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The Inverse Problem of Analytic Interpolation With
Degree Constraint and Weight Selection

for Control Synthesis
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Abstract—The minimizers of certain weighted entropy func-
tionals are the solutions to an analytic interpolation problem
with a degree constraint, and all solutions to this interpolation
problem arise in this way by a suitable choice of weights. Selecting
appropriate weights is pertinent to feedback control synthesis,
where interpolants represent closed-loop transfer functions. In
this paper we consider the correspondence between weights and
interpolants in order to systematize feedback control synthesis
with a constraint on the degree. There are two basic issues that
we address: we first characterize admissible shapes of minimizers
by studying the corresponding inverse problem, and then we
develop effective ways of shaping minimizers via suitable choices
of weights. This leads to a new procedure for feedback control
synthesis.

Index Terms—Analytic interpolation, controller synthesis, de-
gree constraint, loop shaping, model reduction, robust control,
weight selection.

I. INTRODUCTION

T HE topic of this paper relates to the framework and the
mathematics of modern robust control. The foundational

work [45] of George Zames in the early 1980’s casts the basic
robust control problem as an analytic interpolation problem,
where interpolation constraints ensure stability of the feedback
scheme, and a norm bound guarantees performance and robust-
ness. In this context, the analytic interpolant represents a par-
ticular transfer function of the feedback system. The work of
Zames and the fact that the degree of the interpolant relates to the
dimension of the closed-loop system motivated a program to in-
vestigate analytic interpolation with degree constraint (see [12],
[13]). This led to an approach based on convex optimization,
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in which interpolants of a certain degree are obtained as mini-
mizers of weighted entropy functionals. In this paper we study
the correspondence between weights and such interpolants, and
we develop a theory which allows for systematic shaping of in-
terpolants to specification.

The basic issue of how the choice of weights and indices in
optimization problems affects the final design is by no means
new. It was R.E. Kalman [25] who, in the context of quadratic
optimal control, first raised the question of what it is that charac-
terizes optimal designs and, further, how to describe all perfor-
mance criteria for which a certain design is optimal. Following
Kalman’s example we study here the analogous inverse problem
for analytic interpolation with complexity constraint, namely
the problem to decide when a particular interpolant is a mini-
mizer of some weighted entropy functional, and if so, to deter-
mine the set of all admissible weights.

The analysis of the inverse problem leads to a new procedure
for feedback control synthesis. More specifically, the quality of
control depends on the frequency characteristics of the inter-
polant, which in turn dictates the loop shape of the feedback
control system. The theory of [12], [13] provides a parametriza-
tion of all interpolants, having degree less than the number of
interpolation constraints, in terms of weights in a suitable class.
These admissible weights are specified by their roots. These
roots coincide with the spectral zeros of the corresponding min-
imizers of the weighted entropy functionals [12]. The choice of
weights for feedback control design via this procedure has been
the subject of several papers (see, e.g., [34], [35]). The challenge
stems from the fact that the correspondence between weights
and the shape of interpolants is nonlinear. One of the contribu-
tions of this paper is to develop a systematic procedure for the
selection of weights based on the inverse problem.

The synthesis proceeds in two steps. We first obtain an inter-
polant with the required shape, but without any restriction on the
degree. Then, via the inverse problem, we identify all weights
for which the given interpolant is a minimizer of the corre-
sponding entropy functional. The problem of approximating the
interpolant by one of lower degree is then replaced by approxi-
mating weights in a suitable class. This approximation problem
is quasi-convex and can be solved by standard methods. Hence
we have replaced a non-convex problem by one that is tractable.

In Section II we establish notation and review basic facts on
bounded analytic interpolation and complexity-constrained in-
terpolation. We only discuss interpolation in the unit disc

, but the theory applies equally well to interpo-
lation in the half plane. In Section III we consider two moti-
vating examples in the context of robust control. In Section IV
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we first provide the characterization of minimizers of weighted
entropy functionals and describe the set of weights which give
interpolants of a prespecified bounded degree. We then formu-
late and solve the inverse problem which is one of the key tools
needed in the paper, and study the possible shapes of minimizers
without any bound on their degree. In Section V we develop
a method for degree reduction of interpolants via the corre-
sponding weights and describe the steps of the synthesis proce-
dure. Finally, in Section VI, we revisit the motivating examples
of Section III and apply the procedure of Section V.

II. BACKGROUND

Given complex numbers in
, which we assume to be distinct for simplicity, and given

complex numbers , the classical Pick interpola-
tion problem asks for a function in the Schur class

which satisfies the interpolation condition

(1)

where , or simply , is the Hardy space of bounded
analytic functions on . It is well-known (see, e.g., [17]) that
such a function exists if and only if the Pick matrix

(2)

is positive semi-definite. The solution is unique if and only if
is singular, in which case is a Blaschke product of degree

equal to the rank of . In this paper, throughout, we assume that
is positive definite and hence that there are infinitely many

solutions to the Pick problem. A complete parameterization of
all solutions was given by Nevanlinna (see e.g., [2]), and for
this reason the subject is often referred to as Nevanlinna-Pick
interpolation.

In engineering applications usually represents the transfer
function of a feedback control system or of a filter, and therefore
the McMillan degree of is of significant interest. Thus, it is
natural to require that be rational and of bounded degree. Such
a constraint completely changes the nature of the underlying
mathematical problem.

The classical Nevanlinna-Pick theory provides one particular
solution that is rational and of a generic degree equal to – the
so-called central solution – as well as a parameterization of all
solutions. However, it provides no insight and no help in deter-
mining other possible solutions of degree or less. The cen-
tral solution is also referred to as the maximum-entropy solution
(see, e.g., [4], [14], [33]), because it maximizes the functional

subject to (1), where is the unit
circle and is the (normalized) Lebesgue measure
on . In recent work (see [13], [22] and references therein) it
has been shown that all solutions of degree at most are in fact
minimizers of certain weighted entropy functionals.

Following this recent development, we consider the weighted
entropy functional , given by

(3)

where is a non-negative log-integrable function on . We
study how the minimizer of

(4)

depends on the weighting function , and then we determine
when a given interpolant can be obtained as a minimizer of
(4) for a suitable choice of .

The interpolants of degree at most correspond to a very
specific choices of . In fact, let be the Blaschke product

(5)

and let denote the standard shift operator
on . Then is a shift invariant subspace; i.e.,
implies that . Denote by the co-invariant
subspace . Then is invariant under , where
denotes the adjoint of . Let denote the set of outer functions
[37, p. 370] in that are positive at the origin. The following
result is taken from [13].

Theorem 1: Suppose that the Pick matrix (2) is positive def-
inite, and let be an arbitrary function in . Then there exists
a unique pair of elements such that

(i) with ;
(ii) ;

(iii) a.e. on .
Conversely, any pair satisfying (i) and (ii)
determines, via (iii), a unique . Moreover, setting

, the optimization problem

has a unique solution that is precisely the unique satis-
fying conditions (i), (ii) and (iii).

We define and note that

where denotes the set of polynomials of degree at most
, while

where denotes the subset of polynomials
such that for all and . With

as in the theorem, we refer to the roots of as the
spectral zeros corresponding to the pair . Since

on , then, except for possible cancellations between
and , the spectral zeros are the roots of a minimum phase

spectral factor of . When such a cancellation occurs, the
degree of is less than , and , , and , have a common root.

Theorem 1 has two parts: the first part states that interpolants
of degree at most are completely parameterized in terms of
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spectral zeros in the sense that there is bijection between the
pairs such that is an interpolant of degree at
most and sets of spectral zeros. Given a choice of spec-
tral zeros, the second part of the theorem provides a convex op-
timization problem, the unique solution of which provides the
corresponding interpolant.

Remark 1: The theorem, as stated in [13], allows for con-
siderably more general interpolation conditions than (ii). In the
case where the points are not necessarily distinct,
condition (ii) needs to be replaced by with

, which encapsulates interpolation of derivatives as well.
The special case where is analogous to the so-called
covariance extension problem with degree constraints, which
is usually stated for Carathéodory functions rather than Schur
functions. The theorem is also valid when is an arbitrary inner
function. The background to the derivation of Theorem 1 has a
long history. The existence part of the parameterization was first
proved in the covariance extension case in [18], [19] and in the
Nevanlinna-Pick case in [20]. The uniqueness part (as well as
well-posedness) in [11]. The optimization approach was initi-
ated in [9] (also, see the extended version [10]) and further de-
veloped in, e.g., [8], [12], [21].

III. MOTIVATING EXAMPLES

We present two basic examples of robust control design to
highlight the relevance of the theory. The first one deals with
sensitivity minimization and revisits an (academic) example
which was discussed in [12]. The second addresses a more
typical (and well-conditioned) design which is formulated in
the context of -loopshaping and optimal robustness in the
gap metric.

A. Sensitivity Minimization

Consider a standard feedback system where and
are the transfer functions of plant and controller, respectively.
The stability and tracking/disturbance-rejection qualities of the
feedback system are reflected in the sensitivity function

. It is well-known (see, for example, [46])
that the internal stability of the feedback system is equivalent
to being analytic outside the unit disc and satisfying the
interpolation conditions

where and are the zeros and poles out-
side the unit disk, respectively, of the plant . Conversely, if

is any stable, proper rational function which satisfies these
conditions, then it can be realized as the sensitivity function of
such a feedback system with the given and a choice of a
suitable control transfer function .

The maximal disturbance-amplification depends on the
choice of the controller and is equal to the -norm of the sen-
sitivity function . To illustrate this, consider the simple

Fig. 1. Subplot 1: Possible degree-one shapes. Subplot 2: A degree 5 function
satisfying the constraints.

example . The optimal value in
this example turns out to be equal to two (see [12]), and the
magnitude of the optimal sensitivity function is constant
across frequencies. However, in general, the magnitude of dis-
turbances and the modeling uncertainty are not uniform across
frequencies. Thus, the design ought to differentiate between
frequency bands so as to achieve desired levels of performance
and robustness. Therefore, we need to relax the requirement
of uniformly minimal sensitivity gain to a pre-specified upper
bound

In this case, provided , there is large family of con-
trollers which achieve such a specification. Naturally, the size
of the family and the ability to “shape” increases with . On
the other hand, the degree of the controller and the complexity
of the feedback system depend on the degree of . Thus, for a
given value of , our goal is to not only control the shape of ,
but its degree as well.

Adhering to a typical design specification for disturbance re-
jection, we require

(6)

where we take and . In Fig. 1, the
degree 1 sensitivity functions which satisfy are de-
picted in Subplot 1. It is observed that the design specifications
are not met by any such function. Subplot 2, in the same figure,
shows a sensitivity function of degree 5 which satisfies the con-
straints. As expected, this shows that by relaxing the degree con-
straint to degree 5, we are able to find a function that satisfies
the constraint. The design is accomplished with the method in
Section V-B, utilizing the theory in the first part of the paper.
Details will be provided in Section VI where the example will
be revisited.
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B. Frequency-Dependent Robustness Margin

Let denote the transfer function of a single-input, single-
output finite-dimensional linear system with stable coprime fac-
torizations

i.e., , normalized to satisfy

(7)

where . Then, as is well-known, all stabilizing
controllers for are parameterized by via

(8)

where satisfy see, e.g.,
[15], [42]. To model perturbations of the coprime factors for fre-
quency-dependent uncertainty, we consider plants
such that

(9)

where denotes Euclidean vector norm and is an outer
function shaping the radius. Moreover, the size of the radius is
controlled by a separate scaling parameter . Thus, we
consider the problem of robust stabilization of the ball of plants

around the center .
As shown in [43], a controller specified by stabilizes

provided

(10)

This condition can be expressed as a Nevanlinna-Pick problem.
Indeed, taking advantage of the normalization of the coprime
factors as in [32] (see also [23]), we define the transformation

which is unitary, i.e., . We also denote by
the Blaschke product that vanishes at the conjugate inverse of
the poles of , . Hence, , . Then, the left
hand side of (10) is

(11)

where and

(12)

It can be seen that the values of at the roots of are indepen-
dent of and are specified by the plant. Moreover, as seen from
(11), condition (10) holds provided satisfies (12) and

(13)

Conversely, for any satisfying (12), there corresponds
a unique parameter and a controller , where stabilizes the
ball of plants with radius .
Furthermore, if the degree of is small, so is the degree of the
controller . This is stated in the following proposition proved
in the Appendix.

Proposition 2: Let satisfy (12) and be the con-
troller specified via (12) and (8). Then .

Now we consider

which is the matrix of transfer functions from disturbances at the
input and output ports of the plant to the plant input and output.
This is a rank-one matrix function (see [23]) with singular value

. Thus, the shape of relates directly to amplifica-
tion of external disturbances in the loop, and it also dictates how
robust the control system is to plant uncertainty in the coprime
factor (or, in the gap metric; cf. [23], [32]). In fact

is precisely the optimal robustness radius for gap-ball un-
certainty (see [23]) and coincides with for the
smallest consistent with (12).

The use of a frequency-dependent weight allows shaping
the loop-gain [32] as well as the performance and the robustness
of the closed-loop system over different frequency bands [7],
[43], [44]. By scaling in (13) one can maximize the radius of

for which a stabilizing controller exists (as in [23],
[32], [43]). The maximal value and the optimal interpolant

, consistent with (12) and (13), satisfy

(14)

Thus, the use of a nontrivial weight forces the interpolant
to have a nontrivial outer factor as well. This causes a corre-
sponding increase in the degree of the closed-loop system and
of the controller. Therefore, the purpose of this work is to de-
velop techniques for reducing the degree of the control system
while relaxing design requirements in a controlled fashion. In
Section VI we revisit the issue of frequency-dependent robust-
ness margin in order to demonstrate the application of the frame-
work.

IV. INVERSE PROBLEM OF ANALYTIC INTERPOLATION

WITH DEGREE CONSTRAINT

We formulate the inverse problem of analytic interpolation
with a degree constraint and explain how this can be used to
shape interpolants to specifications. However, we begin by char-
acterizing the minimizers of for general weights .

A. Characterization of -Minimizers

Theorem 1 provides a (complete) parametrization of Nevan-
linna-Pick interpolants of degree . It states that such inter-
polants are in correspondence with for and
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that they are minimizers of the generalized entropy integral
specified by the weight . In this paper we are interested in in-
terpolants of higher degree. Thus, we are led to consider -en-
tropy minimizers for more general choices of . The relevant
generalization is stated next.

Theorem 3: Suppose that the Pick matrix (2) is positive def-
inite and is a log-integrable nonnegative function on the unit
circle. A function is a minimizer of (4) if and only if the fol-
lowing three conditions hold:

(i) for ;
(ii) where and is outer;

(iii) .
Any such minimizer is necessarily unique.

Proof: See the Appendix.
As seen from Theorem 1, any choice of with

gives rise to , and hence to an interpolant
with a degree bounded by . Theorem 3 allows for a which
is rational of an arbitrarily high degree or even irrational. In this
case, still belongs to , while the additional “complexity” is
absorbed in . Naturally, in such a case, the interpolant
will also be rational of a high degree or irrational, respectively.
This observation allows us to characterize all minimizers of
of degree at most for any given . More specifi-
cally, let

(15)

Next we state the sought characterization.
Corollary 4: Let with . Then the mini-

mizing function in (4) satisfies
(i) for ;

(ii) has at most zeros in ;
(iii) the degree of is at most .

Conversely, for any which satisfies (i), (ii), and (iii),
there exists a corresponding choice of so that is the
minimizer of (4).

Proof: By Theorem 3, the minimizer satisfies (ii), where

Then, in view of (15), , and hence .
Conversely, suppose , where ,

and , then , where
and . Then

where . If, in addition, satisfies the interpolation con-
ditions in (i), then, by Theorem 3, is the minimizer of (4), as
claimed.

Corollary 5: If is a minimizer of for some choice
of a log-integrable non-negative function , then has at most

zeros in .
Proof: This follows directly from condition (ii) in Theorem

3, since with outer and .

These two corollaries underscore the significance of Theorem
3 for understanding the structure of minimizers.

B. Inverse Problem

It turns out that the number of roots in determine whether
an interpolant is a minimizers of for some choice of .
This is stated next together with the characterization of all such
choices of .

Proposition 6: Any function that satisfies
(i) for ;

(ii) has at most zeros in ;
(iii) ;

is the unique minimizer of (4) with

for any chosen so that is outer. Conversely, a
(nonzero) function having more than zeros in cannot arise
as the minimizer of (4) for any choice of .

Proof: Suppose that satisfies the interpolation con-
straint (i). Then, by Theorem 3, is the minimizer of (4) if and
only if , where , is outer, and ,
which in turn holds if and only if is outer, , and

. This condition fails when has more than
zeros in . In fact, for to be outer, the zeros of in

must be canceled by zeros of . However, can have at
most zeros.

The choice of in Theorem 6 is not unique, in general.
The selection of must prevent from having poles in ,
and hence any zero of must also be a zero of . If has more
than zeros in , there is no such , whereas if has exactly
zeros in , then is uniquely defined. In all other cases, when
has zeros in , the family of possible choices of , and
hence the family of possible weights

(16)

has dimension . The design freedom offered by this
nonuniqueness will be exploited in Section V for model reduc-
tion.

C. Shaping the Interpolants

Suppose that we are given an outer function in . We
address the following two questions that pertain to admissible
shapes of analytic interpolants:

a) Does there exist an which satisfies the interpolation
condition (1) and

(17)

b) Does there exist a such that the corresponding (unique)
minimizer of (4) satisfies

(18)

The first question is equivalent to

(19)
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being nonempty, which holds if and only if the associated Pick
matrix

(20)

is positive semi-definite. This answers the first question.
If is positive definite, there exist interpolants such

that for all and the design specifications
(17) may be satisfied with strict inequality. Therefore, any min-
imizing interpolant cannot satisfy (18), since
for all implies that , which contra-
dicts the claim that is the minimizer. Therefore in order for
(4) to have a solution satisfying(18), must be positive
semidefinite and singular. In this case, the set (19) is a singleton.
This provides an answer to the second question, which we sum-
marize next.

Proposition 7: Let be an outer function such that
. Then there exists a pair of functions

on such that
(i) ;

(ii) is the solution of (4);
(iii) on ;

if and only if is positive semidefinite and singular. Fur-
thermore, is uniquely determined.

Proof: Sufficiency is shown in the text leading to the propo-
sition, so it remains to prove necessity. Since the matrix in (20)
is nonnegative definite and singular, there is a unique satis-
fying and (1). Then where is inner and
of degree . Since is rational with at most zeros in , by
Proposition 6 there exists a function such that minimizes
(4).

V. APPROXIMATION WITH INTERPOLANTS OF LOW DEGREE

Assume that is the minimizer of the entropy functional, as
in (4), for a suitable weight selected without regard to the de-
gree. In this section we develop an approach for approximating

, indirectly, via approximation of the corresponding weight
in order to obtain an interpolants of a similar shape and of
a reduced degree. To this end we begin by showing that is
continuous in in a suitable sense, i.e., using appropriate met-
rics to measure perturbations in and . Then we formulate a
quasi-convex optimization problem to approximate by a re-
duced-order weight which we use to obtain as the mini-
mizer of the corresponding functional.

A. Continuity of the Map From Weights to Minimizers

The use of the -norm to quantify perturbations of inter-
polants is rather strong and renders

(21)

with being the minimizer in (4), discontinuous (see Example
1 below). Moreover, since may represent a transfer function
of a feedback system, from a practical standpoint perturbations
of are naturally quantified via either weighted norms (i.e.,
in a weak sense) or in the norm. Below we use the later.
Similarly, when considering perturbations of a given weight

the -norm as well as the norm on logarithms of weights,
seem inappropriate. Instead, for practical as well as technical
reasons we choose to work with the metric

which quantifies perturbations in a multiplicative fashion. The
proof of the following proposition is given in the Appendix.

Proposition 8: Let be nonnegative log-integrable func-
tions on such that , let be the outer spec-
tral factor of (i.e., is outer and on ), and let

and be the corresponding minimizers.
Then

(22)

In the sequel we restrict our attention to weights which are
positive and bounded. The following corollary is immediate.

Corollary 9: Let , , be positive bounded
functions on , and let and be the
corresponding minimizers. If as , then

.
The statement shows that is continuous in above sense. The

following further consequence of Proposition 8 will be used next
and proven in the Appendix.

Corollary 10: Under the conditions of Corollary 9 and with
and with and outer as

in Theorem 3, if as , then
coefficient-wise.

When the -norm is used for the range space, continuity
fails as shown in the following example.

Example 1: Consider a problem with one interpolation con-
dition: . Given a weight , the minimizer satisfies

where (Theorem 3), which im-
plies that is constant. Since , the minimizer cannot
have any zeros (Corollary 5). Hence is outer and is chosen
so that the interpolation constraint is satisfied. If , then

. Define

for
for

and let , with and outer, as in
Theorem 3. By Corollary 10, as . But since
is discontinuous at for , the phase of the spectral
factor is unbounded [1, p. 147] (cf. example in [1, pp. 145–158]).
Therefore, as , fails to converge in the -sense.

We now discuss the continuity of the modulus of the inter-
polant as a function of . If we disregard the phase, it turns out
that the “shape” is continuous in a stronger sense, namely in
the -sense. To see this consider , ,
as in Corollary 9, and let and with

and outer as in Theorem 3. Then, by Corol-
lary 10, (coefficient-wise as is finite-dimensional).
Hence, if as , then

uniformly.
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B. Approximation of Interpolants

The continuity of allows for approximating interpolants in
a way that exploits the correspondence between minimizers and
weights. Given an interpolant we would like to find a degree-
approximating interpolant of , where . From the in-
verse problem there is a set of admissible weights for
which a given is the minimizer of (4). Our first task is to find
a pair for which and , with

, so that their logarithmic distance is minimal. That
is, we consider the problem

and

(23)

This can be reformulated as a quasi-convex optimization
problem and solved efficiently. By Corollary 4 the degree of
the interpolant is bounded by , and, based on
the quality of approximation obtained via quasi-convex opti-
mization, an explicit bound on the approximation error
can be obtained from Proposition 8. Thus, the basic idea is to
replace the hard nonconvex problem of approximating by
another interpolating function of degree at most , by the
simpler quasi-convex problem to approximate a
by a with .

The theory presented so far suggests a computational proce-
dure in several steps, which we now summarize. Typically, the
general problem is to find an analytic function , of a desired
shape, which satisfies as well as the interpolation
conditions

(24)

Equivalently, for the given , we set and seek an
such that

(25)

Thus, achieving a desired shape for either or are equivalent
problems.

Step 1 Find an interpolant , or as above, having the de-
sired shape, but without restricting its degree. We begin with a
family of outer functions having desirable shapes, mono-
tonically decreasing pointwise on as a function of , and we
select the largest value for for which an interpolant exists with
modulus bounded by . More specifically, for a fixed value
for , we solve the optimization problem

The maximal value of is attained when is posi-
tive semidefinite and singular (Proposition7). At the end of this
step we require that (or, equivalently, that

). Relaxation of will insure that this
condition holds. Then, by Proposition 7, there is a such that

satisfies for all . The

functional form of depends on the application. In the first
of our motivating examples we take

which leads to a standard optimization problem. In the
second example is specified by

This choice makes a frequency-dependent robustness ra-
dius (see (14) and also [44]).

Step 2 For a given , find an approximation of of de-
gree at most which satisfies the same interpolation conditions.
To this end, find functions and that solve the optimization
problem (23). This is a quasi-convex optimization problem. In
fact, if and only if

(26)

Equation (26) defines an infinite set of linear constraints on the
pseudo-polynomials representing the nominator and denomi-
nator, respectively, of .To see this, first note that by (16)

is of the form

Now, if is the inner part of , , where is a polynomial
of degree . Moreover, by (15), , and
therefore

where and are polynomials of degrees and
, respectively, and is fixed. Since

the sublevel set of the trigonometric polynomials and
satisfying (26) is convex for each , the problem is qua-
siconvex [6] and can be solved as problem (21) in [30]. Then

is obtained from the optimal and , where
is any factor of of appropriate dimension. However, in general
the choice of is unique. In fact, the design in Step 1 generi-
cally leads to interpolants with unstable zeros, in which case

and is a constant, so that we may take .
Step 3 Next we find , i.e., we solve the optimiza-

tion problem

(27)

for the unique solution . In Step 2 we have determined the
weight as an approximation of , and therefore will also
be an approximation of to , for which the bound (22) holds.
Furthermore, since with , the degree of

is bounded by (Corollary 4). Finally, we renormalize the
interpolant
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to obtain the approximant which solves the original interpola-
tion problem (24).

Remark 2: The family needs to be chosen in a judicious
manner in order to insure good approximation in Step 2. For ex-
ample, large variations or discontinuities in the values of
may severely inflate the error bounds in the quasi-convex opti-
mization (23).

Remark 3: Step 2 is similar to the one used in [41], where,
however, there is another rationale for choosing which to ap-
proximate. Compare also with [38], [40] where the ellipsoid al-
gorithm and linear matrix inequalities are used to solve these
types of problems.

Remark 4: In Step 3, for computational purposes, (27) may be
transformed into an equivalent problem of the form in Theorem
1 whenever is rational without poles on . Utilizing [27,
Lemma 1], (27) is transformed into

(28)

where and

Then , where is the coinvariant subspace of (28) and
the minimizers of (27) and (28) satisfy [27, p. 563],
[28], [31]. Since , we utilize (2.16), (2.17) in [13] to
transform (28) into an interpolation problem with positive real
domain and find the minimizer using the software in [36].

VI. EXAMPLES REVISITED

We now return to the two examples from Section III. In both
examples, the underlying mathematical problem is an analytic
interpolation problem where a desired shape is sought for the
interpolant. These are addressed using the procedure outlined
in Section V.

A. Sensitivity Minimization (Continued)

In this example, we consider the sensitivity function
of the feedback system with plant

Since has one unstable pole at 2 and an unstable zero at ,
we require that the sensitivity function satisfies

We further require that the specifications (6) are met. The re-
laxed bound on the infinity-norm of is ,
and we therefore define the function

which is normalized so that satisfies and is ana-
lytic in . The constraints on can be directly translated into
constraints on

and

Fig. 2. Ideal function: � � � � .

where, as before, and . We begin
with a particular interpolant that meets the criteria without
regard to any constraint on the degree, shown in Fig. 2, which
we then approximate using the theory in Section V-B.

We determine as follows. We first define an outer func-
tion with the property that is piecewise linear in

and passes through the points

This is our desired shape. Then we set and scale
so that there exists a minimizer of (4) which satisfies
on . By Proposition 7, is specified by the requirement that

is positive semidefinite and singular. In this case,
, and hence is consistent with the

requirement . It is clear that neither nor
is a rational function, but, unlike , is an interpolant.

Next we approximate by an interpolant of small degree.
We first characterize the inverse image of under the map
(21), which according to Proposition 6 is given by

In the present case, is a positive constant. Hence,
contains a single element, modulo scaling, and we

choose . As described in Section IV-C
we let be the approximant of degree less or equal to
obtained from

where is the solution of the quasi-convex optimization

Finally, by scaling and
, we obtain admissible sensitivity functions.
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Fig. 3. Approximations of degree �� �� and 5.

We compute for (as shown in the footnote 1)
and display the magnitudes of , and in Fig. 3. Neither
the degree-one nor the degree-three approximant of satis-
fies the design specifications, wheras does. It is interesting to
note that even though is infinite-dimensional it is possible
to find satisfactory low-dimensional approximants.

It is also interesting to note that when the bound
is removed and only stability is required, as in [30], the approx-
imation is better in the low-frequency band , but
worse in the high-frequency band . It seems as if
approximation with a bound puts more emphasis on the region
where the interpolant is close to the bound (i.e., ) at the
expense of the region where .

B. Frequency-Dependent Robustness Margin (Continued)

We consider a continuous-time plant having one integrator,
a slow unstable pole, and a time-lag, modeled via .
We base our design on its discrete-time counterpart

obtained via the Möbius transform

and restrict our analysis to the discrete-time domain.
The design objective is encapsulated in the choice of a weight
, chosen as in Section III to increase robustness to high-fre-

quency modeling uncertainty and a bound which
ensures that the overall robustness radius is at least .
The selected “nominal weight” is shown in Fig. 4. Further-
more, in this particular example, it is deemed appropriate to
allow and consider the problem of shaping

1 � ��� � , � ��� � ,

� ��� � .

Fig. 4. Frequency-dependent robustness shape �.

the function subject to the interpolation con-
ditions

(29a)

(29b)

that are obtained by evaluating at the roots of in (12). The
maximal scaling parameter can be readily computed by
first calculating the outer factor of

and then, finding the maximal value of for which the Pick
matrix is positive semidefinite (Proposition 7). The
Pick matrix , defined in (20), is computed from the
interpolation data (29) and is independent of .

Let be the unique interpolant which satisfies
, and denote the corresponding controller

by . Here, we require that ,
which holds for the chosen value of . (The condition fails
only for the minimal for which the interpolation problem is
solvable as explained in Step 1, in Section V-B.) Since is not
rational, neither are and . Next we describe how
to approximate with an admissible interpolant of low
degree which, accordingly, leads to a controller and closed-loop
transfer functions of low degree.

Next we determine a degree- approximant of for a
choice of . To this end we follow Step 2 in Section V-B
to compute a solution of the quasi-convex optimization problem
to find a and a which minimize

Then we follow Step 3 in Section V-B to determine



414 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 2, FEBRUARY 2010

Fig. 5. Robustness radius obtained for the controllers � , � , and � .

and the corresponding controller , for , by obtaining
from (12) and substituting into (8).

The uniform robustness radius for gap-metric uncertainty is
maximal for an optimal choice of the controller and equals

([23], [43]). The robustness radius is the inverse of the
-norm of the “parallel projection” operator , and

its value is shown in Fig. 5 plotted with a dash-dotted line (in
logarithmic scale). On the other hand, the inverse of the max-
imal singular value of , as a function of frequency is
drawn with a dotted line, and represents a frequency-dependent
robustness radius [43] having the shape of . Both are now com-
pared with the radius of the degree-four controller

It is seen that there is a substantial improvement of robustness
as compared to in the high-frequency range for both
the “ideal” design as well as for the low-degree approximation.
Fig. 6 compares the gains of and . Similarly, Figs. 7 and
8 compare the loop-gains and the Nyquist plots, respectively,
for the two cases. It is seen that some form of phase compensa-
tion is effected by around 1.6 rad/sec, as compared to
so as to gain the sought advantage. Fig. 9 compares the gains of
the four entries of the closed-loop transfer matrix . The
figure shows that there is a slight improvement in the sensitivity
function at the middle range at the expense of a slight degrada-
tion at low frequencies.

VII. CONCLUSION

The formulation of feedback control synthesis as an analytic
interpolation problem has been at the heart of modern develop-
ments in robust control. Yet, many of the standard approaches
often lead to designs of a large degree, due to degree inflation
when introducing and absorbing “weights” into the controller.
At various stages, alternative methodologies for dealing with
control design under structural and dimensionality constraints
were developed by several authors based primarily on suitable
approximations and a linear matrix inequality formalism (see
[3], [16], [24], [39]). In particular, a comparison between the

Fig. 6. Bode plots of controllers � , and � .

Fig. 7. Bode plots of � and of loop gains �� , and �� .

Fig. 8. Nyquist plots of the loop gains �� (above) and �� (below), re-
spectively.

viewpoint in Gahinet and Apkarian [16] and Skelton, Iwasaki,
and Grigoriadis [39] and the viewpoint advocated in our work
is provided in [22].
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Fig. 9. Four closed-loop transfer functions of � and � .

Our approach builds on the original -formulation of con-
trol synthesis as an analytic interpolation problem and on the re-
cently discovered fact that, in contrast to -minimization, di-
mensionality and performance are inherited by the weighted-en-
tropy minimization. In this setting, “weights” provide the means
of shaping interpolants in a manner akin to design. Thus,
the advantage of the new methodology which involves entropy
functionals stems from the fact that selection of weights within
a specific class does not unduly penalize the degree of the de-
sign. However, the choice of weights is not immediate, as it is in
the standard paradigm [15]. The choice of weights that lead
to acceptable controllers is, in itself, a non-convex optimization
problem. Thus, one of the contributions of this paper is a re-
laxation of this non-convex problem into one which is quasi-
convex, and thus solvable by standard methods. The method-
ology builds on a more fundamental question which forms a
main theme of the paper, namely the characterization of all pos-
sible minimizers of weighted entropy functionals. The inverse
problem of constructing weights for permissible minimizers is
the basis for our design theory. In a more general context, the
results of this paper provide a solution to the problem of de-
termining which spectral zeros correspond to a certain desired
shape of the interpolant.

This paper provides a considerable extension of the results
presented in the conference paper [27]. The modified problem
obtained by removing the a priori bound on the interpolants
has been studied in [29]–[30]. In fact, by allowing the upper
bound to tend to infinity, the entropy optimization problem
becomes an optimization problem, and the interpolants are
then parameterized in terms of poles rather than in terms of spec-
tral zeros.

APPENDIX

A. Proof of Proposition 2

Given the controller parameterization (8), we have
, where and .

Since , the number of the distinct poles of and
(counted with multiplicity, including poles at zero and at ) is
at least as large as the degree of . From (11) and (12) we have

and, since , any stable pole of
or is a stable pole of . However, and have no unstable
poles, and therefore the degree of is bounded by the degree
of , as claimed.

B. Proof of Theorem 3

The proof of Theorem 3 traces similar steps as that of The-
orem 1 in [13]. Below we discuss modifications that are needed
to handle the present situation. The proof is based on a series
of lemmas, which run in parallel to those in [13], as we point
out differences. For ease of reference we retain (modulo a sign
change) the notation of [13], and for detailed proofs we refer to
[26].

We start by showing that for any log-integrable weight ,
there exists a strictly contractive interpolant with finite gen-
eralized entropy.

Lemma 11: Suppose that satisfies ,
and let be the Pick matrix (2). Then, if , there exists a

satisfying (1), , and .
Proof: Let be the outer function such that

, for . Since pointwise in as , and
since , it is possible to choose small enough
so that . Therefore, following the argument in
Section IV-C, it is possible to find a which satisfies (1) and
for which on . The calculation

shows that .
With fixed and satisfying the properties in Lemma 11, we

define

where is the Blaschke product (5), and we consider the convex
functional given by

(30)

where as before is outer and .
The statement of the following lemma is identical to Lemma

7 in [13], but the proof is adjusted to handle the case when
.

Lemma 12: There exists a set of continuous affine func-
tionals on of the form
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with , such that

(31)

Proof: Let be the class of affine functionals on de-
fined via

and

where , for all and .
Equality (31) now follows in the same way as in the proof of
Lemma 7 in [13]. The use of the family , , accounts
for the situation where is not in .

This leads to the main lemma, the proof of which follows
verbatim from [13, p. 974], using Lemma 12.

Main Lemma 13: The optimization problem (4) has a
unique minimizer on .

Lemma 14: Let , where is as in
Lemma 11 and . Then

(32)

Proof: By noting that and
, the proof follows along the same

lines as Lemma 12 in [13].
Condition (32) implies that . Since

and , . Now since ,
. It follows that .

Hence

(33)

We conclude that from which it follows that
there is a unique outer factor with such that

Following [13], we define , which belongs to by
Lemma 14. Then and satisfy

Next, using the following lemma we show that .

Lemma 15: Let , where is as above
and , and let be the outer part of . Then

Proof: In view of (33), there is an outer function such
that . Then for any we have that

for and sufficiently small (as
in the proof of [13, Lemma 13]).

Again following the proof of Lemma 13 in [13], since
, the derivative of must be zero at in the direc-

tions for arbitrary and the outer spectral factor
of ; i.e.,

for all . Therefore

Since is outer and , Lemma 15 follows.

By Lemma 14, we have that . By Lemma

15, where , and hence .

Since and it follows that . Finally,
since , the minimizing interpolant is of the form stated
in Theorem 3.

We have thus established that the minimizer exists and satis-
fies (i), (ii), and (iii). It remains to prove that there is only one
function satisfying (i), (ii), and (iii). This follows directly
from the arguments in [13, p. 977] and by noting that

and hence that

This concludes the proof of Theorem 3.

C. Proof of Proposition 8

We first prove a somewhat more general statement.
Lemma 16: Under the assumptions of Proposition 8

(34)

Proof: Since

and hence

As in [26, p. 33]
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Then, since is the minimizer of , we have

and consequently

as claimed.
Returning to Proposition 8, since for

Then (22) follows from Lemma 16. This concludes the proof of
Proposition 8.

D. Proof of Corollary 10

From the above proof of Theorem 3, with the
outer factor of and the outer factor of . Similarly

where are outer, and
. Since , in (Corollary 9).

Consequently, in and hence
in . This follows from [5, page 767], and the fact that

are log-integrable. Now, since ,
with , we conclude that .

The coefficientwise convergence now follows, since
and and is not identically zero.
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