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Abstract— In the recent article [2] a paradigm for complexity
constrained interpolation of contractive functions is developed.
In particular, it is shown that any such interpolant may be
obtained from a convex optimization problem, minimizing a
generalized entropy gain. With this as a background, we study
the optimization problem in detail and derive certain properties
of it. One of the main results is that, if, for a sequence of
interpolants, the values of the generalized entropy gain of the
interpolants converge to the optimum, then the interpolants
converge inH2. This result is used in order to get the asymptotic
behavior of the interpolant as an interpolation point approach
the boundary of the domain of analyticity. Finally, a control
design example which has been considered by Nagamune [8] is
studied, and the results are reexamined in this framework.

I. I NTRODUCTION

Many important engineering problems lead to analytic
interpolation, where the interpolant represents a transfer
function of, for example, a feedback control system or a
filter and therefore is required to be a rational function
of bounded degree. In recent years, a complete theory of
analytic interpolation with degree constraint has been devel-
oped; see [1], [2] and references therein. The theory provides
complete smooth parameterizations of whole classes of such
interpolants in terms of a weighting function belonging to
a finite-dimensional space, as well as convex optimization
problems for determining them.

This theory provides a framework for tuning an engi-
neering design based on analytic interpolation to satisfy
additional design specification without increasing the degree
of the transfer function. How to do this in a systematic way
remains partly an open question. Occasionally the number of
tuning parameters is too small to achieve the specifications,
and then the parameter space needs to be increased by
increasing the degree bound. Nagamune [8] has suggested
that this be done by adding new interpolation condition, often
close to the boundary.

In this paper we study how the interpolant behaves as new
interpolation points are added close to the boundary. From
the analysis we show that unless the weighting function is
changed, adding new interpolation points close to the bound-
ary will have little effect on the interpolant. We illustrate this
by analyzing a simple example from robust control.

In Section II we begin by reviewing some pertinent results
from [2]. Then, in Section III, we provide a motivation exam-
ple from robust control, which is then revisited in Section V
after having presented the main results in Section IV. Some
proofs are deferred to Section VI.

II. BACKGROUND

Consider the classical Pick problem of finding a function
f in the Schur class

S = {f ∈ H∞(D) : ‖f‖∞ ≤ 1}

that satisfies the interpolation condition

f(zk) = wk, k = 0, 1, . . . , n, (1)

where(zk, wk), k = 0, 1, . . . , n, are given pairs of points in
the open unit discD = {z : |z| < 1}. It is well-known that
such anf ∈ S exists if and only if the Pick matrix

P (z, w) =
[
1− wkw̄`

1− zkz̄`

]n

k,`=0

(2)

is positive semi-definite, and that the functionf is unique
if and only if the matrixP (z, w) is singular. In the latter
casef is a Blaschke product of degree equal to the rank of
P (z, w). Here we shall takeP (z, w) to be positive definite,
in which case there are infinitely many solutions to the Pick
problem. A complete parameterization of the solutions of
this so called Nevanlinna-Pick interpolation problem was
given by Nevanlinna [9] in 1929. The parameterization is in
terms of a linear fractional transformation centered around a
rational solution of degreen, known as thecentral solution.

In a research program culminating in [1], [2], the subset of
all solutions of the Nevanlinna-Pick problem that are rational
of degree at mostn were parameterized. Most engineering
problems require such degree constraints, which completely
alter the basic mathematical problem. More precisely, letK

be the space of all functions

f(z) =
ρ(z)
τ(z)

,

whereρ(z) is an arbitrary polynomial of degree at mostn
and

τ(z) =
n∏

k=1

(1− z̄kz).

Clearly K is a subspace of the hardy spaceH2. Moreover,
let K0 be the the subset of allf ∈ K such thatρ(z) has
all its roots in the complement ofD and ρ(0) > 0. In this
context, Theorem 1 in [2] can be stated in the following way.

Theorem 1:Suppose that the Pick matrixP (z, w) is pos-
itive definite. Letσ be an arbitrary function inK0. Then
there exists a unique pair(a, b) ∈ K0 ×K such that

1) f = b/a ∈ S

2) f(zk) = wk, k = 0, 1, . . . , n, and,



3) |a|2 − |b|2 = |σ|2 a.e. onT := {z : |z| = 1}.
Conversely, any pair(a, b) ∈ K0 × K satisfying 1 and 2
determines, via3, a uniqueσ ∈ K0.

Consequently, the solutions(a, b) corresponding to inter-
polants of degree at mostn are completely parameterized
by the zeros ofσ ∈ K0; i.e., then-tuples{λ1, . . . , λn} of
complex number in the complement ofD; these are called
the spectral zeros. For each such choice of spectral zeros,
the corresponding interpolantf ∈ S can be determined by
minimizing the strictly convex functional

KΨ : S → R, KΨ(f) = −
∫

T
Ψ log(1− |f |2)dm(z),

over the class of interpolants, whereΨ := |σ|2 andm is the
normalized Lebesgue measure onT. In fact, in the present
context, Theorem 5 in [2] can can be stated as follows.

Theorem 2:Suppose that the Pick matrixP (z, w) is pos-
itive definite. Letσ be an arbitrary function inK0, and set
Φ := |σ|2. Then the functionalKΨ has a unique minimizer in
the class of functions that satisfy the interpolation conditions
(1), and this minimizer is precisely the unique functionf ∈ S

satisfying conditions1, 2 and3 in Theorem 1.
The central solution corresponds toΨ ≡ 1. The cor-

responding functionalK1 is the usual entropy gain, and
therefore the central solution is often called theminimum
entropy solution(see, e.g. [7]). Ifz0, w0) = (0, 0), then
σ ≡ 1 ∈ K0, and the corresponding spectral zeros are at the
conjugate inverse (mirror image in unit circle) of{zk}n

k=1.
The theory described by Theorems 1 and 2 allows us to

choose an interpolant that best satisfies additional design
specifications. In fact, the map fromσ to (a, b) defined by
Theorem 1 is smooth [3], [4], and hence a given design
can be tuned viaΨ to smoothly change the interpolant. An
obvious first choice ofΨ is to make it large in frequency
bands where low sensitivity|S| is required. However, how
to design systematic tuning strategies remains a partly open
problem, and to settle this question is an important task. This
paper is an attempt to gain understanding of the underlying
function theory involved in tuning the interpolant.

III. A MOTIVATING EXAMPLE

The purpose of this paper is to show how the interpolants
change as additional interpolation points are introduced,
especially close to the boundary ofD. To illustrate this point,
we consider an example on sensitivity shaping in robust
control from [8], which we shall return to later in this paper.
Figure 1 depicts a feedback system withu denoting the
control input to the plant

G(z) =
z

1− 1.05z

to be controlled,d represents a disturbance, andy is the
resulting output, which is fed back through a compensator
K(z) to be designed. The goal is to determine a controller
K(z) so that the feedback system in Figure 1 satisfies the

G(z)

K(z)

d

yu
Σ

Fig. 1. A feedback system.
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Fig. 2. The degree1 interpolants corresponding to1/λ from−1 to 1 with
grid 0.2.

design specifications

|S(eiθ)| < 2 ∼ 6, 02dB 0 ≤ θ ≤ π

|S(eiθ)| < 0, 1 ∼ −20dB 0 ≤ θ ≤ 0, 3 (3)

|T (eiθ)| < 0.5 ∼ −6, 02dB 2, 5 ≤ θ ≤ π

in terms of the sensitivity functionS = (1−GK)−1 and the
complementary sensitivity functionT = 1− S.

The plantG(z) has one unstable pole atz = 0.9524 and
one non-minimum phase zero atz = 0. It follows from
H∞ control theory (see, e.g.,[5]) that the feedback system is
internally stable if and only if the sensitivity functionS(z),
the transfer function fromd to y, is analytic inD and satisfies
the interpolation conditions

S(0.9524) = 0, S(0) = 1. (4)

A simple calculation shows that there exist analytic inter-
polants such that‖S‖∞ < γ := 2. Therefore, sincen = 1, by
Theorem 1, there exists a family of degree-one interpolants
satisfying ‖S/γ‖∞ ≤ 1 that may be parametrized by one
spectral zero,λ. Figure 2 shows the solutionsS as1/λ goes
from −1 to 1 with the grid0.2.

Clearly none of these designs satisfies the specifications.
Therefore, following Nagamune [8], we add the interpolation
condition

S(−0, 9901) = 1 (5)

and consider the corresponding family of interpolants of
degree two, described by Theorem 1. Choosing the two
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Fig. 3. Ψ and |S| associated with the interpolation conditions(4) and (5)
and spectral zeros in the mirror image of0.97e±0.55i.

spectral zeros to be the mirror image (in the unit circle)
of 0.97e±0.55i, we obtain the sensitivity function depicted
in Figure 3. This design clearly does not satisfiy the spec-
ifications either, and it can be shown that nor does any
other S of degree two [8]. Below in Section V, we shall
see what happens when further interpolation conditions are
added close to the unit circle.

IV. M AIN RESULTS

As the example of Section III suggests, we need to inves-
tigate how the interpolant changes as additional interpolation
points are introduced close to the unit circle. The following
theorem is one of our main results.

Theorem 3:Let Ψ = σσ∗, whereσ ∈ K0, and letf̂ be the
minimizer of KΨ(f) subject to the interpolation conditions

f(zk) = wk, k = 0, 1, . . . , n.

Moreover, given|w| ≤ 1, let fλ be the minimizer ofKΨ(f)
subject to

f(zk) = wk, k = 0, 1, . . . , n, f(λ) = w.

Thenfλ → f̂ in H2 as |λ| → 1.
This theorem indicates that adding interpolation conditions

close to the unit circle will not affect the design in any
important way unless we also change the weighting function
Ψ. For the proof we first need to show that if the generalized
entropy of interpolants converge to the optimum, then the
interpolants converge to the optimal interpolant inH2. The
following theorem is proved in Section VI.

Theorem 4:Let f̂ be the minimizer ofKΨ(f) subject to
f(zk) = wk, k = 0, 1, . . . , n. If f` satisfiesf`(zk) = wk,
k = 0, 1, . . . , n, andKΨ(f`) → KΨ(f̂), thenf` → f̂ in H2.

It should be noted that this result could not be strengthened
to H∞ convergence. An idea for a counterexample could
be formed from noting thatKΨ(f + αχE`

) → KΨ(f) if
m(E`) → 0. Hereχ denotes the characteristic function andα
is a scalar such that0 < |α| < 1−‖f‖∞. But ‖αχE`

‖∞ = α

for all `. This argument works equally well forf +g`, where
g` ∈ φH2 and |g`| is an appropriate approximation ofχE`

.
A second step in proving Theorem 3 is to investigate how

the interpolant changes as the data is transformed under a
Möbius transformation. ForλD, let bλ be the Blaschke factor

bλ(z) =
λ− z

1− λ̄z
.

Then the following proposition tells us how the entropy is
changed as the range is transformed by a Möbius transfor-
mation.

Proposition 5: The mapρ(·, λ,Ψ) : S → R defined by

ρ(f, λ, Ψ) =
∫

T
Ψ log

|1− λ̄f |2

1− λ̄λ
dm(z)

is continuous, and

KΨ(bλ(f)) = KΨ(f) + ρ(f, λ, Ψ).

Moreover, if Ψ = |σ|2 whereσ ∈ K0, then ρ(f1, λ,Ψ) =
ρ(f2, λ,Ψ), wheneverf1(zk) = f2(zk) for k = 0, 1, . . . , n.

Proof: First part is trivial, second part follows from [2,
p. 8 and Lemma 10].

As a corollary we have the following proposition, which
tells us that the solution obtained from the transformed data
is the solution transformed with the same transformation.

Proposition 6: Let σ ∈ K0, and let f be the the cor-
responding solution to the analytic interpolation problem
f(zk) = wk, k = 0, 1, . . . , n, ‖f‖∞ < 1 prescribed by
Theorem 1. Theng = bλ(f) is the interpolant corresponding
to the sameσ of the analytic interpolation problemg(zk) =
bλ(wk), k = 0, 1, . . . , n, ‖g‖∞ < 1 .

A simple proof from basic principles of Proposition 6 is
given in Section VI.

To conclude the proof of Theorem 3, we first prove a
version in which the interpolation value is0.

Theorem 7:Let f̂ be the minimizer ofKΨ(f) subject to
the interpolation conditionsf(zk) = wk, k = 0, 1, . . . , n.
Moreover, let fλ be the minimizer ofKΨ(f) subject to
f(zk) = wk, k = 0, 1, . . . , n and f(λ) = 0. Thenfλ → f̂
in H2 as |λ| → 1.

Proof: Let Mλ = {g : g ∈ S, g(zk) = wk

bλ(zk)}.
First note that ifg ∈ Mλ, thengbλ satisfies the interpolation
conditions. Furthermore

KΨ(g) = KΨ(gbλ) ≥ KΨ(fλ) ≥ KΨ(f̂)

by definition offλ and f̂ . If we can prove that

min
g∈Mλ

KΨ(g) → KΨ(f̂) as |λ| → 1, (6)

then KΨ(fλ) → KΨ(f̂) and by Theorem 4 it follows that
fλ → f̂ in H2. However, since wk

bλ(zk) → wk as |λ| → 1,

there is a sequence of functionsgλ ∈ Mλ such thatgλ → f̂
in H∞. By H∞ continuity of KΨ, (6) holds.

Note that Theorem 7 holds for any positive and continuous
Ψ, whereas Theorem 3 only holds ifΨ = σσ∗ andσ belong
to K0. This is because the proof of Theorem 3 require the
use of Proposition 6.



In fact, we are now in a position to prove Theorem 3. To
this end, letgλ = bw(fλ) and g = bw(f̂). By Proposition
6 and Theorem 1,gλ is the unique minimizer ofKΨ(f)
such thatf(zk) = bw(wk), k = 1, . . . , n, and f(λ) = 0.
Furthermoreg is the unique minimizer ofKΨ(f) such that
f(zk) = bw(wk), k = 1, . . . , n. By Theorem 7,gλ → g in
H2. Sincebλ is Lipschitz continuous,fλ → f̂ in H2.

V. REVISITING THE EXAMPLE

We now return to the example of Section III. Our starting
point is the interpolant corresponding to the interpolation
conditions (4) and (5) and to the spectral zeros in the mirror
image of0.97e±0.55i; i.e.,

Ψ =
|z − 0.97e0.55i|2|z − 0.97e−0.55i|2

|z + 0.9901|2|z + 1.05|2
. (7)

As shown in Figure 2, this design does not satisfy the
specifications (3).

Following Nagamune in [8], we now add an additional
pair of complex interpolation points close to the unit circle,
thus adding the interpolation conditions

S(0.9459± 0.2926i) = 0 (8)

to (4) and (5). This allows for sensitivity functions of degree
four. Indeed, there still exist interpolants such that‖S‖∞ <
2, so we may, as before, consider consider interpolants such
that ‖S/γ‖∞ ≤ 1, whereγ = 2.

In Figure 4 the old (degree two) design of Figure 2 is
depicted (solid line) together with a new (degree four) design
(dashed-dotted line) corresponding to the extended set of five
interpolation points but retaining the sameΨ, namely (7).
We se that the modulus of the sensitivity function has not
changed much in harmony with Theorem 3.

It is also interesting to see how the phase of the solution is
changed as additional interpolation conditions are introduced.
Figure 5 show phases of the degree two (solid line) and
degree four (dashed-dotted line) corresponding to thePsi
given by (7). The phases correspond well, except for the
region close to the added interpolation point. In that region
there is a sharp shift of2π in the phase. Since the shift occurs
over a short interval, theH2 norm is not affected much, and
as the interpolation condition approaches the boundary this
shift will have negligle effect on theH2 norm. This example
shows clearly why the same could not be true for theH∞-
norm.

However, adding the two interpolation conditions (8),
allows us to choose arbitrarily an additional two spectral
zeros. Following Nagamune [8], we choose these to be in the
mirror image ofz = 0.9e±1.55i. This yields the sensitivity
function

SN =
−0.0045(z + 1.7392)(z − 0.9524)

(z + 0.4166− 17.5386i)(z + 0.4166 + 17.5386i)

× (z − 0.9459− 0.2926i)(z − 0.9459 + 0.2926i)
(z + 0.9544− 0.5181i)(z − 0.9544 + 0.5181i)

,

which indeed satisfies the design specifications (3); see
Figure 6.
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Fig. 4. The solid lines is the design of Figure 2 and the dash-doted lines
is the design with the additional interpolation conditions(8) but with the
sameΨ.
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Fig. 5. The solid line shows the phase of the design of Figure 2 and the
dash-doted line the phase of the design with the additional interpolation
conditions(8) but with the sameΨ.

As a comparason, the spectral zeros of the maximum
entropy solution is the mirror image of(0.9524, 0.9459 ±
0.2926i,−0.9901) (which is the mirror image of the inter-
polation points, except for0), and this yields the interpolant

SME = 0.8705
(z + 1.0082)(z − 0.9524)
(z + 1.0095)(z − 1.0500)

× (z − 0.9459− 0.2926i)(z − 0.9459 + 0.2926i)
(z − 0.9649− 0.2985i)(z − 0.9649 + 0.2985i)

.

A plot of the weights and of the modules of the interpolants
are shown in Figure 6 and the corresponding interpolation
points and spectral zeros in Figure 7.

From Figure 6 it is interesting to note that the magnitude of
the sensitivity function corresponding to the ME solution is
almost flat. This is expected in view of Theorem 3, since the
only interpolation condition that is not close to the boundary
is S(0) = 1. The minimizer ofK1(S) such thatS(0) = 1 is
S ≡ 1, which is close toSME .
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From the plots in Figure 6 one first notices that in the
example where a large weight in the low frequency region is
used, the magnitude of the sensitivity is low. This seems to
be intuitive since the high weight in the entropy functional
penalizes the sensitivity more in that region than in others.
However, the weight is also large in the high frequency
area, and in this case there is no significant change in the
sensitivity. One reason could be that this is due to the
interpolation conditionS(−0.9901) = 1, which lie very
close to the boundary in the high frequency region.

VI. PROOFS

For the proof of Theorem 4 we will use arguments from
convex analysis. To this end we need some lemmas.

Let Λ : K → R be a stictly convex functional, whereK
is compact and convex. Then the minimum

β = min
x∈K

Λ(x)

exists and is obtained at a uniquex ∈ K. Consider the set
Kε of ε−suboptimal solutions

Kε = {x ∈ K : Λ(x) ≤ β + ε}, ε ≥ 0.

It seams reasonable that the “size” ofKε converges to zero
as ε → 0. However, to guarantee this, we need to consider
topological aspects and the concept of strong convexity.

Definition 1: A functional Λ is strongly convex with re-
spect to the norm‖ · ‖ if 1

2 (Λ(x) + Λ(y)) ≥ Λ(x+y
2 ) +

α(‖x−y‖), whereα : [0,∞) → [0,∞) is continuous, strictly
increasing and such thatα(0) = 0.

Lemma 8:Let X be a convex set. LetΛ be a strongly
convex functional onX with respect to‖ · ‖. Let x∗ be
a minimum of Λ(x) such thatx ∈ X. Then Λ(xk) →
Λ(x∗), xk ∈ X implies ‖xk − x∗‖ → 0.

An equivalent statment is that, ifΛ is strongly convex
with respect to‖ · ‖. Then sup{‖x − y‖ : x, y ∈ Kε} → 0
as ε → 0, or equivalently,Kε is a neighboorhood basis for
the optimal point in the topology induced by‖ · ‖.

Proof: Assume not, i.e.∃ε∀δ∃x s. t.|Λ(x)−Λ(x∗)| < δ
and‖x−x∗‖ > ε. Let δ < α(ε). ThenΛ(x∗)+δ ≥ 1

2 (Λ(x)+
Λ(x∗)) ≥ Λ(x+x∗

2 )+α(‖x−x∗‖) ≥ Λ(x+x∗

2 )+α(ε), which
contradicts thatx∗ is the minimizer.
In order to apply this theory to the entropy functional, we
will need to show thatKΨ is strictly convex with respect to
the H2-norm.

Proposition 9: KΨ is strongly convex with respect to the
H2-norm.

Proof: For |f | < 1 and |g| < 1, we have the following
inequality

1
2 (− log(1− |f |2)− log(1− |g|2))

≥ − log
(
1−

∣∣∣ f+g
2

∣∣∣2) + 1
2 log

(
1+ |f−g|2

8

)
. (9)

Multiply by Ψ and integrate, this leads to

1
2 (KΨ(f) + KΨ(g))

≥ KΨ

(
f+g

2

)
+ 1

2

∫
T Ψ log

(
1 + |f−g|2

8

)
dm. (10)

Sincelog(1 + t) ≥ t/2 for t ∈ [0, 1
2 ], the last term in (10) is

bounded from below by

1
2

∫
T Ψ log

(
1 + |f−g|2

8

)
dm

≥
∫

T Ψ |f−g|2
32 dm ≥ min Ψ

32 ‖f − g‖22.

Then Theorem 4 follows from Lemma 8 and Proposition
9.

We also provide a more direct proof of Proposition 6.
In fact, bλ(f) clearly satisfies the interpolation conditions
bλ(f(zk)) = bλ(wk) and ‖bλ(f)‖∞ < 1. Let f = b

a , then
β
α = bλ(f) = λ−f

1−λ̄f
= aλ−b

a−λ̄b
, hence

αα∗ − ββ∗ = (a− λ̄b)(a− λ̄b)∗ − (aλ− b)(aλ− b)∗

= (1− λλ̄)(aa∗ − bb∗).

This shows thatg = bλ(f) is the interpolant corresponding
to σ.



VII. C ONCLUSIONS

In this article we have studied the entropy functional from
[2] and the interpolants solving the optimization problem

min KΨ(f) s.t. f(zk) = wk, k = 0, 1, . . . , n.

It is shown that, if the entropy of a sequence of inter-
polants converge to the minimum, then the corresponding
interpolants converge inH2. Furthermore, if the interpolation
values are transformed by a Möbius transform, so is the
minimizing interpolant. These results are used for obtaining
an asymptotic result in the case that an interpolation point
approaches the boundary.

In a few simple design examples, we have examined
the effect interpolation conditions close to the boundary
have on the interpolant. In these examples, the effect of
adding interpolation points close to the boundary is small
in harmony with Theorem 7 and Theorem 3. In the solution
of Nagamune, a main objective of the additional interpola-
tion conditions is to increase the dimension ofK, thereby
allowing for more design parameters.

In view of this, one may ask if we could solve the
optimization problem for a larger class ofΨ without the ad-
ditional interpolation conditions. Adding interpolation points
restrict the admissible set, and if they have negligle effect one
would expect better solutions without them. A theory for this
is developed in [6].
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