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Abstract Over the past three decades there has been interest in using Padé approxi-
mantsK with n= deg(K) < deg(G) = N as “reduced-order models” for the transfer
function G of a linear system. The attractive feature of this approach is that by
matching the moments ofG we can reproduce the steady-state behavior ofG by the
steady-state behavior ofK, for certain classes of inputs. Indeed, we illustrate this
by finding a first-order model matching a fixed set of moments forG, the causal
inverse of a heat equation. A key feature of this example is that the heat equation is
a minimum phase system, so that its inverse system has a stable transfer functionG
and thatK can also be chosen to be stable. On the other hand, elementary examples
show that both stability and instability can occur in reduced order models of a stable
system obtained by matching moments using Padé approximants and, in the ab-
sence of stability, it does not make much sense to talk about steady-state responses
nor does it make sense to match moments. In this paper, we review Padé approxi-
mants, and their intimate relationship to continued fractions and Riccati equations,
in a historical context that underscores why Padé approximation, as useful as it is,
is not an approximation in any sense that reflects stability. Our main results on sta-
bility and instability states that ifN≥ 2 and`, r ≥ 0 with 0< `+ r = n < N there is
a non-empty open setU`,r of stable transfer functionsG, having infinite Lebesque
measure, such that each degreen proper rational functionK matching the moments
of G has` poles lying inC− andr poles lying inC+. The proof is constructive.
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1 Introduction

The power moments

E(Xk) =
∫ +∞

−∞
xkp(x)dx (1)

of a random variableX defined onR have played a prominent role in probability
ever since their use by Chebychev in his proof of the Central Limit Theorem. Their
importance is largely due to their interpretation in terms of the Taylor coefficients

φ
(k)
X (0) = ikE(Xk)

of the characteristic function

φX(ξ ) =
∫ ∞

−∞
eiξxp(x)dx= p̂(ξ ),

which is the Fourier transform of the probability density function.
Similarly, if G(s) = C(sI−A)−1B is the transfer function of a strictly proper

linear systems(A,B,C), then the moments ofG may be defined [14, pp. 112–113]
as

ηk = (−1)k dkG
dsk (0). (2)

If σ(A)⊂ C−, the moments of the system coincide with the the power moments

ηk = (−1)k dkG
dsk (0) =

∫ ∞

0
tkg(t)dt

of the impulse responseg(t) = CeAtB, for k≥ 0. For example,η0 is the DC gain,
−CA−1B, of the system. In this case, since whenever limt→∞ f (t) exists andsf̂ (s)
has no poles in the closed right plane we have

lim
t→∞

f (t) = lim
s→0

sf̂ (s),

for any otherstablelinear system whose transfer functionK(s) satisfies

dkK
dsk (0) = (−1)k

ηk, 0≤ k≤ d (3)

the difference between the responses to a fixed polynomial inputu(t) = a0 + · · ·+
adtd will decay to zero ast → ∞. In particular, any lower orderstableinterpolantK
will have the same step response asG. Of course, similar remarks about steady-state
behavior apply to the more general moment matching problem for the data

ηk(s0) =
∫ ∞

0
tkg(t)e−s0tdt = (−1)k dkG

dsk (s0)
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whenevers0 = iω0 andG andK are stable, as the next example shows.

Example 1.Consider the controlled heat equation system [8]:

zt(x, t) = zxx(x, t) (4)

z(0, t) = 0, (5)

zx(1, t) = u (6)

z(x,0) = ϕ(x). (7)

y(t) = z(1, t), (8)

with transfer function

H(s) =
sinh(

√
s)√

scosh(
√

s)
.

We wish to design a stable controllerK(s) so that the cascade interconnection
H(s)K(s) provides steady state tracking of the desired outputyR(t) when driven by
the inputyR(t). In fact, since the heat equation has a stable, causal inverse system

zt(x, t) = zxx(x, t) (9)

z(0, t) = 0, (10)

zx(1, t) = yr (11)

z(x,0) = ψ(x). (12)

ur(t) = z(1, t), (13)

with transfer functionG(s) = H−1(s), one can indeed useG as a feedforward con-
troller. On the other hand, if the reference trajectory is given, for example, by
yR(t) = Asin(2t) then afinite dimensionalcascade controller can be obtained by
using any rational stable function satisfying the interpolation conditions

K(2i) = G(2i) = 1.0856+0.6504i, (14)

K(−2i) = G(−2i) = 1.0856−0.6504i, (15)

rounding to four decimals. Indeed, driving

K(s) = 1.4108
s− .1525

s+1
(16)

with yR(t) produces the steady-state control law,uR(t) = 1.2655sin(2t +0.5397).
In the following simulations, we have taken initial conditionϕ(x) =−4(1−2x).

The steady state behavior of the state trajectory is illustrated in Figure 1. The steady
state behavior of the output trajectory is illustrated in Figure 2.

In contrast to our first example, however, even interpolation data generated by a
stable second order system need not have a stable first order interpolant.

Example 2.Consider the critically damped harmonic oscillator with transfer func-
tion
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Figure 1. Plot of solution surface for the cascade connectionHK driven byyr .
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Figure 2. Plot ofy(t) compared withyr (t)

G(s) =
1

s2 +2s+1
(17)

and the induced one-parameter family of interpolation problems

Kω(iω) = G(iω), Kω(∞) = G(∞) = 0, (18)

where for any fixedω ∈ R we seek a first order, stable interpolantKω .
First note that−π/2 < ∠G(iω) < 0 for any stable, strictly properG with a pos-

itive high-frequency gain, whileπ/2 < ∠G(iω) < π for any stable, strictly proper
G with a negative high-frequency gain. On the other hand,−π < ∠G(iω) <−π/2
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Figure 3. Bode plots forG(s) =
1

s2 +2s+1

for ω > 1, as is illustrated in Figure 3. In particular, the interpolation problem (18)
has no stable, first order solution whenω > 1.

Our final example illustrates the existence of stable rational interpolants for an
open set of interpolation data.

Example 3.Consider the stable, minimum phase system with transfer function

Gε(s) =
s+1+ ε

s2 +2s+1
(19)

and the one-parameter family of interpolation problems

Kε(i) = Gε(i + ε), Kε(∞) = Gε(∞) = 0, (20)

where for any fixedε ∈R we seek a first order, stable interpolantKε . Of course, for

ε = 0, we can takeK0(s) =
1

s+1
. More generally, a stable first-order interpolant

exists whenever−1 < ε < 1. Indeed, in this case we have−π/2 < ∠Gε(iω) < 0
from which it is easy to construct a stable first order interpolantKε .

As Example 1 illustrates, there is potential use for such approximantsK with
deg(K) < deg(G) as “reduced-order models” forG (see, e.g., [1]) when the class
of inputs is restricted to sinusoids of a given frequency,provided the interpolant K
is stable. On the other hand, Examples 2 and 3 show that both stability and insta-
bility can occur in reduced order models of a stable system obtained by matching
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moments. In this paper we shall develop some qualitative results about the stabil-
ity and instability of strictly proper rational functions which match a sequence of
moments of a rational transfer function ats= 0. We expect that similar results hold
for moments computed along the imaginary axis. Roughly speaking, any transfer
functionK, stable or not, matchingηk(0), for k = 0, . . . , ñ< d is aPad́e approxima-
tion to G. In Section 2, we review Padé approximants in more rigorous detail in a
historical context that underscores why Padé approximation, as useful as it is, is not
an approximation in any sense that reflects stability. In Section 3, we state our main
results on stability and instability.

2 Pad́e approximants, continued fractions and Riccati equations

Over the past three decades there has been interest in using Padé approximantsK
with deg(K) < deg(G) as “reduced-order models” forG (see, e.g., [1]). Rigorously,
a Pad́e form of type(m,n) for G is a pair of polynomials(P,Q) with deg(P) ≤
m, deg(P)≤ n such that

Q(s)G(s)−P(s) = O(sn+m+1) (21)

ass→ 0. If n = 0, then (up to constant)P is the Taylor polynomialTm of degreem.
If n,m≥ 1 thenK(s) = P(s)/Q(s) is the ratio of two polynomials so that one might
expect to obtain better approximations toG thanTm and, in many senses, this is true,
explaining in part the ubiquity of Padé approximants. We shall be interested in the
casem≤ n and note that whenever

G(s)−K(s) = O(sn+m+1) (22)

ass→ 0, then (21) holds. As Example 4 shows, the converse, however, is not true
in general.

Pad́e approximants have found a remarkably wide array of applications in math-
ematics, engineering and science [18]. In particular, Padé’s advisor, Hermite [13],
used Pad́e approximants in 1873 to prove thate is transcendental. Euler [9] had
already proved thate is irrational in 1739, by developing a continued fraction ex-
pansion fore1/z and evaluating atz= 1 to obtain

α = α0 +
1

α1 +
1

α2 +
1

α3 + · · ·

(23)

where(α0,α1,α2, · · ·) = (2,1,2,1,1,4,1,1,6, · · ·). Since a number is rational if and
only if its continued fraction expansion is finite, Euler concludes thate is irrational,
but his proof that the continued fraction does not terminate is a remarkable method
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for summing a continued fraction by solving a Riccati equation. In 1775, Euler [10]
returned to this observation in a paper (see also [3]) in which he shows that any
continued fraction of the form

f (z) =
1

π1(z)+
1

π2(z)+
1

π3(z)+ · · ·

(24)

can be summed by solving a Riccati differential equation and that the solution of
any Riccati equation can be expressed as a continued fraction of the form (24). As
one of several examples, he gives the continued fraction

e2/z+1

e2/z−1
= z+

1

3z+
1

5z+
1

7z+ · · ·

(25)

for the hyperbolic function coth(1/z) which, when evaluated atz= 2, gives another
proof thate is irrational.

Recall that a best rational approximant to a real numberr is a rational num-
ber p/q such that|r − p/q| is smaller than any other rational approximation with
a smaller denominator. Among the remarkable properties of continued fraction ex-
pansions of a real numberr is that the rational numbers obtained from the par-
tial sumspn/qn obtained from(α0,α1, . . . ,αn,0, . . .) turn out to be the sequence
of best rational approximants tor and any best rational approximant tor arises in
this way. For example, the continued fraction expansion ofπ yields the sequence
3/1,22/7,333/106, . . . of best rational approximants. In general, one can show [12,
p. 151] the stronger result that for anyp/q 6= pn/qn

0 < q≤ qn =⇒ |qr− p|> |qnr− pn| (26)

Similarly, the partial sums obtained from a continued fraction expansion (24) for a
function f (z) form a sequence of Padé approximants (22).

Example 4.Pad́e approximants can be formed at any point in the extended com-
plex plane, includings = ∞ as is treated in [18]. For example, given the Laurent
expansion

G(s) = γ0 + γ1/s+ γ2/s2 + . . . , (27)

consider the problem of finding partial realizations for the sequence of Markov pa-
rameters(γ1,γ2,γ2 . . .) = (0,1,0,1,0,0, . . .) generated by the fourth order linear sys-
tem with transfer functionG(s) = (s2+1)/s4 having a continued fraction expansion

G(s) =
s2 +1

s4 =
1

s2−1+
1

s2 +1

(28)
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Indeed while (21) has a solution of type(1,1) the rational form of this expression
in (22) does not, reflecting the fact that there is no partial realization fo degree 1.
On the other hand,G2(s) = 1/(s2−1) is a second order partial realization obtained
by truncating the continued fraction expansion. For a genericG(s), the polynomials
πi(s) will be linear functions [11, 17].

Remark 1.By analogy with the use of continued fractions in number theory, one
might conclude that Padé approximants can be thought of as the “best” rational
approximants tof (z). However, while (1) is similar to (21) and|r− p/q| is similar
to (22),bestin the sense of real and rational numbers is measured by absolute values
of differences of real numbers whilebest for Pad́e approximants is measured by
degrees of differences of polynomials and rational functions, which in general will
not detemine the location of poles or zeros.

3 Main Results

The set of proper rational functions

Rat∗(N) = {G : G(s) =
p(s)
q(s)

, deg(p) = deg(q) = N, (p,q) = 1} (29)

can be parameterized as an open, dense subset ofR2N+1 using the coefficients of the
polynomials

p(s) = pNsN + · · ·+ p1s+ p0, q(s) = sN +qN−1sN−1 + · · ·+q0

We callG∈ Rat∗(N) stableif all of its poles lie in the open left half planeC− and
completely unstableif all of it poles lie in the open right half planeC+. We are also
interested in the number̀of poles of a rational functionK lying in C− and the
numberr of poles ofK lying in C+. Thus,`+ r = n = deg(K).

Theorem 1.Suppose N≥ 2 and`, r ≥ 0 with 0 < `+ r = n < N. For each pair̀ , r
there is a non-empty open cone U`,r ⊂ Rat∗(N) of stable transfer functions G such
that each degree n proper rational function K satisfying(3) with d = 2n has` poles
lying in C− and r poles lying inC+ .

In particular, for eachn there does not exist a stable reduced order model of
degreen for an open set of stableG having infinite Lebesgue measure.

Corollary 1. Suppose N≥ 2. For each n satisfying1≤ n < N there is a non-empty
open cone Un ⊂ Rat∗(N) of stable transfer functions G such that each rational K
satisfying(3) with d = 2n is completely unstable.

On the other hand, we have the following parallel positive result.
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Corollary 2. Suppose N≥ 2. For each n satisfying1≤ n < N there is a non-empty
open cone Vn ⊂ Rat∗(N) of stable transfer functions G such that each rational K
satisfying(3) with d = 2n is stable.

Proof. Each of the subsets

WN
1 = {G∈ Rat∗(N) : G(0) 6= 0, G(∞) 6= 0}, WN

2 = {G∈ Rat∗(N) : q0 6= 0}

is open and dense in Rat∗(N) and so is their intersectionWN = WN
1 ∩WN

2 . The
function

T : WN →WN defined byT(G)(s) = G(1/s)

is a homeomorphism since it is continuous and its own inverse. Moreover, the map
s→ 1/s leaves bothC− andC+ invariant. Therefore, it suffices to prove Theorem 1
onWN replacing (3) with the partial realization problem

dkK
dsk (∞) = (−1)k

γk, 0≤ k≤ 2n, (30)

whereγ0,γ1,γ2, . . . are the Markov parameters given by (27). Since solutions to
the partial realization theorem are unchanged under multiplication by a non-zero
constant, it is clear that the open sets described in Theorem 1 are cones and that it
therefore suffices to prove that they are non-empty. Since we are interested only in
the number of poles in open half-planes and stability, we can also suppressγ0 so that
we may assume thatG is strictly proper. In this case, we are interested in the open
dense setUN = WN∩VN where

VN = {G : det(γi+ j−1)i, j=1,...,N 6= 0}

which is known to be open and dense [5]. For anyG ∈ VN, any degreen rational
function K satisfying (3) withd = 2n is unique and can be constructed using the
following algorithm.

Following [11], we associate a parameter sequenceρ = (ρ1, . . . ,ρ2N) to each
G∈VN , whereρ ∈ V N = {ρ : ρi 6= 0, i = 1, . . . ,2N}. In [6, Lemma 1], it is shown
that the mapφ : VN → V N defined byφ(G) = ρ is a homeomorphism. Fromρ one
can [11] constructK(s) = Pn(s)/Qn(s) from the three-term recursions:

Pn(s) = (s−ρ2n)Pn−1(s)−ρ2n−1Pn−2(s); P0 = 0, P−1 =−1 (31)

Qn(s) = (s−ρ2n)Qn−1(s)−ρ2n−1Qn−2(s); Q0 = 1, Q−1 = 0. (32)

Finally, in [6, Lemma 3], an open dense subsetUN ⊂UN is constructed so that the
mapρ → (QN,QN−1,ρ1) is a global, continuous change of coordinates.

Matters being so, we are now prepared to conclude the proof of Theorem 1 by
induction onN. ForN = 2, we haven= 1 and so either̀ = 1, r = 0 or` = 0, r = 1.
In the first case, we construct the open subset
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U1,0 = {(Q2,Q1,ρ1) ∈U2 : Q2 is stable, Q1 is stable, ρ1 6= 0}.

In the second case, we construct the open subset

U0,1 = {(Q2,Q1,ρ1) ∈U2 : Q2 is stable, Q1 is unstable, ρ1 6= 0}.

The latter construction is a special case of [6, Theorem 1], which was done in the
casen = r = N−1.

We now assume Theorem 1 is true forN−1. In particular, for every 1≤ `+ r =
n ≤ N− 2 there exists an open subsetU`,r ⊂ UN−1 of stable rational functions
PN−1/QN−1 so that the degreen partial realization has̀ poles inC− and r poles
in C+. In the parameter sequence coordinates, we need to supplement the open
set of corresponding(ρ1, . . . ,ρ2N−2) by adding two more coordinates̃ρ2N−1, ρ̃2N

is such a way thatQN is stable and the corresponding subsetU`,r ⊂ UN of points
(ρ1, . . . ,ρ2N−2, ρ̃2N−1, ρ̃2N) is open. We first choosẽρ2N < 0, so that the first term
d(s) = (s− ρ̃2N)QN−1(s) appearing in the expression (32) forQN is a Hurwitz poly-
nomial. We next writen(s) = Qn−2(s) andk=−ρ̃2N−1 so that (32) is the closed loop
denominatord(s)+kn(s) for the feedback system consisting of the stable open-loop
systemeg(s) = n(s)/d(s) with the feedback lawu = −ky. In particular, forρ̃2N−1

sufficiently small, the closed-loop system is stable andQN is a Hurwitz polynomial.
Therefore, we have proved Theorem 1 forn≤ N−2.

Finally, supposen= N−1. For any decompositioǹ+r = n, in the(QN,QN−1,ρ1)
coordinates onUN we shall chooseQN to be a Hurwitz polynomial andQN−1 to
have` poles inC− andr poles inC+. The corresponding subsetU`,r ⊂UN is again
clearly open.

Remark 2.The importance of continued fractions in the deterministic partial realiza-
tion problem was recognized in [15] and developed more comprehensively in [11],
using the results in [16, 17]. These results were used in [6] to study the stability and
instability properties of partial realizations, early results which are now generalized
by Theorem 1. The inductive proof of Theorem 1 is constructive in each step and
is phrased in terms of basic facts about root-loci. This is intimately related to the
stability and instability proofs given in [6] using the Nyquist stability criterion. The
geometry of the deterministic partial realization problem and its smooth parameter-
izations were studied in [5] using differential topology. The stochastic realization
problem, which has proven much harder to analyze, was most recently studied us-
ing methods from algebraic geometry and differential topology in [7] in which it is
shown, among other things, that there is no generic value for the degree of a minimal
partial stochastic realization of a given covariance sequence(γ0, . . . ,γn), in contrast
to the deterministic partial realization problem.
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