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Abstract: Given a circular probability density function, called the true probability density
function, the goal is to find a Dirac mixture approximation based on some circular moments of
the true density. When keeping the locations of the Dirac points fixed, but almost arbitrarily
located, we are applying recent results on the circulant rational covariance extension problem
to the problem of calculating the weights. For the case of simultaneously calculating optimal
locations, additional constraints have to be deduced from the given density. For that purpose,
a distance measure for the deviation of the Dirac mixture approximation from the true density
is derived, which is then is minimized while considering the moment conditions as constraints.
The method is based on progressive numerical minimization, converges quickly and gives well-
distributed Dirac mixtures that fulfill the constraints, i.e., have the desired circular moments.
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1. INTRODUCTION

Periodic quantities occur in a variety of applications
(Mardia and Jupp, 2009). In the scalar case, they can
always be mapped to the circumference of a circle with
appropriate radius. When the error in these quantities is
large, the topology cannot be ignored and the uncertainty is
described by means of circular probability density functions,
which leads to so called circular statistics. Based on this
description, systematic estimation, filtering, and data fusion
can be performed. Non-periodic quantities will be called
linear in the following.

Although the primary uncertainties often can be described
by simple continuous circular probability density functions
such as the von Mises distribution, see Sec. 6, or the
wrapped Normal distribution (Mardia and Jupp, 2009),
processing these distributions quickly becomes difficult
(Azmani et al., 2009; Stienne et al., 2013). Hence, a discrete
approximation is often useful, which could either mean
discrete probabilities over a regular lattice or irregularly
spaced samples. In the latter case we can distinguish
between randomly or deterministically placed samples. In
this paper, we focus on deterministically placed samples,
which we will call Dirac mixture approximation, which
either are equally weighted or equipped with weights (that
sum to one).

Replacing a continuous circular probability density function
by a Dirac mixture approximation can be posed as an
approximation problem. Typically, either the resolution, i.e.,
the number of discrete samples on the circle, is prespecified
or some measure of the approximation quality is given. The
parameters of the Dirac mixture approximation are then
calculated in such a way that the discrete approximation
matches some properties of the given continuous density,
e.g., its moments.

Moment problems have a long history in mathematics,
going back to Chebyshev, Markov, and Lyapunov (for a
reference, see, e.g., Krein and Nudelman (1977)). In the
setting of this paper with probability densities on the unit
circle, one needs to consider (truncated) trigonometric
moment problems: given a finite sequence (c0, c1, . . . , cN )
of numbers, find a positive measure dµ such that∫ π

−π
einθ dµ = ck , n = 0, 1, . . . , N .

(Since c0 = 1, there are N nontrivial moments.) If the
measure is absolutely continuous, there is a probability
density p such that dµ = p(θ)dθ. In this paper, we shall
consider the approximation of such a probability measure
by a µ that is a staircase function. One can formally regard
such a measure as one with a probability density

p(θ) =

L∑
j=1

wj δ(θ − θ̂j) , (1)

where wj , j = 1, . . . , L, are positive weights adding up to

one, and where θ̂j , j = 1, . . . , L, are the Dirac locations.
This is the formalism we shall use in this paper.

For noncircular/linear quantities, moment-based Dirac
mixture approximations have been proposed in the context
of the Linear Regression Kalman Filter (LRKF), see
Lefebvre et al. (2005). As these are Gaussian filters, the
Dirac mixture approximation is performed for Gaussian
densities. Typical examples are the Unscented Kalman
Filter (UKF) in Julier et al. (2000), its scaled version
in Julier (2002), and its higher-order generalization in
Tenne and Singh (2003). A generalization to an arbitrary
number of deterministic samples that are placed along
the coordinate axes is introduced in Huber and Hanebeck
(2008). Also for linear quantities, systematic Dirac mixture



approximation based on distance measures have been pro-
posed for the case of scalar continuous densities (Schrempf
et al., 2006a,b). An algorithm for sequentially increasing the
number of components is given in Hanebeck and Schrempf
(2007) and applied to recursive nonlinear prediction in
Schrempf and Hanebeck (2007). Systematic Dirac mixture
approximations of arbitrary multi-dimensional Gaussian
densities are calculated in Hanebeck et al. (2009). A
more efficient method for the case of standard normal
distributions with a subsequent transformation is given in
Gilitschenski and Hanebeck (2013). In Hanebeck (2014), a
faster version of Hanebeck et al. (2009) has been introduced
that gives slightly suboptimal results. The method does
not rely on comparing the probability masses on all scales
as in Hanebeck et al. (2009). Instead, repulsion kernels
are introduced to assemble an induced kernel density and
perform the comparison of the given density with its Dirac
mixture approximation.

For circular quantities, especially the von Mises distribution
and the wrapped Normal distribution, a first approach to
Dirac mixture approximation in the spirit of the UKF
is introduced in Kurz et al. (2013b). The approach is
based on matching the first circular moment and the
locations of three Dirac components are calculated. The
resulting approximation has already been applied to
sensor scheduling based on bearings-only measurements
(Gilitschenski et al. (2013)). The results are also used to
perform recursive circular filtering for tracking an object
constrained to an arbitrary one-dimensional manifold in
Kurz et al. (2013a),

This paper focuses on Dirac mixture approximations with
an arbitrary number of, say L, components that match
a given number of, say N ≤ L, circular moments of a
given circular probability density function. We start with
Dirac mixture approximations with prespecified component
locations, where the weights are determined based on the
theory of circulant rational covariance extension developed
by Lindquist and Picci (2013), which in turn generalizes pre-
vious results on reciprocal processes in Krener (1986); Levy
et al. (1990); Carli et al. (2011); Carli and Georgiou (2011)
and on covariance extension with rationality constraints in
Georgiou (1987); Byrnes et al. (1995, 1999). Subsequently,
we consider additionally optimizing the component loca-
tions, as we desire to adapt the density of Dirac components
to the height of the given continuous probability density
function. This gives another L parameters. For the under-
determined case, i.e., the number of constraints resulting
from the given circular moments is less than the number
of parameters, we minimize a measure of deviation of
the Dirac mixture approximation from the given circular
probability density function while considering the moment
conditions as constraints. This is performed in analogy to
the ideas proposed for linear quantities in Hanebeck (2014).

The paper is structured as follows. A detailed formulation
of the considered approximation problem is given in Sec. 2.
The resulting moment problem is formulated in Sec. 3.
The case of a Dirac mixture approximation with fixed
locations is treated in Sec. 4. For the case of a smaller
amount of moments constraints compared to the number of
parameters of the Dirac mixture approximation, a distance
measure between the Dirac mixture approximation and
the given density is derived in Sec. 5 and the resulting
constrained optimization problem is given. An example
of approximating circular probability density functions
is given in Sec. 6, where a von Mises distribution is
approximated. Conclusion are given in Sec. 7.

2. PROBLEM FORMULATION

We consider periodic probability density functions p : IR→
IR+ with p(θ) = p(θ + c) for c ∈ IR+. When c = 2π, p(θ)
is called a circular density and it is sufficient to consider a
domain Γ that is some interval of length 2π. Without loss
of generality we will use Γ = [−π, π].

2.1 Circular Dirac mixtures

A circular Dirac mixture density p(θ) with L Dirac
components is given by (1) with positive weights, i.e.,
wi > 0 for i = 1, . . . , L, adding up to one and locations

θ̂i ∈ Γ for i = 1, . . . , L. δ(.) denotes the Dirac delta
distribution.

2.2 Circular moments

The circular moments of a probability density function p(θ)
are given by

Ep
{
einθ

}
=

∫ π

−π
einθ p(θ) dθ (2)

for n ∈ IN. Obviously, the circular moments are the
coefficients of the Fourier series expansion of the probability
density function p(θ).

For the circular Dirac mixture in (1), the circular moments
are given by

Ep
{
einθ

}
=

L∑
j=1

wj

∫ π

−π
einθ δ(θ − θ̂j) dθ . (3)

Using the sifting property of the Dirac delta distribution
gives

Ep
{
einθ

}
=

L∑
j=1

wj e
inθ̂j . (4)

2.3 Approximation problem

Given a circular density p̃(θ), we would like to find a Dirac
mixture approximation p(θ) as in (1) that has exactly the
same first N circular moments

cn =

∫ π

−π
einθ p̃(θ) dθ, n = 1, 2, . . . , N . (5)

Clearly c0 = 1 is fixed.

Remark 1. Many interesting variations of this approxima-
tion problem exist. First of all, N arbitrary moments could
be considered. Second, it would also make sense to consider
more given moments than there are degrees of freedom
in the approximating density. In that case, the moments
cannot be exactly attained. Instead, some error between
the given moments and the approximate moments has to
be minimized.

3. MOMENT PROBLEM

We will now formalize the problem of constructing a Dirac
mixture approximation for a given density in such a way
that the two densities exactly share the first N circular
moments. First of all, we focus on symmetric densities,
which simplifies the notation. The results can then easily
be generalized to non-symmetric densities. Without loss of
generality it is sufficient to consider densities symmetric
to θ = 0 during the approximation, as the resulting Dirac



mixture approximation can later be shifted to arbitrary
center locations by shifting each component accordingly.

For symmetric densities p(θ), the imaginary parts of the
circular moments are zero, so that we are left with real
moments

Ep {cos(n θ)} =

∫ π

−π
cos(n θ) p(θ) dθ (6)

that are from now on used as the given moments cn =
Ep {cos(n θ)}.
For symmetric Dirac mixtures, we have to distinguish two
cases, i.e., even and odd numbers of components. Here we
focus on an even number of components, so that the circular
Dirac mixture centered around θ = 0 can be written as

p(θ) =

L/2∑
j=1

wj ·
(
δ(θ + θ̂j) + δ(θ − θ̂j)

)
(7)

with θ̂j ∈ [0, π] for j = 1, . . . , L/2. Its moments are given
by

Ep {cos(n θ)} =

L/2∑
j=1

2wj cos(n θ̂j) . (8)

We are given N moments cn for n = 1, . . . , N that we
would like to match with a symmetric Dirac mixture
approximation with L components as in (7). When weights
and locations are free parameters, we have L− 1 param-
eters available for matching the given N moments. The
parameters are collected in a parameter vector η given by

η =
[
w1, . . . , wL/2, θ̂1, . . . , θ̂L/2

]T
(9)

and we now parametrize the circular Dirac mixture in
(7) as p(θ) = p(θ,η). The parameter vector is confined
to the domain S = IR+ × . . . × IR+ × Γ × . . . × Γ with
2w1 + . . .+ 2wL/2 = 1.

In Sec. 4, we fix θ̂1, . . . , θ̂L in advance and just determine
the weights w1, . . . , wL. With this method, the moment
equations should actually be under-determined leaving
room for tuning parameters.

4. APPLYING THE CIRCULANT RATIONAL
TRIGONOMETRIC MOMENT PROBLEM

In this section we apply some recent results in Lindquist
and Picci (2013) to the approximation problem of Section 2.
(In that paper the density p is a spectral density, but the
formalism remains the same.) Then we need to fix the
locations of the Dirac points a priori, but by choosing many
equidistant points on the discrete circle and constraining
the weights to be zero at certain points, we can achieve
an almost arbitrary selection of the locations of the Dirac
points.

To this end, set ζ1 := ei∆, where ∆ := 2π/L, and define the
the discrete variable ζ taking the L values ζk := ζk1 = eik∆

running counter-clockwise on the discrete unit circle TL.
In particular, ζL−k = ζ̄k. Then, for a sufficiently large
L > 2N , we consider the Dirac delta distributions in (1)

with θ̂j := (j − 1)∆ leading to a moment problem
L−1∑
j=0

ζnj wj+1 = cn, n = 1, 2, . . . , N , (10)

where c1, c2, . . . , cN are the moments defined in (5) of the
given continuous probability density p̃ to be matched, and

some of the weights wj are constrained to be zero. We
also define the zeroth moment c0, which clearly is one, i.e.,
c0 = 1.

4.1 Dual cones

Consider the class of trigonometric polynomials

Q(eiθ) =

N∑
k=−N

qke
−ikθ , q−k = qk , (11)

where q := [q0, q1, . . . , qN ]
T ∈ RN+1 with q0 > 0. Let

P+(L) be the cone of all such (N + 1)-vectors for which

Q(ζj) ≥ 0 , j = 1, 2, . . . , L . (12)

Then, setting q̂ = [Q(ζ0), Q(ζ1), . . . , Q(ζL−1)]
T

, we have

q̂ = Fq , (13)

where

F =


1 2 cos(θ̂1) 2 cos(2θ̂1) · · · 2 cos(Nθ̂1)

1 2 cos(θ̂2) 2 cos(2θ̂2) · · · 2 cos(Nθ̂2)
...

...
...

. . .
...

1 2 cos(θ̂L) 2 cos(2θ̂L) · · · 2 cos(Nθ̂L)

 , (14)

since

Q(eiθ) = q0 + 2

N∑
k=1

qk cos(kθ) .

Consequently, the vectors q ∈ P+(L) are precisely the q
satisfying Fq ≥ 0. However, q̂ 6= 0 since q0 > 0. We also

define the interior P+

◦

(L) of P+(L). This is an open cone
which requires all q̂j := Q(ζj), j = 0, 1, . . . , L − 1, to be
positive.

The L× (N + 1) matrix F is a Vandermonde matrix and,
as L > 2N , it has full row rank. It follows from the theory
of discrete Fourier transforms and is easy to check that

FTF = LI , (15)

where I is the (N + 1)× (N + 1) identity. Hence

q =
1

L
FT q̂ . (16)

Next define the dual cone C+(L) of all

c := [c0, c1, . . . , cN ]
T ∈ RN+1 with c0 = 1 (17)

such that

cTq ≥ 0 for all q ∈ P+(L) , (18)

and let the open cone C+

◦

(L) be its interior. Using
Plancherel’s Theorem for discrete Fourier transforms we
have

cTq =
1

L

L−1∑
j=0

C(ζj)Q(ζj) , (19)

where

C(eiθ) =

N∑
k=−N

cke
ikθ , (20)

yielding an alternative formulation of (18). Since the
moments of a periodic probability density have a positive
Toeplitz matrix, the following proposition follows from
Proposition 6 in Lindquist and Picci (2013).

Proposition 2. Let c = [c1, c2, . . . , cN ]
T

be the moments

(5). Then there is an integer L0 so that c ∈ C+

◦

(L) for all
L ≥ L0.



4.2 Point-mass approximation by convex optimization

We are now in the position to reformulate Theorems 3, 4,
and 7 in Lindquist and Picci (2013) in the present setting.

Theorem 3. (Lindquist and Picci (2013)). Let c ∈ C+

◦

(L).

Then, for each P ∈ P+(L), there is a unique Q̂ ∈ P+(L)
such that

pL(ζ) =
P (ζ)

Q̂(ζ)
(21)

satisfies the moment condition
L−1∑
j=0

ζkj pL(ζj) = ck , k = 0, 1, . . . , N . (22)

If Q̂ has zeros on the unit circle, then P have the same
zeros, and there is cancellation of zeros in (21). Moreover,

Q̂ is the unique minimum of the strictly convex functional

JP (q) =

L−1∑
j=0

[
C(ζj)Q(ζj)− P (ζj) logQ(ζj)

]
, (23)

where the variable Q is given by (11) and C by (20).
Moreover,

lim
L→∞

pL(ζ) =
P (ζ)

Q̃(ζ)
, (24)

where Q̃ is the unique minimum of the functional

JP (Q) =

∫ π

−π

[
C(eiθ)Q(eiθ)−P (eiθ) logQ(eiθ)

]
dθ . (25)

It is shown in Lindquist and Picci (2013) that the problem
to minimize (23) is the dual problem of the primal problem
to maximize the generalized entropy gain

IP (p) =

L−1∑
j=0

P (ζj) log p(ζj) (26)

subject to the moment condition
L−1∑
j=1

ζnj p(ζj) = cn , n = 1, 2, . . . , N .

The optimal solution of the primal problem is precisely
(21), where Q is the optimal solution to the dual problem to
minimize (23). Choosing P = 1, we obtain the maximum-
entropy solution.

Remark 4. It easy to see that maximizing IP is equivalent
minimizing the Kullback-Leibler divergence

D̂(P‖p) =

L−1∑
j=0

P (ζj) log

[
P (ζj)

p(ζj)

]
(27)

with respect to p. Likewise, the problem to minimize (25)
is the dual of the problem to minimize the continuous
Kullback-Leibler divergence

D(P‖p) =

∫ π

−π
P (eiθ) log

[
P (eiθ)

p(eiθ)

]
dθ (28)

subject to the moment constraints in (5). (See, e.g.,
Georgiou and Lindquist (2003).)

If we are content with equidistantly placed Dirac point, we
now immediately have a procedure to determine a solution
to the approximation problem of Section 2. In fact, applying
Theorem 3, we obtain the solution

η = [w1, . . . , wL, θ̂1, . . . , θ̂L]T , (29)

where

wj =
P (ζj−1)

Q(ζj−1)
, θ̂j = (j − 1)∆ . (30)

In particular, we can use the maximum entropy solution
setting P = 1.

4.3 A generalization of Theorem 3

Inspecting the proof of Theorem 3 in Lindquist and Picci
(2013) and modifying it along the lines of Byrnes and
Lindquist (2003, 2006), it is trivial to see that P need not
belong to P+(N) but could, for example, be an arbitrary
probability density.

Theorem 5. Let f be an arbitrary continuous probability
density. Then, replacing P by f in Theorem 3, all state-
ments of that theorem remain true. Moreover, QL tends
to a limit Q∞ as L→∞ and

lim
L→∞

pL(ζ) = p∞(ζ) :=
f(ζ)

Q∞(ζ)
. (31)

The limit density p∞ satisfies the moment conditions (5).

Proof. Exchanging P for f , a trivial modification of the
proofs of Theorems 3, 4, and 7 in Lindquist and Picci (2013)
proves the theorem.

Corollary 6. Let p̃ be a probability density with the mo-
ments c1, c2, . . . , cN , and set P := p̃ everywhere in the
statement of Theorem 3. Then

lim
L→∞

pL(ζ) = p̃(ζ) . (32)

Proof. The limit of pL as L → ∞ is obtained from (31)
setting f := p̃. It remains to show that Q∞ ≡ 1 in this
case so that p∞ = p̃, which will be done by means of the
primal optimization problems of Remark 4. However, since
p∞ satisfies the moment conditions (5), the minimum of
D(p̃‖p) ≥ 0 is zero, and hence the unique minimizer of the
Kullback-Leibler divergence D(p̃‖p) subject to the moment
constraints (5) is precisely p̃. Consequently, the optimal
dual solution is Q∞ ≡ 1, as claimed.

4.4 Determining nonequidistant circular Dirac mixtures

As explained in the introduction, in general we would like
to place the Dirac points denser where the probability
mass is larger and more sparse where it is small. Then the
procedure above needs to be modified.

To this end, let M be the unique integer such that L = 2M
when L is even and L = 2M + 1 when L is odd, and let
R+ be the class of probability densities

R(eiθ) =

M∑
k=−M

rke
ikθ, r−k = rk (33)

that are nonnegative on the discrete unit circle. By
Theorem 5, we can replace P ∈ P+ by R ∈ R+ in the
statement of Theorem 3. We now choose L sufficiently large
and remove Dirac points by setting R(ζj) = 0 in points
where no point mass is desired. Solving the optimization
problem of Theorem 3, we then obtain a solution (29) with

θ̂k removed whenever R(eiθ̂k) = 0.

To construct such an R we choose a vector r̂ ∈ RM+1, such
that r̂j = R(ζj), j = 0, 1, . . . ,M , in the following manner.
Choose r̂j = 0 in positions where no Dirac point is needed
and take the other r̂j to be positive tuning parameters. We



fix only M + 1 values for R on the circle, rather than L,
since the symmetry condition ζL−k = ζ̄k will then prescribe
values for R in the remaining L −M − 1 points. Then,
analogously to (16), we obtain

r :=


r0

r1
...
rM

 =
1

M + 1
F̃T r̂ , (34)

where F̃ is the (M + 1)× (M + 1) matrix

F̃ =


1 2 cos(θ̂1) · · · 2 cos(Mθ̂1)

1 2 cos(θ̂2) · · · 2 cos(Mθ̂2)
...

...
. . .

...

1 2 cos(θ̂M+1) · · · 2 cos(Mθ̂M+1)

 . (35)

Since F̃ is a square Vandermonde matrix, it is nonsingular
and

F̃F̃T = F̃T F̃ = (M + 1)I , (36)
where I is the (M + 1)× (M + 1) identity, so there is a one-
one correspondence between r and r̂. Therefore inserting
(34) into (33) yields a suitable R.

5. DISTANCE MEASURE

In this section, we assume that more Dirac components
are available than required for satisfying the given moment
constraints. This redundancy is exploited by continuously
placing the Dirac components in such a way that the
resulting circular Dirac mixture p(θ) is as close to the
given continuous density p̃(θ). Closeness between the
two densities, the given continuous density p̃(θ) and its
approximation p(θ), is quantified by a distance measure.

For the direct comparison of continuous densities and Dirac
mixture densities, typical distance measures such as the
Kullback-Leibler distance or squared integral distances
are not well defined (Hanebeck and Klumpp, 2008). An
alternative in the case of linear quantities is to compare
cumulative distributions instead of densities. Doing so is,
however, complicated in the circular case. In this paper,
we adapt the method proposed for linear quantities in
Hanebeck (2014) to the circular case. This approach is
inspired by blue-noise sampling methods, e.g., see Schlömer
et al. (2011). Here, we use kernels for describing the mass
of individual Dirac components as in Fattal (2011) instead
of discs.

The key idea of this paper is the following. Individual
Dirac components of the circular Dirac mixture p(θ) are
characterized by repulsion kernels. A repulsion kernel is
an appropriate kernel function representing the spread
of probability mass that is required to approximate the
given density at a given location. The individual repulsion
kernels are summed up to form an induced kernel density,
which is then a continuous representation of the circular
Dirac mixture p(θ). For obtaining a distance measure, the
deviation between the given density and the induced kernel
density is considered. In this paper, we use a squared
integral distance, which is minimized by means of an
optimization method in order to find the parameters of the
circular Dirac mixture p(θ).

5.1 Using von Mises distribution kernels

For characterizing each Dirac component j located at θ̂j ,
we use a von Mises distribution normalized to the height of

the given density at the location of the Dirac component.
For that purpose, we take an unnormalized von Mises

distribution (see Sec. 6) according to eκj cos(θ−θ̂j) located at

θ̂j . Dividing it by a normalization term eκj , it is normalized
to height one. Multiplying it with the height of the given

density at the Dirac component location p̃(θ̂j) gives the
desired kernel functions

kj(θ) = p̃(θ̂j)
eκj cos(θ−θ̂j)

eκj
(37)

for j = 1, . . . , N , where κj is a spread parameter to be
determined.

The constants κj in (37) are determined by maintaining
the mass in the Dirac component given by wj , so we obtain∫ π

−π
kj(θ) dθ = wj , (38)

which gives

2π p̃(θ̂j) e
−κi I0(κi) = wj , (39)

where I0(.) is the Bessel function of the first kind and zeroth
order. For obtaining κj , j = 1, . . . , N , (39) is rewritten as

f(κ) = 2π e−κ I0(0, κ)− wi

p̃(θ̂i)
(40)

and we desire to find the zero κ0 of the function, i.e.,
f(κ0) = 0. For that purpose, a Newton–like method is used
with

∂ f(κ)

∂ κ
= 2π e−κ (I1(κ)− I0(κ)) . (41)

The resulting kernels have a larger width in low-density
regions of the given continuous density, as these regions are
characterized with few Dirac components per unit length.
In high-density areas, the kernels have a smaller widths,
which results in more Dirac components per unit length.

The density induced by the kernels in (37) is given by

k(θ,η) =

N∑
j=1

kj(θ) . (42)

This induced kernel density k(θ,η) is now used to char-
acterize the circular Dirac mixture p(θ). We assume that
when the mass distributions of p̃(θ) and the circular Dirac
mixture p(θ) are similar, then k(θ) is close to p̃(θ) on
Γ and we consider the densities p̃(θ) and p(θ) to be close.
Following this argument, k(θ) is used instead of the circular
Dirac mixture p(θ,η) to define a distance measure D(η)
between p̃(θ) and p(θ,η) on Γ.

Here, we use a squared integral distance measure given by

D(η) =

∫
Γ

(p̃(θ)− k(θ,η))
2

dθ . (43)

As the final optimization problem, we now desire to
minimize the distance measure in (43) while maintaining
the moment constraints, i.e.,

ηopt = arg min
η∈S

d(η)

s.t. Ep {cos(n θ)} = cn for n = 1, . . . , N .
(44)

Minimization of the distance measure under the moment
constraints is nonlinear and nonconvex. Applying standard
numerical minimization methods to (44) will most likely end
up in local minima and the results depend on the starting
values for the parameter vector. As this is undesired, we
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Fig. 1. Graphical visualizations for a symmetric Dirac mixture approximation of a von Mises distribution with L = 4
components and no moment constraints (N=0) for κ = 2. (Left) Standard plot. (Middle) Circular plot in three
dimensions. (Right) Circular plot in two dimensions.

propose the use of a homotopy continuation method (Allgo-
wer and Georg, 2003). In doing so, we start with a density
with a known approximation and gradually approach the
desired density. For that purpose, a progression parameter
γ is defined for parametrizing the given density as

p̃(θ, γ) =
p̃γ(θ)∫ π

−π p̃
γ(θ) dθ

. (45)

We start with γ = 0, which gives us a uniform density on
the circle, i.e., we have

p̃(θ, γ = 0) =
1

2π
. (46)

The Dirac mixture approximation for this density is known
and given by

wj =
1

L
and θj =

π

L
(2j − L− 1) (47)

for j=1, . . . , L.

We now progressively increase the parameter γ and for every
γ solve the optimization problem by using the result from
the previous step as starting values, which ensures tracking
the desired solution, see Alg. 1. No predictor is used. As
a corrector in line 7, we use the function fmincon for
constrained optimization in our MATLAB implementation.
A maximum amount of iterations is prespecified and success
is reported when the optimum for the next value of γ can
be found within these iterations.

6. AN APPROXIMATION EXAMPLE

As an example of a continuous circular density, we consider
the von Mises distribution (Mardia and Jupp, 2009) given
by

p(θ, µ, κ̃) =
1

2πI0(κ̃)
eκ̃ cos(θ−µ) , (48)

where µ is the location parameter, κ̃ is the concentration
parameter, and we have µ ∈ Γ and κ̃ > 0. I0(.) is the Bessel
function of the first kind and zeroth order.

The circular moments of the von Mises density are given
by

Ep
{
einθ

}
=
In(κ̃)

I0(κ̃)
einµ (49)

for n ∈ IN. In(.) is the Bessel function of the first kind and
nth order.

The given circular probability density function p̃(θ) is
approximated with a circular Dirac mixture p(θ,η) defined

according to (7). Both weights wj and locations θ̂j are
optimized for j = 1, . . . , L.

The approximation problem can now be simplified by noting
that it is sufficient to consider a specific fixed location value
µ, where without loss of generality we use µ = 0. The Dirac
mixture approximation calculated for this location value
can later be shifted to arbitrary location values by shifting
each component accordingly. As a result, the true circular
moments are given by

cn =
In(κ̃)

I0(κ̃)
(50)

for n ∈ IN, where I0(.) is the Bessel function of the first
kind and zeroth order and In(.) is the Bessel function of
the first kind and nth order.

For a von Mises distribution, the progressive parametriza-
tion is given by

p̃(θ, γ) =
1

2πI0(γκ̃)
eγκ̃ cos(θ−µ) . (51)

For a von Mises distribution with κ̃ = 2, a symmetric Dirac
mixture approximation of a von Mises distribution with
L = 4 components and no moment constraints (N=0) is
visualized with three different types of plots in Fig. 1. The
given density is always shown in yellow, the induced kernel
density corresponding to its Dirac mixture approximation
in blue. On the left side, a standard linear plot of the
periodic probability density functions is shown. The middle
plot shows a circular plot in three dimensions. The right
graph shows a dedicated circular plot in two dimensions
to compactly represent the results of the simulations.
The outermost ring shows the given circular probability
density function in yellow and the induced kernel density
corresponding to its Dirac mixture approximation in
blue. The middle ring shows the locations of the Dirac
components in purple, where the width is proportional to
the associated weight. The innermost ring shows the error
between the given circular probability density function
and the induced kernel density corresponding to its Dirac
mixture approximation normalized to one in red.



Dirac mixture approximation

Input :Given density p̃, number of Dirac components L,
number of moments N to maintain

Output :Dirac mixture approximation with weights wj and

locations θ̂j , j = 1, . . . , L collected in parameter η
according to (9)

// Initialize progression step counter
1PC = 0;

// Initialize progression parameter γ
2γ = 0;

// Initialize ∆γ
3∆γ = ε (some small positive number);

// Parameters for in-/decreasing ∆γ
4Down = 0.5 , Up = 1.5;

// Initial parameter vector for γ = 0

5Initialize η with wj and θ̂j , j = 1, . . . , L from (47);

6while γ < 1 do

// Try correcting values for increased γ
7[ηtmp, success] = Corrector(η, γ + ∆γ);

8if Correction step successful? then
// Make trial update the temporary estimate

9η = ηtmp;

// Increment γ
10γ = γ + ∆γ;

// Increase step size
11∆γ = Up ∗ ∆γ;

// Increment progression step counter PC
12PC = PC + 1;
13else

// Decrease step size
14∆γ = Down ∗ ∆γ;
15end

// Limit γ to [0, 1]
16if γ + ∆γ > 1 then
17∆γ = 1 − γ;
18end
19end

Algorithm 1: Dirac mixture approximation of given
continuous circular probability density function.

Circular plots of the Dirac mixture approximation of a von
Mises distribution with L = 6 and L = 8 components
and no moment constraints (N=0) for (left) κ = 0,
(middle) κ = 1, (right) κ = 3 in Fig. 2 and Fig. 3,
respectively. It is obvious that for a larger number of
components L, the error between the given density and its
Dirac mixture approximation decreases. For N = L − 1
moment constraints, circular plots of the Dirac mixture
approximation of a von Mises distribution with L = 6 and
L = 8 components are shown for (left) κ = 0, (middle)
κ = 1, (right) κ = 3 in Fig. 4 and Fig. 5, respectively.
Here, the errors are always a littler larger than in the
unconstrained case. However, in all cases, the Dirac mixture
approximations are well-distributed and approximation
quality is very good.

7. CONCLUSION

The first proposed method for calculating the weights
for a Dirac mixture approximation with fixed component
locations has not been simulated so far. Simulations for the
second proposed approximation method are shown in the
paper. It reliably provides well-distributed Dirac mixture
approximations of given circular densities while exactly

maintaining a set of predefined circular moments. It will be
interesting to compare the performance of the two proposed
methods. This will be the topic of a future study.

The next step is the generalization to higher-dimensional
periodic manifolds such as torii or spheres.
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