
0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2672862, IEEE
Transactions on Automatic Control

1

Likelihood Analysis of Power Spectra
and Generalized Moment Problems

Tryphon T. Georgiou, Fellow, IEEE and Anders Lindquist, Life Fellow, IEEE

Abstract— We develop an approach to spectral estimation
that has been advocated by Ferrante, Masiero and Pavon [1] and,
in the context of the scalar-valued covariance extension problem,
by Enqvist and Karlsson [2]. The aim is to determine the power
spectrum that is consistent with given moments and minimizes
the relative entropy between the probability law of the underlying
Gaussian stochastic process to that of a prior. The approach is
analogous to the framework of earlier work by Byrnes, Georgiou
and Lindquist and can also be viewed as a generalization of the
classical work by Burg and Jaynes on the maximum entropy
method. In the present paper we present a new fast algorithm
in the general case (i.e., for general Gaussian priors) and show
that for priors with a specific structure the solution can be given
in closed form.

I. INTRODUCTION

Consider a stationary, vector-valued, discrete-time, zero-
mean, Gaussian stochastic process {y(t) | t ∈ Z}, where
y(t) ∈ Rm, and Z, R are the sets of integers and reals,
respectively. We denote the corresponding probability law (on
sample paths of the process) by P [3, Chapter 1] and the
power spectral density, which we assume exists, by Φ(eiθ),
θ ∈ [0, 2π). Further, we assume that the stochastic process is
nondeterministic in that the entropy rate is finite,∫ π

−π
log det Φ(eiθ)dθ <∞. (1)

This is a fairly general class that includes e.g., all stochastic
processes with nonsingular rational power spectral densities.
We study the basic problem to estimate Φ from sample-
statistics of {y(t)}. Following [1], we view this problem in a
large-deviations framework where a prior law Q is available,
and where this law corresponds to a power spectral density Ψ
with finite entropy rate. We postulate that available sample-
statistics of the process are not consistent with the prior law
Q, and therefore we seek the law P that is consistent with
these statistics and is the closest such law to the prior in the
sense of large deviations, which amounts to P being such that
the Kullback-Leibler (KL) divergence [4] between P and Q
is minimal. Our approximation problem was considered in [2]
for the special case of comparing the Itakura-Saito distance
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beteen scalar-valued time series since, in fact, the Itakura-Saito
distance between the corresponding power spectra is precisely
the KL divergence between the two laws [3, Chapter 10], [5],
[6], [7].

The theme of the approach, namely, to obtain power
spectra that are consistent with empirical statistics and optimal
with respect to a suitable criterion, is a standard recurring
theme in works going back to Burg [8]. The problem to obtain
empirical statistics from data is discussed in [9]–[11] and will
not be addressed in this paper. Statistics represent (generalized)
moment constraints and, in the past thirty years, a rich theory
emerged that made contact with analytic function theory and
the classical moment problem, see [12]–[38] and the references
therein. A detailed and rigorous exposition of related topics
and ideas in Signal Processing is given in [39].

Initially, following Burg, early researchers focused on
the entropy rate (1) as such a suitable functional to analyze
geophysical time series. This eventually became dominant in
speech processing under the acronym LPC (Linear Predictive
Coding) [40]. The entropy rate relates to the variance of
one-step-ahead linear prediction and the problem reduces to
solving a linear set of equations, the normal equations [41].
In the context of autoregressive modeling these are solved by
the Levinson algorithm. It soon became apparent that Burg’s
method was a special case of the Itakura-Saito autocorrelation
approach which in turn amounted to minimization of the
discrimination information between a nominal model and a
prior in the sense of the Kullback-Leibler divergence between
their probability laws.

Subsequent developments viewed spectral estimation as
an inverse problem to achieve consistency with estimated
statistics. Initial motivation was provided by a question of
R.E. Kalman to identify spectra of low complexity [42].
Early results were obtained using topological and homotopy
methods and the complete parametrization of solutions with
generic minimal degree was formulated in steps in [13], [43]
and [44]. Subsequently, it was discovered that optimizers
of weighted entropy-like functionals (KL-divergence between
power spectra as well as various types of distance to priors [6],
[7]) had a particularly nice structure; they were rational and
had small dimension [16]–[34], [45]–[47]. In fact, it turned out
that suitably specified weighted entropy functionals contained
the precise degrees of freedom that were needed to efficiently
parametrize and construct these generic minimal degree solu-
tions [16], [18]–[20], [28]. The mathematical underpinnings
of this latter theory were largely based on optimization and
duality, and closed the circle to once again connect with the
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Kullback-Leibler divergence [22]. The present work is similar
in spirit and technique but differs substantially in the choice
of criterion and interpretation.

More specifically, following [1], [2], we consider the KL-
divergence between Gaussian probability laws of stochastic
processes or, equivalently, the Itakura-Saito distance between
their power spectra. The interpretation as well as the structure
of optimizers have subtle differences from earlier construc-
tions. For one thing, the use of the KL-divergence in this way
has a very natural and appealing interpretation: the sought
power spectra represent the most likely statistical signature on
the path space of a time series that is in agreement with the
estimated sample statistics (see Section II-A). The structure
of solutions retains many of the attractive features of earlier
works. In particular, it ensures reasonably good bounds on the
dimensionality of modeling filters (see Remark 5).

A comparison of the contributions of our paper to those in
[1] is in order. The authors of [1] consider a pair of dual opti-
mization problems, which we present in Section VI. Numerical
complications occur in the approach of [1] due to a redundancy
in the dual problem. One of the main contributions of the
present paper is to remove this redundancy by expressing the
dual functional in a natural coordinate system that is based on
our results in Section III. The corresponding reformulation
of the dual problem leads to the fast algorithm presented
in Section IV. A second main contribution is to provide a
solution in closed form for certain choices of prior. These are
analogous to the autoregressive models that arise in the case
of trigonometric moment problems and all-pole priors. The
results are presented for multivariable time series and moment
problems for the corresponding matricial power spectra.

Below, in Section II, we begin by discussing in some
detail the motivation for choosing the particular functional
to guide identifying suitable power spectra that reproduce
sample statistics. We then explain how sample statistics impose
moment constraints on sought power spectra. In Section III we
present a geometric framework for input-to-state filters that
provides basic tools for building a fast algorithm to solve
the basic estimation problem. Section IV gives the problem
formulation and presents the main results. Section V provides a
simple example and connections with earlier literature. Proofs
of the main results are given in Sections VI-VIII. In particular,
Section VII is devoted to deriving the fast algorithm and
Section VIII to deriving the closed-form solution, respectively.
In the concluding Section IX we provide some final thoughts.

II. PRELIMINARIES

A. Likelihood framework

The rationale for the framework adopted herein has been
used to justify maximum likelihood methods [48]–[50] and
complements the original reasoning by E.T. Jaynes [51]–[53].
It can be presented as follows. If sample paths of a time
series are drawn out of the given prior Q, they have a small

probability of giving rise to sample statistics that are not
consistent with Q. If that were to happen, and thereby the
sample paths represent a rare event, i.e., a departure from
what is expected, one is motivated to seek out of the many
possible sample-path distributions that are consistent with the
observed statistics the one that is most likely. It is known that,
asymptotically, the probability of rare events that suggest an
(empirical) distribution P depends exponentially on the KL
divergence between the prior Q and P [54], [55]. There exists
a vast literature on applications of such a large deviations
viewpoint to system identification, primarily with emphasis on
parameter estimations and stochastic approximation, see e.g.,
[56] and references therein.

The KL divergence between two laws P and Q is

D(P‖Q) = lim
N→∞

1

2N + 1
D(P|[−N,N ]‖Q|[−N,N ]), (2)

where P|[−N,N ] denotes the restriction of P to the subset of
random variables

{y(−N), . . . , y(−1), y(0), y(1), . . . , y(N)}

and similarly for Q|[−N,N ]. In turn, the KL diver-
gence between the finite-dimensional probability densities
p(y(−N), . . . , y(N)) and q(y(−N), . . . , y(N)), correspond-
ing to P|[−N,N ] and Q|[−N,N ], is∫

R2N+1

p log(q/p) dy(−N) · · · dy(N).

Provided both laws represent purely nondeterministic pro-
cesses, as is assumed herein, the limit in (2) exists. Using
Szegö-Wiener-Masani’s formula (see e.g., [57, Lemma 5.1],
[58, formula (E.12)], [59, Theorem 11.3.5]), D(P‖Q) can
be expressed in terms of the corresponding power spectral
densities as follows

D(P‖Q) =
1

4π

∫ π

−π
tr
(
ΦΨ−1 − log ΦΨ−1 − I

)
dθ

=: D(Φ‖Ψ), (3)

where tr(·) denotes trace. Since P is completely specified by
Φ we only need to determine Φ, based of course on empirical
statistics. Thus, we are interested in determining a power
spectral density Φ that is consistent with given statistics and
minimizes D(Φ‖Ψ) for a given power spectrum Ψ. The precise
formulation of the problem requires expressing statistics in
terms of power spectra which is done next. The problem is
stated precisely in Section IV.

B. Filter banks and statistics

Time-series represent samples of a stochastic process,
and available statistics consist of sample covariances. We now
explain the setting and nature of the covariance data.

In time-series analysis as well as in antenna array process-
ing it is customary to assume that recorded data is scaled by a
frequency-dependent vector/matrix-valued gain G(eiθ) where
the frequency θ corresponds to time, space, angle, or even a
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vector-valued combination, see e.g., [39, Chapter 6], [60], [61],
[27, Section II-B]. For instance, a window of observations
{y(k), y(k−1), . . . , y(k−n)} of a time series can be thought
as the vectorial output of a “tapped delay line” represented by
the vector-valued Fourier vector

[
1 e−iθ . . . e−inθ

]′
, i.e.,

the Fourier vector is the transfer function of the tapped delay
line. Likewise, in the array processing literature, a model of an
equispaced array of n+ 1 omnidirectional sensors registering
signals that are emitted from afar is again the same Fourier
vector [39, Section 6]. Such a vector-valued gain G, for general
arrays, is often referred to as the array manifold and can be
thought as a bank of filters that capture the relative dependence
of the sensor outputs to signals from afar (see Fig. 1). Often,
for a large equispaced array of sensors, a smaller output is
selected that corresponds to G being a linear combination of
Fourier components (beamspace techniques)

G(eiθ) = M


1

e−iθ

...
e−i(n−1)θ

 , (4)

for a suitable matrix M . Other times, processing of time series
or sensor-array data involves a suitably designed bank of filters
Gk(eiθ), k = 1, 2, . . . , n,

G1

G2

Gn

-

-

-

-

-

-

`̀̀
x1

x2

xn

y

Figure 1: Bank of filters

in which case

G(eiθ) =
[
G1(eiθ) G2(eiθ) . . . Gn(eiθ)

]′
with {y(t)} the common input and general dynamics, see
e.g. [21], [62]. The filters may also encapsulate attenuation
from the coordinate θ of “sources” generating {y(t)} to the
respective outputs of sensor array (cf. [27, Section II]). In all
these cases, it is natural to estimate covariance of the vectorial
time series

x(t) =
[
x1(t) x2(t) . . . xn(t)

]′
.

This is typically the form of available statistics that we
consider henceforth.

We assume that G is a square-integrable, stable n × m
transfer function. Then, the n-dimensional output process
{x(t) | t ∈ Z} assumes a representation as a stochastic integral

x(t) =

∫ π

−π
e−itθG(eiθ) W (eiθ) dŵ(θ)︸ ︷︷ ︸

dŷ(θ)

,

where ŵ is a Wiener process such that E{dŵdŵ∗} = Idθ/2π.
Here, I is the identity matrix, E{ } the expectation operator,

and W is a (minimum-phase) spectral factor of Φ, i.e.,
W (eiθ)W (eiθ)∗ = Φ(eiθ), and therefore dŷ is the stochastic
Fourier transform of y; see e.g. [59, Chapter 3]. It follows that
the n× n covariance of the (zero-mean) vectorial output x(t)
is

Σ := E{x(t)x(t)′} =

∫
GΦG∗ (5)

where, for economy of notation, we have suppressed the limits
of integration and the normalized Lebesgue measure dθ/2π,
i.e.,

∫
denotes

∫ π
−π

dθ
2π . The value Σ represents a matricial

moment constraint on Φ. The problem that we consider below
is, given G and Σ, to determine suitable Φ satisfying (5).

C. Input-to-state filters

A special case of a filter bank of great interest is when
this represents an input-to-state (stable) linear system

x(t) = Ax(t− 1) +By(t), t ∈ Z, (6)

where A ∈ Rn×n and B ∈ Rn×m. In that case, the transfer
function of the filter bank is

G(z) = z(zI −A)−1B. (7)

Throughout we assume that all the eigenvalues of A are
located in the open unit disc. Then

G(z) = (I − z−1A)−1B

= B +ABz−1 +A2Bz−2 +A3Bz−3 + . . .

for all z such that |z| > 1. Throughout, to insure that the
complete state space is being reached and to avoid trivialities
we assume that (A,B) is a reachable pair, i.e.,

rank [B,AB, · · · , An−1B] = n,

and that B is full column rank. The use of such filter banks
is the basis of a tunable method of spectral analysis that was
introduced in [21] and is referred to as THREE.

The input-to-state structure in (7) encompasses Fourier
vectors where Gk(z) := z−(k−1), k = 1, 2, . . . , n, in which
case

A =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , B =


1
0
...
0
0

 (8)

and the n× n state covariance is Toeplitz, i.e.,

Σ := E{x(t)x(t)′} =
[
ck−`

]n
k,`=1

(9)

where ck := E{y(t + k)y(t)}. Identifying a power spectral
density Φ that is consistent with Σ and the process model
is precisely the problem that underlies subspace identification
[59] and coincides with the classical “covariance extension”
or “trigonometric moment” problem.
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On the other hand, first-order filters Gk(z) := z
z−pk , k =

1, 2, . . . , n, (with pk 6= p` for k 6= ` ) lead to

A =


p1

p2

. . .
pn

 , B =


1
1
...
1

 (10)

and a state covariance matrix Σ that has the structure of a Pick
matrix; see [22].

Finally, it is also seen that (7) is of the form (4) where
M = [B, AB, . . .]. This matrix is finite when A is nilpotent
corresponding to “moving average” dynamics.

III. GEOMETRY OF INPUT-TO-STATE FILTERS

The (rational) input-to-state structure of G(z) in (7)
imposes structural algebraic constraints on the covariance of
x(t). In addition to positive definiteness, Σ is completely
characterized by belonging to the range of the integral operator

Γ : Φ 7→ Σ =

∫
GΦG∗. (11)

This is a linear operator that takes m×m integrable matrix-
valued functions Φ on the unit circle to symmetric matrices
Σ.

The range of Γ admits an algebraic characterization. In
fact, it is shown in [63] that a symmetric n × n matrix Σ
belongs to range(Γ) if and only if

Σ−AΣA′ = BH +H ′B′ (12)

for some m× n matrix H . Equivalently,

rank

[
Σ−AΣA′ B

B′ 0

]
= rank

[
0 B
B′ 0

]
, (13)

where 0 denotes a zero-matrix of appropriate size, is necessary
and sufficient for solvability of (12). Moreover, there is a coer-
cive, continuous spectral density Φ satisfying the generalized
moment condition (5) if and only if Σ is positive definite1 and
satisfies (12) or, the equivalent condition (13).

The adjoint operator Γ∗ maps symmetric matrices into
m × m integrable Hermitian matrix-valued functions on the
unit circle, namely

Γ∗ : Λ 7→ G∗ΛG.

The inner product in these two spaces, symmetric matrices
and integrable Hermitian matrix-valued functions on the unit
circle, relate as

〈Λ,Σ〉 := tr(ΛΣ)

= tr

∫
G∗ΛGΦ

=: 〈G∗ΛG,Φ〉.

1The case where Σ is only nonnegative definite is discussed fully in [64]. In
that case the spectral content may correspond to a singular spectral measure.

We also consider the operator

Θ : H 7→ ∆ = BH +H ′B′

which maps Rm×n to symmetric n×n matrices and its adjoint

Θ∗ : ∆ 7→ 2B′∆. (14)

We are interested in non-redundant representations of
range(Γ) and range(Γ∗) by identifying the minimal degrees
of freedom in suitable matrix representations. The first propo-
sition deals with range(Γ).

Proposition 1: The map

Σ 7→ H = (B′B)−1 [B′(Σ−AΣA′)− Y B′] (15a)

where Y is the symmetric solution of the Lyapunov equation

(B′B)Y + Y (B′B) = B′(Σ−AΣA′)B (15b)

establishes a bijective correspondence between Σ ∈ range(Γ)
and H ∈ range(Θ∗).

Proof: Set ∆ := Σ − AΣA′. Since we have Σ ∈
range(Γ),

∆ = BH +H ′B′ (16)

can be solved for H ∈ Rm×n and ∆ = Θ(H). We seek a
particular solution of minimal Frobenius norm

‖H‖F :=
√

tr(HH ′).

Then, this solution will be in range(Θ∗), a fact that will be
verified below. The Lagrangian of the problem is

tr(HH ′) + 2 tr(ΛBH)− tr(Λ∆)

where Λ = Λ′ is the symmetric matrix-valued Lagrange
multiplier. It follows that the unique optimal solution is of
the form

H = B′Λ, (17)

and therefore H ∈ range(Θ∗) in view (14). Then, HB =
B′ΛB =: Y is symmetric. Further, it satisfies the Lyapunov
equation

(B′B)Y + Y (B′B) = B′∆B. (18)

as can be seen by pre-multiplying (16) by B′ and post-
multiplying by B. Since B has full column rank by assump-
tion, the eigenvalues of B′B are positive and (18) has a unique
solution Y . By premultiplying (16) by B′ we can now solve
for

H = (B′B)−1 (B′∆− Y B′) . (19)

Finally, suppose that (12) has two solutions H1 and H2 in
range(Θ∗). Then

H1 −H2 ∈ ker Θ = (range(Θ∗))
⊥
,

and hence H1 = H2, proving uniqueness.

The essence is that (12) has many solutions in general
when m > 1. In that case, Θ has a non-trivial null space,
and Proposition 1 provides the solution to (12) of minimal
Frobenius norm.
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The next proposition deals with range(Γ∗). Since the
orthogonal complement of the range of Γ is the null space
of Γ∗, elements in range(Γ∗) can always be written in the
form G∗ΛG where Λ ∈ range(Γ).

Proposition 2: The map

G∗ΛG 7→ X = MB, (20a)

where M is the unique solution of the Lyapunov equation

M = A′MA+ Λ (20b)

establishes a bijective correspondence between G∗ΛG ∈
range(Γ∗) and X ∈ range(Θ∗).

Proof: We first note that the dimension of range(Γ∗),
which coincides with the dimension of range(Γ), is equal to
the dimension of range(Θ∗) by Proposition 1. Since M is
symmetric, it also follows that X ′ = B′M ∈ range(Θ∗).
Thus, in order to establish that the correspondence G∗ΛG 7→
X ′ is a bijection, it suffices to prove that X ′ = 0 only when
Λ = 0. To see this note that, since AG(z) = z

(
G(z) − B

)
,

(12) yields

G∗ΛG = G∗MG−G∗A′MAG

= G∗MG− [G−B]∗M [G−B]

= G∗0X +X ′G0

(21)

with G0 given

G0(z) := G(z)− 1
2B = 1

2B +A(zI −A)−1B

= 1
2B +ABz−1 +A2Bz−2 +A3Bz−3 + . . . .

(22)

But, since Λ ∈ range(Γ), G∗ΛG = 0 only when Λ = 0. Thus,
X = 0 implies that Λ = 0 and this completes the proof.

IV. MAIN RESULTS

We are now in a position to formulate the main problem
that we consider. As noted earlier this problem was first
formulated and studied in [1].

Problem 1: Given an m×m matrix-valued power spec-
tral density Ψ, and given the parameters A,B of the input-
to-state filter (filter bank) in (6) and the covariance Σ of the
state process x(t), determine

Φ̂ ∈ argmin{D(Φ‖Ψ) | such that (5) holds}.

We provide a solution to this problem under fairly general
conditions on the prior spectral density Ψ, namely,

(i) Ψ is coersive on the unit circle, and
(ii) Ψ(eiθ)−1 is Lipschitz continuous in θ ∈ [−π, π].

In the theorem below we describe the structure of solutions.
The expressions we give provide an alternative to those in
[1] and require fewer variables in general. This non-redundant
structure of solutions is analogous to the reduction in the
number of variables enabling the fast algorithms for Kalman
filtering in [65].

As in our previous work on the moment problem, e.g.,
[18], [20], [21], solving Problem 1 reduces to convex opti-
mization. With G0 given by (22), the optimization criterion is
the strictly convex functional

J(X) = tr

{
(HX +X ′H ′)

−
∫

log
(
Ψ−1 +G∗0X +X ′G0

)}
,

(23)

defined on the open set X+ of matrices X ∈ Rn×m such that
X ′ ∈ range(Θ∗), i.e., B′X is symmetric, and

Q(z) := Ψ(z)−1 +G0(z)∗X +X ′G0(z) (24)

is positive definite at each point z = eiθ on the unit circle.

Theorem 3: Let Σ be a symmetric, positive definite n×n
matrix in the range of Γ, and let H be given by (15). Suppose
that the prior spectral density Ψ satisfies conditions (i-ii)
above. Then Problem 1 has the unique solution

Φ̂ = Q̂−1, (25a)

where
Q̂ = Ψ−1 +G∗0X̂ + X̂ ′G0 (25b)

for some X̂ ∈ X+. The matrix X̂ is the unique minimizer of
the functional J(X), and it is also the unique solution of the
stationarity condition∫ (

Ψ−1 +G∗0X +X ′G0

)−1
G∗0 = H. (26)

Remark 1: In particular, conditions (i-ii) on the prior
are satisfied by power spectra Ψ that are rational and have
nonsingular determinants on the unit circle. In the case where
Ψ is rational, the solution to Problem 1 is also rational and
thereby corresponds in general to an autoregressive moving-
average (ARMA) model. On the other hand, Ψ can equally
well be taken to be nonrational as this often arises in physical
problems, e.g., when representing various types of scattering
interference. 2

The solution provided in the theorem can be obtained
numerically by a Newton method to compute the minimizer
of J. To this end, we compute the gradient

1

2

∂J

∂X
= H −

∫
Q−1G∗0, (27a)

where Q is given by (24), and the Hessian

1

2
H(X) =

∫
G0Q

−2G∗0 > 0. (27b)

The positivity of the Hessian indeed shows that the functional
J is strictly convex. A possible starting point is X = 0.

Remark 2: Unlike the situation in [1], we have explicit
expressions (27) for the Hessian and the gradient in the pa-
rameter space X+. Therefore, we can apply Newton’s method
directly, whereas in [1, Section VI-A] the search direction
needs to be determined implicitely to keep the iteration point
in the space range(Γ). Moreover, the variable X in the
above theorem and expressions (27) belongs to X+ which has
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dimension nm − 1
2 (m2 − m), since X ′ ∈ range(Θ∗). This

should be compared to the 1
2n(n + 1) variables in the dual

functional (34) used in [1]. This is the reason for referring to
our procedure as a fast algorithm. 2

In the next theorem we consider the special case where
the prior Ψ has the form Ψ = (G∗Λ0G)−1. Then the solution
to Problem 1 can be given in closed form.

Theorem 4: Let Σ be a positive definite n× n matrix in
the range of Γ, and suppose that the prior Ψ is given by

Ψ = (G∗Λ0G)−1 . (28)

Then Problem 1 has the unique solution

Φ̂ =
(
G∗Λ̂G

)−1
, (29)

where
Λ̂ := Σ−1B(B′Σ−1B)−1B′Σ−1

and does not depend on Λ0.

The proofs of Theorems 3 and 4 are given in Sections
VII and VIII, respectively.

Remark 3: It is interesting to point out that the solution
Φ̂ to Problem 1 shares the same zeros as the prior Ψ. To
see this note that at any value on the complex plane where Ψ
becomes singular, Q̂ becomes infinity along suitable direction,
and therefore Φ̂ becomes singular as well. This property is
also present in solutions to moment problems that minimize
alternative entropy functionals and has been explored in our
earlier work. It is quite instructive to consider Problem 1 in
the scalar case (m = 1). Then the optimal solution takes the
form

Φ̂(eiθ) =
Ψ(eiθ)

1 + 2Ψ(eiθ)Re{G0(eiθ)∗X̂}
. (30)

Any zeros of the prior Ψ will therefore be zeros also of Φ̂.
However, in the special case of rational Ψ, the dimension of
modeling filters corresponding to Φ̂ is enlarged as compared to
alternative formulations in our earlier works, e.g., [20], [21].
2

Remark 4: Since the closed-form solution (29) does not
depend on Λ0, we may in particular choose Λ0 = I . Then, in
the important case when Gk(z) := z−(k−1), k = 1, 2, . . . , n,
we have Ψ = I , leading to an autoregressive (maximum-
entropy) model. 2

Remark 5: Going back to [42] the original motivation
was to identify and characterize solutions to moment prob-
lems having low degree. It is instructive to consider the
scalar trigonometric moment problem with data (8) and (9),
that is, the problem to match the n covariance samples
{c0, c1, . . . , cn−1} with a rational power spectrum Φ, in the
sense that

ck =

∫
eikθΦ for k = 0, 1, . . . , n− 1

holds, or, equivalently, (5) holds for the n × n covariance
matrix Σ. There is a generic set of covariance samples (i.e.,

a set with an open interior) for which the minimal degree
solution has spectral factors of degree n−1 [43]. (For a more
general result of this type; see [66, Theorem 2.2].) The family
of all power spectra with the same dimensionality can be
parametrized by a set of arbitrarily selected n−1 spectral zeros
(i.e., zeros of the corresponding minumum-phase spectral
factor) – existence of power spectra corresponding to each
such choice was shown in [13], [43] and uniqueness was
shown in [44]. Likewise, in the case of m-vector valued time
series where an n × n covariance matrix Σ is available, the
family of generically minimal degree solutions has spectral
factors of degree n−m, parametrized accordingly for a choice
of spectral zeros [67, Section IV and Corollary 2]). On the
other hand, a direct approach of constructing solutions based
on the THREE framework gives a family of solutions with
spectral factors of degree n [27, Section IV-B] (instead of the
generic minimum n−m in [67]) likewise parametrized by a
suitable choice of spectral zeros. The current framework allows
constructing solutions (29) with spectral factors of degree n
only when the zero-structure is trivial (i.e., identical to the
eigenvalues of the matrix A), while in general the best bound
one can provide from (25) for the dimension of spectral factors
is n+ 1

2×(degree of Ψ); cf. [1, Section IV]. 2

V. A SIMPLE EXAMPLE

In this example we consider as data a particular matrix Σ
that originates as the state covariance of a filter (6). Evidently,
there is a plethora of power spectra Φ that are all solutions to
the moment equation (5), i.e.,

Σ =

∫
GΦG∗.

In the absence of particular knowledge about the power spec-
trum of the underlying process one would normally assume
the uniform prior leading to the “maximum entropy” solution.
Instead, if one begins with a reasonably good prior, the power
spectrum that is closest and agrees with the particular Σ seems
a more logical alternative. The theory in this paper and in the
papers [1], [2] deal precisely with this situation. Thus, in this
section we present and compare the two power spectra, one
labeled Φ̂ that is based on a prior Ψ with low-pass character
and the maximum entropy solution ΦME. The covariance Σ is
intentionally chosen to correspond to a power spectrum that
has a triple zero at θ = π. As a result, although both power
spectra Φ̂ and ΦME are consistent with the covariance data,
the former is closer to the low pass character of the generating
spectrum by virtue of a similar character of the prior. The point
of the example is not compare the “performance” of the two
methods since either matches the moments, but rather their
dramatically different behavior and to suggest how this can be
influenced by the availability of a prior.

We consider the case where Σ is a Toeplitz matrix as
given in (9) with covariance lags ck := E{y(t+ k)y(t)} of a
scalar stationary process y. Then G is given by (4) with M =
I . Moreover, A and B are given by (8), and hence B′(Σ −
AΣA) = (c0, c1, . . . , cn−1) and B′B = 1. Consequently, it
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follows from (18) that Y = 1
2c0 and from (19) that H =

( 1
2c0, c1, . . . , cn−1). Then, setting X ′ := (q0, q1, . . . , qn−1),

we have

HX +X ′H ′ = 〈c, q〉 :=
n−1∑

k=−(n−1)

ckqk

and

Q(eiθ) = Ψ(eiθ)−1 +
n−1∑

k=−(n−1)

qke
ikθ. (31a)

Problem 1 then amounts to minimizing

J(q) = 〈c, q〉 −
∫

logQ (31b)

over all q := (q0, q1, . . . , qn−1) such that Q(eiθ) > 0 for all
θ. In this notation the stationarity condition (26) becomes∫ π

−π
eikθQ−1 dθ

2π
= ck, k = 0, 1, . . . , n− 1. (31c)

Remark 6: It is interesting to compare the functional
J(q) and the form of solution above to those in the framework
of, e.g., [18], [20], [21]. There, the corresponding functional
is J(q) = 〈c, q〉 −

∫
Ψ logQ instead of (31b), with

Q(eiθ) =
n−1∑

k=−(n−1)

qke
ikθ

and moment conditions
∫
eikθ Ψ

Q
dθ
2π = ck, k = 0, 1, . . . , n− 1,

instead of (31). We see that the present framework is analogous
to the maximum-entropy solution in these earlier works except
for the absence of Ψ(eiθ)−1 in the corresponding expression
for Q which is traded off with the direct presence of Ψ in
functional and the stationarity conditions. The optimal solution
is Φ̂(eiθ) = Ψ(eiθ)/

∑
qke

ikθ in this case instead of Φ̂(eiθ) =
Ψ(eiθ)/1 + Ψ(eiθ)

∑
qke

ikθ in our present framework. 2

We proceed with our numerical example. To this end, we
select

Φ(z) = |(z + 1)(z−1 + 1)|3 (32)

= z−3 + 6z−2 + 15z−1 + 20 + 15z + 6z2 + z3

that corresponds to a moving average filter with transfer
function W (z) = 1 + 3z−1 + 3z−2 + z−3. In Fig. 1 we
first compare the “true” (or, rather, reference) power spectral
density Φ in (32), evaluated at z = eiθ for θ ∈ [0, π], with a
prior Ψ = 10(1+0.9 cos(θ)(1+0.9 cos(θ))2) that is selected to
have a low pass characteristic. We seek to match 8 moments,
namely, c = (20, 15, 6, 1, 0, 0, 0, 0). Next, in Fig. 2, we
compare Φ with the optimal solution Φ̂ to Problem 1 for the
given Ψ. Finally, in Fig. 3, we compare Φ with the solution
corresponding to the choice Ψ = 1. The power spectral density
obtained in this way, using either the Newton algorithm based
on Theorem 3 or the closed-form expression in Theorem 4,
is an all-pole power spectrum that agrees with the given
moments, i.e., an AR model. In contrast, Φ̂ corresponds to
an ARMA model.

Fig. 1. Reference spectrum (solid line) vs. prior (dashed)

Fig. 2. Reference spectrum (solid line) vs. optimal (dashed)

Fig. 3. Reference spectrum (solid line) vs. ME spectrum (dashed)

It is interesting to observe the oscillatory character of the
all-pole power spectral density. In contrast, the use of a prior
with a low pass character alleviates the oscillations (Fig. 2).

Remark 7: We stress again that the “true” spectral den-
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sity plays a subordinate role in this example. Indeed, if instead
the maximum-entropy solution in Fig. 3 were the “true”
spectral density, it would produce exactly the same covariance
data as used in the example. In that case, the ARMA solution
in Fig. 2, constructed with the now misleading prior, would
entirely miss the ripples in the true spectrum. On the other
hand, if we were told that the data originates from an all-pole
spectrum, and thereby used an AR spectrum as a prior instead,
the solution to the optimization problem would produce the
unique AR power spetrum shown in Fig. 3, which is consistent
with the given covariance data.

VI. DUAL PROBLEM AND THE FORM OF THE MINIMIZER

Suppose that Σ belongs to the range of the operator Γ,
defined by (11). Then, Problem 1 amounts to minimizing

D(Φ‖Ψ) =
1

2

∫
tr
(
ΦΨ−1 − log Φ + log Ψ− I

)
(33a)

over all spectral densities Φ satisfying the moment condition

Σ =

∫
GΦG∗. (33b)

Proceeding along the lines of [22], it was shown in [1] that
the dual of (33) is the problem to minimize

J(Λ) = tr

{
ΛΣ−

∫
logQ

}
(34a)

over all real, symmetric n × n matrices Λ in the range of Γ
such that

Q(z) := Ψ(z)−1 +G(z)∗ΛG(z) (34b)

is positive on the unit circle. For the convenience of the reader,
we also review some steps in the proof in our present notation.

We denote the class of feasible Λ by L+, i.e.,

L+ = {Λ ∈ range(Γ) | Λ′ = Λ; Q(eiθ) > 0, ∀θ}.

We note in passing that the rationality of G is not needed
at this point; in fact, an interesting example with G(eiθ) =

[1, eiθ, ei
√

2θ]′ is motivated in the context of sensor array
processing in [27].

The Lagrangian for the problem above becomes

L(Φ,Λ) = D(Φ‖Ψ) + tr

{
Λ

(∫
GΦG∗ − Σ

)}
,

= − tr(ΛΣ) +

∫
tr
{

Φ(Ψ−1 +G∗ΛG)

− log Φ + log Ψ− I} ,

where Λ is a symmetric n×n matrix of Lagrange multipliers.
Since tr

{
Λ
(∫
GΦG∗ − Σ

)}
is simply the inner product of

Λ with elements in the range of Γ, we can restrict Λ to the
same space and therefore assume that

Λ ∈ range(Γ).

The function Φ 7→ L(Φ,Λ) is strictly convex for each Λ such
that Q, defined by (34b), is positive semidefinite on the unit

circle. If Q fails to be positive semidefinite, L(Φ,Λ) can be
made arbitrarily small for some Φ, and hence such a Λ is not
a candidate in the dual problem. Hence we may restrict Λ to
the class L+. Setting the directional derivative

δL(Φ,Λ; δΦ) =

∫
tr
{

(Ψ−1 +G∗ΛG− Φ−1)δΦ
}

equal to zero, we obtain

Φ = (Ψ−1 +G∗ΛG)−1, (35)

which inserted into the Lagrangian yields the dual functional

ϕ(Λ) = − tr(ΛΣ)

+

∫
tr
{

log(Ψ−1 +G∗ΛG) + log Ψ
}

= −J(Λ) +

∫
tr log Ψ.

Since this dual functional should be maximized, the dual
problem is equivalent to minimizing J over all Λ ∈ L+. It
was shown in [1] that this problem has a unique solution.
This problem differs from the one in [22] in that the prior Ψ
in [22] does not occur in Q but instead multiplies logQ. Unlike
the situation in [22], tr(ΛΣ) might be negative in the present
setting which complicates the analysis somewhat. Nevertheless
the functional J is bounded from below, as stated next, a fact
that will be used in Section VII.

Lemma 5: If Σ belongs to the range of Γ, then the
functional J is bounded from below.

Proof: The condition that Σ belongs to the range of Γ
ensures the existence of a spectral density Φ0 satisfying (5).
Then, in view of the construction above, ϕ(Λ) ≤ L(Φ0,Λ) =
D(Φ0‖Ψ) or equivalently

J(Λ) ≥
∫

tr log Ψ− D(Φ0‖Ψ),

which establishes the required bound.

VII. REDUX ON THE DUAL PROBLEM: THE FAST
ALGORITHM

Next we turn to the proof of Theorem 3. One of the
difficulties dealing with the dual problem in Section VI is the
redundancy introduced by the integral operator Γ, which has
the consequence that only the part of Λ belonging to the range
of Γ affects the value of J(Λ). To remove this redundancy
we reformulate the problem by defining Rn×m matrix-valued
variable

X = MB, (36)

where M is the unique solution of the Lyapunov equation

M = A′MA+ Λ (37)

and Λ ∈ range(Γ) is the matrix-valued variable in the dual
problem in Section VI. By Proposition 2, there is a one-one
correspondence between Λ and X . In view of (21),

G(z)∗ΛG(z) = G0(z)∗X +X ′G0(z),
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where G0 is given by (22). Therefore (34b) takes the form

Q(z) = Ψ(z)−1 +G0(z)∗X +X ′G0(z). (38)

Moreover, in view of (37) and (12),

tr(ΛΣ) = tr(MΣ)− tr(MAΣA′)

= tr(MBH) + tr(B′MH ′)

= tr(HX +X ′H ′).

Consequently the dual functional can be expressed in terms of
X to obtain the functional J(X) : X+ → R defined by (23),
where X+ is a convex set.

To prove that the functional (23) has a unique minimizer
in X+ we could now appeal to the proof in [1] that the dual
problem in Section VI has a unique solution. However, since
now the redundancy in the dual problem has been removed,
we can offer a more straight-forward alternative proof. We
denote by X̄+ the closure of X+.

Lemma 6: Suppose that Σ belongs to the range of Γ.
Then any nonempty sublevel set

{X ∈ X̄+ | J(X) ≤ r} (39)

is bounded.

Proof: Let X ∈ X̄+ be arbitrary, and define λ := ‖X‖.
We want to show that X cannot remain in the level set (39)
as λ → ∞. To this end, it is no restriction to assume that
λ ≥ λ0 > 0. Next set X̃ := λ−1X and Q̃λ := (λΨ)−1 +
G∗0X̃ + X̃ ′G0. Then

J(X) = γλ− log λ− tr

∫
log Q̃λ,

where γ := tr(HX̃ + X̃ ′H ′), and where Q̃λ depends on
λ but is bounded for λ ≥ λ0. First suppose γ > 0. Then
comparing linear and logarithmic growth, J(X) → ∞ as
λ → ∞, which contradicts J(X) ≤ r. Next, suppose that
γ ≤ 0. Then J(X) → −∞ as λ → ∞, which contradicts
Lemma 5, since J(X) = J(L(Λ)B) = J(Λ), where L(Λ) is
the unique solution of the Lyapunov equation (37). Hence the
sublevel set (39) is bounded as claimed.

Lemma 7: The functional J : X̄+ → R ∪ {∞} has a
unique minimizer X̂ in X+.

Proof: We first prove that J, which is continuous on X+,
can be extended as a lower semicontinuous function J : X̄+ →
R ∪ {∞}. To this end, let (Xk) be a sequence converging to
X in L∞ norm, and let (Qk) and Q be the corresponding
functions (24), which are continuous on the compact interval
[−π, π], and hence uniformly continuous. Consequently there
is a bound κ such that, for θ ∈ [−π, π], Q(eiθ) ≤ κ and
Qk(eiθ) ≤ κ for all k, and hence, by Fatou’s lemma,

−
∫

log

(
Q

κ

)
≤ lim inf

k→∞
−
∫

log

(
Qk
κ

)
since Qk → Q pointwise. Consequently, J(X) ≤
lim infk→∞ J(X)), which shows that that J, extended to the
boundary X̄+, is lower semicontinuous. Therefore it follows

from Lemma 6 that the sublevel set (39) is closed and hence
bounded. Consequently, by Weierstrass’ Theorem, J has a
minimum X̂ in X , which must be unique by strict convexity.

It remains to prove that X̂ is not the boundary ∂X . To this
end, following [16], [18], consider the directional derivative

δJ(X, δX) = tr

{
(HδX + δX ′H ′)

−
∫
Q−1 (G∗0δX + δX ′G0)

}
= tr

{
(HδX + δX ′H ′)−

∫
Q−1δQ

}
Now, for any X ∈ X+ and X̄ ∈ ∂X , take δX = X − X̄ and
Xλ = X̄+λδX and, correspondently, form δQ = Q(z)−Q̄(z)
and Qλ(z) = Q̄(z) + λδQλ(z), where det Q̄(eiθ0) for some
θ0 ∈ [−π, π]. Then

δJ(Xλ,−δX) = − tr(HδX + δX ′H ′) +

∫
fλ,

where fλ is the scalar function

fλ(eiθ) = tr{Qλ(eiθ)−1δQ(eiθ)}.

Taking the derivative with respect to λ we have

d

dλ
fλ(eiθ) = tr{δQ(eiθ)∗Qλ(eiθ)−2δQ(eiθ)} ≥ 0,

and consequently fλ(eiθ) is a monotonically nondecreasing
function of λ for all θ ∈ [−π, π]. Therefore, as λ → 0, fλ
tends pointwise to

f0 = tr{Q̄−1(Q− Q̄)} = tr{Q̄−1Q− I}
= tr{Q̄−1Q} − n.

If
∫
fλ would tend to a finite value as λ → 0, (fλ) would

be a Cauchy sequence in L1(−π, π) and hence have a limit
in L1(−π, π) equal almost everywhere to f0. However, since
there is a δ > 0 such that Q(eiθ) > δ,∫

f0 ≥ δ
∫

tr
(
Q̄−1

)
− n

which is infinite by Proposition 10. Consequently

δJ(Xλ, X̄ −X)→∞ as λ→ 0,

so there could be no minimum in X̄ . This concludes the proof.

Since the unique minimizer X̂ belongs to the interior
X+, the gradient (27a) is zero there. This proves (26). Then,
by (35), the optimal solution of Problem 1 is given by (25).
This concludes the proof of Theorem 3.

VIII. CLOSED-FORM SOLUTION FOR A SPECIAL CASE OF
PRIOR

Next we prove Theorem 4, and hence we now consider
the special case where the prior power spectral density is of
the particular form

Ψ = (G(z)∗Λ0G(z))−1.
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Then the matrix function Q defined by (34b) is given by

Q(z) = G(z)∗(Λ0 + Λ)G(z),

which must be positive on the unit circle and hence, by Lemma
12 there exists a constant matrix C such that

Q(z) = G(z)∗CC ′G(z). (40)

We first change the dual functional (34a) by adding the
constant tr(Λ0Σ), and compute

tr((Λ + Λ0)Σ) = tr

∫
(Λ + Λ0)GΦG∗

= tr

∫
QΦ

= tr

∫
C ′GΦG∗C

= trC ′ΣC,

(41)

where Φ satisfies (5). In view of (40), the modified functional
becomes

J̃(C) := J(Λ) + tr Λ0Σ

= tr

(
C ′ΣC −

∫
logG∗CC ′G

)
(42)

which is now a function of C. Recall the following result from
Wiener-Masani-Helson-Lowdenslager.

Proposition 8: If F (z) is a square outer matrix-valued
function, then∫

log detFF ∗ = log detF (0)F (0)∗.

Proof: The result follows by Jensen’s formula after
noting that f = detF is outer ([68, p. 184]).

We now consider once again the functional J̃(C) and
determine stationarity conditions that provide a form of the
optimal C. First,

J̃(C) = tr (C ′ΣC)− log det(B′CC ′B)

= tr
(
C ′ΣC − log(B′CC ′B)

)
.

The gradient with respect to C is

∂J̃

∂C
= 2C ′Σ− 2(B′C)−1B′,

and hence the stationary point is given by C ′Σ = (B′C)−1B′.
This yield the equation

B′CC ′ = B′Σ−1 (43)

for the optimal C, and we readily see that

C = Σ−1B(B′Σ−1B)−1/2

satisfies (43). Thus, the optimal Q is

Q̂(z) = G(z)∗Σ−1B(B′Σ−1B)−1B′Σ−1G(z),

and therefore

Φ̂(z) = (G(z)∗Σ−1B(B′Σ−1B)−1B′Σ−1G(z))−1.

This concludes the proof of Theorem 4.

IX. CONCLUSIONS

The topic of the paper is to construct power spectral
densities that are consistent with specified moments and are
closest to a prior in a suitable sense. The spirit of the work
is similar to a long line of contributions going back to [8],
including a series of papers [16]–[34] where the emphasis was
in identifying and parametrizing power spectra of minimal
complexity (i.e., dimensionality of modeling filters). A key
tool in these earlier works was a choice of entropy functional
that allowed parametrizing solutions via selection of a suitable
prior power spectrum. The moment constraints were cast in the
form of the state covariance of an input-to-state filter.

In departure from this early work, Ferrante, Masiero
and Pavon [1] proposed to use the KL divergence between
Gaussian probability laws – a formulation which is quite
natural from a probabilistic standpoint. The KL divergence
between Gaussian probability laws coincides with the Itakura
Saito distance between their respective power spectral densi-
ties, and thus, the problem turns out to be equivalent to one
studied by Enqvist and Karlsson [2] in the context of scalar
processes. The purpose of the current work is to present a
simplified alternative optimization procedure which is based
on a detailed analysis of the geometry of input-to-state filters
and related moment problems. Indeed, the power spectral
densities are now parametrized more conveniently by a non-
redundant coefficient matrix (X in Theorem 3) containing
minimal number of parameters that are necessary. Sections
III and IV, as well as the proofs later in the paper contain the
main contributions.

X. APPENDIX

A. Behavior of J on the boundary

Lemma 9: Let θ 7→ M(eiθ) be a matrix-valued func-
tion with Lipschitz-continuous components, and suppose that
M(eiθ) is positive semidefinite for all θ and identically zero
for θ = θ0. Then∫ π

−π
tr{M−1(eiθ)} dθ

2π
=∞,

where M−1 is defined to have infinite value on any subset of
[−π, π] where it is identically zero.

Proof: Without loss of generality we can assume that
M(eiθ) = 0 in an isolated point θ0. By assumption, we can
choose a common Lipschitz constant K and an ε > 0 such
that the components mk`(e

iθ) of M have the bounds∣∣mk`(e
iθ)
∣∣ ≤ K|θ − θ0|

for |θ − θ0| < ε. If N(eiθ) := M−1(eiθ), its components
satisfy ∑

`

mk`(e
iθ)n`k(eiθ) = 1 for all θ and k,
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which then implies that∣∣∣∣∣∑
`

n`k(eiθ)

∣∣∣∣∣K|θ − θ0| ≥ 1

for all θ ∈ (θ0 − ε, θ0 + ε) and k.

Consequently, since N(eiθ) ≥ 0, there must be a k and an
L > 0 such that

nkk(eiθ) ≥ 1

L|θ − θ0|
, for all θ ∈ (θ0 − ε, θ0 + ε),

and therefore∫ π

−π
tr{M−1(eiθ)} dθ

2π
≥ 1

L

∫ θ0+ε

θ0−ε

1

|θ − θ0|
dθ

2π
=∞,

as claimed.

Proposition 10: Let θ 7→ Q(eiθ) be a matrix-valued
function with Lipschitz-continuous components, and suppose
that Q(eiθ) is positive semidefinite for all θ and singular for
θ = θ0. Then ∫ π

−π
tr{Q−1(eiθ)} dθ

2π
=∞.

Proof: After applying a constant unitary transformation
we can write Q on the form

Q =

[
Q1 Q2

Q∗2 Q3

]
,

where Q1(eiθ0) = Q2(eiθ0) = 0 and Q3(eiθ0) > 0. Then

Q−1 =

[[
Q1 −Q2Q

−1
3 Q∗2

]−1 ∗
∗ ∗

]
,

where the Schur complement

M := Q1 −Q2Q
−1
3 Q∗2

is positive semidefinite and has Lipschitz-continuous compo-
nents. Then the statement of the proposition follows from
Lemma 9.

B. Co-invariant subspaces

Let Hm2 represent row vector-valued functions in the
Hardy space of square integrable functions on the circle which
have an analytic continuation in the interior of the unit disc – a
standard notation H2 or H2(D). The forward shift S amounts
to multiplication by z. The backward shift is precisely its
adjoint,

S∗ : H`2 → H`2 : x(z) 7→ ΠH2z
−1x(z).

Subspaces which are invariant under S∗ are those that are
orthogonal to invariant subspaces of the forward shift S, i.e.,
of the form

K := H1×m
2 	H1×m

2 V (z)

with V (z) an inner (matrix-valued) function, and they are
often referred to simply as “co-invariant subspaces”. The
orthogonal projection onto K is

ΠK : H1×m
2 → K

x(z) 7→
(
Π(H1×m

2 )⊥x(z)V (z)∗
)
V (z).

To see this, note that since V (z) is inner, ΠK defined above
is idempotant and Hermitian—hence a projection. It is easy
to verify that its kernel is precisely H1×m

2 V (z) and therefore
ΠK is the orthogonal projection onto K as claimed.

Let A ∈ Cn×n with eigenvalues in D, B ∈ Cn×m with
(A,B) controllable. Without loss in generality we can always
normalize (A,B) so that the corresponding controllability
Grammian is the identity I; when this is true

AA∗ +BB∗ = I

and [A, B] can be competed to a unitary matrix[
A B
C D

]
.

It follows that

V (z) = D + zC(I − zA)−1B

is an inner matrix-valued function, i.e., it is analytic in D and
V V ∗ = V ∗V = I , where V ∗ := V (z) := V ∗(z−1). Now,
consider

G(z) := (I − zA)−1B

and the co-invariant subspace K as noted above. The following
statement is known (see [63, Proposition 4]).

Proposition 11: The rows of G(z) form a basis for K.

Proof: The proof is again from [63, Proposition 4]. We
first claim that any element in K is of the form

v(zI −A∗)−1C∗V (z) (44)

where v ∈ C1×n. To see this note that

ΠK : x0 + x1z + . . . 7→[
Π(H1×m

2 )⊥(x0 + x1z + . . .)

×(D∗ + z−1B∗C∗ + . . .)
]
V (z)

= v(z−1C∗ + z−2A∗C∗ + . . .)V (z)

where v = x0B
∗+x1B

∗A∗+ . . .. Next, it can be shown [63,
Eq. (36)] that

G(z) = (zI −A∗)−1C∗V (z). (45)

In view of (44), the rows of G(z) span K. Finally, if vG(z) =
0 for some v ∈ C1×n, then necessarily v = 0 because
(A,B) is controllable. Hence the rows of G(z) are linearly
independent and form a basis for K as claimed.

Lemma 12: Let Λ be a Hermitian n×n-matrix such that

Q(z) := G(z)∗ΛG(z) > 0
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for z = eiθ, and θ ∈ [0, 2π). There exists Λo = C∗oCo with
Co ∈ Cm×n such that

G(z)∗ΛG(z) = G(z)∗ΛoG(z)

and CoG(z) is outer (i.e., minimum phase, that is, stable and
stably invertible).

Proof: Since Q(z) is Hermitian and positive definite on
the unit circle of the complex plane, it can be factored as

Q(z) = a(z)∗a(z)

with a(z) outer. But V (z)G(z)∗ΛG(z) = V (z)a(z)∗a(z) has
all its elements in H2, since already V (z)G(z)∗ does. Since
a(z) is outer, V (z)a(z)∗ is in H2 as well. Now, note that
G(z)V (z)∗ is orthogonal to H2. Therefore, the zeroth term
of G(z)V (z)∗ vanishes. It follows that V (z)a(z)∗a(z) which
has only positive power of z has no 0th term either. Therefore,
V (z)a(z)∗ has only positive powers of z and no 0th term.
So, finally, we conclude that all elements of a(z)V (z)∗ are
orthogonal to H2 and, therefore, the rows of a(z) are in K.
Thus, there exists a C ∈ Cm×n such that

a(z) = CG(z).

This completes the proof.
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