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Abstract—A quite comprehensive theory of analytic interpolation with
degree constraint, dealing with rational analytic interpolants with an a
priori bound, has been developed in recent years. In this paper, we consider
the limit case when this bound is removed, and only stable interpolants
with a prescribed maximum degree are sought. This leads to weighted
minimization, where the interpolants are parameterized by the weights.
The inverse problem of determining the weight given a desired interpolant
profile is considered, and a rational approximation procedure based
on the theory is proposed. This provides a tool for tuning the solution
to specifications. The basic idea could also be applied to the case with
bounded analytic interpolants.

Index Terms—Interpolation, model reduction, quasi-convex optimiza-
tion, rational approximation, stability.

I. INTRODUCTION

Stability-preserving model reduction is a topic of major importance
in systems and control, and over the last decades numerous such ap-
proximation procedures have been developed; see, e.g., [3], [15], [18],
[1] and references therein. In this paper we introduce a novel approach
to stability-preserving model reduction that also accommodates inter-
polation contraints, a requirement not uncommon in systems and con-
trol. By choosing the weights appropriately in a family of weighted H2

minimization problems, the minimizer will both have low degree and
match the original system.

As we shall see in this paper, stable interpolation with degree con-
straint can be regarded as a limit case of bounded analytic interpolation
under the same degree constraint—a topic that has been thoroughly re-
searched in recent years; see [5] and [9].

More precisely, let f be a function in H( ), the space of functions
analytic in the unit disc = fz : jzj < 1g, satisfying:

i) the interpolation condition

f(zk) = wk; k = 0; . . . ; n (1)

ii) the a priori bound kfk1 � ;
iii) the condition that f be rational of degree at most n;

where z0; z1; . . . ; zn 2 are taken to be distinct (for simplicity) and
w0; w1; . . . ; wn 2 . It was shown in [5] that, for each such f , there
is a rational function �(z) of the form

�(z) =
p(z)

� (z)
; � (z) :=

n

k=0

(1� �zkz)

where p(z) is a polynomial of degreenwith p(0) > 0 and p(z) 6= 0 for
z 2 such that f is the unique minimizer of the generalized entropy
functional

�
�

��

j�(ei�)j22 log(1� 
�2jf(ei�)j2)

d�

2�
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subject to the interpolation conditions (1). In fact, there is a complete
parameterization of the class of all interpolants satisfying (i)–(iii) in
terms of the zeros of �, which also are spectral zeros of f ; i.e., zeros
of 2 � f(z)f�(z) located in the complement of the unit disc. It can
also be shown that this parameterization is smooth, in fact a diffeomor-
phism [6].

This smooth parameterization in terms of spectral zeros is the center
piece in the theory of analytic interpolation with degree constraints;
see [4] and [5] and references therein. By tuning the spectral zeros one
can obtain an interpolant that better fulfills additional design specifica-
tions. However, one of the stumbling-blocks in the application of this
theory has been the lack of a systematic procedure for achieving this
tuning. In fact, the relation between the spectral zeros of f and f itself
is nontrivial, and how to choose the spectral zeros in order to obtain
an interpolant which satisfy the given design specifications is a partly
open problem.

In order to understand this problem better, in this paper we will focus
on the limit case as  ! 1; i.e., the case when condition (ii) is re-
moved. We shall refer to this problem—which is of considerable in-
terest in its own right—as stable interpolation with degree constraint.
Note that, as  ! 1,

�2 log(1� 
�2jf j2)! jf j2

and hence (see Proposition 2)

�
�

��

j�j22 log(1� 
�2jf j2)

d�

2�
!

�

��

j�f j2
d�

2�
:

For the case � � 1, this connection between the H2 norm and the cor-
responding entropy functional have been studied in [14]. Consequently,
the stable interpolants with degree constraint turn out to be minimizers
of weighted H2 norms. Indeed, the H2 norm plays the same role in
stable interpolation as the entropy functional does in bounded inter-
polation. Stable interpolation and H2 norms are considerably easier to
work with than bounded analytic interpolation and entropy functionals,
but many of the concepts and ideas are similar.

The purpose of this paper is twofold. First, we want to provide a sta-
bility-preserving model reduction procedure that admits interpolation
constraints and error bounds. Secondly, this theory is the simplest and
most transparent gateway for understanding the full power of bounded
analytic interpolation with degree constraint. In fact, our paper pro-
vides, together with the results in [12], the key to the problem of how
to settle an important open question in the theory of bounded analytic
interpolation with degree constraint, namely how to choose spectral
zeros. In the present setting, the spectral zeros are actually the poles.

In many applications, no interpolation conditions (or only a few) are
given a priori. This allows us to use the interpolation points as addi-
tional tuning variables, available for satisfying design specifications.
Such an approach for passivity-preserving model reduction was taken
in [8]. However, a problem left open in [8] was how to actually select
spectral zeros and interpolation points in a systematic way in order to
obtain the best approximation. This problem, here in the context of sta-
bility-preserving model reduction, is one of the topics of this paper.

The paper is outlined as follows. In Section II, we show that the
problem of stable interpolation is the limit, as the bound tend to in-
finity, of the bounded analytic interpolation problem stated above. In
Section III, we derive the basic theory for how all stable interpolants
with a degree bound may be obtained as weighted H2-norm mini-
mizers. In Section IV, we consider the inverse problem of H2 mini-
mization, and in Section V, the inverse problem is used for model re-
duction of interpolants. The inverse problem and the model reduction

0018-9286/$25.00 © 2008 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 16:00 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 7, AUGUST 2008 1725

procedure are closely related to the theory in [12]. A model reduction
procedure where no a priori interpolation conditions are required are
derived in Section VI. This is motivated by a weighed relative error
bound of the approximant and gives a systematic way to choose the
interpolation points. This approximation procedure is also tunable so
as to give small error in selected regions. In the Appendix, we de-
scribe how the corresponding quasi-convex optimization problems can
be solved. Finally, in Section VII, we illustrate our new approximation
procedures by applying them to a simple example and conclude with a
simple control design example.

II. BOUNDED INTERPOLATION AND STABLE INTERPOLATION

In this section, we show that the H2 norm is the limit of a sequence
of entropy functionals. From this limit, the relation between stable in-
terpolation and bounded interpolation is established, and it is shown
that some of the important concepts in the two different frameworks
match.

First consider one of the main results of bounded interpolation: a
complete parameterization of all interpolants with a degree bound [5].
For this, we will need two key concepts in that theory; the entropy
functional



j�j
(f) = �

�

��

2j�(ei�)j2 log(1� �2jf(ei�)j2)
d�

2�

where we take 

j�j
(f) := 1 whenever the H1 norm kfk1 > ,

and the co-invariant subspace

K =
p(z)

� (z)
: � (z) =

n

k=0

(1� �zkz); p 2 Pol(n) : (2)

Here, Pol(n) denotes the set of polynomials of degree at most n, and
fzkg

n
k=0 are the interpolation points.

In fact, any interpolant f of degree at most n with kfk1 �  is a
minimizer of 

j�j
(f) subject to (1) for some � 2 K0, where

K0 = f� 2 K : �(0) > 0; � outerg:

Furthermore, all such interpolants are parameterized by � 2 K0. This
is one of the main results for bounded interpolation in [5] and is stated
more precisely as follows.

Theorem 1: Let fzkgnk=0 � ; fwkg
n
k=0 � , and  2 +. Sup-

pose that the Pick matrix

P =
2 � wk �w`

1� zk�z`

n

k;`=0

(3)

is positive definite, and let � be an arbitrary function inK0. Then there
exists a unique pair of elements (a; b) 2 K0 � K such that

i) f(z) = b(z)=a(z) 2 H1 with kfk1 � ;
ii) f(zk) = wk; k = 0; 1; . . . ; n;

iii) ja(z)j2 � �2jb(z)j2 = j�(z)j2 for z 2 .
where := fz : jzj = 1g. Conversely, any pair (a; b) 2 K0 � K
satisfying (i) and (ii) determines, via (iii), a unique � 2 K0. Moreover,
the optimization problem

min 

j�j
(f) s:t: f(zk) = wk; k = 0; . . . ; n

has a unique solution f that is precisely the unique f satisfying condi-
tions (i), (ii), and (iii).

The essential content of this theorem is that the class of interpolants
satisfying kfk1 �  may be parameterized in terms of the zeros of �,
and that these zeros are the same as the spectral zeros of f ; i.e., the zeros
of the spectral outer factor w(z) of w(z)w�(z) = 2 � f(z)f�(z),
where f�(z) = f(�z�1).

Let kfk = hf; fi denote the norm in the Hilbert space H2( )

with inner product hf; gi = 1

2�

�

��
f(ei�)g(ei�)d�. As the bound 

tends to infinity

�2 log(1� �2jf j)! jf j2:

Therefore, the entropy functional 

j�j
(f) converge to the weighted

H2 norm k�fk2.
Proposition 2: Let f 2 H1( ) and � be rational functions with �

outer. Then:
i) 

j�j
(f) is a nonincreasing function of ;

ii) 

j�j
(f) ! k�fk2 as  ! 1.

Proof: It clearly suffices to consider only  � kfk1. Then the
derivative of�2 log(1��2jf j2) with respect to  is nonpositive for
jf j � , and hence 

j�j
(f) is nonincreasing. To establish (ii), note

that

�2 log(1� �2jf j2) = jf j2 +O(�2jf j2)

and therefore �j�j22 log(1 � �2jf j2) ! j�f j2 pointwise in
except for � with poles in . There are two cases of importance. First,
if � has no poles in , or if a pole of � coincided with a zero of f of at
least the same multiplicity, then�j�j22 log(1��2jf j2) is bounded,
and (ii) follows from bounded convergence. Secondly, if � has a pole
in at a point in which f does not have a zero, then both 

j�j
(f),

and k�fk2 are infinite for any .
The condition kfk1 < 1 is needed in Proposition 2. Otherwise,

if kfk1 = 1, then 

j�j
(f) is infinite for any , while k�fk2 may

be finite if � has zeros in the poles of f on . The next proposition
shows that stable interpolation may be seen as the limit case of bounded
interpolation when the bound  tend to infinity.

Proposition 3: Let � be any outer function such that the minimizer
f of

min k�fk

such that f(zk) = wk; k = 0; . . . ; n (4)

satisfies kfk1 < 1. Let f be the minimizer of

min 

j�j
(f)

such that f(zk) = wk; k = 0; . . . ; n

for  2 + large enough so that the Pick matrix (3) is positive definite.
Then k�(f � f)k ! 0 as  ! 1.

Proof: By Proposition 2, and since f and f are minimizers of
the respective functional, we have



j�j
(f) � 

j�j
(f) � k�fk

2 � k�fk2:

Moreover, since 

j�j
(f) ! k�fk2 as  ! 1 it follows

that k�fk
2 ! k�fk2, and hence, by Lemma 8, we have

k�(f � f)k ! 0 as  ! 1, as claimed.
Note that Proposition 3 holds for any � which is outer and not only

for � 2 K0. However, if � 2 K0, then deg f � n for any . There-
fore, since k�(f � f)k ! 0 as  ! 1, for � 2 K0 the minimizer
f of (4) will be a stable interpolant of degree at most n. We will return
to this in the next section.

It is interesting to note how concepts in the two types of interpolation
are related. First of all, the weighted H2 norm plays the same role in
stable interpolation as the entropy functional does in bounded interpo-
lation. Secondly, the spectral zeros, which play a major role in degree
constrained bounded interpolation, simply correspond to the poles in
stable interpolation. This may be seen from (iii) in Theorem 1.
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III. RATIONAL INTERPOLATION AND H2 MINIMIZATION

In the previous section, we have seen that minimizers of a specific
class of H2 norms are stable interpolants of degree at most n. This,
and also the fact that this class may be parameterized by � 2 K0 can
be proved using basic Hilbert space concepts. This will be done in this
section.

To this end, first consider the minimization problem

min kfk s:t: f(zk) = wk; k = 0; . . . ; n (5)

without any weight �. Let f0 2 H2( ) satisfy the interpolation con-
dition (1). Then any f 2 H2( ) satisfying (1) can be written as f =
f0 + v, where B(z) = n

k=0
(zk � z)=(1� �zkz) and v 2 BH2.

Therefore, (5) is equivalent to

min
v2BH

kf0 + vk:

By the Projection Theorem (see, e.g., [13]), there exists a unique solu-
tion f = f0 + v to this optimization problem, which is orthogonal
to BH2, i.e., f 2 K := H2 	 BH2. Conversely, if f 2 K and
f(zk) = wk , for k = 0; . . . ; n, then f is the unique solution of (5). To
see this, note that any interpolant in H2( ) may be written as f + v
where v 2 BH2. However, since v 2 BH2 ? K 3 f , we have
kf + vk2 = kfk2 + kvk2, and hence the minimizer is f , obtained by
setting v = 0.

We summarize this in the following proposition.
Proposition 4: The unique minimizer of (5) belongs to K. Con-

versely, if f 2 K and f(zk) = wk , for k = 0; . . . ; n, then f is the
minimizer of (5).

Consequently, in view of (2), f is a rational function with its poles
fixed in the mirror images (with respect to the unit circle) of the inter-
polation points. By introducing weighted norms, any interpolant with
poles in prespecified points may be constructed in a similar way. In
fact, the set of interpolants f of degree � n may be parameterized in
this way. One way to see this is by considering

min k�fk s:t: f(zk) = wk; k = 0; . . . ; n (6)

where � 2 K0. Since � is invertible in H( ), (6) is equivalent to

min k�fk s:t: (�f)(zk) = �(zk)wk; k = 0; . . . ; n:

According to Proposition 4, this has the optimal solution �f = b 2 K,
and hence the solution of (6), f = b=�, is rational of degree at most n.
To see that any solution of degree at most n can be obtained in this way,
note that any such interpolant f is of the form f = b=�; b 2 K; � 2
K0. Since �f = b 2 K holds together with the interpolation condi-
tion (1) if and only if �(zk)f(zk) = �(zk)wk for k = 0; . . . ; n; f is
the unique solution of (6), by Proposition 4. This proves the following
theorem.

Theorem 5: Let � 2 K0. Then the unique minimizer of (6) belongs
to H( ) and is rational of a degree at most n. More precisely, f = b�,
where b 2 K is the unique solution of the linear system of equations

b(zk) = �(zk)wk; k = 0; 1; . . . ; n: (7)

Conversely, if f = b� for some b 2 K and the interpolation condition
(1) holds, then f is the unique minimizer of (6).

In other words, the set of interpolants in H( ) of degree at most n
may be parameterized in terms of weights � 2 K0. Another way to
look at this is that the poles of the minimizer f = b� are specified by
the zeros of � and that the numerator b = �=� is determined from the
interpolation condition by solving the linear system of equations

�(zk) = � (zk)�(zk)wk; k = 0; 1; . . . ; n (8)

for the n+1 coefficients �0; �1; . . . ; �n of the polynomial �(z). This
is a Vandermonde system that is known to have a unique solution (as
long as the interpolation point zo; z1; . . . ; zn are distinct as here).

Note that this parameterization is not necessarily injective. If, for
example, wk = 1 for k = 0; . . . ; n, then there is a unique function
f of degree at most n that satisfies f(zk) = wk; k = 0; . . . ; n. No
matter how � 2 K0 is chosen, b = �, and hence the minimizer of (6)
will be f � 1.

IV. THE INVERSE PROBLEM

In [12], we considered the inverse problem of analytic interpolation;
i.e., the problem of choosing an entropy functional whose unique mini-
mizer is a prespecified interpolant. In this section, we will consider the
counterpart of this problem for stable interpolation. To this end, let us
first introduce the subclass H ( ) of log-integrable analytic functions
in H( ) for which the inner part is rational. In particular, the class of
rational analytic (i.e., stable) functions belong to H ( ).

Suppose f 2 H ( ) satisfies the interpolation condition (1). Then,
when does there exist � which is outer such that f is the minimizer
of (6)? We refer to this as the inverse problem of H2 minimization. Its
solution is given in the following theorem.

Theorem 6: Let f 2 H ( ) satisfy the interpolation condition
f(zk) = wk; k = 0; . . . ; n. Then f is the minimizer of (6), where �
is outer if and only if �f 2 K, in which case the minimizer is unique.
Such a � exists if and only if f has no more than n zeros in .

Proof: The function f is the minimizer of (6) if and only if b =
�f is the (unique) minimizer of

min kbk s:t: b(zk) := wk�(zk); k = 0; . . . ; n

which, by Proposition 4, holds if and only if �f = b 2 K. Such a �
only exists if f has at most n zeros inside . To see this, first note that,
if f has more than n zeros in , then �f has more than n zeros in
and can therefore not be of the form p=� with p 2 Pol(n). On the other
hand, if f has less or equal to n zeros in , then let p = (z � pk)
where pk are the zeros of f , and set � := p=(f�). Then � is outer and
satisfies �f 2 K.

Theorem 6 defines a map F that sends � to the unique minimizer f
of the optimization problem (6); i.e.,

� 7! f = F (�): (9)

Let Wf be the set of weights � that give f as a minimizer of (6); i.e.,
the inverse image F�1(f) of f . By Theorem 6

Wf := F�1(f) = f� outer : �f 2 Kg

= � =
p

f�
: p 2 Pol(n) n f0g;

p

f
outer (10)

i.e.,Wf may be parameterized in terms of the polynomials p 2 Pol(n).
For the condition that pf�1 is outer to hold for some p 2 Pol(n), it is
necessary that f has at most n zeros in . This is in accordance with
Theorem 6. It is interesting to note that the dimension of Wf depends
on the number of zeros of f inside . The more zeros f has inside ,
the more restricted is the class Wf . One extreme case is when f has
no zeros inside . Then p could be any stable polynomial of degree
n. The other extreme is when f has n zeros in , in which case p is
uniquely determined up to a multiplicative constant.

V. RATIONAL APPROXIMATION WITH INTERPOLATION CONSTRAINTS

Next, we use the solution of the inverse problem (Theorem 6) to de-
velop an approximation procedure for interpolants. Let f 2 H ( ) be
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a function satisfying the interpolation condition (1). We want to con-
struct another function g 2 H ( ) of degree at most n satisfying the
same interpolation condition such that g is as close as possible to f .

Let� 2Wf ; i.e., let� be a weight and such that f is the minimizer of
(6), and let � be close to �. Then it seems reasonable that the minimizer
g of the optimization problem

min k�gk s:t: g(zk) = wk; k = 0; . . . ; n; (11)

is close to f . This is the statement of the following theorem.
Theorem 7: Let f 2 H ( ) satisfy the interpolation condition

f(zk) = wk; k = 0; . . . ; n, and let � 2 Wf . Moreover, let � be an
outer function such that

1�
�

�

2

1

= � (12)

and let g be the corresponding minimizer of (11). Then

k�(f � g)k2 �
4�

1� �
k�fk2: (13)

For the proof, we need the following useful lemma.
Lemma 8: Let let g 2 H ( ) satisfy g(zk) = wk for k = 0; . . . ; n,

and let f be the minimizer of (6). Then, if k�gk2 � (1+ �)k�fk2; we
have k�(f � g)k2 � 2�k�fk2.

Proof: From the parallelogram law we have

1

2
(k�fk2 + k�gk2) = �

f + g

2

2

+ �
f � g

2

2

:

Therefore, since f is the minimizer of (6), and hence k�fk � k�(f +
g)=2k, it follows that

k�(f � g)k2 � 2(k�gk2 � k�fk2) � 2�k�fk2

which concludes the proof of the lemma.
Proof of Theorem 7: In view of (12), we have

(1� �)j�(ei�)j2 � j�(ei�)j2 � (1 + �)j�(ei�)j2

for all � 2 [��; �]. Therefore, since g is the minimizer of (11), by (12),
we have

k�gk2 �
1

1� �
k�gk2 �

1

1� �
k�fk2

�
1 + �

1� �
k�fk2 = (1 + �)k�fk2

where � := 2�=(1� �). Consequently (13) follows from Lemma 8.
We have thus shown that if j�(z)=�(z)j is close to 1 for z 2 ,

then k�(f � g)k is small. This suggests the following approximation
procedure, illustrated in Fig. 1. By Theorem 5, the function F , defined
by (9), maps the subset K0 into the space of interpolants of degree at
most n. In Fig. 1 these subsets are depicted by fat lines. The basic idea
is to replace the hard problem of approximating f by a function g of
degree at most n by the simpler problem of approximating an outer
function � by a function � 2 K0.

Theorem 7 suggests various strategies for choosing the functions � 2
K0 and � 2Wf depending on the design preferences. If a small error
bound for k�(f�g)k is desired for a particular � 2Wf , this � should
be used together with the � 2 K0 that minimizes (12).

However, obtaining a small value of (12) is often more important
than the choice of �. Therefore, in general it is more natural to choose
the pair (�; �) 2 (Wf ;K0) that minimizes �. For such a pair, setting
q := ��, we can be see from (2) and (10) that

� = 1�
�

�

2

1

= 1�
qf

p

2

1

(14)

Fig. 1. Map F sending weighting functions to interpolants.

where q 2 Pol(n) and p 2 Pol(n) n f0g needs to be chosen so that
p=f is outer. It is interesting to note that (14) is independent of � (z) :=

n

k=0
(1� �zkz) and hence of the interpolation points z0; z1; . . . ; zn.

Now suppose that f has � zeros in ; i.e., � nonminimum-phase
zeros. Then f = �f0, where f0 is outer (minimum phase) and � is
an unstable polynomial of degree � � n. Setting p = �p0, our opti-
mization problem to minimize � reduces to the problem to find a pair
(p0; q) 2 Pol(n � �) � Pol(n) that minimizes

� = 1�
qf0
p0

2

1

(15)

for a given nonminimum-phase f0. This is a quasi-convex optimization
problem, which can be solved as described in the Appendix (see also
[16], [17]). The optimal q yields the optimal � = q=� . The approx-
imant g is then obtained by solving the optimization problem (11) as
described in Theorem 5.

One should note that, the more zeros f has inside , the smaller is the
choice of p. Therefore, one expects approximations of non-minimum
phase plants to be worse than approximations of plants without unstable
zeros.

VI. RATIONAL APPROXIMATION

In applications where there are no a priori interpolation constraints,
the choice of interpolation points serve as additional design parame-
ters. It is then important to choose them so that a good approximation
is obtained. The main strategy previously used is to chose interpolation
points close to the regions of the unit circle where good fit is desired.
The closer to the unit circle the points are placed, the better fit, but the
smaller is the region where good fit is ensured; see [8] for further dis-
cussions on this. However, in this paper we shall provide a systematic
procedure for choosing the interpolation points, based on quasi-convex
optimization.

As we have seen in the previous section the choice of interpolation
points does not affect � given by (14). However, since � = p=(f�), the
weighted H2 error bound (13) in Theorem 7 becomes

p

�

f � g

f

2

�
4�

1� �

p

�

2

which depends on � and hence on the choice of interpolation points.
In fact, this is a weighed H2 bound on the relative error (f � g)=f . If
a specific part of the unit circle is of particular interest, interpolation
points may be placed close to that part, which gives a bound on the
weighted relative error with high emphasis on that specific region. (For
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a method to do this by convex optimization, see Remark 3 in the next
section.) If no particular part is more important than the rest, we suggest
to select � as the outer part of p; i.e., j� (z)j = jp(z)j for z 2 .
This gives a natural choice of interpolation points that are the mirror
images of the roots of � . Furthermore, this choice gives the relative
error bound k(f � g)=fk � 4�=(1 � �). This is summarized in the
following theorem.

Theorem 9: Let p and q be polynomials of degrees at most n such
that pf�1 is outer, and set

� := 1�
qf

p

2

1

: (16)

Let z0; z1; . . . ; zn 2 and let

g = argmin k�gk s:t: g(zk) = f(zk); k = 0; . . . ; n

where � = q=� and � = n

k=0
(1� �zkz). Then deg g � n and

p

�

f � g

f

2

�
4�

1� �

p

�

2

: (17)

In particular, if the interpolation points z0; z1; . . . ; zn are chosen so
that j� (z)j = jp(z)j for z 2 , then

f � g

f

2

�
4�

1� �
: (18)

Remark 1: Note that the choice j� j = jpj in Theorem 9 implies
that the unstable zeros of f become interpolation points. Therefore, for
� < 1; (f � g)=f belongs to H2.

Remark 2: Our method requires that we choose n to be greater than
or equal to the number of unstable zeros. This is a natural design re-
striction, since the approximation problem becomes more difficult the
larger is the number of unstable zeros. It should be noted that other
methods for which there is a bound for the relative error, such as bal-
anced stochastic truncation or Glover’s relative error method (see, e.g.,
[10]), will not work either if the number of unstable zeros exceeds n.
In fact, in such a case the corresponding phase function will have more
than n Hankel singular values equal to 1, and therefore the bound will
be infinite, and the problem to minimize k(f � g)=fk1 over all g of
degree at most n will have the optimal solution g � 0. Also note that,
unlike these methods, our method does not require f to be rational.

VII. THE COMPUTATIONAL PROCEDURE AND

SOME ILLUSTRATIVE EXAMPLES

We summarize the computational procedure suggested by the theory
presented above and apply it to some examples.

Given a function f 2 H ( ) with at most n zeros in , we want to
construct a function g 2 H ( ) of degree at most n that approximates
f as closely as possible. We consider two versions of this problem.
First, we assume that f satisfies the interpolation condition (1), and
we require g to satisfy the same interpolation conditions. Secondly, we
relax the problem by removing the interpolation constraints.

Suppose that f has � � n zeros in . Then f = �f0, where f0 is
minimum-phase, and � is a polynomial of degree � with zeros in .
The approximant g can then be determined in two steps.

i) Solve the quasi-convex optimization problem to find a pair
(p0; q) 2 Pol(n� �)�Pol(n) that minimizes (15), as outlined
in the Appendix. This yields optimal �; p0 and q. Set p := �p0.

Fig. 2. Poles and zeros of f in Example 1.

ii) Solve the optimization problem (11) with � = q=� , as described
in Theorem 5. Exchanging � for � in (8), we solve the Vander-
monde system

�(zk) = q(zk)wk; k = 0; 1; . . . ; n

for the � 2 Pol(n), which yields

g =
�

q
(19)

and the bound (17), where � (z) := n

k=0
(1� �zkz).

For the problem without interpolation condition, we replace step (ii)
by one of the following steps.

(ii) 0 Choose z0; z1; . . . ; zn arbitrarily, or as in Remark 3 below.
This yields a solution (19) and a bound (17).
(ii) 00 Choose z0; z1; . . . ; zn so that � is the outer (minimum-
phase) factor of p. This yields a solution (19) and the bound (18)
for the relative H2 error.

Remark 3: If a bound on the weighted error kw(f � g)k is desired
in Step (ii) 0, it is natural to choose � so that p=(�f) is as close to
w as possible. This may be done by solving the convex optimization
problem to find a � 2 Pol(n) that minimizes

1�
�fw

p

2

1

as in the Appendix. If instead we need a bound on the weighted relative
error kw(f�g)=fk, we modify the optimization problem accordingly.

Next, we apply these procedures to some numerical examples.
Example 1: Let f(z) = b(z)=a(z) be the stable system of order 13

with f(1) = 7:5 and whose poles and zeros are given in Fig. 2. This
system has one minimum-phase zero. Consider the problem to approx-
imate f by a function g of degree six while preserving the values in the
points (z0; z1; . . . ; zn) = (0; 0:3; 0:5;�0:1;�0:7;�0:3�0:3i). Such
an interpolation condition occurs in many applications. Now, suppose
we want to find a rational sensitivity function Sn

Step (i) to solve the quasi-convex optimization problem to minimize
(15) yields optimal �; p and q, and Step (ii) the approximant g, the Bode
plot of which is depicted in Fig. 3 together with that of f . The third
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Fig. 3. Bode plots of f and g together with the relative error.

subplot in the picture shows the relative error (f�g)=f . It is important
to note that the function g, which is guaranteed to be stable, satisfies the
prespecified interpolation conditions and the error bound (17). Fig. 3
shows that g matches f quite well.

Example 2: Finally, we apply our approximation procedure to loop-
shaping by low-degree controllers in robust control, where interpo-
lation conditions are needed to ensure internal stability [7]. Given a
plant P , a controller is often designed by shaping the sensitivity func-
tion S = 1=(1 � PC), where P and C are the transfer functions of
the plant and the controller respectively. In fact, the design specifica-
tions may often be translated into conditions on the sensitivity function.
For internal stability of the closed-loop system, the sensitivity func-
tion S needs to satisfy the following properties: (i) S is analytic in
c := fz j jzj � 1g, (discrete time); (ii) S(zk) = 1 whenever zk is

an unstable zero of P ; (iii) S(pk) = 0 whenever pk is an unstable pole
of P ; Furthermore, in general we require that (iv) S has low degree,
and (v) S satisfies additional design specifications. Conditions (i)-(iv)
do not, in general, uniquely specify S, so the additional freedom can
be utilized to satisfy additional design specifications (v).

As a simple example, also illustrating rational approximation of a
nonrational function, consider sensitivity shaping of a feedback system
with the plant P (z) = (z � 2)�1. Since P has an unstable pole at
z = 2 and an unstable zero at z = 1, the sensitivity function must
satisfy S(1) = 1 and S(2) = 0. Then the function f(z) := S(z�1)

is analytic in , and satisfies

f(0) = 1 and f(1=2) = 0: (20)

of degree n that preserves internal stability and that approximates an
ideal sensitivity function Sid with the spline-formed shape in bold in
Fig. 4. The shape is originally given as a positive function W on the
unit circle, and a normalizing factor � > 0 needs to be chosen so that
jSid(e

i�)j = �W (ei�) for � 2 [��; �]. An outer function h having
the prescribed shape is given by

h(z) = exp
1

2�

�

��

ei� + z

ei� � z
logW (e�i�)d�

Fig. 4. Approximations of degree 1, 2, and 3.

(see, e.g., [11, p. 63]). Now, define the function f(z) = �h(z)(z �

1=2)=(1� z=2), where � is selected so that f(0) = 1. Then f is ana-
lytic in and satisfies the interpolation conditions (20), and Sid(z) =

f(z�1). Clearly, f is nonrational and Sid represents a infinite-dimen-
sional system.1.

By using the computational procedure in the beginning of the sec-
tion, we determine the approximants gn of f of degrees n = 1; 2 and
3 which satisfy the interpolation conditions (20). More precisely, g1 is
determined via steps (i) and (ii), whereas, for g2 and g3, we need to
add one or two extra interpolation points and use (i) and (ii) 0. That is,
z0 = 0 and z1 = 1=2, and z2 and z2; z3, respectively, are determined
as in Remark 3 with w := f�1.

The magnitudes of the corresponding sensitivity functions S1; S2

and S3, obtained from Sn(z) = gn(z
�1), are depicted in Fig. 4. The

degree of the controller corresponding to the approximant S3 is two.

VIII. CONCLUDING REMARKS

This paper presents a new theory for stability-preserving model
reduction (for plants that need not be minimum-phase) that can also
handle prespecified interpolation conditions and comes with error
bounds. We have presented a systematic optimization procedure for
choosing appropriate weight (and, if desired, interpolation points)
so that the minimizer of a corresponding weighted H2 minimization
problem both matches the original system and has low degree.

The study of the H2 minimization problem is motivated by the rela-
tion between the H2 norm and the entropy functional used in bounded
interpolation. Therefore, new concepts derived in this framework are
useful for understanding entropy minimization. In fact, the degree
reduction methods proposed in this paper easily generalize to the
bounded case; see [12] for the method which preserves interpolation
conditions. We are currently working on similar bounds for the positive
real case; also, see [8].

APPENDIX

The optimization problem to minimize (16), where p and q are
polynomials of fixed degree is quasi-convex; i.e., each sublevel set is

1For a systematic procedure to determine S from W for general interpola-
tion constraints, see [12]
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convex. For simplicity, we assume that f is real and hence that p and
q are real as well.

As a first step, consider the feasibility problem of finding a pair (p; q)
of polynomials satisfying

1�
qf

p

2

1

� � (21)

for a given �, or, equivalently

��jp(ei�)j2 � jp(ei�)j2 � jq(ei�)f(ei�)j2 � �jp(ei�)j2

for all � 2 [��; �]. Since jpj2 and jqj2 are pseudo-polynomials,
they have representations jp(ei�)j2 = 1 +

n

k=1 pk cos(k�) and
jq(ei�)j2 =

n

k=0 qk cos(k�), where np and nq are the degree bounds
on p and q, respectively, and the first coefficient in jpj2 is chosen to be
one without loss of generality. Hence, (21) is equivalent to

�1� � � (1 + �)

n

k=1

pk cos k�

� jf(ei�)j2
n

k=0

qk cos k�

1� � � (�� 1)

n

k=1

pk cos k�

+ jf(ei�)j2
n

k=0

qk cos k�

for all � 2 [��; �]. There is also a requirement on 1 +
n

k=1 pk cos(k�) and
n

k=0 qk cos(k�) to be positive. However, if
� 2 (0; 1), then the above constraints will imply positivity. The set
of p1; p2; . . . ; pn ; q0; q1; . . . ; qn satisfying this infinite number of
linear constraints is convex.

The most straightforward way to solve this feasibility problem is to
relax the infinite number of constraints to a finite grid, which is dense
enough to yield an appropriate solution. Here, one must be careful to
check the positivity of 1+

n

k=1 pk cos(k�) and
n

k=0 qk cos(k�) in
the regions between the grid points. Another method is the Ellipsoid
Algorithm, described in detail in [2].

Minimizing (16) then amounts to finding the smallest � for which the
feasibility problem has a solution. This can be done by the bisection
algorithm, as described in [2]. Note that for � = 1, the trivial solution
q = 0 is always feasible.
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