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ABSTRACT 

This paper presents a generalization of the Separation Theorem of stochastic control. 
The generalization consists in assuming observations ahead of running time. We consider 
the following problem of optima1 pursuit: Given noisy incomplete observations of a linear 
stochastic system, control another linear stochastic system so that a quadratic functional of 
the difference (in some generalized sense) between the two processes is minimized. Provided 
that we have access to observations only up to the time of control, the Separation Theorem 
states that the solution to this problem is given by a linear combination of the Kalman 
filtering estimates. Now suppose instead that we have observations ahead of running time. 
(Consider for instance an airplane with terrain following radar.) Then the basic result of 
this paper is that a weighted integral of the minimum variance smoothing estimate should be 
included in the optimal control. This result is obtained by use of Fejer kernels and enlargement 
of the state space. Finally we provide proof of optimality. 

I. INTRODUCTION 

The problem of controlling a (continuous time) linear stochastic system, 
given noisy incomplete information of the system’s state, for the purpose of 
minimizing a quadratic functional has been solved by Potter [8] and others in 
the case of linear feedback (the Separation Theorem). Wonham [9] has given 
a rigorous proof of the Separation Theorem,t and very recently he has shown 
[lo] that it is valid in the more general case with a nonquadratic cost functional 
and when the feedback is not a priori assumed to be linear. However in this 
paper we shall consider quadratic criteria only. 

The Separation Theorem states that the optimal control of the process can 
be determined by solving one deterministic control problem (the one we should 

t Another rigorous proof has been given by Zachrisson [141. 
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have if the noise were not present and the state were exactly known) and one 
problem of filtering. The second one, of course, is the well-known minimum- 
variance filtering problem of Kalman and Bucy [4]. (This problem has also 
been solved by Zachrisson [12] in a very simple manner.) 

Since Jate’iy the problem of ~mooth.~~g ~interpolat~on~ has attracted a 
certain interest and has been solved by Bryson and Frazier &?I, Meditch 1171, 
Zachrisson [I I], and other@ (these papers differ in method rather than result), 
the question arises whether the following stochastic problem of control can be 
solved, using the smoothing estimate: 

Contra]. the linear stochastic system described by the differential equations 
(X is an ml-vector, y an mz-vector and u an tn,-control vector}: 

1 

dx 
z = A(t) x(t) 4” B(1)u(t) + v,(t) (4 

dv 
(1.0 

s = ~WYW + %@I 04 

(where vtft) and tr&) are Gaussian white noise vectors with t&e appropriate 
dimensions) when the object is to minimize: 

+ 49” Qm4W~ + km - ww- 41* Lwm - D,YC-T-- Nl 
I 

(1.2) 

given the distributions of x(O) and y(&J and also the observations (z(t) is an 
m,+-vector and w(b) is a Gaussian white noise vector): 

z(r) = N(t) UO) -f- &) @<NT) 0 -31 

where -Tc to < -h c 0, 55 212 and * denotes transposition. Thus the problem 
is to find a control u(t) that is a functional on (z(s) ;s c [O, t”J> for every t on 
[O, T], and this control function should minimize (1.2). 

The reason for choosing to E (--T,--tZ) as starting time for y(t) will be 
evident in Section 2 (Eq. 2.1). Since in Section 7 we will. find that therr? are 
different expressions for the control law on [0, h), [h, T- h]and(T- h, T) 
respectively, we introduce the restriction T> 2h (which incidentally should 
be met in most applications). 

The matrices A(t), B(t), c(t), &Cl’), H(t), Q,(t), Q2(t) and Q&)-l are 
Lebesgue measurable and bounded on the- interval f&F]. (All matrices shuuld 
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have appropriate dimensions so that the expressions above are defined.) 
Furthermore we assume that Q,(t) and Q3 are positive semidefinite, Q*(t) is 
positive definite, and that all three are symmetric. 

x(O), .y(to) and the Gaussian white noise vectors have zero meant and 
covariance matrices : 

~~~,(~~ dd*l = Q~(~)~(~ - 4 E(a,(t) Us*) = Q~(~~~(~ - r), 

aaf) &)*I = c?x,(f) w - 4 E(ii:(t) w(T)*} = Q&J s(t - T), 

E(x(O) x(o)*) = s,, ~~y(~*)y(hJ*~ = % ~~x(o)y(~~)*~ = s,,. 

w(t) is independent of u,(t) and u*(t); z+(t), t>*(t) and w(t) are independent of 
x(0) and y(t,-,). &(t), Q,,(t), Q.Jt), QZ(l) and QZ(t)-l are matrices with the 
appropriate dimensions that are measurable and bounded on [to, T]. 

Now the white noise vectors (these are stochastic vector processes in a 
generalized sense) can be considered to be theformal derivatives of standard 
Wiener processes (of course the Wiener process is nowhere differentiable in 
any usual sense). To give the systems (1.1) and (1.3) a more respectable appear- 
ance we could use the Ito form, where in (1.3) we observe the integral of z 
rather than z itself. However, we will find it convenient not to do this, although 
we will mean the same thing. Thus stochastic integrals of the type ff(s)v(s)ds, 
where n(s) is white noise andf(s) is a function belonging to Lz, are defined in 
quadratic mean ([3] p. 426, [9] p, 95). Furthermore, we have an underlying 
probability space (G$“,P), where B is the sample space (for convenience the 
sample variable w E Sz will be suppressed), 2 is a o-algebra taking care of 
x(O), y(t,,) and the Wiener processes (these should be separable), and P is the 
(complete) probability measure. 

Of course we may regard the more general problem of controlling (1.1) 
given not only (1.3) but also noisy observations of x(s) (s E [O,t]). Since this 
part of the problem is a filtering problem, our equations would become some- 
what more complicated without giving any further new results, and therefore 
the probtem at stake might get obscured. For this reason we do not choose to 
extend our probiem in this way. 

If we regard the special case when z!,(t) = 0 and x(0) is deterministic (we 
obtain the optimal control for this case if we put QX = QX, = 8, = S,, = 0 in 
the equations derived in the sequel), x(t) is still a stochastic process, but the 
stochastic element is introduced through U(T) T E [0, t], which is a function of 
the observations received so far. Therefore, given the observations, at time t 
we will have perfect knowledge of x(t). 

t The restriction Ex(0) = Ey(r,) = 0 is not crucial. When treating the general case, just 
repiace &O/O) = 0 by $@lO) = I@(O) in (5.1) and change the folIo~ng calculations accor- 
dingly. S,, S,,, and S,, now signify convariance matrices. 
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58 ANDERS LINDQUIST 

Another possible modification of problem formulation (l.lt(1.3) is that 
x(t) is perfectly known (although o,(t) + 0 and x(0) is stochastic). This 
problem is not a trivial modification of the one posed, and it will not be treated 
here. 

It should be noted that in our problem x(t) and y(t) are correlated (for 
v,(t) and I, and x(0) and y(to) are), although in many applications this is 
not so. (In these cases QX, = S,, = 0.) 

Problem formulation (1.1~(1.3), modi~ed in one of the ways mentioned 
above, might adequately describe the following situation: We want to fly an 
airplane at a constant vertical distance (p) above an undulating ground (that 
is along the dotted line in Fig. 1.1). The x-process (which can be controlled) 
describes the motion of the airplane and the y-process the ground (or rather 
the dotted line). The airplane has a terrain following radar making noisy 

FIG. 1.1. 

incomplete measurements of y(t), or rather y(i) -t- p which of course amounts 
to the same calculations. As indicated in the figure, at time t we will have 
measurements up to point A while actually y(t - h) is of interest. It is then 
natural to minimize a quadratic mean of the difference x,(t) - yl(t - h) as for 
example (1.2); (xi and yl are the first components of vectors x and y and their 
meaning is given in the figure). 

2. TRANSFORMATION OF THE PROBLEM THROUGH EXTENSION OF THE STATE SPACE 

Since y(t) appears in (1.2) with delayed time argument, we cannot apply the 
Separation Theorem to our problem. For this reason we will transform the 
problem by using Dirac’s &function : 

yft - h) = j qt - h - T)Y(T) dr (-T<t,<-h<Ostt,(T). 
i0 
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As an approximation of y(t - h) we will use y’“‘(t - h, t) where: 

yy7, t) = j S”(7 - s)y(s)ds 
20 

and where S,(t) is the FejCr kernel : 

W) = +Tn& 
sin2 (F&J). 

( 1 

7 
17f 

sin2 22Tt 

-2T<t<2T. 

(2.1) 

(2.2) 

(The reason for choosing the period in this way is that 

t-h-to 

y(“)(t - h, t) = 1 S,(s)y(t - h - s)ds and t - h - to G 2T - h.) 
-h 

It is a well known property of the FejCr kernel that (for example reference [ I]) : 

WI = ,fin Yk ekiAt (2.3) 

where : 

Let qk(t) be an m2-vector function and ak(t) a scalar function given by: 

qk(t) = f eekihTy(T) d7 (2.4) 
f0 

ak(t) = Yk ekiA(r-h) (2.5) 

:. y(“)(t - h, t) = i i yke“‘A”-h-“y(r)d~ = i ak(t)qk(t). (2.6) 
to -PI -n 

Then for qk(t) we have the following differential equation: 

I 

‘&G(t) ~ = e-“A’y(t) 
dt 

qk(0) = f emkih’y(T) d7. 
IO 

(2.7~ 
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60 ANDERS LINDQUIST 

Let e-kfhr be denoted by &(t), p be an ml + 2(n + l)mz-vector and F an 
(n?, + 2(~ -I- l)ml)x(ml + 2(n + 1)m2) matrix given by: 

Furthermore: 

B’(t) = 

P= 

x 

9-n ir A i 0 

0 0 ..* 0 
Y 0 c 0 . . . 0 

F= ,&,J 0 . . . 0 

4n d ‘&i ‘o‘..‘. 0 

&(t) = ewkfAt. 

! 
i H’(t) = (0, H, 0.. . 0); v(t) = 

vdt) 
vz(t) 

0 

0 
Now, if we replace y(t - h) with y(“)(t - It, t) in the problem of Section 1, 

we will have the following problem : 
Control the system of differential equations: 

g = F(t)p(t) + B’(t)u(t) i- v(t) 

given the observations : 

z(t) = W(t)p(t) + w(t) (0 < t < T) 

when the object is to minimize: 

(2.8) 

(2.9) 

f btT) - 2 &k(T) O3 qk@)l* f23 ix@? - 2 @k@? D3 qk(T)l 

I 

= E 
l 
s 
T (p* Q,‘p + u* Q2 24)d~ +p(T)* QJ’p(Z’) 

I 0 

(2.10) 

(where now * denotes Hermitian transposition). 
As it is quite clear that the Separation Theorem is valid for a complex 

state vector of this type, and that the equations for the deterministic problem 
as well as that of the filtering problem are unaltered (this is clear from the 
proofs by Zachrisson [12]), we now have a problem of standard form. It 
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remains to be shown that the solution of (2.8)-(2.10) is equivalent to that of 
(1.2)-( 1.3) as n --f co. This will be done in Section 8. 

3. QUESTIONS CONCERNING THE CONVERGENCE OF THE APPROXIMATE SYSTEM 

We will need the following lemma, which is a slight modification of 
Fejer’s Theorem [ 1 ] : 

LEMMA 3.1. If the function f (t ) is measurable and bounded on [a, b], where a 
and b are real numbers such that 0 < b - a < 2T, and the function 4(t) is 
defined by: 

q&t)= *f(t) 

I 

f(t) for acttb 
for t =a and t =b (3.1) 

0 for b-2T<t<a and b<t<aSZT, 
then 

h 

i‘ UT - t)f (7) dT ++ 4(t) 
(I 

almost everywhere on the interval 

Z=[b-2T,a+2T] as n-tw. 

Iff(t) is continuous on [a,b] 

h 

i 
* h(T - t)f (T) dT -+ 4(t) 

(I 

everywhere on I. 

Proof. Extend d(t) outside [b - 2T,a + 2T] so that 4(t) is a periodic 
function with period 4T. Now, b-t< b-b+2T=2T and a-taa-a-2T= 
-2T, which should explain the choice of I. (In addition, it is clear that 
b-2T<a<b<a+2TsinceO<b-a<2T.)Therefore, 

j &(T - t) f (T) dT = 1’ an(T - t) 4(T) dT = 1’ 6,(S) $(t + s) ds 
-a II a-* 

2T 

= s Us)$(t +s)ds. 

-2T 

Evidently r&t + s) is zero on the intervals added to the integral in the last step 
(except possibly for the end points), for d(t) has period 4T, t+s < t+2T<a+4T 
andtts>t-2T>b-4T. 
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Now according to reference [l] p. 113, 

7 ~“(+IW + W -+ (b(t) as n-tco 
-2T 

provided that lo: 

and that 2O: 

h 

,IFof j l3W + 7) + $0 - $1 - +(t)ldT = 0. 
0 

Since 4(t) is bounded and 

condition lo is fulfilled. Moreover, according to a theorem by Lebesgue 
([I] p. 1 I@, condition 2O holds a,e. on iif b(t) is integrabIe on I. Of course, this 
requirement is fuffilIed and therefore 

b 

f 
S,,(T - t)f(~) d7 -+ (b(t) a.e. on I. 

Iff(t) is continuous condition 2O is fulfilled in every point of I. (Even in the 
points of discontinuity of+(t), i.e., t = a and t = b, this is true due to the defini- 
tion of d(t) in these points.) This concludes the proof of the lemma. 

Let 1 x] signify the Euclidean norm (x* x) Ii2 of the vector X. Then if x(t) is a 
stochastic process, /ia-(t)ll = (E/x(t)12)“2 is a norm also. [For /ix/l = 0 o x = 0 

and l/4/ = jaj /k/I ( a is a number) are trivially satisfied. Furthermore, 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
= (i/xii + i/y//)2, that is j/x + y/j G /jxIj + \/y/l, where Schwa&s inequality has been 
used.] 

LEMMA 3.2. lly(t)ll is a continuousfunction iJy(t) is given by (l.lb). 
The proof of this assertion follows immediately from the fact that 

[where Y(t, T) is the fundamental matrix of (1.1 b)], for Y(t, T) is continuous 
and Qy is bounded. 
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LEMMA 3.3. I~JJ(~) is given by (1.1 b), y(“)(~, t) by (2.1) and 

y(T) 

I 

for to (7 <t 

479 t) = *y(T) for 7 = t, and T= t (3.2) 
0 otherwise 

then,for aJixed t y(“)(T, t) converges for every 7 on [t - 2T, to + 2T] to $7, t) in 
the norm 1 .j[ = (El. 12)‘/* (where 1.1 is the Euclidean norm) as n + cc), that is 
for every Tlim lly(“)(~, t) - ~(7, I)~/ = 0. Moreover, l’~~‘“‘(t - h, t) - y(t - h)ll is 

n-CC 
uniformly bounded on any bounded interval. 

Proof. For any u E [t - 2T, t,, + 2T] we have: 

+“)(u, t) = j 6,(s - o)l(s)ds = 1 S,(s - cr)v(s, t)ds 
fo to 

2T+o 2T 

= j 6,(s- o)q(s,t)ds= \ S,(s)q(a+s,t)ds 

-2Tfo -iT 

because 2T+o>2T+t-2T=t, -2T+u<--2T+t,+2T=t, and q(s,t) 
is zero outside s E [to, t]. Since 

2T 

r 
6,(s)ds = 1 [I], 

-iT 

we have 

and therefore : 

T(T,f) = *f- hts)r](T,t)ds, 
-57. 

/IY(“)(u, t) - $7, t)lj < -j?- &r(S)llq(u + 8, I) - T(T, t)ll ds 
-2T 

(3.3) 

Now, since llq(u + ~~1) - $T,f)li G Ilv(u + s,t)ll + MT, t)ll G Ilv(u + s)ll + 
ily(~)ll which is bounded on a bounded interval due to the continuity (Lemma 
3.2,) and because of 

2T 

s 
6,(s)ds = I, 

-2T 

(putting u = 7 = t - h) the last assertion of Lemma 3.3 is true. Furthermore, 
the boundedness of jIq(u + s, t) - ~(7, t)lI assures the validity of condition lo 
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(in the proof of Lemma 3.1). Then (considering t as a fixed parameter) for 
every 7, 

ZT 

s 
Ww?(~ + 4 t> - 71(7, t>ll ds + ll?7(5 t) - r1(7, t>ll 

-2T 

in all points u for which condition 2O is fulfilled (compare the proof of Lemma 
3.1). This condition certainly holds for u = T, for the continuity of I~JJ(T + S) - 
r](~, t)l/ with respect to s (a trivial modification of Lemma 3.2) assures con- 
tinuity Of 11~(T -t s, t) - v(T,t)/l CXCept for the tW0 points Of discontinuity. 
Here, however, our choice of 7 makes condition 2’ valid. Therefore, for a 
fixed t ljy@)(T, t) - ~(7, t) II + 0 everywhere on the interval [t - 2T, to + 2T] as 
n -+ oc), which concludes the proof of the lemma. 

4. THE DETERMINISTIC PROBLEM 

The problem to minimize : 

T 

I 
b(T)* Ql’(T)P(T) + U(T)* &(T) u(T)] LIT +p(T)* &‘I+“) (4.1) 

0 

when 

$ = F(t)p(t) + B’(t)u(t) (4.2) 

has the following solution (reference [12] or any standard textbook on the 
subject) : 

u(t) = -Q,(t)-’ B’(t)*P(t)p(t) 

where P(t) is given by the matrix Riccati equation: 

(4.3) 

Writing P(t) in the following way (where notations are obvious): 

P,, Px_, . . . P,, 

P_,_, . . . P-,, 
. . . . . . 

it is clear that: 

u(t) = -Q2(t)-’ B(t)*Pxx(t)x(t) - Q,(t)-’ BO)*Px,(t)dt) 

- ,gn Q&>-l B(t)*Px&h(t). (4.5) 

(4.4) 
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Then since &?I’)~~ = Qt, @I’>~, = 0, (Q,‘h = -ffk QI 4 and (Qj’h = Q3, 

(Q3’Lv = 0, (Q3’)xk = --@k(T) Q3 D3 straightforward calculations of the 
submatrices of the matrix Riccati equation give : 

dP 
A=-Ql -P,,A-A*P,,+P,,3Q;‘B*P,, 

dt 

Pxx(U = Q3 

(4.6) 

dP 
--“=-A*P,,-P,,C- ~~kPxk+PxxBQ;lB*Px, 

dt --n 

P,,(T) = 0 
(4.7) 

i 

@xk 
-zz 

dt 
UkQ, DI-A*P,t+P,,BQi’B9Pxk 

(4.8) 
P,,(T) = -ccK(T) Q3 D3 

where as before: 

c 

ffkQ) = ~k$~h(E-h) 

,!$(t) = e-k”. 

It is clear from (4.7) that P,, depends on n and therefore, in the sequel, we will 
use the notation P!$: for finite n, whereas Pxp will signify the limit function 
asn --+ to. 

Let @(t,~) be the fundamental matrix of (4.8), that is: 

1 

am ~1 ----(PxxBQ,’ B” - A*)@(t,T) 
at 

@(T, 7) = I. 

Hence: 

(4.9) 

P,k(t)=-q(T)(D(trT)Q3D1-jTMk(T~~(t,7)Q,(~)o,(~)d7. (4.10) 
r 

we need an eXpreSSiOn for -2 &PXk: 

+ j 5 ykekia(T+t)@(t, 7) Q,(T) &(T) dT 
t -n 

= @(t, T) Q3 D, 6,(T- h - t) 

-t- 1 @(t, T) Q~(T) D~(T)~,,(T - h - t)dr. 
f 
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Letting the fundamental matrix of (1.1 b) be Y(t, T), a simple check shows that: 

P;;‘(t) = - j @(t, T) Q, D3 Y(T, t) 6,(T- h - T) do 
f 

TT 

- 

jj 
@(t,s) Q,(s)Dr(s)&,(s- h - ~)ds Y(T, f)dT. (4.11) 

f T 

Now, since @(t, T) Q3 D, Y(T, t) is continuous with respect to 7 on [0, T], the 
first term of (4.11) tends to @(t, T) QJ D, Y(T- h,t) for I < T- h and to 
zero for t > T - h due to Lemma 3.1. Likewise, the inner integral of the second 
term tends to @(t, T + h) Q,(T + h) D,(T + h) a.e. for T < T - h and to zero for 
7 > T- h, because @(t,s) Qr(.r) D ( ) . , s IS b ounded and measurable with respect 
to s on [0, T]. Clearly the integrand of the outer integral of the second term in 
(4.11) is uniformly bounded (for all matrices are bounded and 

T 

J 
‘6,(s-h-T)ds< I), 

T 

and therefore according to the dominated convergence theorem (for instance 
reference [5] p. 69) as n --f a, we will have: 

T-h 

p.&> = - j @( t,T+h)Q,(T+h)D,(T+h) Y(T,t)dT 
t 

- @(t, T) Q3 & UT- 4 t) for t<T-h 

P,,(t) = 0 for T-htt<T. 

(Actually the first expression for Px, is valid for t < T - h only, but as t = T - h 

constitutes a set of measure zero the cost functional will not be affected by this 
change.) It is quite clear that Pz;(n = 1,2,3.. .) and P,, are uniformly bounded 
on [0, T] (this fact will be used in the sequel), for J 6,dt < 1 and all matrices 
involved are bounded. 

Thus we can express the differential equation for Px, in two different ways 
(the former of which will be used in Section 7): 

dP,, 
dt- = @(I, t + h) Q,(t + h) D,(t + h) + @(t, T) Q, D, W- h - t) 

-A*P,,-P,,C+P,,BQ;‘B*P,, a.e. 

P,,(T) = 0. 

(4.12) 
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(The underlined term will be missing for t > T - h.) 

dP,, 
dt = @(t, t + h) Q,(t + h) D,(t + h) - A* P,, - P,, C 

+P,,BQ;‘B*P,, a-e. for t < T-h (4.13) 

P&T- h) = -@(T- h, T) Q3 D3 

P,,(t) = 0 for T-h<t<T. 

[(4.13) is the interpretation of (4.12).] 

5. THE FILTERING PROBL~ 

In order to determine the optimal control law in the stochastic case we 
need the minimum variance filtering estimate @(t 1 t), which will replace p(t) in 
(4.3) according to the Separation Theorem, where the second t signifies the 
well known fact that $(t It) = E{p(t)j ( ) z s ; s E [O,t]}, where {z(s); s E [O,t]} 
stands for the minimal a-algebra with respect to this information (really z(s) 
should be replaced by its integral as pointed out in Section 1). 

For the filtering we will have the stochastic system : 

4 z=Fp-B’Q;~B’*P~(t~t)+t;. 

Then the filtering estimate satisfies the following system of differential 
equations [lo] : 

$=(F-B’Q;‘B’*P-K*H’)@+K*r 
(5.1) 

@(OlO) = 0 

where the gain-matrix K is: 

K(t) = QZ(t)-’ H(t)‘R(t). 

R(t) satisfies the matrix Riccati differential equation [IO], [12]: 
(5.2) 

(5;3) 

i R(O) = ~~~tO)~tO)*~ 
where R,(t)S(t - 7) = E(v(t)2;(7)*}, from which we have (R,),, = Q,, 
(RJ,, = Q,,, (RI)PX = Qyx, (R,),,, = Qy and all other submatrices equal to zero. 

Since 
K = (Q;’ HR,,, Q;’ HRyy, Q;’ HR,_,, . . . Q;’ HRJ, 

H’ji=Hj and B’Q;‘B’*Pj= 

((BQ;;‘B*P,,P+ BQ$B”P&‘j?+fZ, BQ~‘B*P,&)*,0,0,...0)* 

l~~r~utio~ Sciences 1 (1968), 55-85 
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(this is clear from the expression (4.5)), we will have the following filtering 
estimates: 

I 

~=(A_BQr’B+P,)~(~)-(BP;1B*~~‘+R,,H*Q;IN,9 

- i BQ;‘B*P& + RXyH* Q;‘z (5.4) 
-?I 

ayolo) = 0 

i 

~=(C-R,H*Q;~H)~+R,H*Q;~~ 
(5.5) 

9(0/O) = 0 

~=(B~~-R,H*Q;~H)~+R,,H*~;I~ 
(5.6) 

f&(OjO) = 0. 

Since obviously the x-estimate given by (5.4) depends on n, we use the notation 
P(f it), whereas$t/t) will signify the limit function asn -+ co. Straightforward 
calculations of the submatrices of the matrix Riccati equation (5.3) give: 

&, 
z- = Q, + AR,, -k R,,C* - Rx, H* Q;’ HR,, 

(5.7) 

R,,(O) = sx, Y(0, to)* 

! 

where 

(5.8) 

b,(O) = G(O) 

I d&y -=RRkyC*+rBkRyy-RkyH*Q;‘HRyy 
dt 

1 

Ran = / e-kikT G(T) d7 
to 

(5.9) 

G(T) = Y(T, to) S,, Y(0, lo)* + j Y(T, s) Q,(s) Y(O,s)* ds 
263 

In calculating 

(5. IO) 

and 
MO) = %#?Y(O)*I, MO) = .W(O)Y(O)*I 

&,(O) = E~q~(O)~(O)*~ = i e-R’“7Nr(~)y(0)*fd~ 
to 

&formation Sciences 1 (1968), 55-85 



OPTIMAL STOCHASTIC CONTROL 69 

we have used the fact that 

t 

Let the fundamental matrix of 

be Y(t, 7) that is: 

i 
zi$ = (C - R,, H* Q;' H) !I’(?, T) 

( Y(T, T) = I. 

Then (as & = eBkiAt): 

(5.11) 

Rku(t) = Rky(0) Y(t,O)* -I- \ eekfhs Ryp(T) Y(t, T)* d7 
0 

L= 7 ck*‘+ G(T) d&'(t, 0)* + [ e-kiA’ R,,(T) Y(f, T)* dT. (5.12) 
ro 

If we introduce the notation : 

Z(rIt)==z(t)-Hj((t/t), (5.13) 

we Will have the following expression for &(t It): 

+ 1 1 e-k’hs R,(s) y(T, s)* dsH(T)* Q+(T)-’ ,?(TIT) dT 
0 0 

+ 1 5 e-kiAs C(s) dsy(T, O)* H(T)* Qz(~)-’ Z(r(71T) dT. (5.14) 
0 to 

We will wait until Section 7 to determine the term 

5 BQ;' B* PxkIjk 
-” 

in (5.4). 
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6. THE SMOOTHING ESTIMATE 

It will be shown in Section 7 that the optimal control includes an integral 
of the minimum variance smoothing (interpolation) estimate f(~jt) = 

EM+(S); s E P,tl>( 7 < t). For this reason we will determine a suitable 
expression for 9(7/f) and at the same time we will get a verification of the basic 
equations given by Zachrisson [I l] and others. 

From Section 2 we have: 

y(“)(~, t) = J! a,(~ - s)y(s)ds = 5 ykekfAsqk(f). 
to -n 

(6.1) 

Let 

j(“)(T]f) = E{JJ’“‘(T, t)lZ(U); U E [o, t]} 

and rj(+) = E{‘j’(T, +(o); c E [o, t]] 

where ~(7, t) is defined in Lemma 3.3. Then we have: 

LEMMA 6.1. _$(“)(~lt) -+ rj(~jt) on [t,,T]x [O,T] in the norm of Lemma 3.3 
asn-t co. 

Proof (compare reference [6] p. 348). 

IIj(“)(+) - ~(+)j12 = EjE{Y’“‘(T, t) - +T, t)la(o); 0 E [o, tl)j2 

~EE{Iy”‘(T,t)-7)(T,t)121Z(U); U’E [o,t]> 

= Elycn’(T, t) - ?j(T, t)j2 = jjy(“)(T, t) - ‘$7, t)/’ -+ 0 

when 12 --f CO according to Lemma 3.3. Furthermore for t E [O,T], 7 E 

[t - 2T, t, + 2T] 2 [-T, to + 2T] 1 [to, T], because to > -T and hence the 
lemma is true. 

Thus according to Lemma 6.1: 

j(TI 
j(“)(Tft) -+ 

I 

t > for tO<T<t 

ziP(t It) for T=t 

0 for t < 7 <T 

where --f stands for convergence in the above sense.t 

(6.2) 

t As this is convergence in the mean, there is a subsequence that converges a.s. 
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Thus we need an expression for j(“)(~j1): 

$@)(,.I t) = 5 Yk &ihT E(&(t)]z(s); 3 E [o, t]] = 5 Ykeki”C$(tjf) 
-n -n 

71 

= I f S,(T - s)j(sls)ds 
0 

f 0 

+ If S,,(T -s)R,,{~)Y(u,s)*~sH(u)* Qz(u)-l~(u~u)du 

00 

+ j j &(T - s)G(s)dsY(u,O)*H(a)*Q,(o)-‘Z(z;(ola)du 

0 f0 

where we have used the expression (5.14) for ~$(t It) and (2.3) for S,,(r). 
Since j@ls) is continuous a.s, (for according to reference [9] p. 165 j(s\s) is 

a Gaussian diffusion process) and R,,(s), !P(v,s) and G(s) are continuous, we 
can apply Lemma 3.1 and therefore : 

f 
y(+) = $(T/T) i- j R,,(T) Y(a, T)* H(u)* Qz(u)-’ i(+)da 

7 for O< fc t (6.3) 

i 

B(+) = j G(T) Y(,,O)* H(a)* Q,(a)-‘F(+)du 

0 for t0 < 7 < 0. (6.4) 

As the two expressions are the same for T = 0 we have replaced < with Q. 
Moreover, we have used the dominated convergence theorem. 

By differentiating (6.3) and (6.4) with respect to t we will have the following 
differential equations : 

a%+) 
___- = G(T) Y&O)* H(t)* Q*(t)-’ Z(t It) 

at 

$(T/o) = 0 for fQ C 7 S 0. (6.6) 

is a Gaussian diffusion, for Z(ula)du is a differential of a (Note that j(~]t) 
Wiener process (compare reference [9] p. 165), and therefore (6.5) and (6.4) 
are formal notations for (6.3) and (6.4) respectively.) 

??cTif) __.. 
at = R,(T) Y((r, T)* N(t)* Q=(t)-’ ?((f /t) 

j(TIT) given by (5.5) for OGT-z t (6.5) 
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Define U(t) as the matrix solution to: 

1 

g= -(C* - H* Q;‘HR,,) U 
(6.7) 

U(0) = I. 

Then from (5.11) it is quite clear that the fundamental matrix of (6.7) is 
Y(T, t)* (where t and T have been reversed): 

U(t) = ?P(T, t)* U(7). (6.8) 

Furthermore, define the matrix V(t): 

V(t) = Mt) U(t). (6.9) 

Then the differential equations for j(~] t) when 0 G T -c t can be formulated 
in the following manner, as it is clear that U(t)-’ exists [12] : 

i 
a* = v(T) u(t)-’ H(t)* QZ(t)-l Z(t 1 t) (6.10) 

[ ~(T]T) given by (5.5). 

By differentiating (6.9) we will determine a matrix differential equation for 
V(t): 

=Q,,U+CR,,U+R,,C*U-R,,H*Q;‘HR,,U 

-R,&*U+R,,H*e;-‘HR,U 
=Q,U+CV 

where we have used (5.8), (6.7), and (6.9). 
Thus the matrix functions U(t) and V(t) satisfy the linear system of 

differential equations : 

dU 
-;ii=-C*U+H*e;lHV 

f$=Q,,U+CV 

U(0) = I; V(0) = G(0). 

(6.11) 

Equations (6.10) and (6.11) have been derived by Zachrisson [Ill by other 
means. 

We will need the following lemma in the sequel: 

LEMMA 6.2. Ijfj(Tlt)ll and II~‘“‘(Tjt)l/ are uniformly bounded on [to, T] x [O, T], 
where 11.11 is the norm of Lemma 3.3. 
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where 1-1 stands for Euclidean norm. Now, since according to Lemma 3.2 
I]J(T)/~ is continuous and thus bounded, /y(~, t)/l is bounded too, and so is 
ll;j(~1t)ll. Furthermore, 

11 Pcnf(T/ f)i] G j %(T 
ZO 

-dll.%l0lldf~ ~~~~,ll~(~l~)ll G ~~~~~llY(~~~!, 

and therefore ~~~‘“‘(T~f)~~ is uniformly bounded. 

7. THE OPTIMAL CONTROL LAW 

According to the Separation Theorem and (4.5) the optimal control of the 
approximate problem is : 

@(t) = -Q2(t)-’ B(t)*[P,,(t)~Z’“‘(tlt) -i- P;;‘(t)j(tjt) -g’“‘(t)] (7.1) 

where : 

g’V> = ;-il, PAf MI f). 

We wish to determine g’“‘(t), for this term is present in both (7.1) and (5.4). 
It is convenient to determine c”, CL~(S)@(~ It) first. Therefore, remembering 
(2.5) and (6. l), we obtain: 

i ~lk@)(ikOff) = 2 ~~~f”‘“-h’E(q,(t)lZ(O>; u 6 E~,fD 

= E{y’“‘(s - h, t)lz(u); ~E[O,t]}=B(“)(S-hit). 

By using (4.10) we can now determine g’“)(t) : 

~‘“‘(~)~~(~,T)QJDIP(~‘(~-~~~)+~~~~,T)Q~(T)~~(T)~(~)(T-~~~~~~. 
r 

Let g(t) signify the formal limit of g(“)(t) when n -+ 00. Then using the norm 
l~-l~=(E~~]2)‘~20fLemma3.3wehave: 

llg-Pi =G IlWt~) Q3f)3ll IkYT- WI -.v”‘o---h~t)ll 

+jll~(c,7)Q,~~~~~(~~ll114(~-hll)-9(”)(7-hit)li~~. 
f 

Inf~r~ati~~ Sciences 1(1968), 55-85 



74 ANDERS LINDQUIST 

Now, since the integrand is uniformly bounded for every n (Lemma 6.2) and 
114 - ~(“)I\ + 0 as n --f to (Lemma 6.1), g(“)(r) -+ g(t) in the sense described 
above (reference [5] p, 69). Then using (4.2) we have: 

g(z)= 1 Fn(t,s+h)Q,(s+h)D,(s+h)g(slt)ds for t K T-h (7.2) 
t-h 

and 

T-h 

+ 1 ~(t,s+h)Q,(s+h)D,(s+h)P(sll)~ for t > T- h. (7.3) 
t-h 

Since t = T- h is a set of measure zero, the choice of g(t) on this set affects 
neither the cost function nor a(t It), and therefore we might as well let (7.2) be 
valid for t = T - h, although Lemma 6.1 gives another result. 

It is quite clear that Ilg(t)ll and llg’“‘(t)ll are uniformly bounded on [O,T], 
for according to Lemma 6.2, /ljQjt)ll and /lj(“‘(s/t)l/ are uniformly bounded on 
[-h, T] x [O, T], (This fact will be used below.} 

By differentiating we obtain a differential (vector-) equation for g(t): 

dg dt = @,(t, t + 4 Qdt + 4 40 -t h).Wlt) - Ql(t) b(t)Ptt - hlt) 

+ (I’,, BQ;’ B* - A*)&) 
r 

+ 
s 

?mlt) 
C&t, s + h) Q,(s + 12) D,(s + h) - 

at ds 
t-h 

for t G T- h; for t z=- T- h the first term will be missing and instead 
@(t, T) Q3 L$[@(T - hi t)~~t ] will be added, and finally J’:_& will be replaced by 
fE$. [As according to (6.3) and (6.4) the t-dependence of $(T] t) is introduced 
by the upper limit of a stochastic integral, differentiating g(t) with respect to 
this parameter is permitted provided the order of integration is immaterial. 
Now, this is clearly the case since all (deterministic) functions involved are 
bounded on [to, T] (reference [3] p. 431).] 

Using (6.5) and (6.6) we have: 

( 

~=(p,,BQ;‘B*-A*)g+@(t,t+h)Q,(t+h)D,(t+h)j(tlt) 

- Qdt)Nt)W - hlt) + W)fW)* Q,(t)-‘Wit) (7.4) 

g(O) = 0 
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(g(0) = 0 because, according to (6.6), j(~10) = 0 for T G 0; the underlined term 
is missing for t > T - h) where I’(t) is an ml x m2 matrix given by: 

r(t) = 

= ‘f&t,, -i-h) Ql(si- h)D,(sf h)R,,(s)Y(t,s)*ds I 
0 

0 

-I- 1 @(t,s + h) Q,(s + h) D,(s -I- h) C(s) Y(t, 0)* ds 
f-h for O<t</z 

= i @(t,s + h) Qds + h) Dl(s + h) R,(s) Y(t,s>* ds 
tJh for hgtdF--iz 

T-h 

= 

s 
@(t, s + h) Qi(s + h) D,(s + h) Ryy(s) y(t, s)* ds 

t-h 

+I- @Q, 0 Qj D, &W- 4 W, T-- A)* 
for T-h c t c T. (7.5) 

Using (4.9) and (5.11) we have: 

~=C~,~Q~~B*-A’)~+~(C*-H*Q;~HR,,) 

f W, t + h) Q& + 4 &(t + h)&(f) 
- Q&l G(t) &O - h) W, t - N* (7.4) 

This equation is valid for h G t < T- h only. For 0 G E G h the last term is 
replaced by-Qi(t) D,(t)G(t - h)Y(t,O)* (for t = h the two terms are the same) 
and for T - h < t < T the next to last term is replaced by 

Furthermore: 

@(t, T) Q3 D, R,,(t) 6(T - h - t). 

r(O) = f @(O, T) Qi(7) &(T) G(r - h)dT. 
0 

(7.7) 

It remains to give a differential equation for .2(t j t) (the Iimit function of 
PV,t]t) as la -+ w). Formally we will have the following equation: 

~=(A-BQs~B*P,,)~-(BQ;~B*P,,+R,,H*Q~’H)P (78) 

-t-BQ;‘B*g-l-R,,H*Q;‘z 

$(O]O) = 0. 
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Letting a(t It) be given by (7.8), we have: 

! (2’“’ 
dt 

-~)=(A-BQ;‘B*P,,)(~(“)-~)--Q;‘B*(~~)-P,,)9 

+ BQ;' B*(g’“’ -g) 

+ J: Il@h t)* B(T) C?,(T)-’ B(T)* t/II g’“‘(T) - &)ll d7. 
0 

Since the in~grands are unifo~ly bounded for all rr and tends to zero as 
n -+ CL), it is clear that l/iW(t ft) - 3(t It)/ tends to zero, too (reference [5] p. 69). 
Moreover, uniform boundedness of [lP$) - P,J and [Ig@) - glj implies that 
lp’(t It) - a(t I t)ll is uniformly bounded on [0, 2’1. 

If z?(t) is the formal limit of P(t) as 12 -+ co, we obtain: 

and therefore we have proved the following lemma: 

LEMMA 7.1. iP(t) + Q(t) and W(t It) -+ 3(t it) in the norm of lieu 3.3 
as n -+ co. Moreover llP(t) - d(t)/1 is unjfor~l~ bounded on [0, T] for all n. 

In order to obtain a closed loop control system, it is more convenient to 
write (7.8) in the following way: 

i 

d2 
z = A2 + Bit + Rx,, N” Q;‘(z - Hi) 

(7.9) 
sz(OlO) = 0. 

In Section 8 we will show that fi is the optimal control of our problem. Define 
the m+ector u(t) (not to be confused with the sample variable): 

4) =~*x(W(W +~,,(t)B(tP)-g(t). (7.10) 

Then the optimal control can be written: 

G(t) = -Q*(t)-’ B(t)* o(t). (7.11) 
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By differentiating (7.10) and using (4.6), (4.12), (5.5), (7.4), and (7.8) we 
obtain a differential equation for w(t): 

dw 
;72-=PxxA~-P,,BQ;‘B*P,,~-P,,BQ;‘BgP,,9 

-tP~~BQ;‘B*g+P,,R,,H*Q;lz- Q,f-Px,A2 

--A*P,,~+PP,,BQ;‘B*P,,~+P,,,Ci 

-t Px, R,,H* Q;’ Z i- @(t, t c h) Ql(t f h) Dl(t + h)P 

+ @(t, T) Q3 D3 j%(T - h - t) - A* Px,j - Px, Cj 

-f-P,,BQ;‘B*P,,P-P,,BQ;‘B*g4A*g 

.-cp(t,t+h)Q,(t+h)D,(t-th)j;-t- Q,o*s(t-hit)-rH*Q;‘z 

= .- A*w - Q,[.? - D,j(r - Izlt)] + @(t, T) Q3 D3j6(T- h - t) 

+ (P,, R,, + P,, R,3, - r) H * Q;l 2. 

FIG. 7.1. 

(The underlined terms are missing for t > T - h; P = 2(t 1 t), j = j(t 1 t) and 
=“; z(r) - z@(r irf.) 

Furthermore w(0) = 0, for .?(OlO) =$(0/O) = g(0) = 0. Then we have 
(observing that @(t, T) Q3 D3$((f it) is a continuous function): 

rfw 
dt 

= -- A(t)*~~r~ - Q,(t)[J;ft/t>- &(t)j(r - h/t)] 

-c [K,(t)R,,(t) +px,(t)Wt) - JYt)lfW)* Q,W1~Wf (7.12) 

w(0) == 0 

o(T-~z+0)=w(T-h-0)tQi(T-h,T)Q~D3~(T-h~T-h)* 

A matrix block diagram of the optimal controller is given in Fig. 7.1. The 
filters are the usual Kalman fifters ([4], IS], [12]) as given by (7.9) and (5.5) 
(for R there is a feedback loop) and the interpolator is given by Section 6 
(for a more detailed discussion of this interpolator and a block diagram for it, 
we refer to Zachrisson [I I]). Furthermore Pxx, R, and Ryy (given by (4.6), (5.7) 
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and (5.8)) are the same as if the time argument ofy(t) in (1.2) were not delayed. 
However, this is not true for Px, which is given by (4.12) or (4.13). In addition, 
we need r(t) as given by (7.6) and the paragraph following it. Also note that 
w(t) is discontinuous for t = T - h (and so is r(t)). 

Equation (7.12) can in a certain sense be considered to be an adjoint 
equation of (1 .la). It seems as though (7.12) can be derived by means of 
Pontryagin’s maximum principle, although we are not prepared to give an 
unobjectionable solution to this problem at present. We hope to return to this 
problem in another paper. Nevertheless, we wiIl give the basic ideas of this 
nonrigorous and formal solution in the Appendix. 

8. OPTIMALITY OF THE FORMAL SOLUTION 

We will use the following notations: 

Lkd = 1 Wt)- W)YO - Ml* Q&K@> - W)YO - 41 
0 

+ [x(T) - B,y’“‘(T- h, rr)]* Q&(T) - Dsy’“‘(T-- h, rr)] (8.2) 

WI = .wd~l~ (1.2) 

Vnbl = Jwnbl) (2.10) 

where ofcourse x(t) is a function of u(t) given by the differential equation (I. la). 
Let U be any class of (t, @)-measurable functions u(t, w) (w is the sample 

variable) such that for a fixed t E [O,T] the vector u(t,w) is a linear function 
Mt [z] of the observation vector $7, w) on the interval 0 G T G t and such that 

~~,~~2d~=~,,~,,zd~< m. 

(With this assumption &] < m and” V&l < a.) Furthermore, z?~) and ti 
should belong to U. (In the sequel o will be suppressed from notation.) We 
know that min V,,[u] is provided by 2”l(“) (Separation Theorem?) and we will 

uC?J 

t Cf. [8) or [14]. Wonham [IO} does not employ the class CJ. 
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show that there exists a u E II that minimizes V[u] and that this optimal control 
is precisely G(t). 

LEMMA 8.1. For ecery II E I/, 1 V,[tl] - V[u]j -+ 0 as n + co. 

Proof(i * [ signifies Euclidean norm when applied to vectors and matrices; 
j. ,j is the norm of Lemma 3.3; for nonstochastic elements: 1. / = jj * 11). 

As fz //uji*dt -C co, fb ijuii& G jc /iuiIdr is bounded on [O,T], because 
L, f0, T] E L, [O, T]. 

Now, ~ly(~)ll is bounded on [0,7J due to the continuity (Lemma 3.2), and 
the same is true for IIx(t)$ For let X(r, T) be the fundamental matrix of (1 .la) 
and we will have: r f 

The first term is bounded (and continuous) for the same reason as ~~y(t)~~, and 
the second term is smaller than K’ J’b jlu;l& (where K’ is the upper bound of 
1 X(?,T) B(r)l) and thus bounded on [0, T]. Then we have: 

+ IQ(t)* Q,(r) D,(r)/ Jr0 - /I) - y(“)(t - h, r)J*}dt 
-t 21x(T) - D,y(7-- h)l IQ, D3J Jy(T- h) -y’“‘(Z=- h, ?“)I 

+ ID,*& D,l /3’(7--h)-?,‘“‘(T-h,T)12. 

Using Schwarz’s inequality we obtain (for convenience arguments are 
suppressed from notation): 

+4Q, &l/x-- 4yllI/y-~‘“‘11 + I~,*Q,~,llly-y’~)l12. 

Now, IQ,&l, I4*Q,&L and /lx - &yll G Ii-4 + I4lllylL i- I,3 are 
bounded. Furthermore, according to Lemma 3.3, Ily -y(*)jl is uniformly 
bounded for all n and tends to zero as n -+ CD. Therefore I V,[uJ - Y[u]J -+ 0 
as n -+ 03 (reference [5] p. 69), which was to be proved. 

LEMMA 8.2. 1 V[zP] - V[ir]/ -+ 0 as n + 00. 
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Proof. Let x(“)(t) and x(l) signify the solutions of (I.la) when u(t) equals 
z?“)(t) and z?(t) respectively. In the same way as in Lemma 8.1 we have (argu- 
ments are suppressed from notation) : 

I w(“)l- WI G j @I a I II@ - 41 IIX - WI 

: lQ,lIl~‘“‘-42+21Q~Illfi(“)--lII141 
+ IQ~IIP’“‘-- 412~~~ + 21 Q,l IP - XII lb - Ml 
+ l Q,] 11x(“) - xl/‘. 

But Ilx’“‘(t) - x(t)]1 < j ]X(t, T)B(7)1 I/t;‘“‘(~) - G(T)/1 d7. 
0 

Now, I]z?(“) - till is uniformly bounded on [O,T] for all n and tends to zero as 
n -+ 03 (Lemma 7.1). Then 11x(“) - x/I has these properties, too. 

Moreover, as pointed out earlier in this section, /lx/] and l]yll are bounded on 
[O,Tl. Since II4 G ~Q?~*l{~P,,lII~1I + lPx,l11j7 + llgll}, the same is true for 
I/till, because ]Q;*B*l, [PJ, lIZI/, IPxvl, ljfll and llgll are all bounded. As for 
11911 and ljgll this is clear from Lemma 6.2 and Section 7 respectively, and in the 
same way as in Lemma 6.2 we can show that /~zZII G Ilxll. Therefore, 1 I’[@)] - 
V[G] 1 + 0 as n + co, for the integrand is uniformly bounded and --f 0 as n --f a, 
(reference [5] p. 69). 

LEMMA 8.3. 1 V,[@] - V[W]] --+ 0 us n --f 03. 

Proof(this is a simple modification of Lemma 8.1). The only change in the 
proof of Lemma 8.1 is that x (“) should replace x. Then IIx(“)II should be 
uniformly bounded. But this is clearly the case as IIx(“)II G ljxll+ /Ix(“) -xl/ 
(cf. the proof of Lemma 8.2). 

THEOREM 8.1. z?(t) is an optimal solution in the class U to theproblemposed 
in Section 1, that is to minimize V[u]. 

Proof. Suppose that G(t) is not optimal. Then there is a u’(t) E U such that 
V[u’] < V[fi]. Let E > 0 be the difference, that is V[u’] = V[zi] - E. Now 
according to Lemma 8.1, there is an Ni such that 1 VJu’] - V[u’] 1 < 3~ for 
every n > N, and, according to Lemma 8.3, an N2 such that 1 V.[fi’“‘] - 
V[ti(“)]l -C 3~ for every n > N2. Furthermore according to Lemma 8.2, there 
is an N3 such that 1 V[@)] - V[ ]I ti < EW enn>N3.Thenforn>max(N1, 3 h 
N2, N,) we have: 

VJU’] < V[U’] + +E = V[ti] - SC < V[fi(“)] - j-E < v,[n@)]. 
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But according to the Separation Theorem tic”) is optimal in the class U for the 
problem of minimizing V,[u]. Thus we have established a contradiction and 
the theorem must be true. 
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APPENDIX 

In this Appendix we will derive the basic equations of our paper in aformal 
manner using the maximum principle of Pontryagin and the following 
assumption. 

We assume that at each time t (or at least at almost every t) the optimal 
control ii(t) is the same as if no further observations other than {z(s); s E [0, t]} 
were to be received in the future. This is a natural assumption since we cannot 
anticipate future observations. That is, determining the control 22(7[ t) which 
for every T 2 t is measurable with respect to the a-ring (z(s); s E [0, t]> and 
that minimizes (for convenience we put D, = O3 = 1 and Q3 = 0): 

ji[xf~~-.~(‘-h)l*Q1(7)[x17)-~~(~-h)l 
f 

+t?(~tt)*Q2(7)~(7lf))~~Iz(~);~~ P,tl 
I 

the optimal control minimizing V[u] is obtained as: 

G(t) = @t(t). 

[In order that this procedure be well defined (we can get a control equivalent 
to z??(~l t) by changing its value for instance at T = t, which would give a different 
ti(t)) we must impose some restriction like continuity.] 

Putting x = xl + x2 (where x1 like u is (z(f); s E [O, t ])-measurable) we have: 

Axi -I- Bu x1(0)=0 

Then we have: 

dX2 
--z = Ax2 -I- v1 x*(O) = x(0). 

E{[X(7) - J’(r - A)]* Q,(T) [xc’) - Y(T - h)]/z(S);S E IO, t]) 
= [.?(rjt) -j(~ - h/t)]* Q,(T) [R(T]~) -E(T - hjt)] 

+~&dd - Y(T - h)]* Q,(T) [X2(7) - Y(T - h)ll+);s E IO, tlf 

- tz2(Tit) - +(T - &It)]* Q,(T) tz2(Tit) - %T - hjt)] (Al) 

where 9(7/t) = E(x(T)~z(s); s E [0, t]) = X,(T) + _%?2(Tit). 

6 
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Since only the first term of (Al) depends on the choice of u(T), we have the 
following control problem (recognizing the fact that E@* Q2 ulz(s) ; s E [O, t]} = 
u* Q2u): 

min r {[.?(+]t) -j(~ - hit)]* Q~(T)[J?(T]~) -Y(T - h/t)] + U(T)* Q~(~)u(T)> d7 
s 
t 

when : 

I ~=~(T)~(Tlt)+~(T)~(T) 7>t 
IA3 

[ Z(i it) given 

[In deriving (AZ) we have used the fact that (for T > t): 

=0 

and that E{u(T)~z(s); s E [0, t]> = U(T) according to our assumption.] 
Applying Pontryagin’s maximum principle to this problem (cf. reference 

[12]) and letting h(~]t) signify the adjoint vector, we will have the following 
Hamiltonian: 

where R = $(T] t) and 9 = j(T - h j t). Hence : 

fi(Tlt) = --$Q2(r)-’ B(T)* h(Tjt) 

where : 

i 

ah 
- =-A*h--2Q,($-j9 
aT 

X(Tlt) = 0. 

Define G(~jt) =3X(@). Then according to our assumption: 

G(b) = -Q*(6)-’ B(6)* iTi(t it) 

or [cf. (7.11)J: 

w(t) = G.i(t It) 

where c(+) is given by the following system: 

tA4) 

(A5) 

(A@ 

L ‘q = &7)2(7/t) - B(T) Q2(~)-' B(T)* i;(~lt) (A7) 

I a&(71 t) ~ =- Jf(T)*G(Tlt) - Q,t~)~t+) + Ql<~>ftT-- hit) 
aT 

(A*) 

Z(t ] t) given; qq t) = 0. 
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Now, it is reasonable to assume that ij(~lt) includes a term P,,(T)c?(TI~), 
for if j(T - hit) - 0 the solution of the above system is ij(~lt) = P,,(T) vf(~1 t), 

where (for instance reference [ 121) : 

1 

dP 
--““=-Ql-Px,A-A*P,,$-P,,BQ;‘B*P,, 

dt 649) 
P,,(O) = 0. 

For this reason, we will write (A8) in the following way: 

1 

~=(Px,BQ~LB*-A*)c;,-P,,BQ;lB*oj-Q,S(+)+Qlj+h~t) 

G(Tl t) = 0. 

Then, @(t, T) being defined by (4.9): 

G(tl t) = 1 @(t, s) P&) B(s) Qz(s)-’ B(s)* a(sl t) ds 
f 

+~~~t,s)Ql(s)l(sit)d- j~(t,s)Q,(s)j(s-h,t)ds. CW 
t f 

But, for s 2 t: 

1 

?(s]t) = X(s, t)a(tlt) - j X(s,o) B(u) Q2(u)-’ B(u)* b(alt)du 
t 

9(4t> = w, t>Jxtlt). 
Hence, using (AlO) : 

&(t,t) := j@(t,s) Q,(s)X(s, t)dsf(t,t) 
t 

T-h 

- 

i 
@(t,s + h) Q,(s f h) Y(s, t)dsj(tlt) 

f 

- 
i 

@(t, s + h) Ql(s +- h)j(sl t) ds 
f-h 

- j@(t,s) Ql(s) j X&u) B(u) Q*(u)-’ B(u)*G(ujt)duds 
t f 

+ i @(t, s)P,,(s) B(s) Q&s)-’ B(s)* a(sl t) ds for t<T-h. 
f 
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For t > T- h the second term will be missing and the upper limit of the third 
term will be T - h instead of t. 

Here ST @(t,s) Q,(s) X(s, t)ds = PJt), and defining P,,,(t) in the following 
way : 

T-h 

P.&t)=- [ @(t,s+h)Q,<s+h) Y(s,t)ds for t<T-h (All) 

I Pdt)=O for t>T-h 

or: 

I 

dp,, 
-dt=~(t,t+h)Q,(t+h)+P,,BQ;‘B*P,,-A*P,,-P,,C 

for t<T-h (A12) 

P,,(t) = 0 for t>T-h. 

Then we will have : 

4) = atIt> =Px&>WIt) +Px,O)~(tIt) -g(t) (A13) 

where : 

mintt, T-h) 

g(t) = 
I 

@(t,s+h)Q,(.s+h)j(s/t)ds 
t-h 

T 

+ j- @(t, W&)~@) QN’ B(s)* G(slt> ds 
f 

@(u, s) Ql(s) X(s, u) dsB(u) Qz(u)-’ B(u)* &(a[ t) do 

* I7 

where we have changed the order of integration in the last term. Since the last 
two terms cancel out we have: 

min(t, T-h) 

g(t) = 
s 

@(t,s+h)Q,<s+h)j+jt)ds. (A14) 
f-h 

These are exactly the equations received in the paper (putting D, = D3 = I 

and Q, = 0). 
A rigorous proof using these ideas would as well prove the Separation 

Theorem. 
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