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ABSTRACT 

In this paper we take a unified approach to the partial realization problem in 
which we seek to incorporate ideas from numerical linear algebra, most of which were 
originally developed in other contexts. We approach the partial realization problem 
from several different angles and explore the connections to such topics as factoriza- 
tion of Hankel matrices, block tridiagonalization, generalizations of the Lanczos 
process for biorthogonalization, the Euclidean algorithm and the principal-part con- 
tinued fractions of Ame Magnus, the Pad& table, and the BerlekampMassey algo- 
rithm. In this way we are able to clarify some previous results by Rissauen, Kahnan, 
and others and place them in a broader context. This leads to several results and 
concepts which we think are new. Our analysis is restricted to the scalar case, but 
some definitions and formulations have been rigged to facilitate an extension to the 
matrix case. 

1. INTRODUCTION 

The following problem is of central importance in systems theory. Given a 
finite sequence y : = {yl, yz, . . . , yN} of real numbers, find a triplet Z: = 
(A, B, C) of matrices in Iw”x”, [Wnxl, and lWlxn respectively such that 

CA’-lB = y, for i= 1,2,...,iV 0.1) 

and such that n is as small as possible. This is the (scalar) partial realization 
problem [19, 211. In a more general formulation of this problem, the elements 

of y are m X p matrices and B and C are n X p and m X n respectively. 
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A triplet 2 satisfying (1.1) will be called a realization of y, and the number 
n is its dimension, denoted dim 2. Clearly there always exist such realizations. 
For example, consider the following shij3 realization. Let A be the N x N 
downshift matrix J with ones on the subdiagonal and zeros elsewhere, let B be 
the axis unit vector in RN with the one in the first position, and set 
C: =(yr,yz,..., yN). In general, however this realization will not have the 
required minimal dimension. Let 6( y ) be the unique natural number with the 
property that there exists a realization of y with dimension 6(y), but none 
with a smaller dimension. The number S(y) will be called the McMiZlun 
degree of y for reasons to be explained below. A realization of dimension 6( y ) 
is ca.lIed minimal. The problem under consideration is then to find a minimal 
realization of y. As we shah see below, this problem has more than one 
solution, and this nonuniqueness will be exploited to obtain certain additional 
properties. 

All concepts defined so far make sense also if y is an infinite sequence 
(Yi> Y2.y Y3>. . . } and we require that (1.1) hold for all natural numbers, except 
that there may exist no realization 2 of finite dimension. If so, set 6(y) = co. 
This is perfectly consistent with the finite-sequence case, since there are 
always infinite-dimensional realizations. For example, the shift realization 
described above is welldefined also when N = co. A subsequence y : = 

{Y12Y2,9.**, yM} with M < N will be called a partial sequence of y, regardless of 
whether N is finite or infinite. 

Equivalently we may describe the partial realization problem in the 
following way, which better motivates its name. Let 

r(x)= f y,zc (1.2) 
i=l 

be a formal power series. Then, if (1.1) holds, we call Z : = (A, B, C) a partia2 
realization of I? of order N. To each such partial realization we associate the 
power series 

W(z)= E CKrBz-“. (1.3) 
i=l 

If dim Z < co, this series converges in a neighborhood of infinity and 

W(z)=C(d-A)-‘B. (1.4) 

This is a rational function; let us write it W = P/Q, where P and Q are 
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relatively prime polynomials with Q manic. Moreover W is strictly proper, i.e. 
W(cc) = 0. Hence the degree of W is the same as the degree of Q. Now, the 
power series of the rational function W matches that of I? at least up to 
powers of order N in z- ‘, and therefore W is a Pad6 fraction for I? of at least 
order N [12]. 

Next consider the degrees of all W corresponding to partial realizations of 
I?(z) of a fixed order N < cc. The smallest such degree is the McMillan degree 
6(y) of the finite sequence y : = {yi, ys,. . . , yN}. To see this, note that deg W 
< dim Z and that equality can be obtained by choosing A to be a companion 
matrix of Q, B as the first axis vector, and C: =(pO,pl,...,p~_l)r where 
P(z) = Cpizi [4, 211. Consequently our definition of McMillan degree, which 
is standard in systems theory, is consistent with the use of the term “degree” 
by McMillan [27] in reference to rational (matrix) functions (although one 
would have to go to the matrix case to make this observation nontrivial). A 
partial realization with dimension 6( y ) is called minimal. A triplet Z such that 
(1.1) holds for all natural numbers is called a complete realization of I. 
Clearly I has a finite-dimensional complete realization if and only if it 
converges to a rational function about x = co, and this happens precisely 
when the McMillan degree of the infinite sequence {yi, yZ, y3,. . .} is finite. 
Then W = I. We shall make no distinction between the sequence and 
power-series formulation, using them interchangably as best fits the situation 
at hand, and we shall analogously refer to a realization of a partial sequence of 
a finite or infinite sequence y as a partial realization of y. 

The importance of the partial realization problem in systems theory 
emanates from the fact that Z corresponds to a linear system 

x(t +l)= Ax(t)+&(t), 

y(t) = wt1 (1.5) 

(t = 0,1,2,. . .), where x(t) E IR” is called the state, y(t) E Iw the output, and 
u(t) E R the input at time t. Then the sequence y is a section of the impulse 
response of the system (1.5) in the sense that, if we choose u(0) = 1, 
U(1) = U(2) = . . . = u(N) = 0, and x(O) = 0, we obtain the output y(t) = yt 
for t = 1 2 , , . . . , N. In other words, the partial realization problem is the inverse 
problem of determining a system (1.5) from its partial impulse response y. A 
complete impulse response {yi, ya, ya,. . .> is usually not available from data, 
and therefore we must content ourselves with a partial realization. Moreover, 
it is easy to see that, if x(0) = 0, 
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where J(z): = C~!aytz-’ and a(z) = C~=,U,Z~” are the discrete Laplace 
transforms (“z-transforms”) of y and z respectively. Hence W is the trun.s~eT 
function of the system (1.5). The relation (1.6) is still true if we replace (1.5) 
by the continuous-time linear system 

k=Ar+ Bu, 

y = cx 0.7) 

(t > 0), where the dot denotes differentiation, if now zj and fi are the regular 
(continuous) Laplace transforms of y and u. Consequently, discretetime and 
continuous-time linear systems lead to the same partial realization problem, 
and (1.5) and (1.7) will play no role in what follows. 

The (complete) realization problem can be regarded as the fundamental 
inverse problem in systems theory. There are many algorithms for its solution 
in the literature, the most interesting of which are based on the Hankel matrix 
of y [14, 31, 37, 381. These algorithms can also be applied to finite sequences 
y, and the particular problems connected with this are discussed in [19, 211. 
However, in [29] Rissanen adds an important new aspect to the partial 
realization problem, the nesting property. As the number of elements in the 
partial sequence y increases through the natural numbers, a (nonunique) 
sequence of minimal partial realizations (Z,, Z,, Z,, . . . } of increasing dimen- 
sions is obtained. Rissanen requires that these realizations be determined so 
that they are nested in the sense that the matrices of Z, are submatrices of 
the corresponding matrices of Z, whenever m < n, and he presents an 
algorithm that achieves this. (Actually Rissanen’s algorithm may skip certain 
realizations in the sequence (IX,,, C,, Z,,. ..}, as we shall see in Section 3.) 
This is an important property, since the addition of new numbers in the 
sequence y will not require complete recalculation of the realization but only 
that it be appropriately augmented. Hence none of the old calculations are 
wasted. 

Our interest in the partial realization problem was triggered by a recent 
paper by Kalman [20], one of the basic ideas of which is to represent W by a 
certain continued fraction. However, this is actually a special case of the 
principal-part continued fraction (P-fraction) of Ame Magnus [24, 251. Thus 
the paper [20] led us to realize that certain problems, ostensibly unrelated to 
systems theory, with which the first author has been involved, are deeply 
connected to the more interesting aspects of the partial-realization problem. 
These include the block structure of the Padi: table [12], block tridiagonaliza- 
tion of matrices, and generalizations of the Lanczos process of biorthogonali- 
zations in the case where there are breakdowns [13, 24, 25, 281. Some of these 
connections, more precisely the relations to the generalized Lanczos poly- 
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nomials [24, 251 and their connection to the BerlekampMassey algorithm [l, 

261, had already been pointed out and elaborated upon in a thesis by Kung 

WI * 
Our original objective was to consider the partial realization problem in 

the full generality of matrix sequences, but we encountered so many different 
aspects of the scalar problem that we shall be unable to discuss even all of 
them in the limited format of this article. Moreover, we do not have complete 
results on the vector case at this time. Therefore we shall only consider the 
scalar case. This strategy also has the advantage of not excessively burdening 
our presentation with detail: one needs to understand the scalar case com- 
pletely before going to the matrix case, a step which is decidedly nontrivial. 
Various other aspects of the matrix case have been studied in [7, 22, 301. 

The outline of the paper is as follows. In Section 2 we discuss factorization 
of Hankel matrices and block tridiagonalization, and in Section 3 we tie this 
up with the partial-realization problem, which is discussed in detail. The 
connections to the Euclidean algorithm and P-fractions are discussed in 
Section 4, and in Section 5 we present an algorithm of the BerlekampMassey 
type and consider some numerical questions. 

In this paper we do not consider questions of numerical stability. This has 
been done, to some extent, by de Jong [16]. The problem of rank determina- 
tion is inherently ill posed in the presence of noise, but can be modified to be 
well posed. Stable methods of linear algebra can be applied to the modified 
problem. There appear to be severe tradeoffs between efficiency and stability. 
These questions merit further study. 

2. MATRIX FACTORIZATION AND BLOCK TRIDIAGONALIZATION 

Let Y=(Yl>Yz>Y3,... } be an infinite sequence of real numbers, and let 
{Hi j; i, j= 1,2,3,. . . } be the family of rectangular Hankel matrices 

I Yl Yz Y3 ... yj 

Hij= ~2 ~3 Y4 *** yj+l . 
. . . . . . . . . . . . . . . . . . . . . . . 
Yi Yi+l Yi-2 “* Yiij-1 I 

(24 

Define the degree indices (v(O), v(l), v(2), . . .} of y in the following way. Set 
~(O):=O,and,forn=0,1,2 ,..., let ~(n + 1) be the smallest integer greater 
than v(n) for which 

A,+,: = Hv(n)+l,“(n+l) (2.2) 
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has full rank. Set d( n + 1) : = v( R + 1) - v(n). At this point we disregard the 
fact that this procedure may not be numerically meaningful since it involves 
rank determination. We shall address this question in Section 5. In Section 3 
we shall interpret the degree indices of y as the McMillan degrees of the 
partial sequences of y; see this section for an example. 

Let H be the infinite Hankel matrix 

Yl Yz Y3 

Yz Y3 Y4 
H: = 

Y3 Y4 Y5 
. . . 
. . . 
* . . 

. . . 

. . . 

. . . (2.3) 

In the sequel we shall refer to H as the Hankel matrix of the sequence y. If H 

has finite rank, the process defining the degree indices stops after finitely 
many steps, at n = ri. Therefore we shall refer to the sequence of degree 
indices as (y(n); n E ‘%}), where % is either {0,1,2,. . .} or (0,1,2,. , . , ri}, 
whichever case applies. In the latter case, for notational convenience, we set 
3: ={0,1,2 ,..., ri+l} and ~(ri+l):=co; then d(fi+l)=oo. If 3 is in- 
finite, 9Z: = L9Z. Moreover let OX’ (92’) denote L9Z (3) with the zero 
removed. Define J to be the infinite downshift matrix with ones in positions 
(k +l, k), k = 1,2,3 ,..., and zeros elsewhere. Then it is easy to see that, for 
i=O,1,2 ,..., 

HJ’ = (J’>~H = J(H), (2.4 

where the prime denotes transpose and a’(H) is the Hankel matrix of the 
shifted sequence { yi + i, y, +a, y, +3,. . .}. For each n E En+, let H, be the 
y(n) X v(n) leading principal submatrix of H, i.e. 

(2.5) 

Let us agree to call a square matrix right (left) triangular if all elements 
below (above) the diagonal are zero, and upper (lower) triangular if all 
elements below (above) the antidiagonal are zero. If in addition all elements 
on the diagonal (antidiagonal) are ones, we add the attribute unit. 

THEOREM 1. The matrices {H,; n E UX’> are nonsingular. All other 

leading principal submatrices of H are singular. For n E L%+, let r,, : = 
- Hi’h,, where h,: =(yvCnj+l ,..., yzUC,,)‘, and define 9,: =(r,l,l,O,O ,... )’ 

E [w”; set 9” : = (l,O, 0,. . .)I. Let R E Iw” x O” be the unit right triangular 
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matrix 

Moreover, let { rI, r2, r3,. . . } be the sequence defined, for each n E 92, by 

rzv(n)+i = 9LHJ”-‘9n, i=1,2 ,..., 2d(n+l), (2.7) 

set A,: = 772VCnj+dCn+lj, and, for nE%+, define II,, to be the d(n)xd(n) 
Hankelmatrixofthesubsequence{7T2,(n-1)+1,7T2u(n_1)+2,...,n2,(,,_,}. Then, 
for n E %+, 

R’,H,R, = D,,, (2.8) 

where R, is the v(n) x v(n) leading principal submatrix of R, and D,, is the 
block diagonal matrix 

D,=diag(ll,,ll, ,..., ll,). (2.9) 

Each 111, is nonsingular and lower triangular, A,_ 1 * 0 being the element on 
the antidiagonal of IIk. If 97, is finite, all elements of D: = R’HR outside D, 
are zero. 

The results concerning the factorization (2.8) were announced in Gragg 
[ 131, which paper constituted an impetus for our study. The fact that the sizes 
of the nonsingular matrices {H,; n E %t) are precisely the degree indices (as 
defined above) is suggested by systems theory; see in particular Theorem 11 
in Silverman [32]. The proof presented here is constructed so as to emphasize 
this connection to realization theory. 

Proof. The proof is by induction. First note that A, = (0,. . . ,O, ha), 
where X 0 : = ydCn is the first nonzero element in the sequence y. Hence H, is 
lower triangular and Hankel with nonzero elements on the antidiagonal. 
Therefore H, is nonsingular, and all leading principal submatrices of H, are 
singular. Moreover D, = H,, which establishes the factorization (2.8) for 
n = 1, since R, = 1. Now assume that H, is nonsingular and that Ri H,R, = 
D,, . We want to show that H,, + 1 is nonsingular, that all leading submatrices of 
H n+l of orders v(n)+l, v(n)+2 ,..., v(n + 1) - 1 are singular, and that 

R;+iHn+lRn+l= D,+i* To this end, consider the family of unit right trian- 
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Rn %(l) d4 .‘. %(k) 
1 P21 . . . pkl 

1 . . . 
Pk2 

Set d: = d( n + 1). We want to determine r,(l), r,(2), . . . ,r,(d ) E R “(“) and 

Pal> P31”“?Pd,d-l E R so that 

%(lVL+A@)= On * * . . . * 3 i 1 (2.11) 

where numbers which are not affected by the present analysis are denoted by 
an asterisk. (Blank spaces are zero.) Setting 

(2.10) 

4I+l = Hn h,(l) h”(2) ..’ kl(4 
h,(l)’ 1 771 “?2 . . qd ’ 

(2.12) 

it is seen that (2.11) holds if and only if 

H,r,,(i)+p&,(l)+ ... +pi,i_Jz,(i-l)+h,(i)=O (2.13) 

fori=1,2,..., d. Hence we must have r,(l) = - Hi ‘h,(l), which is precisely 
the relation r” = - Hi ‘h, mentioned in the theorem. However, there is a 
certain arbitrariness in the choice of the other parameters. The dimension of 
the solution space of the system (2.13) equals the number of pparameters; the 
vectors r,(2), . . . , r,,(d) are uniquely determined in terms of these. (Of course, 
this whole situation happens only if d > 1.) Although next we shall choose a 
particular solution which exploits the Hankel structure, we shall have reason 
to refer to this lack of uniqueness in Section 3. Now let q,,(i) E R”, i = 

1,2,..., d, be the last d columns of R,( d ), each augmented with infinitely 

many zeros, i.e. 

9"(i): = [r,(i)',Pil,Pi2,...,Pi,i-1,1,0,0,...]'; (2.14) 

hence, in particular, 9,,(l) = 9,, as defined in the theorem. Then (2.13) can be 



THE PARTIAL REALIZATION PROBLEM 285 

written 

e;Hq,( i) = 0 for k=l,e,...,~(n) (2.15) 

where ek E R * is the axis unit vector with a one in position k and zeros 
elsewhere. However, due to the rank condition defining fi,, i, we actually 
have 

1 0 . . . 0 A, ) 
(2.16) 

where An * 0. Hence, since R J d ) - ’ is unit right triangular, 

(noting that r,(l) = r,), or equivalently 

0 for 
e; Hq, = 

k=1,2 ,..., v(n+l)-1, 

L for k=v(n+l), 
(2.17) 

which is stronger than the corresponding equation (i = 1) in (2.15). So far we 
have not used the fact that His a Hankel matrix. In view of (2.4) and the fact 
that ek+i = Jiek, (2.17) yields 

c&H]'-'q, = 0 for k=1,2 ,..., v(n+l)-i. 

Comparing this with (2.15), we see that we may choose 

q,(i) = PIQn, i = 1,2 ,...,d(n +1). (2.18) 

This choice is easy to implement since, once r,, has been uniquely determined, 
the last d - 1 columns of R,(d) are obtained by merely shifting the previous 
column down one step. Then R,(d) = R,+l as defined in the theorem. Next 
we extend A, + r to the square matrix H, + 1. The relation (2.16) can be written 

hwmn+1fL+1= On 
[ 1 

o . . . o A, 9 
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and therefore, by symmetry, 

where the components of the d(n + 1)X d(n + 1) matrix II are 

(2.19) 

(2.20) 

in which (2.4) has been used. Consequently II is the Hankel matrix Il, + r. It 
is lower triangular with X, * 0 on the antidiagonal. Hence H,, 1 is nonsingu- 
lar and all leading principal submatrices of orders v(n)+ 1,. . . ,v(n + 1) - 1 
are singular. If v(n) is the largest degree index, there is no X n * 0, so the 
above procedure yields instead an infinite II = 0. Therefore the singularity of 
the leading principal submatrices of orders v(n)+ 1, V( n)+2,. . . is estab- 
lished. n 

REMARK 1. One of the motivations for the generalizations proposed in 
[13; p. 2221 was the study of signatures of Hankel matrices; see [15] for many 
connections. In view of (2.8), H, and D,, are congruent. Hence they have the 
same signature (Sylvester’s law of inertia). But D,, is the direct sum of 
II,, IL,..., II,, and consequently the signature of D, is the sum of the 
signatures of II,, I12,. . . , II,. Therefore, since the signature of a nonsingular 
lower triangular matrix is the sign of its middle element if the latter exists and 
zero otherwise [8], the signature of H, is &sign Ai_ i, where the sum is taken 
overthosei=1,2,..., n for which d(i) is odd. These observations are equiva- 
lent to those made in [20, p. 211, derived via the Euclidean algorithm. To see 
this we need to establish certain equivalences between our matrix factoriza- 
tion and certain continued fractions. This will be done in Section 4. We shall 
discuss several procedures for obtaining the factorization (2.8) below. Any of 
these algorithms can be used for the signature problem as well. Since the 
problem of determining the stability of a matrix can be formulated in similar 
terms [9], the same comment goes for this problem. However, a complete 
treatment of the “polynomial inertia problem” which is based only on 
Euclid’s algorithm and the argument principle, totally avoiding Cauchy 
indices and Sturm sequences, can be found in Talbot [35]. 

We associate with the sequence y a linear functional on the vector space 
of real polynomials defined by 

y*(Z”-1) = yi, i = 1,2,3 ,... . (2.21) 
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Then, if F(z): = Cf,z” and G(z): = Cgizi are any two polynomials, 

Y*(=) = f’ffg, (2.22) 

wheref,gER” aredefinedasf: =(f0,fi,f2,...)‘andg:=(g,,g,,g,,...)’. 
To be able to make the transformation between vectors in R” and poly- 
nomials we introduce the infinite vector 

v(z): = (1, .z, z2, .z3 )... )’ (2.23) 

of z-powers. Then F(z) = u(x)‘f and G(z) = u( x)‘g. 

THEOREMS. Let y be an infinite sequence (of real numbers) with degree 
indices {v(n); n E %}. For each n E 92, define the monk polynomial 

QAz): = v(z)‘q, of d e g ree v(n), where q,, is defined as in Theorem 1. Then 

for i=1,2 ,..., v(n+l)-1, 
y*(ziPIQn)={~“*() for i=y(n+l), (2.24) 

where A, is given in Theorem 1, or equivalently, 

0 for men and i=1,2,...,d(m+l) 

Y”( +0&J = 
+ d(n + 1) - 1, (2.25a) 

o 
for m=n and i=1,2 ,..., d(n+l)-1, (2.25b) 

A* for m=n and i=d(n+l). (2.25~) 

Moreover, (0,; n E 92) satisfy the three-term recursion 

Qn+h) = a: n+ddQnb) -PnQn-,b) (2.26) 

with initial conditions QO( z) = 1 and Q_ 1( z) = 0, where, for each n E %+, 

a,(z) = zd(“) - a,lZd(n)-l _ . . . _ a,,d(n) (2.27) 

is a rrwnic polynomial of degree d(n): = v(n) - v(n - 1) such that a,,: = 

(a n,d(n)p*‘** a”l)’ E IWd(n) is the unique solution of the system of linear 
equations 

Kan = P, (2.28) 
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with p,: =(~~ir2v(n_l)+d(n)+l,...,~~2u(n))’EIW’f’n’, and 

P”_, = A,_ l/L, (2.29) 

are nonzero real numbers. Here A_ 1 : = 1, and the matrices {II,; n E bX+> and 
the sequence {a,, TV, TV,. . .} are defined as in Theorem 1 or, equivalently, via 

772”(n)+, =y*(z i-1Qz), i=l,2 ,..., 2d(n+l), (2.30) 

for each n E CL 

The conditions (2.24) and (2.25) are actually corollaries of Theorem 1, 
reported here for convenience. In fact, (2.24) is the same as (2.17), and (2.25) 
is equivalent to the factorization (2.8). From the linearity of the functional y*, 
it is easy to see that (2.24) and (2.25) are equivalent. If the sequence y has 
degree indices (0, 1,2,3,. . . >, i.e. d(n) = 1 for all n > 0, then ( Qn; n = 0, 1,2,. . , } 
are the Lanczos polynomials and the corresponding three-term recursion 
provides a well-known technique for tridiagonalization of matrices and com- 
putation of eigenvalues [23]. The generalized three-term recursion (2.26) is 
due to Magnus [24, 251. A derivation via a matrix factorization can be found 
in Kung [22]. 

Proof. It remains to show that {Q,,; n E “X} satisfy (2.26) with (on, P,,-i; 
n E OX+} defined by (2.27)-(2.29). To this end, first note that, since 

(Qo, zQo ,..., z~(‘)-~Q,,,Q~, zQ1 ,..., z’~@-~Q~,Q~, zQ2 ,..., 

is a sequence of manic polynomials of degrees 0, I,2,. . . , v( n), there are 
polynomials {$+; i = 1,2,. . . , n - l} such that deg c#+ -C d(i) and a manic poly- 
nomial (Y, of degree d(n) such that 

Qnb> = ~,(~)Q,~,(~)+~~-,(~>Q,-~(z)+ . . . + hb)Qo(4. 

(2.31) 

Then it follows from (2.25) that 

Y”(Z i-l~~+lQkQm) =O for i=1,2,...,d(m+l) (2.32) 
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except when k = m = n - 2. To see this, first note that (2.25a) implies that 
(2.32) holds for k * m, because i + deg $ ,+,<i+d(k+l)-l<d(m+l)+ 
d(k + 1) - 1. Next multiply (2.31) by ziPIQk and apply y* to obtain 

Y”(Z i_‘Q”Q,) = y*(Zi-‘a”Q”_1Qk)+Y*(Zi-1~k+1Qk2) (2.33) 

for k=0,1,2 ,..., n-2 and i=l,2,..., d(k + 1). In view of (2.25a), the left 
member of (2.33) is zero. Moreover, i + deg(cY,Q,) = i + d(n)+ v(k) < v(n), 
with equality when k = n - 2 and i = d(n - 1). Hence, by (2.24) the first 
term in the right member of (2.33) is zero except in the case that k = n - 2 
and i = d(n - l), in which case it equals A,_ r. This establishes (2.32) for 
k=m*n-2and 

v*(z (2.34) 

Now let fi E WdCi) be the vector of coefficients of +i. Then, (2.32) with 
k = m = j - 1 is equivalent to the system of Iinear equations II j$ = 0. But II j 
is nonsingular (Theorem l), and therefore 4 = 0, i.e. Gj = 0, for j= 1,2,. . . , 
n - 2. Likewise (2.34) is equivalent to H, _ r f,_ r = (O,O, . . . , A, ~ r ), which 
yields $~~,_r = X,-,/h,_,. Hence Q,, = o,Q,_r + ,8,-rQn-s, where P,_, is 
given by (2.29). Multiply this by zip ‘Qn_ r and proceed as above to obtain 

Y*(z i-lanQ;_l) = 0, i = 1,2 ,...,d(n). (2.35) 

But this is precisely (2.28). n 

We shall need a matrix interpretation of the three-term recursion (2.26). 
To each manic polynomial P(Z) = X* + r)r~“-’ + . . . + pm of degree m we 
associate the m x m matrix 

0 0 0 ... 0 -pm 

F(P): 
1 0 0 ... 0 

-‘pm-1 = 
0 1 0 ... 0 

’ 
-Pm-, 

(2.36) 

d . .d . .d . ._.... . . .1. . ‘_I ;; . . 

which we call the companion matrix of P. [This name is often used for various 
other forms also, but from now on we shall reserve it for (2.36).] 
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THEOREM 3. Given a sequence (al, az, . . . , a,} of manic polynomials and 
a sequence {f31,&,..., &_,> of real numbers, let (Qo,Q1,...,Q,,} be the 
manic polynomials defined by the three-term recursion (2.26). For k = 1,2,. . . , n 
set d(k): = degak and v(k): = degQk. Let R, be the v(n)x v(n) unit right 
triangular matrix defined by 

[ 1, z, z’,. . .,z~(~)-~] R, 

= (QO, zQO ,..., z’~(~)~‘Q~,Q~, .zQ1 ,..., z’~@~~Q~,Q~ ,..., z+-‘Qn& 

(2.37) 

Then 

F,,R, = R,A,, (2.38) 

where F,, is the companion matrix F(Q,,) and A,, is the block tridiagonal 
v(n)Xv(n) matrix 

A,, Al2 

A 21 A22 A23 

A,, = A A,, 32 (2.39) 

A n-l,fI 

A A n,n-1 nn 

Here Akk: = F(LY~) is the d(k)x d(k) companion matrix of ak, and A,, k cl 

adAk+l,k are matrices (of appropriate dimensions), each of which has zeros 
in all positions except the northeast corner, where (as for A,, k + 1 ) there is a Pk 
and (as for Ak+ 1, k) a 0ne.l Conversely, if {Q,, Ql, . . . , Q,,} are polynomials 
satisfying (2.37)-(2.39), they also satisfy the three-term recursion (2.26). 
Moreover, if H,: =(l,O,O ,..., O)‘E[W”(“), 

R ?I ’ = (B,, A,B,,, A;R, ,..., A’$+ ‘I?,,). (2.40) 

Proof. The relation Qk = cxkQk_ 1 - pk_ lQk_2 is equivalent to 

[zQ~_~,z~Q~-~>...>~ d'k'Qk~1]=Pk_1[0,...,0,Qk-21 

+ [zQ~-~, z~Q~_~,...>(z~~(~)- q>Q,~l] 

+ [O,...,O,Q,]. (2.41) 

‘See Figure 2 for an example. 
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Let R(k) E Iw v(“)xd(k) be defined by 

[ 1, 2, z2,. . .) z”‘“‘qqk)= [Q,_,,ZQk_l,.. .,z d(k) - 
-%?,-,I. 

Then,fork=0,1,2 ,..., n - 1, (2.41) can be written 

where J, is the v(n) x v(n) leading principal submatrix of the downshift J. For 
k = n we have 

J,R(n)=R(n-1)A._,,.+R(n)A,,+(O,...,O,r,) (2.4213) 

&here r,, E [w “cn) is defined by Q,,(z) = z”(“) +(l, z,. . . ,zucnJpl)r”. Now R, = 

[R(l), R(2), . . ., R(n)], and therefore, since R(0) = 0, (2.42) can be written 

J,,R,=R,A,+(O ,..., OJ,,). (2.43) 

But, since R, is unit right triangular, the last term in (2.43) can be replaced 
by (0,. . . > 0, r,,)R,, and therefore (2.43) is the same as (2.38). It just remains to 
prove (2.40). Since R, is unit right triangular, R,B, = B,, which together 
with (2.38) yields 

R,(B,, A,,%, Af$, ,..., A’,c”)-‘B,)=(B,,F,B,,F,2B, ,..., F,“(“)-lR,)=z. 

This gives us (2.40). n 

In the special case that all d(k) = 1, A, is tridiagonal. This is the regular 
case when the Lanczos algorithm applies. The relation (2.40) has certain 
implications in realization theory, as we shall see next. 

3. COMPLETE FAMILIES OF MINIMAL PARTIAL REALIZATIONS 

Our interest in the degree indices of a sequence y emanates from the fact 
that they are precisely the McMillan degrees of all partial sequences of y. 

THEOREM 4. Let y be an infinite sequence (of real numbers) with degree 
indices {v(n); n E St). Then the McMillan degree of y is given by 

6(y) = sup{v(n); n E a}. (3.1) 
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Moreover, for each N = 1,2,3, . . . , the partial sequence (vl, y2,. . . , Y,V> has 
McMi1.h degree v(n), where n is determined by 

v(n-l)+v(n)<N<v(n)+v(n+l). (3.2) 

Here v( - 1): = 0, and when % is finite the convention of Section 2 applies. 

Consequently each partial sequence (yi, ya, . . . , yN} satisfying (3.2) has a 
minimal realization Z, = (A,,, B,, C,,) of dimension v(n). Hence we can 
construct a family ): = (2,; n E 92} of minimal partial realizations of y, one 
for each degree index, so that the matchings y, = C,,A”; ‘B, hold for increas- 
ing portions of y. (Here Ze: = (O,O, 0) will only be needed if yi = 0, as can be 
seen from (3.2); nevertheless we shall always include it for completeness.) 
Such a family will be called a complete family of minimal partial realizations 
of y. There are many of them. We shall be interested in families which are 
nested in the sense that, whenever 0 < m < n, A,,,, B,,, , and C,,, appear in the 
upper left corners of A,,, B,, and C, respectively. This implies that data 
computed for Z,, can also be used for Z,. 

Before continuing we shall illustrate Theorem 4 by an example, to which 
we shall return repeatedly in the sequel. Let y be the infinite sequence 

y=(l,1,1,2,3,4,5,6,7,8 ,... }. (3.3) 

Then the full-rank matrices fi,, are the ones framed in Figure 1. Consequently 
the degree indices are (0, 1,3,4) and S(y) = 4. For N = 1,2,3,. . . , the 
McMillan degrees of the subsequences ( yi, yZ,. . . , yN} are respectively 
1,1,1,3,3,3,4,4,4,4 ).... There is a change of degree as we reach the lower 
right comer of each matrix i?,; these elements have been circled in Figure 1. 

The degree indices of a finite sequence y are then simply defined as the 
indices (v(O), v(l), . . . , v(n)} which the above procedure has produced by the 
time we run out of numbers yi; and, by Theorem 4, 6(y) = v(n). Hence there 
is really no need to consider Hankel matrices with undetermined elements as 
in Kalman [20]. If we do not have enough data to form a full-rank matrix A,,, 
there is no index v(n). 

Theorem 4 follows quite easily from Theorem 11 in Silverman [32], but 
here we shall provide a proof which is based on our Theorem 1. For this 
purpose, and for latter use, we shall need the following lemma. 

LEMMA 1. Let y be an infinite sequence with degree indices (v(n); 
n E %}, and let a’( H,) denote the v(n) x v(n) Hankel matrix of the subse- 
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v(l)=1 v(2)=3 v(3)=4 

4 5 

5 6 

1 2 3 4 5 6 7 

2 3 4 01 5 6 7 8 

3 4 5 6 7 8 9 

FIG. 1. 
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. . . 

. . . 

. . . 

. . . 

d( H,) = H,F,i, i=O,1,2 ,..., d(n+l), (3 -4) 

where F,,: = F(Q,) is the companion matrix of Q,, (which is defined as in 
Theorem 2). Moreover, if e, : = (1, 0, . . . , 0)’ E R s(n), 

yi = e;H,F,i-‘e,, i = 1,2 ,...,Y(n)+v(n+l)-1. (3.5) 

Proof. Let r, E R “(“) be given by Q, = z “@‘+(l, 2, .z2 )...) z”‘“‘-‘)r,. 
Then (2.24) yields 

Y v(n)+i + rn,v(n)-lYu(n)+i-l + ” * + %OYi = O 

fori=1,2,3 ,..., ~(n + 1) - 1. Therefore, since F, = I, - me:(,), where ev(,,) = 

(O,O,..., 0,l)’ E R v(n), a simple calculation shows that ai(H = ai+’ 
for i = 0,1,2,. . . , d(n + 1) - 1. This proves the first part. As i becomes greater 
than d(n + l), a”(H,,) and H,FL wilI differ in an increasing number of 
positions, beginning in the southeast comers. The northwest comers will 
agree until i = v(n) + v( n + 1) - 1. n 

Note that, if y has only finitely many degree indices {v(O), v(l), . . . , v(C)>, 
then (3.4) holds for all nonnegative integers i when n = A, since, by the 
convention introduced in Section 2, d( ti + 1) = 00. 

Proof of Theorem 4. Let (A, B, C) be an arbitrary realization of the 

sequence {Ye, y2,. . . , yN}. Set m: = dim(A, B, C) and yi: = CA’-‘B for i = 
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1,2,3 ,..., and let G be the Hankel matrix of the infinite sequence 7 = 

(7i,Y2,Ys,...). Then 

and therefore rank g < m. But U, = yi for i = 1,2,3,. . . , N, where N satisfies 
(3.2). Hence v(n) is a degree index of 7 also, and consequently rank H B v(n) 
(Theorem 1). This implies that m > v(n), i.e., there is no realization of 

(Yi’Y2’..” yN) with smaller dimension than v(n). However, by choosing 
(A, B,C) to be (F,,e,,e;H,) we achieve this lower bound (Lemma l), and 
consequently the partial sequence {yi, ys,. . . , yN) has McMillan degree v(n). 
If y has a largest degree index v( ri), then (F,, e,, e;H,) realizes the complete 
sequence y; hence 6(y) = v( ri). If y has infinitely many degree indices, it has 
no finite-dimensional complete realization, and therefore 6( y ) = 00. n 

Consequently we obtain a complete family of minimal partial realizations 
of y by forming the triplet (F,, e,, e;H,) for each degree index v(n)> 0. 
However, this family is not nested, so we shall consider another. 

THEOREM 5. Let y be an infinite sequence with degree indices {v(n); 
n E ti97,}, and let the polynomials {a,; n E 92’) and real numbers (&_ 1; 
n E i%+} be determined from y as in Theorem 2. Set I&: = (O,O,O), and, for 
each n E ‘?X+, let Z, be the triplet (A,,, B,, C,), where A,, and B, are defined 
as in Theorem 3 and C,: = &e& e,(,) E Iw ‘cn) is the unit vector with a one in 
position v(1) and zeros elsewhere. Then (2,; n E 9Z} is a nested complete 
family of minimal partial realizations of y. Zf LX is finite, the last 8, is a 
(complete) realization of y. For each n E LX.+, Z, is uniquely determined by 

the parameters (vl, y2,. . . ,Y~,~,,). 

Proof. Let n E u%x’ be arbitrary. It follows from (2.38) that F,‘R, = R,Ai, 
for i=O,1,2 ,.... Moreover, since R, is unit right triangular, Rnel = e,. 
Therefore, e;H,Fie, = e;R’,H,F,‘R,e, = e;R’,H,R,Ai,e,. But, by Theorem 
1, R’,H,,R, = D,,, and therefore Lemma 1 implies that 

yi = e;D,,A’,e, for O<i<v(n)+v(n+I). 

However, the first row of D, is zero except for the northeast comer of HI,, 
which contains &,; hence e;D,, = &e&, = : C,,. Moreover, B,: = e,. Therefore 
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for each N satisfying (3.2), 1, : = (An, B, , C, ) is a realization of { yi, ys, . . . , yN} 
of dimension v(n). Hence it is minimal (Theorem 4). The family (2,; tr E $X,x) 
defined in this way is clearly nested. The last statement of the theorem is a 
direct consequence of Theorem 2. n 

The family of partial realizations defined in Theorem 5 is, with trivial 
modifications, the one proposed by Kalman in [20]. What we have added, 
among other things, is the connection to block tridiagonalization, and other 
results will follow. The connection to Magnus’s P-fractions will be discussed in 
the next section. It is suggested in [20] that the realizations (2,; n E 92) are 
“canonical,” but it is not mentioned in what sense. We shall make this point 
clear. 

The realization Z, = (A,,, B,,, C,,) is uniquely determined by {ai, a[a,. . . , 
a,> and {Po,P1,...,P,-l>, th e sizes of the blocks being determined by the 
degrees of the a-polynomials. To pinpoint the structural properties of Z,, let 
us first consider an example in which the degree indices are (0,2,5,7, S}. Then 
{X0, Z,, Z,, Z,, C,} is a complete family of minimal partial realizations, and 
Z, has the form described in Figure 2. Note that A, is the sum of the 
downshift ],, and a right triangular matrix. Such a matrix is called a unit right 
Hessenberg matrix. The partial realizations Z,, Z,, and Z, are the subsystems 
of Z, obtained by merely deleting an appropriate number of blocks in the 
matrices of Figure 2. More precisely, Z, is determined by En-i, P,_r, and 

A4 = 

I I I 

Y2 
I I 
I % j I 
I I 

l 51 

I I I 
I I I 

__ 1 I I 
-_------_ c--____--__c___-_----~_--_- 

1 I I 

“23 ! 
I 

I 1 
$2 : 

I1 
I 

a22 : 
I 1 

, I I I 
I 1 “21 I 

I 
I --------- +-_____----+-----____c-______ 

I 
I 1 : I i B 
I I ‘32; 3 
, 
8 I1 

1 
I I a31 I _____---- :-_-_______~_______-_+_____ 

I 
I I 1 Ia I I 1 41 I I 
I I I 

B4 = 

1 

_---_ 

_---_ 

--__- 

_ . 
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a,. This is the nesting property. For a numerical example, let us consider 
(3.3). Theorem 2 yields al(z) = z - 1, aa = z2, as(z) = z - 1, j3, = 1, 
pr = 1, and & = - 1. Hence the complete family {Z,, Z,, Z,, Z,} of minimal 
partial realizations is Z, = (O,O, 0), Z, = (1, 1, l), 

(3.7a) 

and 

Given a sequence y, it is convenient to collect the parameters defined 
from it by Theorem 2 in a sequence p: = (pr, pZ, p2,. . .> constructed as 
follows. For each n E %+, set 

I 

0 for O,<i<d(n), 

PZv(n-l)+i = Pn-1 for i=d(n), (3.3) 
ff n,ipd(n) for d(n)<i<2d(n). 

Then,if 6(y)< cc, p26Cuj+i =Ofori = 1,2,3,... . Weshallcallp theparameter 
sequence of y. For the example illustrated by Figure 2 we have 

where we have divided the sequence p into sections to indicate how many 
data are required for each of the partial realizations defined by Theorem 5: 
the first u(n): = 2v(n) elements of p are needed for Z,. We shall call {u(n); 
n E GIL} the section indices of p. In (3.9) they are {0,4,10,14,16}. Note that, 
since all &, * 0, it is easy to decode the sequence p to obtain the (Y- and 
p-parameters as well as the degree indices of y. 

Now let P = (pl, pz, Pi,... } be an arbitrary sequence of real numbers. 
Then we define the section indices {a(m); m E ?lR} of p in the following way. 
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Seta(O):=O.Form=0,1,2 ,..., find the first nonzero pi such that i > u(m), 
and set d(m+l): =i-a(m). Then o(m+l): =u(m)+2d(m+l). Clearly 
this definition, which also applies to finite sequences p, is consistent with the 
one given above. The index set Girt is defined by this process in complete 
analogy with % above, and we shall also use the notations %+, %, etc. with 
the same meaning as before. Then, for m E !JR+, set 

k-1 = &(m-l)+d(m), 
(3.10) 

%i = Po(m-l)+d(m)+i for O<i<d(m), 

and, form E TR, set v(m): = $u(m). Hence p defines a family (2,; m E Gx} 
of triplets Z,: = (A,,,, B,, C,) of the type described above. To emphasize its 
dimension and its dependence on p we shall write X(v(m), p) instead of 2,. 
Certainly each X(v(m), p) is a realization of some sequence y. In fact, it 
defines a sequence y via (1.1). However, we have not established that it is the 
realization of y defined by Theorem 5, i.e that p is the parameter sequence of 
y. For example, let y be a sequence with finite McMillan degree and 
parameter sequence p. Then, there could conceivably be a fi =+ p such that 
both Z(~(Y), b> and Z(~(Y), P) are minimal realizations of y. Next we shall 
demonstrate that this cannot be the case. 

THEOREM 6. Let f be a function on the space of all infinite sequences of 
real numbers y={y1,y2,y3,... } into itself defined in the following way. For 
each y, let p = f(y) be the parameter sequence of y, i.e. the sequence 
determined by the algorithm consisting of Equations (2.26)-(2.30) plus (3.8). 
Then the map f is a bijection Moreover, if y and f are two sequences and 
p=f(y)andb=f(B),theny,=~ifori=1,2,...,N~faandonlyifpi=~ifor 
i=1,2 N. ,..*, 

Proof. The algorithm yields the sequence 7r : = ( vrl, r2, r3,. . . > as an 
intermediate result. Note that 7~ and p have identical section indices. Hence f 
is the composition of two functions g and h, defined on the same space, such 
that 7 = g(y) and p = h(r), and h preserves the section indices. Then the 
theorem follows if we can show that g and h have the properties claimed for 
f. Let us begin with g. For any partial sequence { yi, yz, . . . , yN) the algorithm 
(2.26)-(2.30) produces a sequence {ri, or,, . . . ,rN} of precisely the same 
length. We need to show that this restricted map has an inverse. To this end, 
let {7ri,7rs,..., 72~) be arbitrary with section indices (u(O), u(l), . . . , a( n)}. Set 
v(k):=~a(k)andd(k):=v(k)-v(k-l),fork=1,2,...,n[v(-l)=O].Set 
yi: =ri for i=1,2,..., u(1). Now, for k = 1,2,. . . , n - 1, proceed as follows. 



298 WILLIAM B. GRAGG AND ANDERS LINDQUIST 

First use (2.26)-(2.29) to determine Qk from {7r1, TV,.. .,7rock,}. Then use 

(2.30) to determine (Y~(~)+~,...,Y~(~+~)} from (~~~k)+l,...,~~(k+l)) and previ- 
ously computed y-parameters. If k = R - 1 and N < a(n), the triangular 

structure of (2.30) implies that we obtain precisely {y,(, _ 1)+ 1,. . . , yN} before 
we run out of r-parameters. If W > a(n), the last N - a(n) r-parameters are 
zero, and then we can solve (2.30) directly for { y,(,,) + 1,. . . , yN}. This is clearly 
the required inverse. A similar (but much simpler) argument applied to (2.28) 
and (2.29) and using the triangular structure of (2.28) establishes the required 
one-one correspondence between the partial V- and p-sequences. n 

This theorem has two interesting corollaries dealing with canonical forms 
and realizations of partial sequences respectively. Let us begin with the first 
topic. Consider the family % N of all Z : = (A, B, C) such that Z is a minimal 
realization of some sequence y of McMillan degree N; hence dim Z = N. Let 
s”, be the group of transformations on OX”. We shall say that two elements in 
?A,$, are equivalent if one can be obtained from the other by a transformation 

(A&C) : (TATP’,TB,CZ’-‘) (3.11) 

where T E d,V. It is well known [4, 211 that two realizations in ?&,v are 
equivalent if and only if they realize the same infinite sequence y. A family 
{ Z( 0); 0 E O} of realizations in % IV is a set of canonical forms for 91 h’ if each 
Z E %, is equivalent to one and only one Z(a); cf. [2; p. 2441. Define ??‘.V to 
be the class of infinite sequences p : = { pl, pz, pB, . . . } having 2N among its 
section indices. (Nothing is being assumed about which one in order it is.) 

CoRoLwY 1. The family S,\, : = {Z( N, p); p E <Px} is a set of canonical 

forms for ‘;k x. 

Proof. Let y be an arbitrary infinite sequence such that 6(y) = N, and let 
p: = f(y). Then Z(N, p) belongs to the equivalence class of realizations of y 
(Theorem 5). Now, no other Z(N, 6) with 6 * p will belong to this equiva- 
lence class, because p : = f- ‘( 6) 1s d’ff 1 erent from y (Theorem 6), and Z( N, p) 
is a realization of 7 (Theorem 5). n 

Consequently, if y is an infinite sequence with degree indices 

(V(O), v(l), . . . > u(n)>, y has one and only one minimal realization in sucV,,, 
namely Z, = (A,, B,,, C,) as determined by Theorem 5. Moreover 

<P,l ~,>P1>~z,...,P,P,, a,,} is a complete set of invariants. For finite se- 
quences this question is not quite as simple. This leads us to the next corollary 
of Theorem 6. 
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Many results for finite sequences y can be obtained trivially from the 
corresponding results for infinite sequences by merely embedding y in an 
infinite sequence with the same McMillan degree. However, in doing so we 
must realize that this degree preserving extension may not be unique. The 
reason for this is that the degree index v(n) is determined by fin, while 
H, + yz,(,, is needed to determine 1, (Theorem 5). Hence if y contains fewer 
than 2v(n) elements but enough elements to form l?,, y will be represented 
by many equivalence classes in ‘% N. This uniqueness question has been 
studied by Kalman [19, 201, and, in the context of differential geometry, by 
Brockett [3]. However, the parameterization of the family of minimal realiza- 
tions of a partial sequence y is very simply described in terms of the canonical 
forms Z(N, p), something which was apparently overlooked by Kalman [20]. 

ConoLLARY 2. Let y : = (yi, ya, . . . , yN} be a finite sequence (of real 
numbers) with degree indices (v(O), v(l), . . . , v(n)}. For each k = 0,1,2,. . . , n 
there is a Z, E S,,(,,, so that {Z,, Z,, C,, . . . ,Z,> is a nested complete family 
of minimal partial realizations of y. The partial realizations (I,, Z,, . . . ,I, ~ 1> 
are uniquely determined by y (as in Theorem 5), whereas Z, is unique if and 
only if N > 2v( n). If m : = 2v( n) - N > 0, there are m undetermined parame- 
ters in IX,, namely (Y,,~(,,,, an,dCn)_l,. . . ,(Y,,~(,,_~, the possible realizations 
forming an mdimensional affine manifold. There are at most d(n) unde- 
termined parameters, /I,, ~ 1 being completely determined. 

Proof The sequence y can be embedded in an infinite sequence 7 with 
the same degree indices, and consequently the existence of a family 
(&J>&,...?&J with the required properties is insured by Theorem 5. To 
each degree preserving extension 7 there corresponds a unique parameter 
sequence p = f ‘( 7) with section indices {a(O), a(l), . . . , u(n)}, where 
u(k): = 2v(k), k = O,l,..., n. In the family of such p, (pi, pz,. . . , pN} are fixed 
andp,(,,+,=Ofori=1,2,3 ,...; any other pi is arbitrary (Theorem 6). Since 
N > a( n - 1) (Theorem 4), Z,, Z,, . . . , and Z,_ 1 are uniquely determined. If 
N > u(n), there are no arbitrary pparameters, so Z, is unique. If N < u(n), 
there are m: = u(n) - N arbitrary pparameters, namely ,oN+i, ~~+a,. . . , p,(,,. 
Since N > v(n)+ v(n - 1) = u(n) - d(n) (Theorem 4) there are at most d(n) 
such undetermined parameters. If Z, and 2, are two realizations of y, then so 
is AZ, +(l - h)e, for all X E Iw. n 

Let us illustrate this with the example in Figure 2. Look at the parameter 
sequence (3.9). If y = (yi, ya, ya, y4}, Z, is completely determined. We obtain 
yS and ys “for free” as the corresponding positions in the sequence p contain 
zeros. If y, is added, we need to determine Z, in which there are three 
undetermined parameters, namely (~a~, (~~a, and (Ye. Adding ya will fix CYST, 
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adding ys will fix (~a~, etc. In the numerical example (3.3), the parameter 
sequence is 

p={1,1,0,1,0,0, -l,l,O,O,O ,... }. (3.12) 

The partial sequence f = (1, 1,1,2} has the canonical realizations 

where E and 17 are arbitrary real numbers. If we augment p to be (1, 1,1,2,3}, 
71 is fixed at 9 = 0. Also adding ys = 4 will fix [ too, at E = 0. In Section 5 we 
shall present an algorithm which computes the elements of the parameter 
sequence p in the correct order, sequentially producing pk from ( yi, ya, . . . , yk} 
for k = 1,2,3,... rather than in complete sections. 

It is instructive to illustrate the structure of the canonical family (2,; 
n E 9L} of minimal partial realizations by a block diagram. As explained in 
Section 1, the partial realization Z, = (A,, B,, C, ) can be interpreted as a 

dynamical system, symbolically depicted 

-11, w, Y El-+ (3.13) 

where W,, is the transfer function 

W,(z)=C,(zZ-A,)-‘& (3.14) 

and u(z) and y(z) are the (discrete or continuous) Laplace transforms of the 
input and output sequences respectively. In the sequel we shall refer to u and 
1/ simply as the input and the output respectively, and for notational conveni- 
ence, we have dropped the tilde (-) used in Section 
and the output from the corresponding time-domain 
have 

1 to distinguish the input 
quantities. From (1.6) we 

(3.15) 

so the diagram (3.13) should be interpreted multiplicatively. Now setting 
x(z): = (zZ - A,)-‘B,u, (3.14) and (3.15) yield 

zx = A,x + B,u, 

Y = qp, 
(3.16) 
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which is merely a Laplace-transformed version of (1.5) or of (1.7). To exhibit 
the block structure of the system (3.16), we partition x(z) E iR”(“) into a 

column x=(x;, XL,..., xl)’ of n-subvectors x,(z)~[W~(l’, z,(z)~[W~(~),..., 
3~ (x) E Rd(“). Moreover, for each k = 1,2,. . . ,R, define b, E R d(k) as the 
(c”olumn) unit vector b, = (l,O, . . . ,O)’ and ck E R ’ xd(k) as the row unit vector 

c,=(O ,..., O,l).Then 

zxk = A k,kplXk-1 + AkkXk + Ak,k+lXk+l + blU6kl* k=1,2 ,,.., n, 

Y = Poelxl 

if we define x0 and x,+ I to be zero, and the submatrices Ai j are defined as in 
Theorem 3. But Ak,k_i = bkCk_l and Ak,kcl =&.bkCk+I, and therefore, 
setting yi: = &iy, 

.uTk = A,kXk + bk+, 

Yk = CkXk 

(3.17a) 

for k = 1,2,..., n, where { ui( z), u,(z), . . . , u,( z)} are defined by 

uk = Yk-1 +PkYk+l (3.17b) 

for k=1,2,..., n, with y0 = u and yn+i = 0. Note that the subsystem (3.17a) 
has the same structure as (3.16) except that A,, is the companion matrix of 
the polynomial (Ye. It is a routine matter to see that the transfer function of 

(3.17a) is 

e,@ - A,,) -‘bk = l/a,, 

and consequently (3.17) has the block representation 

(3.18) 

where 8 denotes addition. The block diagram of the partial realization Z, is 

(3.19) 
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FIG. 3. 

then obtained by coupling together the n subsystems (3.19), remembering 
that y,,+i = 0, y0 = U, and y = &yi. The case n = 4 is shown in Figure 3. 
(The nodes 0, and I, are for later reference in Section 4.) Hence the partial 
realization Z, is obtained from Z,_ r by merely adding the subsystem (3.19) 
in the appropriate manner. This is again a manifestation of the nesting 
property. 

The diagram of Figure 3 is equivalent to the one obtained by Kalman in 
[20] via the Euclidean algorithm. In the next section we shall further 
investigate this connection and demonstrate that the procedure used by 
Kalman [20] is actually a special case of the (infinite) process of Magnus [24, 
251, leading to a type of continued fraction known as a P-fraction. 

Note that, as new subsystems are added to the diagram in Figure 3, the 
stability of the overall system may be affected. In fact, in [5] we showed that 
preservation of stability is not even a generic property, as one might have 
hoped [20; p. 231. 

However, before leaving the present topic, we shall briefly discuss the 
connections to Rissanen’s algorithm [29]. Let us return to the proof of 
Theorem 1 for reference. Assume that d(n + 1) > 1, so that the matrix 

H,: = H,(,)+i vCnj+l has rank v(n), and consider the factorization 

R( l)‘H,R( l), i.e. 

[y l]RL[” ;]= [” o]’ 
where, for simplicity, we have dropped the indices. Now, remember that, as 
explained in the proof of Theorem 1, there is a certain arbitrariness in 
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defining the unit right triangular matrix R (but not r). In fact, the R used by 
Rissanen is different from our R,, and this is yet another reason for using 
different symbols. Then 

H,= (R’)P 

I (R-‘r)’ 1 

To obtain the second factor we have 

I[ R’H, - R’H,r 

0 I 0 . 
(3.20) 

used the fact that D = R’H,,R. Follow- 
ing Rissanen, let us call the two factors in (3.20) P and Q respectively, so that 
pn = PQ. This is the factorization used by Rissanen in [29] to obtain a partial 
realization of dimension y(n). (From [29] it may seem that some partial 
realizations are constructed from factorizations of rectangular Hankel matrices, 
but this generality is illusory. In fact, our Theorem 1 insures that any row 
added to fi, will increase the rank until H, is obtained. Hence the first 
alternative in step 5 of [29; p. 4281 will never occur, forcing the algorithm 
always to pass through step 2 before it goes to step 3.) 

Next delete the first row and the last column of an in (3.20), leaving us 
with a( H,) in the left member. This corresponds to removing the first row of 
P and the last column of Q. Since the last row of Q is zero, we can also 
remove it, together with the last column of P. This yields 

u(H,)= P.R’H, (3.21) 

where P * is the submatrix of P obtained from this reduction. Now, choosing a 
particular R (which is different from our R,), the A-matrix in Rissanen’s --- 
realization (A, B, C) is 

A-= R’P * . (3.22) 

We want to relate this matrix to our A,,. To this end, note that A, = R, lF, R, 
(Theorem 3) and F, = Hi ‘u(H,) (L emma l), and therefore (3.21) yields 
A,, =(H,R,,-‘P*R’H,Rn. Then, from (3.22) and R’,,H,R, = D,,, we obtain 

A-= TA,T-‘, 

--- 
where T: = (R,‘R)‘D,. The complete triplet (A, B, C) proposed by Rissanen 
is then obtained by applying the transformation (3.11) to (A,, B,, C,). If we 
modify Rissanen’s factorization so that R = R,, T takes the particularly simple 
form T = D,,, i.e., we have a blockwise change of scale. 

Rissanen’s algorithm requires that d( n + 1) > 1, and it will not produce a 
partial realization of McMillan degree y(n) if d(n + 1) = 1. In our numerical 
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example (3.3) partial realizations of dimensions v(l) = 1 and v(3) = 4 will be 
generated, but none of dimension v(2) = 3, and in the generic case when the 
degree indices are the nonpositive integers, no realization will result. Hence 
Rissanen’s algorithm does not produce complete families of minimal partial 
realizations, and that does not seem to be its stated purpose. In fact, if 
6( y ) = v(n) c 00, then d( n + 1) = cc, so a (complete) minimal realization of y 

will eventually appear. 

4. PRINCIPALPART CONTINUED FRACTIONS 

Let y be an infinite sequence (of real numbers) with degree indices (y(n); 
nE%},andlet 

(44 
i=l 

be the corresponding formal power series. Consider the parameter sequence p 
of y. We know that there is a one-one correspondence between p and y and 
that the section indices of p are {u(n); n E %}, where a(n) : = 2v(n) 
(Theorem 6). Now for each n E 92, define a new sequence 

p’“’ = { Pm(n)+19 Po(n)+29 Po(“)+a,**’ > (4.2) 

from p by deleting the first a(n) elements. By Theorem 6, p(“) is the 
parameter sequence of some other sequence 

y(“)= (Y,l, Yn2,Yn39”‘) (4.3) 

with degree indices {v(k) - v(n); k E 3, k 2 n}. Let 

I-“(Z) = : ynix-i (4.4) 
i=l 

be the corresponding formal power series. 
For motivation let us consider the block diagram in Figure 3. Assume (for 

the moment only) that S(y) < 00 and that y has degree indices {v(O), y(l), . . . , 
v(n)}. Then l?(x) = W,(z), the transfer function of the complete minimal 
realizations of y. Deleting the u(k) first elements of p corresponds to 
removing the blocks corresponding to { &, (pi, pi, a2,. . . ,&_ 1, a,}, taking the 
input and the output to be yk and Pkyk+i respectively. Clearly Ik is the 
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transfer function of this reduced system and therefore 

rk(z) = PkYk+lb) 

Ykb) ’ (4.5) 

which also holds for k = 0 if we set r,(z) : = lJ z). For example, in Figure 3, 
r, is the transfer function of the subsystem with input I, and output 0, for 
k = 1,2,3 (provided, of course, that Z, is a complete realization of y). Now, 
since uk( z) = ak( n)yk( z), (3.17b) yields 

Yk-l= akYk - PkYk+l, (4.6) 

and consequently, by (4.5) 

flk-l 
---=a,(+rk(Z) 

rk-,(z) 
(4.7) 

for k=1,2 ,..., n, where r,, = r and r,, = 0. From this we see that 

CL&> al> PI> a2,. . * ,P,-1, 4 can be determined from I?, = r by inverting 
r k_ 1, successively for k = 1,2,. . . , n, and splitting it into a polynomial part 
(ok) and a strictly proper part (r,). The role of fik_r is to normalize so that 
ok is manic. The process terminates at k = n, since r, = 0. This is precisely 
the Euclidean algorithm applied to the pair of relatively prime polynomials 
( Qn, Z’,) where W,, = Z’,/Q, is the rational function I?. The connection 
between the Euclidean algorithm and the canonical realizations of Theorem 5 

was established by Kalman in [20]; in fact, this is the way they were derived 
in [20]. 

However, from the way we have written (4.7), it should be clear that IY 
need not be rational, but that we may consider an infinite process. Therefore 
let us now remove the assumption of rationality on r and consider the 
following generalized Euclidean algorithm for formul Laurent series, which 

was presented by Magnus in [24, 251: 

r,(z) = r(z) 
forn=1,2,3,... whilef’,P,*O 

reciprocate and split 

8-r/r,_,(z) = a,(z) - r,(z) 
(Y, a manic polynomial 

a,(z)= .i?(n)- (Y,r#+l- . . . - c&qn), 
& _ I a normalizing constant, and 
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We are here working in the field % of real formal Laurent series with 
finitely many positive powers. (We could, of course, at no extra cost consider 
complex power series, but there is no need for this generality in our present 
setting.) The algorithm terminates if and only if T(z) is the Laurent series 
about .z = cc of a rational function. As described here, the algorithm uses in 
general an infinite sequence of reciprocations of formal Laurent series, each of 
which is itself an infinite process. However, as suggested by the results above, 
there are sequential versions of this process in which the coefficients 

{Y12YZ>Y3’... } enter one by one in order and the output consists of 
{pa, (or, pr, (~a, pa,. . . } in this order. 

The polynomial (Y, is the principal part at x = cc of the formal Laurent 
series & _. r/r,, _ r(z). We have 

q_,(z) = fkl 
%b> - u4 . (4.8) 

Hence we may associate with IY the continued fraction 

G(z)= 
PO 

Pl (4.9) 
44 - 

44 - Pz 
ag(z)--.- 

which terminates if and only if r is rational. Since we are interested in the 
algebraic properties of this object and not its convergence properties, we 
denote it by G(z). This is the principal-part continued fraction (P-jkction) 
introduced by Magnus [24, 251. By multiplying both numerator and de- 
nominator in the nth fraction by l/a, for n = 1,2,3,. . . we obtain an 
alternative form of G(z), from which someone with a little systems know-how 
can construct a block diagram as in Figure 3; cf. Kalman [20]. 

We associate with G(z) the Linear fractional transformations to(w) = w 
and 

P -1 t,(w)=---“---, n = 1,2,3 ,..., 
(Y -w n 

in terms of which we define 

(4.10) 

T,=t,,ot,ot,o ... “t, (4.11) 
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for n = 0,1,2,. . . , where 0 denotes composition and the dependence on the 
variable z is surpressed to simplify the notation. Then I? = T,( I’,,). Since 
j3, * 0, these linear fractional transformations are invertible maps of the 
extended complex plane onto itself. The following theorem summarizes some 
of the results of [24, 251 in our framework. 

THEOREM 7. Let T(z) be a formal power series of the type (4.1), and let 

<P,-1, a,; n E CR,+} be defined by the generalized Euclidean algorithm. For 
eachnE%+,setd(n): =dega,,~(n): =X;=,d(k),andp(n): =ZiC2d(k); 
set v(O): = 0. Then, for n E 6X, 

(4.12) 

where {P,,; n E %} and {Q,; n E %} are polynomials generated by the 
three-term recursions 

(4.13a) 

(4.13b) 

For each n E ‘Xx’ we have deg P,, = p(n), deg Q,, = v(n), and 

gcd(P,,Q,)=gcd(P,,P,+,)=gcd(Q,,Q,+,)=l, (4.14) 

where gcd denotes greatest common divisor. Moreover, the Laurent series 
about z = cc of the rational function 

W,b> = f'n(d/Q,M (4.15) 

coincides with T(z) up to powers in 2-l of order v(n)+ v(n + l), i.e. 

u(n)+ v(n + i) - 1 

Kb)’ c yiz-i + o(z-dn)-y(n+l)). (4.16) 
i=l 

lf the algorithm terminates in step n, l?(x) = W,,(x). 
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For the proof we need two lemmas, the first of which is well known and 
easy to prove. 

LEMMA 2. Let gi(w)=(aiw + bi)/(ciw + d,), i = 1,2, be two linear 
fiactionul transformations with coefficients ai, bi, ci, di (in the field S) 
satisfying aid, - b,ci *O. Then (glog,)(w)=(aw + b)/(cw + d), where 

LEMMAS. FornE%,set 

where P,, and Q, are defined in terms of r as in Theorem 7. Then 

M 

E,(z) = c E,~z-“(“~~ 
k=l 

(4.17) 

(4.18a) 

with { E,,~} satisfying 

0 for k=1,2 ,..., d(n+l)-1, 
E nk = 

i%&~*~~> j?,, for k=d(n+l), 
(4.18b) 

where all parameters and indices are de$ned as in Theorem 7. If the 
generalized Euclidean algorithm terminates in step n, then E, = 0. 

Proof. By the homogenity of the three-term recursions (4.13), 

En+,(z)= a,+1 (z)&(z) -P,%,(z), EO(z)=T,,(z), E_,(z)=l. 

Therefore, since (Y,,+ IIY, - j3, = I?, r,,, 1, we obtain by induction 

E, = r,r,r,- . . r,. (4.19) 

But, from (4.8), we have 

r,(z)=p,z-d(“+l)[i+o(Z-l)], (4.20) 
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which together with (4.19) yields (4.18). If the Euclidean algorithm stops in 
step n, then I,, = 0. n 

Proof of Theorem 7. The function T, is clearly a linear fractional 
transformation of the form 

Pw+P, 
T,(w)= A” 

Q,w + QIl ’ 

where P,, Q,, i),, and o’, are polynomials in z (Lemma 2). Now applying 
Lemma 2 to the composition T,, 1 = T,, 0 t,,+ 1 for n = 0, 1,2,. . . , we obtain 

But this holds if and only if i), = - P,, _ 1, i?, = - Q, _ 1, and the recursions 
(4.13) are satisfied. Moreover, (4.13) yields 

from which we have &+ lP, - PntlQ,, = &,p,. . . & * 0. Hence (4.14) fol- 
lows. Finally, since I-W, = E,/Q,, (4.16) follows from Lemma 3. If the 
algorithm terminates in step n, then E, = 0, and consequently I = W,. H 

The connection to realization is then established by the following corollary. 

COROLLARY 3. Let y be an infinite sequence of real numbers, and let 
I’(z) be the formal power series (4.1). Let p: = {pl, p2, p3,. . .} be the sequence 
defined by (3.8), where {/I,,_,, a,,, d(n); n E %‘> is the output of the 
generalized Euclidean algorithm, v(0) : = 0, v(n): = CECld(n) for n E %+, 
and, if the algorithm terminates in step ti, d(fi + 1) : = co. Then p is the 
parameter sequence of y. Moreover, for each n E ?X, the rational function W, 
defined by (4.15) is the transfer function of Z,,, where (2,; n E Gst} is any 
complete family of minimal partial realizations of y. 

Proof. 
&; 

Set 9: = f’(p), where f is the function of Theorem 6, and let 
n E %} be a complete family of minimal partial realizations of 9. We 

want to show that p = y. Let n E % be arbitrary. It follows from Theorem 4 
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that the transfer function W” of 2, has the property 

v(n)+u(n+l)-1 

W4’ c 
fiz-i + o(Z-dn)-~(n+U), (4.21) 

i=l 

where we set V( ri + 1) : = 00 if the algorithm terminates in step ri. Now apply 
the Euclidean algorithm to the rational function f = W,,. Then it follows from 
the analysis (for the rational case) in the beginning of this section that 
W” = T,,(O), and consequently Wn = W, (Theorem 7). Hence, in view of (4.16) 
and (4.21), yi = y, for i = 1,2,. . . , v(n)+ Y( n + 1) - 1. Therefore, since n E % 
is arbitrary, we must have 7 = y. H 

In our numerical example (3.3), we obtain W, = 0, W,(x) = l/(x - l), 
W,(z)=z2/(z3-z2-l),and W,(z)=(x3- z2+l)/(z4-2z3+ ,z2).Since 
S(y) = 4 < co, I = W,. In view of (4.14) two consecutive minimal partial 
realizations have no poles (or zeros) in common. 

REMARK 2. A more direct way of proving Corollary 3 is to first establish 
a link between the generalized Euclidean algorithm and the algorithm of 
Theorem 2 by first showing that 

Ynk = To(n)+k, k=l,2 ,..., 2d(n+l), (4.22) 

for each n E u%L. Then (2.28) and (2.29) are obtained from (4.7) by identifying 
the coefficients of zpi in 

P,-l=%r”-l-rnr”-l (4.23) 

for i = 0,1,2 ,..., d(n). Note that, by (4.20) the last term of (4.23) does not 
contribute to these coefficients. 

REMARK 3. From Corollary 3 we can now see that the occurrence of 
nongeneric jumps [d(n) > 0] in the ranks of the leading principal submatrices 
of the Hankel matrix N is actually a manifestation of the block structure of the 
corresponding Padt table [12, 241. T o see this, introduce the reciprocal 
polynomials 

P,*(z): = 2 ~(wpn(Z-l), (4.24a) 

Q;(z): = z “‘“‘Q”( z-l), (4.24b) 
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and set I*(z): = z-‘I’(z-‘). We then have the setting used in [12], I* being 

a Taylor series. Since deg P,* < v(n) - 1, deg Q,* < v(n), and gcd( P,*, Qz) = 1 
= Q:(O), it follows from 

E,*(z): =I'*(z)Q;(z)- P,*(z)=0(z2"'"') 

that W,*: = P,*/Qfl* is (th e normalized reduced representation of) the Pad6 

fraction rv(,)-l,v(n) for the formal power series I*(z). Hence we obtain the 
sequence { W,; n E 97,‘) of transfer functions by moving along the superdiag- 
onal in the PadC table (which is the matrix {q j} of rational functions), at each 

distinct entry making the transformation W,(z) : = ~-‘l;~~,_ 1, vc,,(zp ‘). In 
doing so, the jump d(n + 1) can be read off as the number of times the 

fraction r,(,)_, vCn) is repeated. If I is rational, the last d(n + 1) is infinite, 
corresponding to an infinite block in the Pad& table. (See Table 3 on p. 12 in 
[12], where the numerical example (3.3) is illustrated.) The connection 
between the Euclidean algorithm and the PadC table was established in [24]. 

From Theorem 7 we can now establish, independently of the results in 
Section 2, the generalized orthogonality property (2.24). 

COROLLARY 4. Let y be an infinite sequence of real numbers, let r(z) be 
the corresponding form& power series, and let the polynomials {Q,; n E St> 
be as defined in Theorem 7. Then 

~*(z”-~Qn)= ~O~i...~fi~6 
i 

for l<i<d(n+l), 

for i=d(n+l). 
(4.25) 

Proof A routine calculation shows that (4.17) can be written 

E,(z) = E v*( z~-~Q,,)z+. (4.26) 
i=O 

Then (4.25) follows from (4.18). n 

It should now be clear that we could have taken the generalized Euclidean 
algorithm as a starting point for our study. In fact, from (4.25) we im- 
mediately obtain (2.25), which is equivalent to the matrix factorizations 
R’,H, R, = 0,. The other matrix results of Theorem 2 and 3 are actually 
derived via the polynomial formulation and could be adopted with no change. 
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COROLLARY 5 (Magnus’s algorithm). Let {&_1, a,; n E 4x’) and {Qn; 
n E St) be as defined in Theorem 7. Then, for each n for which it is defined, 

(PIIT %+1 (.z)> is the unique solution of 

. . 

%,d(n+l) 

%,d(n+l) %,d(n+l)+l 

%,d(n+l) ” . %,Zd(n+l)-2 %,Zd(n+l)-1 

(4.27a) 

and 

P, = E n,d(n+l)/%l,d(n), (4.27b) 

where 

%k = y*(z 
w+k~lQ”), (4.28) 

Proof, Multiply the recursion (4.13b) by z’(~)+~~’ and apply the func- 
tional y* to obtain 

Y”(Z W+k-lQn+l) 

d(n+l)-1 

=%,d(n+l)+k - c an+l,d(n+l)-iEn,k+i-&En-l,d(n)+k’ 

i=O 

But, by (4.25), the left member is zero for 0 G k < d(n + 1). Then (4.27a) is 
obtained by taking k = 1,2,. . . , d(n + 1) and (4.27b) by taking k = 0. The 
triangular structure of (4.27a) is due to (4.25). n 

This algorithm belongs to a class of algorithms usually attributed to 
Berlekamp [l] and Massey [26]. This version, however, had been presented in 
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1962 by Magnus [24, 251. For the special case when the polynomials {(Y,; 
n E $72,‘) are linear, algorithms of this type had been introduced by Chebyshev 
[6] and Stieltjes [34]. See Gautschi [lo], who gives a nice description of these 
algorithms, and Wall [36], who provides some different interpretations. 

Magnus’s algorithm corresponds to the factorizations 

R',H,,=M,, (4.29) 

where of course M,: = D,,R;'. (In this context, cf. Kung [22], who derives 
the algorithm via a similar matrix factorization.) It is easy to see that element 
i;Jek);ri;‘)=06f 1”; equals y*(zi+je2Qk) for i = 1,2,...,d(k + l), and there- 

,.,.,n--1, rows v(k)+1 through v(k+l) of M, form a 
Hake1 mat& ‘for the sequence consisting of v(k) zeros followed by 

Eki, s,& Eks,*** * Moreover, M, is the observability matrix 

(4.30) 

of the canonical realization Z, of Theorem 5. This follows from (2.40). 

5. AN ALGORITHM FOR COMPUTING THE PARAMETER 
SEQUENCE 

We have presented two algorithms above for determining the parameter 
sequence p (Theorem 2 and Corollary 5) each corresponding to a different 
factorization of the Hankel matrix. However, both of them produce the 
pparameters in whole sections, the output of step n being ( p,,,, _ i) + r, . . . , p,,,,}. 
This makes them less suitable for realization of partial sequences. What we 
want is an algorithm which, given the input {yi, y2,. . . ,yN), produces the 
output {Pl, P2,. * *, pN} for any natural number N. In [39] Zierler presented a 
modified version of the Berlekamp algorithm [l], which, translated to our 
present setting, updates the Q,-polynomials via a sequence of manic poly- 
nomials of degrees 1,2,3,. . . . However, since Zierler was not interested in the 
parameter sequence, we shall have to modify his procedure for our purposes. 
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For each n E Y%+, define 

for i = 0,1,2 ,,.., d(n). Then QidCn))= Qn. 

LEMMA 4. Let (h,_l; n E %I+} be defined by (2.24). Then, for each 
nE?%, 

Y”(Z 
v(n-l)+I-l(y’) 

(Yni = 
x (5.2) 

n-l 

for i = 1,2 ,..., d(n). 

Proof. Apply y * to 

and use the condition (2.24) to obtain (5.2). n 

To compute (5.2) we define manic polynomials {c#+,,~~,~~,...) with 
deg +k = k in the following way. For each n E %, set 

+ 2”(n)+i( z) : = z”(n)+Q( z) for i=O,l ,...,d(n+l)-1, 

(5.3a) 

+ 2u(n)+d(n+l)+ib): = z”‘“‘+i@~l(z> for i=O,l ,...,d(n+l). 

(5.3b) 

[Note that there is overlap between (5.3a) and (5.3b), so that $auCn+ r) is given 
by both (5.3a) and (5.3b).] We shah also need a sequence {e,, I&,, 8a,. . .} of 
real numbers which keeps track of the factors l/X,_ 1 in (5.2) and (2.29). 
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Theorem 4 suggests that, for each n E 3, we set 

8 
1 .=- 

u(n-l)+v(n)+i. A for i=O,l ,...) d(n)+d(n+l)-1, (5.4) 
n-1 

where Y( - 1) = d(0) = 0 and A_ r = 1. Hence 9, is constant in each of the 
intervals (3.2). Now recall that, for each finite or infinite sequence y, the 
parameter sequence p is a sequence of the same length, the appropriate 
elements of which are defined by (3.8). 

THEOREM 8. Let y be an (infinite or finite) sequence with degree indices 
(v(n); n E ‘X}. Then its parameter sequence p is given by 

Pk+l= Y*h)k (5.5) 

where (+,,o’+1,+2T...) is a sequence of manic polynomials generated by the 
recursion 

+k+lb) = Hd4 - Pk+l+k(4? @%(4 = 1 

with I/Q defined as 

i 

0 for k = 0, 

#k(Z)= Z+,_,(Z) for k=v(n)+v(n+l), nE9I 

49C-l(4 otherwise, 

and where (6’0,81,02,... } is the sequence of real numbers 

i 

1 for k=O, 

8,= 13_~/p~ fm k=v(n)+v(n+l), nE%, 

e k-l otherwise. 

Moreover, the polynomials {on; n E %} are given by 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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~mof. Let {~o)o)~1,~2,... } be given by (5.3) and {de, 8,, da,. . .> by (5.4). 
Then (5.5) is a consequence of (2.24), (2.29), and (5.2), and (5.9) follows from 
(5.3a). The sequence {e,} is constant except for a jump at k = v(n)+ v( n + 1) 

for each n E %,. Then 8, = l/h, and 8,_, = l/X,_,. But, by (2.29), pk: =/I,, 
= A,/X,_, = 8,_ r/8,. This establishes (5.8). Hence it only remains to show 
that { +k} satisfies the recursion (5.6) where { qk) is given by (5.7). To this end, 
letnE~bearbitrary,and,fori=0,1,2,...,d(n+l)-l,setk=2v(n)+i. 
Then (5.6) holds trivially for i = 0, 1,. . . ,d( R + 1) - 2, since 
For i = d( n + 1) - 1, we have 

which is precisely (5.6). Next, for j= 0,1,2,. . . ,d(n + 1) - 1, 

v(n + l)+ j. Then, from (5.3b) we have 

pk+ r = 0 then. 

set k = v(n)+ 

~k+l(~)--~k(~)=~Y(n)+j+l[Q~~ll)(~)-Q~j!l(~)] 

=(Y n+l,j+l zy(“+ “Q,( z) 

= Pk+lN%,(n)+,(n+l)-1 (4 

whichproves(5.6)fork=2~(n)+d(nt-l),...,2v(n+l)-l. n 

Hence we obtain the following algorithm which, given a sequence y = 

(Yr~Y‘z>~~~~ yh,}, produces its parameter sequence p = { pl, pz, . . . , phr}. 

+. = 1, +. = 0, 8, = 1, N, = 0 
fork=1,2,3,... untilykGy 

pk = m-l)~k-l 

A few comments are in order. The integer Nk is a marker which is zero 
whenever a complete section {p,, pz,. . . ,p,,(,,) has been produced. The “if” 
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statement is true whenever k = v(n)+ v(n + 1) for some n E 92. Then Nk = 
d( n + 1). Hence the sequence {Nk) can be used to obtain the degree indices 
as an output. However, strictly speaking this is unnecessary, because the 
degree indices can be read directly from the parameter sequence p via its 
section indices (a(n); n E 92} as explained in Section 3; then v(n) : = $a( n). 
If, upon termination of the algorithm, Nk < 0, this means that the last partial 
realization, i.e. the (complete) realization of y, is not unique. There are 
precisely INk 1 arbitrary parameters, namely the pparameters needed to fill the 
section. If Nk > 0, then, no jumps in the rank of H,(,)+i ,,(n)+j have occurred, 
and Nk extra y-parameters have been fitted beyond those needed to determine 
the last realization. 

The determination of the degree indices of a sequence y is based on 
deciding whether some pparameters are nonzero, i.e. whether the “if” 
statement in the algorithm should be implemented. Consequently a small 
variation in the data (yi, ya, . . . , yN} may produce quite different degree 
indices. Since the sequence y may be corrupted with measurement errors, this 
is an important consideration. Unlike most situations in which the Lanczos 
algorithm is applied, we want the jumps to be large, because this will 
postpone the need for a partial realization of higher dimension. Therefore, if 
we are allowed to adjust the elements of the sequence y to achieve this, we 
would probably do so. 

Letusassociatewithy: ={yl,yz,...,yN}asequenceE: ={~i,.s~,...,~~}of 
error limits such that replacing yk by any element in the interval [yk - Q, yk 
+ Ed] is within the limits of accuracy of yk. The sequence E will depend on the 
manner in which y has been obtained, and it is of course possible to consider 

unsymmetric intervals instead. Now, since $Q is manic, 

nk: =y*(+k_i)=yk+linearcombinationof {yi,y2,“‘,yk_i}. 

Therefore, if InkI < ek, we may exchange yk for yk-nk. Then y*(+k-i)=O, 
and hence so is pk. This change of yk will not complicate any other 
calculations, since yk enters the algorithm for the first time in determining pk. 
Consequently we may want to alter the algorithm as follows. Replace the line 

Pk = Y*(+k- $k- 1 

Tk = Y*(+k-1) 

if Nk > 0 and 1~1~ .sk then 

-fk + Yk - 4k L qk +O 

Pk = 4kek- 1 
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Moreover, replace dk = ek_ l/pk by flk = l/~. Note that we never need to 
adjust the y-parameters when Nk < 0. 
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