integrated over the past and the second over
the future so that

x̂(t) =
∫ t

−∞
HT−eΛ−(t−σ)L−dy +

∫ ∞

t
HT+eΛ+(σ−t)L+dy (8.14)

8.2. The geometric solution

Theorem 8.1. There is a unique smallest (in the sense of subspace inclusion) Markovian
splitting subspace X0 containing X̂ := EH0X, which is internal, namely,

X0 = X0− ∨X0+ (8.15)
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where X0− is the greatest lower internal bound of X and X0+ is the least upper internal
bound of X, as defined in Theorem 6.11. In particular, if X ∼ (S, S̄),

X0 ∼ (EH0S,EH0S̄) (8.16)

Moreover, X0+ is the observable and X0− the constructible subspace of X0.

The proof of this theorem is based on the following series of lemmas.

Lemma 8.2. Let X1 and X2 be internal minimal Markovian splitting subspaces such that
X1 < X2. Then X1 ∨X2 is a Markovian splitting subspace and

X1 ∨X2 ∼ (S2, S̄1) (8.17)

Proof. In view of the decomposition (4.4), S1 = X1 ⊕ S̄⊥
1 and S̄2 = X2 ⊕ S⊥

2 . Since
S1 ⊂ S2 [Theorem 6.8 (i)], then S⊥

1 ⊃ S⊥
2 , and consequently, since X1 ⊂ S1, X1 ⊥ S⊥

2 .
Likewise, by a symmetric argument, X2 ⊥ S̄⊥

1 . Moreover, since S1 ⊃ H− and S̄2 ⊃
H+, S1 ∨ S̄2 = H0, from which we have

H0 = S̄⊥
1 ⊕ (X1 ∨X2)⊕ S⊥

2

which is equivalent to X1 ∨ X2 being a Markovian splitting subspace represented by
(8.17) (Theorem 4.1). ✷

From this lemma and Theorem 6.11 it follows that (8.15) has the representation
(8.16).

Lemma 8.3. Let X0 be given (8.16). Then X0 ⊃ X̂. In fact X0 is the smallest Markovian
splitting subspace containing X̂.

Proof. It is easy to see that

EH0(S ∩ S̄) ⊂ (EH0S) ∩ (EH0S̄), (8.18)

which, in view of (8.16), is the same as X̂ ⊂ X0. Next we show that X0 is the unique
smallest Markovian splitting subspace with this property. Using the notation S0 := EH0S
and S̄0 := EH0S̄ so that X0 ∼ (S0, S̄0), we have

S0 = H− ∨ X̂− (8.19a)

S̄0 = H+ ∨ X̂+ (8.19b)

To see this, note that, since S = H− ∨X− and H− ⊂ H0, E
H0S = H− ∨ EH0X−, and

therefore, because of the doubly invariant property of H0 under the shift {Ut}, (8.19a)
follows. A similar argument yields (8.19b). Let X1 ∼ (S1, S̄1) be an arbitrary Markovian
splitting subspace containing X̂. Then X−

1 ⊃ X̂− and X+
1 ⊃ X̂+, and consequently

(8.19) implies that S1 ⊃ S0 and S̄1 ⊃ S̄0, i.e. X1 = S1 ∩ S̄1 ⊃ S0 ∩ S̄0 = X0, which is
what we wanted to prove. This also concludes the proof of the theorem. ✷

Lemma 8.4. Let X0, X0− and X0+ be defined as in Theorem 8.1. Then X0+ is the
observable and X0− the constructible subspace of X0.
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Proof. If X0 ∼ (S0, S̄0), then, by Theorems 6.11 and 8.1, S0 = S0+ and S̄0 = S̄0−.
Since X0+ is minimal and hence observable, it follows from (4.26) that X0+ = EX0+H+.
But, in view of the splitting property (4.9), EX0+H+ = ES0H+, which in turn equals
EX0H+, the observable subspace of X0. A symmetric argument shows that X0− is the
constructible subspace of X0−. ✷

8.3. A spectral-domain solution

Now we proceed to a spectral-domain characterization of the solution of the noncausal
estimation problem presented in geometric form above. Let us stress at this point that
the main purpose of this analysis is not the derivation of estimation algorithms per se
but that of giving a filtering interpretation to all the solutions of the algebraic Riccati
equation Λ(P ) = 0.

Theorem 8.5. Let
W (s) = C(sI −A)−1B + D (8.20)

be the transfer function of the minimal realization (8.1) and let

W (s) = W0(s)U(s)∗ (8.21)

be the unique (modulo a constant unitary transformation) coprime factorization in H∞

[13, p.255]. Then

(i) W0 ∈ H∞
m×m is the transfer function of the internal model (8.5), i.e. the analytic

spectral factor of the Markovian splitting subspace X0 defined in Theorem 8.1, and
U ∈ H∞

p×m is outer and isometric on the imaginary axis.

(ii) the noncausal estimator (8.8) is described by the following block diagram

dy−→ W−1
0

du0−→ V x̂→

where
V (s) = (sI −A)−1BU(s) (8.22)

(iii) Let W̄ be the coanalytic spectral factor (5.51b) formed from (8.1) as in Theorem
5.12, let

W̄ (s) = W̄0(s)Ū(s)∗ (8.23)

be the unique conjugate coprime factorization obtained in analogy with (8.21) over
the conjugate H̄∞-spaces and set K0 := W̄−1

0 W0. Then (W0, W̄0,K0) is the Marko-
vian triplet of X0.

(iv) Let (A0, B0, B̄0) be a minimal realization

K0(s) = I − B̄
′
0(sI −A0)−1B0 (8.24)

of the structural function K0. Then there are unique matrices H,C0, and D0 such
that

V (s) = H(sI −A0)−1B0 (8.25a)
W0(s) = C0(sI −A0)−1B0 + D0 (8.25b)
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and A0, B0, C0, D0 and H define via (8.8) a minimal noncausal filter for x̂ with a
state process x0 such that x0(0) is a basis in X0.

Before proving this theorem we shall give some clarifying remarks and a procedure
for solving the factorization problem (8.21). First, we note that W and W0 are minimal
spectral factors, the latter being square. Hence we have the inner - outer factorizations

W (s) = W−(s)Q(s) and W0(s) = W−(s)Q0(s) (8.26)

where W− is the outer (minimum phase) spectral factor. Then it is seen that factorization
(8.21) is actually equivalent to the coprime factorization

Q(s) = Q0(s)U(s)∗

which is the form found in [13, p.255]. Secondly, we remark that the decomposition
depicted in the block diagram of Theorem 8.5 is very much in the spirit of Wiener-
Kolmogorov theory, W−1

0 being the whitening filter of the observation process. Note,
however, that in the present setting the whitening filter is noncausal. In the same vein,
the computation of the estimator is immediately seen to involve the coprime factorization
of the cross-spectral density matrix

Φxy(s) = (sI −A)−1BW (−s)
′

as
V (s)W0(s)∗ = Φxy(s) (8.27)

which is now of the general Wiener-Hopf type.
A procedure for solving the factorization problem (8.21) can be based on the matrix

fraction representation
W (s) = D(s)−1N(s) (8.28)

where D and N are coprime matrix polynomials of dimensions m×m and m× p respec-
tively. First reduce N to the Smith form

[Θ(s), 0] = T1(s)N(s)T2(s) (8.29)

where Θ, T1 and T2 are square matrix polynomials, T1 and T2 being unimodular, i.e.
having polynomial inverses; see, e.g., [13]. Then, setting Z := T−1

1 ΘT1 and N̂ :=
T−1

1 [I, 0]T−1
2 , we have the polynomial factorization

N(s) = Z(s)N̂(s) (8.30)

for N , where Z is a square matrix polynomial having the same zeros as N , and hence as
W , and N̂ is a rectangular matrix polynomial without zeros. Although N̂ has no zeros,
the square matrix polynomial N̂N̂∗, may have, but due to coercivity of Φ, none lies on
the imaginary axis, and N̂N̂∗ has full rank.

Proposition 8.6. Let D,N,Z and N̂ be the matrix polynomial defined above, and let
M̂ be a square matrix-polynomial solution, with all its zeros in the open right half of the
complex plane, of the factorization problem

M̂M̂∗ = N̂N̂∗ (8.31)
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Moreover, set M := ZM̂ . Then

W0 = D−1M and U∗ = M̂−1N̂ (8.32)

solve the coprime factorization problem (8.21). The matrix fraction representations
(8.32) are coprime.

Proof. Clearly, W0U
∗ = W if W0, U and N are given by (8.28), (8.31) and (8.32)

respectively. It remains to show that the factorization is coprime. But, since N̂ has no
zeros, the same is true for U , which is therefore outer [13]. Hence, W0 and U have no
right inner factor in common and are therefore coprime. The coprimeness of the first of
the matrix fractions (8.32) follows from the fact that W and W0, being minimal spectral
factors, have the same degree, while coprimeness of the second is immediate. ✷

For the proof of Theorem 8.4 we need the following lemma which is of independent
interest and will be used again below.

Lemma 8.7. Let (K,Q, Q̄) be the inner triplet of X, let

Q = Q0U
∗ (8.33)

be the unique coprime factorization for which Q0 is inner, U ∈ H∞, and Q0 and U are
right coprime, and let

Q̄ = Q̄0Ū
∗ (8.34)

be the corresponding coprime factorization in the conjugate space. Then U is the outer
spectral factor of Q∗Q, i.e. the outer function satisfying

UU∗ = Q∗Q (8.35)

and Ū is the conjugate outer factor of

Ū Ū∗ = Q̄∗Q̄ (8.36)

Moreover, defining
K0 = Ū∗KU, (8.37)

(K0, Q0, Q̄0) is the inner triplet of X0.

Proof. By Theorem 3.5 in [13; p.254] or by the procedure of Proposition 8.6, there
are unique factorizations (8.33) and (8.34). Clearly U is outer, because if it were not, it
would have an outer-inner factorization U0Ui, and then Ui would have to be a right inner
factor of Q0, or else Q could not be analytic. But this would contradict coprimeness.
Likewise, Ū is seen to be conjugate outer. Now, (8.35) and (8.36) follow from the fact
that Q∗

0Q0 = I and Q̄∗
0Q̄0 = I.

Next we prove that
dû0 = U∗dŵ (8.38)

To this end, note that S =
∫

H2
pdŵ and that

S0 = EH0S =
∫

H2
pQ

∗Qdŵ (8.39)
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(see Section 5.3). But, since U is outer, H2
pU = H2

m [52; p. 190], and therefore in view
of (8.35) we may write (8.39) as

S0 =
∫

H2
mU∗dŵ (8.40)

This together with the fact that U∗U = I implies (8.38). Then

dû = Qdŵ = Q0U
∗dŵ = Q0dû0 (8.41)

i.e. Q0 is the inner factor of W0, the spectral factor corresponding to S0, as claimed.
By symmetry we see that Q̄0 is the (conjugate) inner factor of W̄0. Inserting (8.33) and
(8.34) into T0 = Q̄KQ∗, displayed in (5.35) we obtain

T0 = Q̄0Ū
∗KUQ∗

0 (8.42)

from which (8.37) follows. Consequently (Q0, Q̄0,K0) is the inner triplet of X0. ✷

Proof of Theorem 8.4. A comparison of (8.21) and (8.33) shows that W0 = W−Q0, and
therefore it follows from Lemma 8.7 that W0, as defined by the factorization (8.21), is in
fact the analytic spectral factor of X0, and consequently the transfer function of (8.5).
The fact that U is outer follows from Lemma 8.7, and, in view of (8.33), U∗U = I. Thus
we have established statement (i). Next, from (8.1) we have

x(0) =
∫ ∞

−∞
(iω −A)−1Bdŵ (8.43)

(cf. (B.18) in Appendix B) and consequently, projecting onto H0, we obtain

x̂(0) =
∫ ∞

−∞
(iω −A)−1BQ∗(iω)Q(iω)dŵ , (8.44)

as explained in Section 5.3. However, in view of (8.35) and (8.38), Q∗Qdŵ = Udû0, and
consequently

x̂(t) =
∫ ∞

−∞
eiωtV (iω)dû0 (8.45)

where V is defined by (8.22). But dû0 = W0dŷ and therefore (ii) follows. By Theorem
5.12, the model (8.1) has the coanalytic spectral factor W̄ . Then an argument symmetric
to that used in proving statement (i) shows that there is a unique coprime factorization
(8.23) and that W̄0 is the coanalytic spectral factor of X0. Since X0 is internal, it has
the structural function K0 := W̄−1

0 W0, and hence statement (iii) has been established.
Given (8.24), Theorem 5.10 implies that x0(0) as defined by (8.5), is a basis in X0, and
from Theorem 5.12 we see that there are unique matrices C0 and D0 so that (8.25b)
holds. Since X̂ ⊂ X0, there is also a unique matrix H such that x̂(0) = Hx0, i.e. (8.8b)
holds, in terms of which we may write V as (8.25a). Consequently, x̂ is given by the filter
(8.8). Finally, given A0 and B0, standard theory of canonical forms show that H,C0 and
D0 are uniquely determined by (8.24). ✷
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9. The tightest local frame

In this section we provide some further insight into the role played by the nonminimal
Markovian splitting subspace X0, introduced in Section 8. From Theorem 8.1 we see
that the complexity of the filter (8.8) depends on the dimension of X0. We know from
(4.20) that

X0 ⊂ H✷ (9.1)

and that the dimension of the frame space H✷ is 2n. Moreover in [5] H✷ plays the same
role as does X0 in this paper, being the Markovian space of the smoothing estimate.
Therefore, if dimX0 < dimH✷, we have reduced the complexity of the corresponding
filter. As it turns out, this is the case in many interesting situations.

As we saw in Section 6, there is a partial ordering under which any minimal Markovian
splitting subspace X satisfies

X− < X < X+ (9.2)

where X− is the predictor space and X+ is the backward predictor space. The frame
space

H✷ = X− ∨X+ (9.3)

is the linear convex hull of all internal X, and X− is the constructible and X+ the
observable subspace of H✷. As we have seen above, the ordering (9.2) induces the ordering

P− ≤ P ≤ P+ (9.4)

of state covariances under any uniform choice of bases. Here we shall investigate under
which conditions the bounds (9.2) and (9.4) can be tightened about X and P respectively
while retaining the basic structure of ordering.

To this end we first note that, according to Theorem 6.11, to each X ∈ X there
corresponds X0−, X0+ ∈ X0, so that

X0− < X < X0+ (9.5)

is the tightest possible bounding of X. Moreover, we recall from Theorem 8.1 that

X0 = X0− ∨X0+ (9.6)

is the state space of the noncausal estimator of smallest possible dimensions and that
X0− is the constructible and X0+ the observable subspace of X0. This suggests that
X0, X0− and X0+ locally play the same role as globally played by H✷, X− and X+. For
this reason we shall call X0 the local frame space of X and the subfamily of all X ∈ X
satisfying (9.5) the tightest local frame of X. Isomorphically, we shall call the subfamily
of all P ∈ P satisfying the inequality

P0− ≤ P ≤ P0+ (9.7)

where P0− and P0+ correspond to X0− and X0+ respectively, the tightest local frame of
P .
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Let us now introduce some notations. For any P1 and P2 in P0 let

[P1, P2] := {P ∈ P | P1 ≤ P ≤ P2} (9.8)

Then [P1, P2] is nonempty if and only if P1 ≤ P2. Moreover, let (P1, P2) be the subset
of [P1, P2] consisting of those P having the property that, for all nonzero a ∈ Im(P2 −
P1), a

′
(P − P1)a > 0 and a

′
(P2 − P )a > 0 hold simultaneously. Analogous notations

will be used for X ∈ X.
We shall now state the main results of this section which characterize tightness and

provide a formula for the dimension of the local frame space.

Theorem 9.1 Let P ∈ [P1, P2] and define

V := Im(P2 − P1) (9.9a)

V1 := Im(P − P1) (9.9b)

V2 := Im(P2 − P ) (9.9c)

Then [P1, P2] is the tightest local frame of P if and only if V1 = V2 = V.

The following is the alternative formulation of this theorem.

Theorem 9.1
′
. The family [P1, P2] is the tightest local frame of P if and only if P ∈

(P1, P2).

The proof of these statements will follow from a series of lemmas which will, at the
same time, provide a constructive proof of the following theorem.

Theorem 9.2. The dimension of the local frame space of X is given by

dimX0 = dimX +
1
2

deg Q∗Q (9.10)

where Q := W−1
− W and W is the analytic spectral factor of X. Equation (9.10) also

holds with Q replaced by Q̄ := W̄−1
+ W̄ , W̄ being the coanalytic spectral factor.

Before proceeding with the proofs, a few comments on the last result are in order.
Note that Q∗Q = W �W is the projector mentioned in Section 5.3, i.e. the spectral-
domain version of the projector EH0 . In Sections 10 and 11 we shall give alternative
formulas for the dimension of X0 which involve a characterization of the extent to which
external noise enter into X as well as a characterization of the zeros of W . The degree
of Q∗Q varies between zero, when X is internal and hence Q∗Q = I, and n, which
correspond to a maximal influence from external noise.

Lemma 9.3. Let P ∈ [P1, P2], and let V,V1,V2 be defined as in (9.9). Then V1 ⊂ V and
V2 ⊂ V.

Proof: We shall use a standard argument; see e.g. [5]. Let x̂(0) := EX1∨X2x(0), where
x(0) is the basis in X corresponding the uniform choice of basis (6.10). Then there are
matrices L1 and L2 such that

x̂(0) = L1x1(0) + L2x2(0) (9.11)
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where x1(0) and x2(0) are the corresponding bases in X1 and X2. Then the components
of [x(0)− x̂(0)] are orthogonal to X1 ∨X2 and hence (i) to X1 and (ii) to X2. Statement
(i) implies that

E{x(0)x1(0)
′} = L1E{x1(0)x1(0)

′}+ L2E{x2(0)x1(0)
′} (9.12)

But, by Proposition 6.12, X1 < X implies that E{x(0)x1(0)
′} = E{x1(0)x1(0)

′} = P1,
and therefore (9.12) is equivalent to P1 = L1P1 + L2P1. But P1 > 0, so

L1 + L2 = I (9.13)

In the same way, statement (ii) is equivalent to

P = L1P1 + L2P2 (9.14)

which together with (9.13) yields

P − P1 = L2(P2 − P1) (9.15)

implying that V1 ⊂ V, and
P2 − P = L1(P2 − P1) (9.16)

from which V2 ⊂ V follows. ✷

Lemma 9.4. Let X1, X2 ∈ X0 satisfy X1 < X2, and let V be defined as in (9.9a). Then

dim(X1 ∨X2) = n + dimV

where n := dimX1 = dimX2.

Proof. By Lemma 8.2, X1 ∨ X2 ∼ (S2, S̄1) is a Markovian splitting subspace. Let
(K,Q, Q̄) denote its inner triplet and let (Ki, Qi, Q̄i), i = 1, 2, be the corresponding
triplets for X1 and X2. Then, clearly, Q = Q2 and Q̄ = Q̄1, which together with

T0 = Q̄KQ∗ = Q̄1K1Q
∗
1 (9.17)

[see (5.35)] yields K = K1J , where J := Q∗
1Q2 is unitary on the imaginary axis. Since

X1 < X2, S1 ⊂ S2 (Theorem 6.8), and hence H2J ⊂ H2, J is also analytic and therefore
inner. From the fact that K,K1 and J are all inner and hence the factorization K = K1J
in minimal we deduce that

deg K = deg K1 + deg J (9.18)

Since dimX1 = deg K1 and dim(X1 ∨X2) = deg K (Theorem 5.4), the conclusion of the
lemma will follow as soon as we show that deg J = dimV. This will be the content of
the next lemma. ✷

Lemma 9.5. Let P ∈ P and P0 ∈ P0 satisfy P ≤ P0, and set V0 := Im(P0 − P ). Then

dimV0 = deg Q∗Q0 (9.19)

where Q := W−1
− W and Q0 := W−1

− W0, W and W0 being the analytic spectral factors of
X and X0 respectively.
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Proof. Since dŷ = Wdŵ = W0dû0, dû0 = Q∗
0Qdŵ. We shall construct a stochastic

realization of the all-pass filter

dw−→ Q∗
0Q

du0−→ (9.20)

Subtracting the (forward) realization of X, written, without loss of generality, in the
form

{
dx0 = Ax0dt + B0du0

dy = Cx0dt + R1/2du0
(9.21)

we obtain the following representation of (9.20):
{

dz = Γ0zdt + B̃dw

du0 = −R−1/2Czdt + (I, 0)dw
(9.22)

where z := x0− x, Γ0 := A−B0R
−1/2C, and B̃ := −(B1−B0, B2). Using (7.17) we see

that
B̃B̃

′
= (P0 − P )C

′
R−1C(P0 − P ) + B2B

′
2 (9.23)

Since (C,A) is observable, and hence also (C,Γ0), computing the degree of Q∗
0Q (and

hence of Q∗Q0) amounts to computing the dimension of the reachable subspace of the
realization (9.22). Here it should be noted that, since

E|a′
z(0)|2 = a

′
(P0 − P )a = 0 for all a ⊥ V0, (9.24)

a
′
z is nonzero only for a ∈ V0, and therefore the representation (9.22) is in general

nonminimal. We now proceed to show that V0 is actually the reachable subspace, thus
proving the lemma. To this end, subtract from (7.18) the algebraic Riccati equation
Λ(P0) = 0, which after some rearranging of terms yields

(−Γ0)(P0 − P ) + (P0 − P )(−Γ0)
′
+ (P0 − P )C

′
R−1C(P0 − P ) + B2B

′
2 = 0 (9.25)

Using the argument of [42, Lemma A.1], which will also be reported in Lemma 10.2
below, one can show that ImB2 ∈ V0 and Γ0V ⊂ V0. From (9.23) and (9.25) we obtain
the Lyapunov equation

(−Γ0)Z + Z(−Γ0)
′
+ B̃B̃

′
= 0 (9.26)

for Z := P0 − P . Noting that ImB̃ ∈ V0, we can now restrict (9.26) to V0. Since
Z|V0

> 0, it follows that V0 is indeed the reachable subspace for (Γ0, B̃). ✷

Lemma 9.6. Let X1, X2, X3, X4 ∈ X0 be such that

X1 < X2 < X3 < X4 (9.27)

Then X2 ∨X3 and X1 ∨X4 are Markovian splitting subspaces such that

X2 ∨X3 ⊂ X1 ∨X4 (9.28)
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with proper inclusion if and only if at least one of the two conditions X1 �= X2, X3 �= X4

holds, in which case
dim(X2 ∨X3) < dim(X1 ∨X4) (9.29)

Proof. It follows from Lemma 8.2 that X2 ∨ X3 and X1 ∨ X4 are Markovian splitting
subspaces, and that X2 ∨ X3 ∼ (S3, S̄2) and X1 ∨ X4 ∼ (S4, S̄1). Consequently, since
X3 < X4 and X1 < X2 imply that S3 ⊂ S4 and S̄2 ⊂ S̄1 (Theorem 6.8), we have, by
Theorem 4.1,

X2 ∨X3 = S3 ∩ S̄2 ⊂ S4 ∩ S̄1 = X1 ∨X4 (9.30)

Since the correspondence X ∼ (S, S̄) is one-one, we will have proper inclusion in (9.30)
precisely when at least one of the inclusions S3 ⊂ S4, S̄2 ⊂ S̄1 is strict. The last state-
ment, (9.29), then follows from finite dimensionality. ✷

Proof of Theorem 9.1: Suppose [P1, P2] is the tightest local frame of P , and let X0 be
the local frame space. Then X1 = X0− and X2 = X0+. Moreover, in view of (8.15) of
Theorem 8.1, Lemma 9.4 implies that

dimX0 = n + dimV (9.31)

On the other hand, by construction, dimX0 equals the degree of the transfer function
V (s) of the noncausal estimator in Section 8. In view of (8.22), deg V ≤ n + deg U , and
consequently,

dimV ≤ deg U (9.32)

But, by (8.33) in Lemma 8.7, U = Q∗Q0 where Q0 := W−1
− W0, W0 being the analytic

spectral factor of X0+. Since P ≤ P0+ = P2, Lemma 9.5 leads us to the conclusion that

deg U = dimV2 (9.33)

Hence, dimV ≤ dimV2, which, in view of the fact that V2 ⊂ V (Lemma 9.3), implies
that V2 = V.

The same idea of proof applied to the backward setting yields the backward coun-
terparts of (9.32) and (9.33), namely,

dimV ≤ deg Ū = rank(P̄1 − P̄ ), (9.34)

where P̄ = P−1 and P̄1 = P−1
1 ; see Theorem 5.9 and (7.12). But

P̄1 − P̄ = P−1
1 (P − P1)P−1 (9.35)

has the same rank as (P − P1) and therefore dimV ≤ dimV1. But, by Lemma 9.3,
V1 ⊂ V, and consequently, V1 = V.

Conversely, suppose that V1 = V2 = V. We want to show that [P1, P2] is the tightest
local frame of P . Suppose this is not the case and, say, the lower bound is not tight so
that there is an X

′
1 ∈ X0 with X

′
1 �= X1 such that

X1 < X
′
1 < X < X2. (9.36)
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Then, by Lemma 9.6, dim(X
′
1 ∨X2) < dim(X1 ∨X2), and consequently, by Lemma 9.4,

dimV
′
< dimV, where V

′
:= Im(P2 − P

′
1). However, Lemma 9.3 implies that V2 ⊂ V

′
,

and therefore, since V2 = V by assumption, we have a contradiction. A symmetric
argument shows that nontightness of the upper bound leads to a contradiction also. ✷

Proof of Theorem 9.1
′
. Given that P ∈ [P1, P2], the condition P ∈ (P1, P2) is equivalent

to the matrices (P2−P1), (P −P1) and (P2−P ) having the same rank, which in turn is
equivalent to dimV = dimV1 = dimV2. But, by Theorem 9.3, V1 ⊂ V and V2 ⊂ V, and
therefore [P1, P2] is the tightest local frame if and only if P ∈ (P1, P2). ✷

Proof of Theorem 9.2. Since U(s) [Ū(s)] is an outer [conjugate outer] spectral factor of
Q∗Q [Q̄∗Q̄], we have deg U = 1

2 deg Q∗Q and deg Ū = 1
2 deg Q̄∗Q̄. But, it follows from

the proof of Theorem 9.1, that

deg U = dimV = deg Ū (9.37)

and hence deg Q̄∗Q̄ = deg Q∗Q. Then, (9.10) follows (9.31). ✷

10. Geometry of the Riccati inequality

Recall from Section 7 that P is a closed, bounded, convex subset of the vector space Sn

of real symmetric n× n matrices and the solution set of the algebraic matrix inequality

Λ(P ) ≤ 0 (10.1)

where Λ is defined in terms of the spectral density Φ by (7.14) and (7.5), and that P0 ⊂ P

is the solution set of the algebraic Riccati equation

Λ(P ) = 0. (10.2)

In this section we study the local geometric structure of P and compute the tightest local
frame for any P ∈ P.

10.1. The local structure of P

The following theorem shows, not surprisingly, that locally the subset [P1, P2] of P,
defined in Section 9, has the same geometric structure as P.

Theorem 10.1. For any P1, P2 ∈ P0 such that P1 ≤ P2,

[P1, P2] = L ∩ P, (10.3)

where L is the affine subspace of Sn

L = {P | Im(P − P1) ⊂ Im(P2 − P1)}. (10.4)

In particular, [P1, P2] is a closed, convex, bounded subset of P, which either is P itself
(if P1 = P− and P2 = P+) or lies in the boundary of P.
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The study of the relationship between any P ∈ P and a P0 ∈ P0 requires some
preliminary analysis. Recall that Λ(P ) = −B2B

′
2, where B2 is the matrix defined by

(7.16) and that Λ(P0) = 0. Subtracting the latter of these equations from the former
yields the following equation for Z := P − P0:

Γ(P0)Z + ZΓ(P0)
′
+ ZC

′
R−1CZ + B2B

′
2 = 0 (10.5)

where
Γ(P ) := A− (C̄ − CP )

′
R−1C (10.6)

We recall from the literature [10, p.87] that, under the standard coercivity assumption
of this paper, there is exactly one P ∈ P0 for which Γ(P ) is a stability matrix, namely
the minimal element P−, and exactly one P ∈ P0, namely the maximal element P+, for
which Γ(P ) is antistable. For any other P ∈ P0, the spectrum of Γ(P ) is contained in
the union of the spectra of Γ(P−) and Γ(P+), and hence there are no eigenvalues on the
imaginary axis. Moreover, we have the following lemma, adopted from [42].

Lemma 10.2.(Molinari). Let P ∈ P and P0 ∈ P0, and set Γ0 := Γ(P0) and V0 :=
Im(P − P0). Then,

(i) ImB2 ⊂ V0

(ii) Γ0V0 ⊂ V0

(iii) if P ≥ P0, then Γ0 |V0
, the restriction of Γ0 to V0, is asymptotically stable.

Proof (i) Take a ⊥ V0. Then a
′
Z = 0 and, equivalently, Za = 0, so that a

′
B2B

′
2a = 0

is obtained from (10.5). Hence, a ⊥ ImB2. Consequently, we have shown that V⊥
0 ⊂

(ImB2)⊥, which is the same as (i). (ii) Take a ⊥ V0. Then, as we have just seen, Za = 0
and B

′
2a = 0, and therefore we have ZΓ

′
0a = 0. Consequently,

Γ
′
0V

⊥
0 ⊂ kerZ = V⊥0

which is equivalent to (ii). (iii) Because of (i) and (ii) we can now restrict (10.5) to V0

on which Z is strictly positive definite. The pair (C,Γ0) is observable, since (C,A) is,
and therefore a standard Lyapunov argument yields (iii). ✷

The following corollary shows that the invariance condition (ii) of Lemma 10.2 can
be extended to hold also under Γ(P ), where P ∈ P0, as long as P belongs to the tightest
local frame corresponding to the invariant subspace.

Corollary 10.3. Let P1, P2 ∈ P0 be ordered as P1 ≤ P2, and set V := Im(P2 − P1).
Then, if P ∈ (P1, P2),

Γ(P )V ⊂ V (10.7)

where Γ(P ) is defined by (10.6).

Proof. First note that

Γ(P ) = Γ(P1) + (P − P1)C
′
R−1C (10.8)
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and that V1 := Im(P −P1) = V (Theorem 9.1 and 9.1
′
). Therefore, since Γ(P1)V1 ⊂ V1

(Lemma 10.2), (10.7) follows. ✷

Proof of Theorem 10.1. Let P ∈ [P1, P2], and set V := Im(P2−P1) and V1 := Im(P−P1).
Then, by Lemma 9.3, V1 ⊂ V, and therefore P ∈ L. Since P ∈ P also, P ∈ L∩P. Hence,
[P1, P2] ⊂ L ∩ P. Conversely, suppose that P ∈ L ∩ P and set Z := P − P1 and
V := P2 − P1. Then Z and V satisfy

Γ(P1)Z + ZΓ(P1)
′
+ ZC

′
R−1CZ + B2B

′
2 = 0 (10.9a)

Γ(P1)V + V Γ(P1)
′
+ V C

′
R−1CV = 0 (10.9b)

Lemma 10.2 applied to (10.9b), shows that V is invariant for Γ(P1) and that Γ̂ := Γ(P1)|V
is asymptotically stable. Now, P ∈ L is equivalent to V1 ⊂ V and P ∈ P is equivalent
to (10.9a). Next we restrict (10.9a) to V, which makes sense because ImZ = V1 and
ImB2 ⊂ V1 (Lemma 10.2(i)). On V we can thus write (10.9a) as

Γ̂Z + ZΓ̂
′
+ ZC

′
R−1CZ + B2B

′
2 = 0 (10.10)

Then, since the sum of the last two terms of (10.10) is nonnegative definite, by Lyapunov
theory, the asymptotic stability of Γ̂ implies that Z is positive definite on V. Therefore,
Z ≥ 0 in Rn, i.e. P ≥ P1. A symmetric argument shows that P2 ≥ P . Hence L ∩ P ⊂
[P1, P2]. This concludes the proof that [P1, P2] = L ∩ P, which clearly is closed, convex
and bounded, because P has these properties and L is affine. It remains to show that
[P1, P2] belongs to the boundary of P whenever [P1, P2] is not all of P. To this end,
suppose that at least one of the conditions P1 = P− and P2 = P+ is violated. Then
rank (P2 − P1) < n [10, p.87], and consequently the dimension of V := Im(P2 − P1) is
less then n. Now, let P ∈ [P1, P2]. Then, since V1 := Im(P − P1) ⊂ V (Lemma 9.3),
dimV1 < n. But, by Lemma 10.2, ImB2 ⊂ V1, and therefore Λ(P ) = −B2B

′
2 does not

have full rank, and consequently P belongs to the boundary of P [10, p.84]. ✷

10.2. Invariant sets of the Riccati equation and computation of the local
frame

The geometric result of Theorem 10.1 suggests that we name [P1, P2] the facet of P
through P1 and P2. The facets are intimately connected to the zero structure of the
minimal spectral factors of Φ, as we shall explain in the next section. But, the most
important property characterizing them is that they are precisely the invariant sets for
the matrix Riccati differential equation

Π̇ = Λ(Π) (10.11)

considered in the positivity region P. The following theorem, which is an amplification
of a result in one of our previous papers [25], will make this assertion precise and also
as a byproduct will provide an algorithm to compute the extreme points P0− and P0+

of the tightest local frame [P0−, P0+] of any P ∈ P. These two elements of P0 permit
the construction of the noncausal estimator discussed in Section 8. Note that (10.11) is
precisely the invariant form of the Riccati equation encountered in Section 7.
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Theorem 10.4. The facets are precisely the invariant sets of the Riccati differential
equation (10.11) in P. In particular,

(i) for every Π(0) := P ∈ P, the solution exists globally on R and Π(t) belongs to the
tightest local frame [P0−, P0+] of P for all t ∈ R

(ii) for any t1, t2 ∈ R, t1 ≤ t2, Π(t1) ≥ Π(t2)

(iii) limt→∞ Π(t) = P0− and limt→−∞ Π(t)→ P0+

For the proof we shall need the following lemma which is based on a simple compu-
tation underlying the work in [16], and less directly also in [22].

Lemma 10.5. Any solution of (10.11) satisfies the systems of equations

Π̇ = UΠ̇(0)U
′

(10.12a)
U̇ = Γ(Π)U ; U(0) = I (10.12b)

where the mapping P → Γ(P ) is defined by (10.6).

Proof Differentiate (10.11) and order the terms to obtain

Π̈ = Γ(Π)Π̇ + Π̇Γ(Π)
′

(10.13)

from which (10.12) follows after integration. ✷

Proof of Theorem 10.4: If Π(0) := P ∈ P, then Π̇(0) = Λ(P ) ≤ 0. Therefore, by
Lemma 10.5, Π̇(t) ≤ 0, i.e.

Λ(Π(t)) ≤ 0 (10.14)

for all t ∈ R. Hence, the trajectory {Π(t); t ∈ R} stays in P and cannot escape. From
(10.14) we also deduce that Π(t1) ≥ Π(t2) for any t1, t2 ∈ R such that t1 ≤ t2, and
consequently, since P is closed and bounded, Π(t) tends monotonically to a limit Π∞ ∈ P
as t → ∞ and a limit Π−∞ ∈ P as t → −∞. Clearly Π∞ and Π−∞ are equilibria for
(10.11) and thus belong to P0. Moreover, Π∞ ≤ Π(t) ≤ Π−∞, i.e.

Π(t) ∈ [Π∞,Π−∞] (10.15)

for all t ∈ R. It remains to show that [Π∞,Π−∞] is the tightest local frame of P . To this
end, let [P0−, P0+] denote the tightest local frame of P , and set V := Im(P0+ − P0−).
We want to show that the trajectory {Π(t); t ∈ R} never leaves the affine space

L = {P | Im(P − P0−) ⊂ V}

i.e. that, with Z(t) := Π(t) − P0−, ImZ(t) ∈ V for all t ∈ R. A calculation similar to
the one leading to (10.9a) shows that Z satisfies the differential equation

Ż = Γ(P0−)Z + ZΓ(P0−)
′
+ ZC

′
R−1CZ (10.16)

Now, since Z(0) = P −P0−, ImZ(0) ⊂ V by construction (Theorem 9.1), and ImŻ(0) ⊂
V by (10.16) and Lemma 10.1 (ii). Then, by Nagumo’s Theorem [4], the trajectory Z(t)
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stays inside the closed subset L of Sn at least locally. But (10.11), and hence (10.16), has a
global solution on R, and therefore Π(t) ∈ L, for all t ∈ R. But, Π(t) ∈ P, and therefore
Π(t) ∈ [P0−, P0+] for all t ∈ R (Theorem 10.1). Since [P0−, P0+] is closed (Theorem
10.1), Π∞ and Π−∞ belong to [P0−, P0+], and therefore [Π∞,Π−∞] ⊂ [P0−, P0+]. But,
we showed above that P = Π(0) ∈ [Π∞,Π−∞], and, therefore, since [P0−, P0+] is the
tightest local frame, we must have Π∞ = P0− and Π−∞ = P0+ as required. This
concludes the proof. An alternative proof can be constructed by using the method of
Lemma 6.3 in [25] restricted to V. ✷

The following corollary is a slight amplification of Theorem 6.2 in [25].

Corollary 10.6. Let P ∈ P , and let (B1, B2) satisfy (7.15) and (7.16). Let {Π(t); t ∈
R} be the unique trajectory of (10.11) through Π(0) = P , and, for each t ∈ R, let
{(B1(t), B2(t)); t ∈ R} be the unique solution of the system of differential equations

Ḃ1 = −B2B
′
2C

′
R−1/2 B1(0) = B1 (10.17a)

Ḃ2 = (A−B1R
−1/2C)B2 B2(0) = B2 (10.17b)

Then, for each t ∈ R, Π(t) ∈ P and

B1(t) = B̂(Π(t)) := [C̄ − CΠ(t)]
′
R−1/2 (10.18a)

B2(t)B2(t)
′

= −Λ(Π(t)) (10.18b)

Moreover, (B1(t), B2(t)) tends to (B0−, 0), as t→∞ and to (B0+, 0) as t→ −∞, where
B0− := B̂(P0−) and B0+ := B̂(P0+), [P0−, P0+] being the tightest local frame of P .

Proof. Inserting Π̇(0) = Λ(P ) = −B2B
′
2 in (10.12a) yields

Π̇ = −B2(t)B2(t)
′

(10.19)

where B2(t) := U(t)B2. Therefore, defining B1(t) by (10.18a), (B1(t), B2(t)) is imme-
diately seen to satisfy (10.17) (Lemma 10.5). Moreover, (10.18b) follows from (10.19)
and (10.11). Since (10.11) has a unique solution, then so does (10.17). The convergence,
finally, is an immediate consequence of the corresponding statement of Theorem 10.3,
recalling that B2 = 0 if and only if P ∈ P0 (Section 7). ✷

Consequently, given any minimal analytic spectral factor

W (s) = C(sI −A)−1(B1, B2) + (R1/2, 0) (10.20)

the system of differential equations (10.17) in Corollary 10.6 generates a family {Wt(s); t ∈
R} of minimal spectral factors

Wt(s) = C(sI −A)−1(B1(t), B2(t)) + (R1/2, 0) (10.21)

the corresponding Markovian splitting subspaces of which are totally ordered between
X0− and X0+. As we shall see in the next section, all these spectral factors have the
same zeros.
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11. The zero structure of minimal spectral factors

Recall that P is not only a parameter set for X (Theorem 6.5) but also for the (equivalence
classes) of minimal spectral factors (Theorem 7.3). In this section we shall show that
the geometric structure of P is reflected in the zero structure of the family of minimal
spectral factors. The main results are that the dimension of the local frame space X0 is
determined by the number of zeros and also by the dimension of internal part X ∩H0

of the corresponding Markovian splitting subspace X.

11.1. Zeros and facets

As is well-known, the zeros of any m× p spectral factor

W (s) = C(sI −A)−1B + D, (11.1)

with (A,B,C,D) minimal, are precisely the complex numbers λ for which the rank of
the system matrix [

A− λI B
C D

]
(11.2)

drops below its normal rank. For square spectral factors with D invertible, which corre-
spond to internal realizations, the zeros are just the poles of the inverse

W (s)−1 = −D−1C(sI −A−BD−1C)−1BD−1 + D−1 (11.3)

and consequently the eigenvalues of the feedback matrix Γ := A− BD−1C. In general,
when W is not necessarily square, setting as usual,[

B
D

]
=

[
B1 B2

R1/2 0

]
(11.4)

in the standard form of Section 7.3, and recalling from (10.6) and (7.17) that the feedback
matrix is

Γ := A−B1R
−1/2C (11.5)

we have the following result.

Theorem 11.1. Let P ∈ P, let V := Im(P0+ − P0−) where [P0+, P0+] is the tightest
local frame of P , let

W (s) = C(sI −A)−1(B1, B2) + (R1/2, 0) (11.6)

be the corresponding minimal spectral factor in standard form, and let Γ be the feedback
matrix (11.5) corresponding to P . Then V equals the reachability space of the pair (Γ, B2),
i.e.

V = 〈Γ|B2〉 := Im(B2,ΓB2,Γ2B2, . . .) (11.7)

and the zeros of W are precisely the eigenvalues of the restricted matrix

Γ
′

|V⊥ : V⊥ → V
⊥ (11.8)
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counted with multiplicity. The dimension of the corresponding local frame space X0 equals
2n minus the number of zeros.

Proof. The zeros of W (s) are the λ for which

(a∗, b∗)

[
A− λI B1 B2

C R1/2 0

]
= 0 (11.9)

for some non-zero

(
a
b

)
∈ Cn+m, i.e.


a∗(λI −A)− b∗C = 0

a∗B1 + b∗R1/2 = 0
a∗B2 = 0

(11.10)

Eliminating b in (11.10) we see that λ is a zero of W if and only if

a∗[λI − Γ, B2] = 0 (11.11)

for some nonzero a ∈ Cn, which is equivalent to

a ⊥ 〈Γ|B2〉 and a∗Γ = λa∗ (11.12)

From this we see that the zeros of W are precisely the eigenvalues of Γ
′
with generalized

eigenspace orthogonal to 〈Γ|B2〉. Therefore the number of zeros of W (counted with
multiplicity) equals n − dim〈Γ|B2〉. It remains to show that 〈Γ|B2〉 = V. By Corollary
10.3, ΓV ⊂ V and therefore, since ImB2 ⊂ V (Theorem 9.1 and Lemma 10.2), 〈Γ|B2〉 ∈ V.
We shall show that 〈Γ|B2〉 and V have the same dimensions and hence are equal. By
Lemma 9.5 and Theorem 9.1, dimV = deg U , where U = Q∗Q0 (Lemma 8.6). From
Proposition 8.6 we see that U∗ has the coprime factorization U∗ = M̂−1N̂ and therefore
dimV equals the degree of the polynomial detM̂ . However, by Proposition 8.6, M = ZM̂ ,
which implies that

detM = detZ detM̂,

and therefore dim V equals the degree of det M (which is n, since W0 = D−1M is a
square spectral factor) minus the degree of det Z (which equals the number of zeros
of W ). But, as shown above, this is precisely the dimension of 〈Γ|B2〉. Hence we have
shown that 〈Γ|B2〉 = V. Moreover, since V is invariant for Γ, V⊥ is invariant for Γ

′

and hence it follows from the discussion above that the zeros of W are precisely the
eigenvalues of the restricted map (11.8). The statement concerning the local frame
space X0 now follows from (9.31). ✷

This result could be described by using the language of geometric control theory [54].
In fact, it can be shown that V is identical to the maximal reachability space R∗ for the
realization [A, (B1, B2), C, (R1/2, 0)] and that V⊥ is a particular version of the quotient
space V∗/R∗. For definitions refer to [54, p.125; Problem 5.9]. In this context notice that
V
∗ = Rn.
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As a simple corollary we have yet another proof of he fact that the zero structure of
a minimal stochastic realization is carried over to its backward counterpart.

Corollary 11.2. Let W and W̄ be the analytic and coanalytic spectral factors of a
minimal Markovian representation. Then W and W̄ have the same zeros.

Proof. Choose coordinates such that the forward and the backward realization have the
same state process. Then the backward version of (A,B,C) will be (−PA

′
P−1, B, C̄P−1)

where C̄ is given by (7.6b) [25]. Consequently, using the Lyapunov equation (7.6a), the
corresponding backward feedback matrix is seen to be

Γ̄ = Γ−B2B
′
2P

−1 (11.13)

from which it follows that 〈Γ̄|B̄2〉 = 〈Γ|B2〉, i.e. V̄ = V. Since moreover
ImB2 ⊂ V, we have

Γ̄
′

|V̄⊥ = Γ
′

|V⊥ (11.14)

and therefore the statement of the corollary is a consequence of the theorem. ✷

11.2. Zeros as invariants of tightest local frames

Since there is a one-to-one correspondence between P and the equivalence classes of an-
alytic minimal spectral factors W (Theorem 7.3), under which P0 corresponds to the
square minimal spectral factors, we shall denote by [W1,W2] and (W1,W2) the subfam-
ilies of spectral factors which correspond to P in [P1, P2] and (P1, P2) respectively, as
defined in Section 8, where of course P1, P2 correspond to W1,W2. Accordingly, we shall
say that [W1,W2] is the tightest local frame of W if W ∈ (W1,W2); cf. Theorem 9.1

′
.

Proposition 11.3. Let W be an arbitrary minimal spectral factor, and let [W0−,W0+]
be its tightest local frame. Let Γ,Γ0− and Γ0+ be the corresponding feedback matrices.
Then

Γ
′

0−|V⊥ = Γ
′

|V⊥ = Γ
′

0+|V⊥ (11.15)

where V is defined as in Theorem 11.1.

Proof. By Lemma 10.2 and Corollary 10.3, V is invariant under Γ0−,Γ and Γ0+. More-
over,

Γ = Γ0− + (P − P0−)C
′
R−1C, (11.16)

and, since the image of the second term belongs to V (Lemma 9.3)

a
′
Γ = a

′
Γ0−

for each a ⊥ V, and hence the first equation in (11.15) follows. The second equation
follows from a symmetric argument. ✷

Recall that the feedback matrix Γ can be written

Γ = A− (C̄ − CP )
′
R−1C (11.17)
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Proposition 11.3 shows that when P varies over (P0−, P0+), the eigenvalues of Γ cor-
responding to V

⊥ are fixed, and those corresponding to V vary arbitrarily in a certain
subset of the complex plane. This situation corresponds in geometric control theory to
the eigenvalues of the feedback matrix being arbitrary in R∗ and fixed in the quotient
space V∗/R∗.

From Theorem 11.1 and Proposition 11.3 we see that all W in (W0−,W0+) have the
same zeros and that these belong to the set of common zeros of W0− and W0+. The
following theorem is an amplification of this observation.

Theorem 11.4 The zeros of any W for which [W0−,W0+] is the tightest local frame are
precisely the common zeros of W0− and W0+.

Proof. Let W̄ be the unique (modO) coanalytic spectral factor which together with W
defines a minimal Markovian triplet. Let W = D−1N and W̄ = D̄−1N̄ be coprime matrix
fraction representations. Then from Proposition 8.6 (and its backward counterpart) ,
N = ZN̂ and N̄ = Z̄ ˆ̄N where Z and Z̄ have the same zeros (Corollary 11.2). By the same
construction, W0+ = W0 = D−1ZM̂, where M̂ has all its zeros in the right half plane,
and W̄0− = W̄0 = D−1Z̄ ˆ̄M , where ˆ̄M has all its zeros in the left half plane (Proposition
8.6). However, by Corollary 11.2, W0− has the same zeros as W̄0−. Consequently, since
M̂ and ˆ̄M cannot have common zeros, the common zeros of W0− and W0+ are those of
Z, which by construction are the zeros of W. ✷

11.3. Zeros and the internal subspace of X

The zero structure described above is reflected in the splitting geometry through the
decomposition

X = EXH⊥
0 ⊕X ∩H0 (11.18)

immediately obtained by using formula (4.25). The two components in (11.18) will
be called the external and the internal subspace of X respectively. We recall that the
internal minimal realizations can be parametrized by their zero structure, as for example
represented by the inner parts Q of their spectral factors. In the noninternal case the
zero structure is connected to the internal part of the splitting subspace only. As can
be seen from the following theorem, the internal subspace is invariant as X varies over
a tightest frame.

Theorem 11.5. Let X be a minimal Markovian splitting subspace with tightest frame
[X0−, X0+]. Then its internal subspace is given by

X ∩H0 = X0− ∩X0+ (11.19)
= {a′

x(0) | a ∈ V⊥}, (11.20)

where V is defined in Theorem 11.1 and x is the state process corresponding to the choice
of coordinates in X under which V is computed, and its external subspace by

EXH⊥
0 = EX [(H0 ∨X) ∩H⊥

0 ] (11.21)
= {a′

x̄(0) | a ∈ V} (11.22)
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where x̄ := P−1x is the state process of the corresponding backward realization. In
particular, the dimension of the internal subspace equals the number of zeros ν of the
corresponding spectral factor. Moreover, the external subspace has the same dimension,
namely n− ν, as (H0 ∨X) ∩H⊥

0 .

In the language of geometric control theory the internal subspace of X corresponds to
the quotient space V∗/R∗, while the external subspace corresponds to R∗. Consequently,
the maximal reachability space R∗ is also isomorphic to

(H0 ∨X) ∩H⊥
0 (11.23)

showing that it corresponds to the part of X which “sticks out” from the output-induced
subspace H0.
Proof of Theorem 11.5. We first prove that X ∩H0 = X0− ∩X0+. Theorem 6.10 es-
tablishes the connection between X ∼ (S, S̄), X0− ∼ (S0−, S̄0−) and X0+ ∼ (S0+, S̄0+).
In particular, S0− = S ∩H0 and S̄0+ = S̄ ∩H0. Therefore, since X = S ∩ S̄,

X ∩H0 = S0− ∩ S̄0+ (11.24)

However, since {
S0− = X0− ⊕ S̄⊥

0−
S̄0+ = X0+ ⊕ S⊥

0+
(11.25)

where ⊥ is taken with respect to H0, and since

S̄⊥
0− ⊂ S0− ⊂ S0+ ⊥ S0+ (11.26)

by perpendicular intersection and the ordering X0− < X0+, we have

S0− ∩ S̄0+ = X0− ∩X0+ (11.27)

and consequently (11.19) follows.
Next, we prove that

a
′
x(0) ∈ H0 ⇐⇒ a ⊥ V (11.28)

To this end, note that

a
′
x(0) = a

′
[x(0)− x0−(0)] + a

′
x0−(0) (11.29)

where the two terms are orthogonal (Proposition 6.12) and therefore

E|a′
[x(0)− x0−(0)]|2 = a

′
(P − P0−)a. (11.30)

If a ⊥ V = Im(P −P0−), the right member of (11.30) is zero, and consequently, a
′
x(0) =

a
′
x0−(0) ∈ H0. Conversely, if a

′
x(0) ∈ H0, then by (11.19), a

′
x(0) ∈ X0−. However,

from the ordering X0− < X, we have

a
′
x0−(0) = EX0−a

′
x(0) (11.31)

(Proposition 6.12), and consequently a
′
x(0) = a

′
x0−(0). From this and (11.30), we have

a′(P − P0−)a = 0, from which it follows that a ⊥ V. To see this recall that P − P0− is
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semidefinite and symmetric, and hence it has a rank factorization P − P0− = V V
′
with

the columns of V spanning V. Since X = {a′
x(0) | a ∈ Rn}, this establishes (11.20).

Furthermore, set T := EX
|H⊥

0
. Then the nullspace of T is

kerT = H⊥
0 ∩X⊥ = (H0 ∨X)⊥, (11.32)

and hence T can be restricted to

H⊥
0 � kerT = (H0 ∨X) ∩H⊥

0 (11.33)

making it injective. This proves (11.21) and establishes that (H0∨X)∩H⊥
0 has the same

dimension as the external subspace. To prove (11.22), note that the external subspace
is the orthogonal complement of (11.20) in

X = {b′
x̄(0) | b ∈ Rn} (11.34)

Since E{x̄(0)x(0)
′} = I, this complement is generated by all b such that b

′
a = 0 for all

a ⊥ V. Consequently (11.22) holds.
Finally, the statements about the connection between dimensions and the number of

zeros follow from Theorem 11.1, since ν = dimV⊥. ✷

Appendices

In these appendices we shall collect some basic facts about stationary increment
processes and Hardy spaces which will be used in the geometric theory of stochastic
models. A detailed account of this topics can be found in [46], [7] and [34].

A. Stationary increments processes and the continuous-time Wold rep-
resentation

Let {z(t)} be an m−dimensional second order process defined on some probability space
{Ω,F, P}, continuous in mean square and with stationary increments. Generally speak-
ing, processes with stationary increments are “integrated versions” of the random signals
which are being modelled, and the only thing of interest are the increments, so {z(t)} is
viewed as an equivalence class defined up to an additive fixed random vector z0. This
equivalence class is denoted by dz. Under a very mild conditional Lipschitz condition,
which is discussed in detail in [34], a stationary increments process admits representa-
tions of the type

dz(t) = s(t)dt + Ddw(t) (A.1)

where {s(t)} is stationary, D is a constant m × p matrix and dw is a p−dimensional
(wide-sense) Wiener process, that is a process with stationary orthogonal increments,

E{[wi(t)− wi(s)][wj(τ)− wj(σ)]} = δij |(s, t) ∩ (σ, τ)| (A.2)

where δij is the Kronecker delta and | · | denotes Lebesgue measure on R. We shall write
this

E{dwdw
′} = Idt (A.3)
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for short. Such a process is commonly referred to as (integrated) “white noise”. Let
H(dz) be, as defined in Section 2, i.e. the Hilbert space [46] generated by the incre-
ments of {z(t)}, i.e. the closure in L2(Ω,F, P ) of the linear manifold {Σα

′
ij [z(ti) −

z(tj)]; ti, tj ∈ R, αij ∈ Rm}, where prime denotes transpose. In general, given any sub-
space K of H(dz), we define the stationary family of translates {Kt}, of K, by setting
Kt := UtK, t ∈ R and introduce the past and future (at the time zero) of the family
{Kt} by

K− := ∨t≤0Kt, K+ := ∨t≥0Kt (A.4)

where the symbol ∨ denotes closed vector sum. Clearly, K−
t := UtK

− and K+
t := UtK

+

form an increasing, respectively, a decreasing family of subspaces of H(dz).
Subspaces K for which Kt = K−

t or Kt = K+
t can be characterized in the following

way. Introduce the forward and backward shift semigroups {Ut; t ≥ 0} and {U∗
t ; t ≥ 0}

acting on H(dz), where Ut is the shift induced by dz, defined in Section 2. It is then
easy to check that a subspace K generates an increasing stationary family of translates
{Kt} if and only if

U∗
t K ⊂ K for all t ≥ 0. (A.5)

Similarly, K generates a decreasing family of translates {Kt} if and only if

UtK ⊂ K for all t ≥ 0 (A.6)

i.e. K is a forward shift invariant subspaces. A subspace satisfying both conditions
(A.5), (A.6) will be called a doubly invariant .

We shall say that an increasing family {Kt} is purely nondeterministic (p.n.d) if the
“remote past” K−∞ := ∩t∈RKt contains only the zero random variable. The property of
being p.n.d. depends on the structure of the backward shift invariant subspace K alone.
Dually, for a decreasing family {Kt} in H(dz), define the “remote future” K̄∞ := ∩t∈RK̄t.
If K̄∞ is trivial we say that {K̄t} is p.n.d. or that K̄ is a p.n.d. (forward shift) invariant
subspace. A stationary increment process dz will be called p.n.d. whenever both H−(dz)
and H+(dz) are p.n.d.

The following representation theorem is essentially a continuous-time version of the
Wold representation theorem [21, 38].

Theorem A.1. A necessary and sufficient condition for a subspace S ⊂ H(dz) to be
backward shift-invariant and p.n.d. is that there is a vector Wiener process dw such that

S = H−(dw) (A.7)

Similarly, a necessary and sufficient condition for a subspace S̄ ⊂ H(dz) to be forward
shift-invariant and p.n.d. is that there is a vector Wiener process dw̄ such that

S̄ = H+(dw̄) (A.8)

Both dw and dw̄ are uniquely determined by S and S̄ modulo multiplication by a constant
orthogonal matrix. The dimension of dw is called the multiplicity of S or H(dw) and
the dimension of dw̄ the multiplicity of S̄ or of H(dw̄).

73



       

Note that whenever ∨t∈RSt = H(dz), in which case S is said to be of full range , we
have a representation of the space H(dz) as

H(dz) = H(dw) (A.9)

An analogous representation of H(dz) is obtained in the case S̄ is full range.

B. Spectral representation of stationary increment processes

Given a p-dimensional Wiener process dw, any η ∈ H(dw) has a unique representation

η =
∫ ∞

−∞
f(−t)dw(t) (B.1)

where f ∈ L2
p(R) is row-vector valued and the integral (B.1) is defined in quadratic mean

[7, 46]. This is immediately seen by first observing that the η corresponding to the step
functions in L2

p(R) are the finite linear combinations of the increments of dw and hence
are dense in H(dw), and then noting that

〈η1, η2〉H(dw) = 〈f1, f2〉L2
p(R) (B.2)

under this correspondence. Then taking the closure, we see that (B.1) defines an iso-
metric isomorphism between L2

p(R) and H(dw).
Moreover, let F be the unitary map from L2

p(R) to L2
p(I), the space of square-integrable

p-vector valued functions on the imaginary axis I with Lebesgue measure dω/2π, defined
on L2 ∩ L1 by the Fourier integral

(Ff)(iω) = f̂(iω) :=
∫ ∞

−∞
e−iωtf(t)dt (B.3)

Also, the inverse transform

(F−1f̂)(t) =
∫ ∞

−∞
eiωtf̂(iω)

dω

2π
(B.4)

holds on L2 ∩ L1. Then the Plancherel formula

〈f1, f2〉L2
p(R) = 〈f̂1, f̂2〉L2

p(I) (B.5)

establishes the isometric isomorphism between L2
p(R) and L2

p(I); see, e.g., [9].
Next, define a process dŵ on I with increments

ŵ(iω2)− ŵ(iω1) =
∫ ∞

−∞

e−iω2t − e−iω1t

2πit
dw(t) (B.6)

Then, since
e−iω2t − e−iω1t

2πit
= (F−11[ω1,ω2])(−t) (B.7)
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where 1[ω1,ω2](iω) is the indicator function equal to one for ω ∈ [ω1, ω2] and zero other-
wise, (B.2) and (B.5) imply that the process ŵ has orthogonal increments. In fact,

E{dŵdŵ∗} = I
dω

2π
(B.8)

where ∗ denotes transpose and conjugation. Hence, dŵ is a p-dimensional Wiener process
on the imaginary axis. Now, (B.6) may be written∫ ∞

−∞
1[ω1,ω2](iω)dŵ(iω) =

∫ ∞

−∞
(F−11[ω1,ω2])(−t)dw(t)

and consequently, since the indicator functions are dense in L2,∫ ∞

−∞
f̂(iω)dŵ =

∫ ∞

−∞
f(−t)dw (B.9)

Let Iw : L2
p(I)→ H(dw) be the unitary map defined by

Iwf̂ =
∫ ∞

−∞
f̂(iω)dŵ(iω) (B.10)

Then applying the shift Ut to (B.1) we observe that

Utη =
∫ ∞

−∞
f(t− τ)dw(τ) (B.11)

which together with (B.9) shows that

UtIwf̂ = Iweiωtf̂ (B.12)

Moreover, choosing f to be the indicator function of the interval [t1, t2], (B.9) yields

w(t2)− w(t1) =
∫ ∞

−∞

eiωt2 − eiωt1

iω
dŵ(iω) (B.13)

which is the spectral representation of dw [7, 46]. More generally, it is known [7], [34],
that every Rm-valued process with finite second moments and continuous stationary
increments dz admits a spectral representation

z(t)− z(s) =
∫ +∞

−∞

eiωt − eiωs

iω
dẑ(iω) , t, s ∈ R (B.14)

where dẑ is an n-dimensional orthogonal increments process on the imaginary axis I,
called the spectral measure of dz, with

E{dẑ(iω)dẑ(iω)∗} = dZ(iω) (B.15)

dZ being a nonnegative definite Hermitian matrix measure on the Borel sets of the
imaginary axis (not necesserily finite) called the spectral distribution of dz. The spectral
measure dẑ is uniquely determined by dz.
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As an example consider the process dy defined as the output of the linear stochastic
system (3.1). In the time domain (3.1) has the following solution

x(t) =
∫ t

−∞
eA(t−τ)Bdw (B.16)

y(t)− y(s) =
∫ t

s
Cx(τ)dτ + D[w(t)− w(s)] (B.17)

Applying (B.9) to the first of these equations, we obtain

x(t) =
∫ ∞

−∞
eiωt(iωI −A)−1Bdŵ (B.18)

which then inserted into (B.17) together with (B.13) yields the spectral representation

y(t)− y(s) =
∫ ∞

−∞

eiωt − eiωs

iω
dŷ(iω) (B.19)

where W is given by (3.2). Hence dy has a spectral measure

dŷ = W (iω)dŵ(iω) (B.20)

with an absolutely continuous spectral distribution

E{dŷdŷ∗} = Φ(iω)
dω

2π
(B.21)

where Φ is the spectral density given by (3.3). This leads to the next topic, namely
spectral factorization.

C. Hardy spaces and spectral factorization

The subspaces S and S̄, defined by (A.7) and (A.8), consist of random variables with
stochastic-integral representations of the type (B.1) in which, in the case of S, f is a
casual function in L2

p(R), i.e. f(t) = 0 a.e. for t < 0 or, in case of S̄, an anticausal
function, for which f(t) = 0 a.e. for t > 0. Causal and anticausal functions form
orthogonal complementary subspaces of L2

p. In this context it is useful to introduce the
Hardy spaces H2

p , H̄2
p which are the orthogonal subspaces in L2

p(I) obtained as L2-Fourier
transforms of the causal, respectively anticausal, functions in L2

p(R). It is well known (see
e.g. [15]) that the functions in H2

p [H̄2
p ] , which we shall always write as p-dimensional

row vector functions, are the boundary values of analytic functions in the right [left] half
of the complex plane. Since there is a unitary isomorphism between analytic (coanalytic)
functions and these boundary values [15] it is common usage to refer to functions in H2

p

as analytic and to those in H̄2
p as coanalytic. From this it follows that the subspaces S

and S̄ in (A.7) , (A.8) naturally correspond to the Hardy spaces H2
p and H̄2

p under the
appropriate representation maps (B.10), namely,

S = H−(dw) = IwH2
p , S̄ = H+(dw̄) = Iw̄H2

p̄ (C.1)
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where p and p̄ are the respective multiplicities.
Assume now that the stationary-increment process dz is purely non-deterministic

in the sense defined in Appendix A. Then, by Theorem A.1 applied to the subspaces
S = H−(dz) and S̄ = H+(dz), there are two Wiener processes, which throughout
this paper are denoted dū− and dū+, called the forward and, respectively, backward
innovation processes of dz, such that H−(dz) = H−(du−) and H+(dz) = H+(dū+).
Note that this implies that H(du−) = H(dz) so that the two Wiener processes have the
same dimensions which is called the multiplicity, or rank, of the process dz. (A stationary
increments process is full rank if its multiplicity equals its dimensions).

Now, for any h > 0, z(−h)− z(0) ∈ H−(du−), and z(h)− z(0) ∈ H+(dū+) so that,
by (C.1),

z(−h)− z(0) =
∫ +∞

−∞
Wh(iω)dû−(iω) (C.2)

and
z(h)− z(0) =

∫ +∞

−∞
W̄h(iω)dˆ̄u+(iω) (C.3)

where dû−, dˆ̄u+ are the spectral measures of du−, dū+ [compare (B.6), (B.11)] and
Wh, W̄h are m× r analytic and, respectively, coanalytic matrix functions, i.e. with rows
in H2

r and H̄2
r respectively. Letting χ(iω) := eiωh−1

iω , χ̄(iω) := χ(−iω) and rewriting
(C.2), (C.3) in terms of the new functions

W− := χ̄−1
h Wh (C.4)

W̄+ := χ−1
h W̄h (C.5)

it follows, by comparison with the spectral representation (B.12), that

dẑ = W−dû− = W̄+dˆ̄u+ (C.6)

the relations holding by uniqueness of the spectral measure dẑ. From this it is easily
seen that W− and W̄+ do not depend on h. It follows from (C.6) that the spectral
distribution dZ of a purely nondeterministic stationary increments processes must be
absolutely contionuous with a (matrix) spectral density Φ := dZ/d(ω/2π) satisfying

Φ(iω) = W−(iω)W−(iω)∗ = W̄+(iω)W̄+(iω)∗ (C.7)

(almost everywhere) on the imaginary axis. Thus, W− and W̄+ are spectral factors of Φ,
i.e. they satisfy the factorization equation

Φ(iω) = W (iω)W (iω)∗ (C.8)

on I. In fact, W− and W̄+ are the unique (modO) outer and conjugate outer spectral
factors of Φ. To justify this terminology, recall that vector-valued functions g [ḡ] on I
with the property that χ̄hg ∈ H2

r [χhḡ ∈ H̄2
r ] belong to the “modified Hardy space” W2

r

[W̄2
r ], defined in [15] and Section 6 of [34], for which an essentially identical collection

of results as in H2-theory applies. In particular, there is a notion of analytic (W2
r ) and

coanalytic (W̄2
r ) functions which retains, mutatis mutandis, the same meaning as for the
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ordinary H2-functions. That W− ∈ W2
r and deserves to be called outer and, similarly,

W̄t ∈ W̄2
r is conjugate outer, follows from the identities

span{χ̄hW− ; h > 0} = H2
r (C.9)

span{χhW̄+ ; h > 0} = H̄2
r (C.10)

which are an immediate consequence of (C.2), (C.3) and the definitions (C.4), (C.5). So,
in particular, the spectral density Φ of a purely nondeterministic process admits analytic
(i.e. with rows in W 2) and coanalytic (with rows in W̄2) spectral factors. A spectral
density matrix with this property is called factorizable.

The previous argument can be reversed yielding the following characterization of
purely nondeterministic stationary-increment processes, a proof of which can be found
in [34].

Theorem C.1. A continuous stationary-increments process dz is purely nondetermin-
istic if and only if its spectral distribution dZ is absolutely continuous and admits a
factorizable density.

In case dz has a rational spectral density Φ, the factorizability condition is automat-
ically satisfied [56].
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