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Abstract. In this paper, we present a synthesis of our differentiable approach
to the generalized moment problem, an approach which begins with a refor-
mulation in terms of differential forms and which ultimately ends up with a
canonically derived, strictly convex optimization problem. Engineering appli-
cations typically demand a solution that is the ratio of functions in certain
finite dimensional vector space of functions, usually the same vector space
that is prescribed in the generalized moment problem. Solutions of this type
are hinted at in the classical text by Krein and Nudelman and stated in the
vast generalization of interpolation problems by Sarason. In this paper, for-
mulated as generalized moment problems with complexity constraint, we give
a complete parameterization of such solutions, in harmony with the above
mentioned results and the engineering applications. While our previously an-
nounced results required some differentiability hypotheses, this paper uses a
weak form involving integrability and measurability hypotheses that are more
in the spirit of the classical treatment of the generalized moment problem.
Because of this generality, we can extend the existence and well-posedness of
solutions to this problem to nonnegative, rather than positive, initial data in
the complexity constraint. This has nontrivial implications in the engineering
applications of this theory. We also extend this more general result to the case
where the numerator can be an arbitrary positive absolutely integrable func-
tion that determines a unique denominator in this finite-dimensional vector
space. Finally, we conclude with four examples illustrating our results.
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1. Introduction and main results

With so many profound uses of the generalized moment problem in pure and
applied mathematics, and engineering and science, it almost seems unnecessary to
state this classical inverse problem. Nonetheless, we refer the reader to the texts
(see, e.g., [1, 2, 22, 23]) and provide the standard definitions below.

Consider a sequence of complex numbers c1, c2, . . . , cn and a sequence of con-
tinuous, linearly independent complex-valued continuous functions α1, α2, . . . , αn

defined on the real interval [a, b]. The moment problem is then to find all monotone,
nondecreasing functions µ of bounded variation such that∫ b

a

αk(t)dµ(t) = ck, k = 1, 2, . . . , n. (1.1)

In order for the moment equations (1.1) to hold, it is necessary that ck be
real whenever αk is real, with a similar statement holding for the case that αk

is purely imaginary. Indeed, a purely imaginary moment condition can always be
reduced to a real one, and henceforth we shall assume that this is the case. In fact,
we assume that α0, . . . , αr−1 are real functions and αr, . . . , αn are complex-valued
functions whose real and imaginary parts, taking together with α0, . . . , αr−1, are
linearly independent over R.

Let P be the real vector space that is the sum of the real span of α0, . . . , αr−1

and the complex span of αr, . . . , αn. Then, in particular, the real dimension of P
is 2n− r+ 2. Since the formulation of the generalized moment problem is defined
in terms of a choice of basis of P, we will use the notation for a vector in P
interchangeably with the coefficients of this vector with respect to the given basis.

Let P+ be the cone of all functions in P that have positive real part, and let
P+ be its closure. Since

Re
n∑

k=0

ckqk =
∫ b

a

Re

{
n∑

k=0

qkαk

}
dµ, (1.2)

a necessary condition for the existence of a solution to the moment problem is that
the sequence c := (c1, c2, . . . , cn) is nonnegative1 in the sense that

〈c, q〉 := Re
n∑

k=0

ckqk ≥ 0 (1.3)

for all (q0, q1, . . . , qn) ∈ R
r × C

n−r+1 such that

q :=
n∑

k=0

qkαk ∈ P+. (1.4)

In this paper, we consider only solutions of the moment problem for which the
measure dµ is positive. For such a solution to exist, it is necessary that c satisfies

1In [23] such a sequence is referred to as positive. What we shall refer to as positive throughout
this paper is referred to as strictly positive in [23].
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the condition
〈c, q〉 > 0, for all q ∈ P+ � {0}, (1.5)

as is immediately seen from (1.2). Such sequences c are called positive. Denote by
C+ the cone of positive sequences. We shall assume that P+ is nonempty. Then,
since it is also open and convex, it is diffeomorphic to R

2n−r+2; see, e.g., [9, p.771].
It follows from the classical theory [23] that C+ is also nonempty, convex and open
(see also Corollary 2.2), and, as such, it is diffeomorphic to a Euclidean space of
the same dimension as P+.

We note that, with the choice of basis for P we have made, Q := Re{q}
determines q. Indeed, taking the real part of (1.4), we obtain

Q =
r−1∑
k=0

qkαk +
n∑

k=r

akβk −
n∑

k=r

bkγk,

where αk = βk + iγk and qk = ak + ibk for k = r, r + 1, . . . , n. In particular, since
these vectors are linearly independent, we can uniquely recover the coefficients of
q with respect to this basis.

In this context, the most basic result in the classical literature on the moment
problem [23] is that for every positive sequence there is a positive measure which
solves the corresponding moment problem. This has fundamental consequences for
classical moment problems such as the trigonometric moment problem studied by
Schur and Caratheodory or the Nevanlinna-Pick interpolation problem, each of
which arise in engineering applications. In these applications, however, it is impor-
tant that the solution of the moment problem be expressible as a certain rational
function or, more explicitly, as a ratio of functions in P+. More generally, in a
seminal paper Sarason interpreted Nevanlinna-Pick interpolation as a problem re-
lating H∞ of the disc and operator theory. In the case of a partial isometry, the
corresponding H∞ interpolant was also a ratio of two functions in a particular
(coinvariant) subspace of H2. A parameterization of all such interpolants corre-
sponding to strict contractions has recently been given in [13].

In this paper, we first study the generalized moment problem in finite dimen-
sions while retaining the complexity constraint

dµ

dt
=
P (t)
Q(t)

, (1.6)

with P = Re{p} and Q = Re{q} where p, q ∈ P+, and with p being preassigned.
Later, in Sections 2 and 3 we will extend the range of P. We have previously
shown [11, 12] that for each c ∈ C+ and p ∈ P+ there exists a unique q ∈ P+

so that the generalized moment problem with the complexity constraint (1.6) is
solvable. In this paper our first contribution is to show that this problem is well-
posed in the sense of Hadamard, i.e., that the solution not only exists and is
unique but is also continuous (in fact, smooth, where appropriate) with respect to
the initial conditions. We previously have demonstrated this under the hypothesis
that P ⊂ C2[a, b] [11, 12]. Recently, using the results obtained in [21], it is possible
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to prove this in the case P ⊂ C1[a, b]. More generally, we make the following
hypothesis concerning the cone P, which turns out to be a necessary condition;
see Section 4.

(H1) For each q ∈ ∂P+, the integral
∫ b

a

dt

Q

diverges.

Remark 1.1. If P consists of Lipschitz continuous functions, then P satisfies hy-
pothesis H1, generalizing our previously announced result for smooth functions.

Remark 1.2. If P is spanned by a Chebyshev system (or T-system) [23] and con-
tains a constant function, then, after a reparameterization, P consists of Lipschitz
continuous functions [23, p. 37], and thus satisfies hypothesis H1.

Theorem 1.3. Suppose P satisfies hypothesis H1. Let p ∈ P+, and set P := Re{p}.
Then the map fp : P+ → C+ sending q ∈ P+ to c := (c1, c2, . . . , cn) ∈ C+, where

ck =
∫ b

a

αk(t)
P (t)
Q(t)

dt, k = 0, 1, . . . , n, (1.7)

and Q := Re{q}, is a diffeomorphism.

Theorem 1.4. Suppose P satisfies hypothesis H1. Let c ∈ C+. Then the map
gc : P+ → P+ sending p ∈ P+ to q = (fp)−1(c) is a diffeomorphism onto its
image Q+.

Our approach follows from a differentiable viewpoint, so to speak, of the
generalized moment problem. Indeed, parameterizing q via q =

∑n
k=0 qkαk, we

construct the 1-form

ω = Re

{
n∑

k=0

[ck − fp
k (q)] dqk

}
,

on P+. Explicitly, we have

ω = Re

{
n∑

k=0

ckdqk −
∫ b

a

n∑
k=0

αk
P

Q
dqkdt

}

= Re
n∑

k=0

ckdqk −
∫ b

a

P

Q
dQdt

so taking the exterior derivative (on P+) we obtain

dω =
∫ b

a

P

Q2
dQ ∧ dQdt = 0,

establishing that the 1-form ωc is closed.



Vol. 56 (2006) Generalized Moment Problem with Complexity Constraint 167

Therefore, by the Poincaré Lemma, there exist a smooth function J such that,
modulo a constant of integration,

J =
∫
ω =

∫ (
Re

n∑
k=0

ckdqk −
∫ b

a

P

Q
dQdt

)
,

with the integral being independent of the path between two endpoints. Computing
the path integral, one finds that

J(q) = 〈c, q〉 −
∫ b

a

P logQ dt, (1.8)

which is strictly convex and bounded from below for positive sequences c0, c1, . . .,
cn (Proposition 2.1). The functional J has an interior critical point precisely at the
solution of the generalized moment problem. To see this, on the second factor of
R

r×C
n−r+1, we decompose the exterior differential as the sum d = ∂+ ∂̄, where ∂̄

is the Cauchy-Riemann operator. Since J is real, to say that dJ = 0 is to say that
∂J = 0 or, equivalently, that ∂̄J = 0. Finally, by inspection we see that ∂J = 0 is
the set of defining equations of the generalized moment problem.

Theorem 1.5. Suppose P satisfies hypothesis H1. Let (p, c) ∈ P+ × C+, and set
P := Re{p}. Then the functional

J : P+ → R ∪ {∞},
given by (1.8), has a unique minimizer q̂ ∈ P+, and q̂ = (fp)−1(c), where fp :
P+ → C+ is the map defined in Theorem 1.3.

Remark 1.6. Modulo the technical discussions below, from the above discussion
and results, we can see that, fixing a positive sequence c and a p ∈ P+, there
will always exist a q ∈ P+ that minimizes J. One should even hope that this q
solves the moment problem. The point of the above results is that q is actually an
interior point i.e., q ∈ P+. In fact, hypothesis H1 is a necessary condition for the
solution of the moment problem to be an interior point, as discussed in Section 4.

Remark 1.7. If we denote by L1
+[a, b] the set of absolutely integrable functions

which are positive a.e., then Theorems 1.3 and 1.5 hold for P ∈ L1
+[a, b] and

q ∈ P+, mutatis mutandis, as we show in Section 3.

For several decades, it has been known that the rational covariance exten-
sion problem arising in spectral estimation and stochastic systems theory can be
recast as the trigonometric moment problem [14]. In fact, the rational covariance
extension problem is equivalent to this moment problem with the complexity con-
straint we have introduced. In this context, there are well-known designs, such as
the Pisarenko filter, that p lies on the boundary of P+. For such interpolation
problems, Georgiou has shown [20] that, for each p ∈ ∂P+, there exists a unique
q ∈ P+ such that Q can only vanish at points where P vanishes to at least as
high an order (so that P/Q is integrable). In [3] it was shown that such extended
interpolation problems are well-posed (in the sense of Hadamard).
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As we shall see in Section 3, the relationship between the moment problem
and the optimization problem of Theorem 1.5 continues to hold even for p ∈
P+�{0}. Therefore, the function gc can be extended as a function gc : P+�{0} →
Q+ � {0} sending p to the corresponding solution q to the generalized moment
problem with complexity constraint, a solution that is also a minimizer. For p = 0,
the generalized moment problem with complexity constraint does not make sense,
but the optimization problem does, reducing to the minimimization of a linear
functional on a convex set. By definition, this problem has a unique solution at
q = 0. Therefore, we define gc(0) = 0. The assertion that this problem is well-posed
depends on the zero structure of elements of P+ � {0}.
(H2) For each p ∈ P+ � {0}, the zero locus of P := Re{p} has measure zero.

Remark 1.8. Every T-system satisfies hypothesis H2. In particular, this applies to
the power moment problem and the trigonometric moment problem of odd degree.

Remark 1.9. The cones P corresponding to the trigonometric moment problem of
all degrees and the Nevanlinna-Pick interpolation problem satisfy hypothesis H2.
More generally, finite-dimensional spaces of analytic functions satisfy hypothesis
H2.

Theorem 1.10. Suppose P satisfies hypotheses H1 and H2, and define gc(0) to be
zero. Let c ∈ C+. Then, the extended map gc : P+ → Q+ is a homeomorphism. In
fact, the moment problem (1.1) with the complexity constraint (1.6) has a unique
solution q ∈ Q+ � {0} for each p ∈ P+ � {0} with the property that P/Q is
integrable. For all p ∈ P+, the corresponding q is also the unique minimizer of the
of the functional J.

2. Well-posedness of the generalized moment problem on P+

Fix c ∈ C+ and p ∈ P+, and consider the strictly convex functional (1.8) defined
on the closed convex set P+. We first note that J is bounded from below.

Proposition 2.1. There exists an εc > 0 such that, for all nonzero (p, q) ∈ P+×P+,

J(q) ≥ εc‖Q‖∞ − ‖P‖1 log ‖Q‖∞, (2.1)

where P = Re{p} and Q = Re{q}.
Proof. The linear form 〈c, q〉 has a minimum, mc, in the compact set {q ∈ P+ |
‖q‖∞ = 1}. Since c ∈ C+, mc > 0. Then, for an arbitrary q ∈ P+,

〈c, q〉 = 〈c, q

‖q‖∞ 〉‖q‖∞ ≥ mc‖q‖∞ ≥ εc‖Q‖∞
for a positive constant εc. Therefore,

J(q) ≥ εc‖Q‖∞ −
∫ b

a

P log
(

Q

‖Q‖∞

)
dt− ‖P‖1 log ‖Q‖∞.

Since the second term is nonnegative, (2.1) follows. �
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Corollary 2.2. The cone C+ is open in R
2n−r+2.

Proof. The corollary follow immediately from 〈c, q〉 ≥ mc‖q‖. �
Corollary 2.3. For all r ∈ R the sublevel sets of J

−1(−∞, r] are compact.

Proof. Comparing linear to logarithmic growth in

r ≥ εc‖Q‖∞ − ‖P‖1 log ‖Q‖∞,
we see that the sublevel sets are bounded both from above and below. They are
closed because they are the sublevel sets of a function. �

In particular, J has a unique minimum q̂. We claim that q̂ ∈ P+. From the
theory of convex optimization it follows that to say q̂ is the minimum is to say
that

dJq̂(q − q̂) ≥ 0, for all q ∈ P+. (2.2)
(See, e.g., [26, p. 264].) Next, choose q − q̂ ∈ P+ and denote by dµ the positive
measure P (Q− Q̂)dt. Then

dJq̂(q − q̂) = 〈c, q − q̂〉 −
∫ b

a

dµ

Q̂
. (2.3)

If q̂ ∈ ∂P+, then, by hypothesis H1, the positive integral in (2.3) diverges to
infinity, contradicting (2.2). Therefore q̂ ∈ P+ and the stronger critical point
condition

dJq̂ = 0 (2.4)
is satisfied. Since this is the set of moment equations (1.1), Theorem 1.5 has been
established.

We now turn to Theorem 1.3. By Theorem 1.5, fp is a surjection. Because J

is strictly convex, fp is an injection. Moreover,

dfp
k (αj) = −

∫ b

a

αj
P

Q2
αkdt. (2.5)

Therefore, the Jacobian of fp is a negative-definite, symmetric matrix, and, by the
Implicit Function Theorem, it follows that f c is a local diffeomorphism. Hence,
since fp is bijective, fp is a diffeomorphism, thus proving Theorem 1.3.

Finally, fix c ∈ C+ and consider the map gc sending p to q. By Theorem 1.5,
gc is well-defined and, by definition, surjective.

Lemma 2.4. The map gc : P+ → Q+ is injective.

Proof. Suppose q = gc(p1) and q = gc(p2) for some q ∈ Q+. Then∫ b

a

αk
P1 − P2

Q
dt = 0 k = 1, 2, . . . , n. (2.6)

Now

Pi = Re

{
n∑

k=1

p
(i)
k αk

}
, i = 1, 2.
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Therefore, (2.6) yields

Re
n∑

k=1

{[
p
(1)
k − p

(2)
k

] ∫ b

a

αk
P1 − P2

Q
dt

}
=
∫ b

a

(P1 − P2)2

Q
dt = 0,

which holds if and only if P1 = P2; i.e., if and only if p1 = p2. �

Theorem 2.5. The map gc is a diffeomorphism between smooth manifolds.

Proof. Consider all pairs (p, q) ∈ P+ × P+ satisfying ϕ(p, q) = 0, where the
function ϕ : P+ × P+ → C

n is given by

ϕk(p, q) = ck −
∫ b

a

αk
P

Q
dt, k = 0, 1, . . . , n.

It is easy to see that
∂ϕk

∂qj
=
∫ b

a

αj
P

Q2
αkdt

is the gramian of a positive definite quadratic form and therefore is positive def-
inite. Consequently, by the Implicit Function Theorem, gc(p) = q is smooth, and
its image Q+ is an open smooth submanifold. Likewise,

∂ϕk

∂pj
= −

∫ b

a

αj
1
Q
αkdt

is negative definite, and hence p is locally a smooth function of q. Therefore, gc is a
local diffeomorphism. Since it is an injection, gc : P+ → Q+ is a diffeomorphism.

�

This proves Theorem 1.4.

3. Continuous extension to the boundary of P+

We now turn to the proof of Theorem 1.10. Fix c ∈ C+. For p ∈ ∂P+ � {0}, we
will construct a solution q to the generalized moment problem with complexitiy
constraint by approximating p by a sequence (pn) lying in P+. The fact that q is
independent of the sequence (pn) is implied by the following result.

Main Lemma 3.1. Suppose P satisfies hypothesis H2. Let (pk, qk) ∈ P+ × P+

be sequence of pairs that solve the generalized moment problem with complexity
constraint. If pk → p �= 0, then there exists a q �= 0 such that qk → q and

1. (p, q) solves the generalized moment problem with complexity constraint;
2. q is the (unique) minimizer of the corresponding functional J.

Proof. Computing the directional derivative of J at q in the direction h, we obtain

dJq(h) = 〈c, h〉 − Re

{
n∑

k=0

hk

∫ b

a

αk
P

Q
dt

}
.
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Therefore, if (p̂, q̂) solves the generalized moment problem with complexity con-
straint, then

dJq̂(q − q̂) = 0, for all q ∈ P+ (3.1)

so that (2.2) is satisfied, and therefore q̂ is the minimizer of J. In particular,
condition (1) implies condition (2).

Now, suppose that (pk, qk) is a sequence satisfying the hypotheses of the Main
Lemma. We claim that

‖qk‖ ≤M (3.2)

for some M > 0. For this we need some notation. Let

Jk(q) = 〈c, q〉 −
∫ b

a

Pk logQ dt

be the functionals corresponding to pk, and let J be the functional corresponding
to p. Suppose the sequence (‖qk‖) is unbounded. Then there is a subsequence,
which we shall also denote by (qk), for which ‖Qk‖ > 1 and ‖Qk‖ → ∞.

Choose an arbitrary, but fixed, q̃ ∈ P+. By optimality, Jk(q̃) ≥ Jk(qk). Since
log Q̃ is continuous on the interval [a, b], and since pk → p,

Jk(q̃) → J(q̃).

Therefore, there exists a positive constant L such that L ≥ Jk(q̃) for all k. Similarly,
there is a positive constant N such that ‖Pk‖1 ≤ N . Combining these inequalities
with (2.1), we obtain the inequality

L ≥ Jk(qk) ≥ εc‖Qk‖∞ −N log ‖Qk‖∞. (3.3)

Comparing linear and logarithmic growth in (3.3), we see that ‖qk‖ is bounded
from above, contrary to hypothesis.

Suppose that (qkj ) is a convergent subsequence with limit q∗. Since pk → p �=
0 and (pk, qk) satisfy the moment equations with a fixed c ∈ C+, q∗ �= 0. Choosing
a v ∈ P+ such that

ρ := Re
∑

v�α� > 0,

the integral ∫ b

a

ρ
Pkj

Qkj

dt = 〈c, v〉

is bounded, and hence Pkj/Qkj is integrable. Except on a set of measure zero,
because of hypothesis H2 we have

lim inf
kj→∞

Pkj

Qkj

= lim
kj→∞

Pkj

Qkj

=
P

Q∗

so that, by Fatou’s Lemma,
∫ b

a

α�
P

Q∗ dt ≤ c� = lim inf
kj→∞

∫ b

a

α�

Pkj

Qkj

dt.
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Choosing a v ∈ P+ as before, we obtain
∫ b

a

ρ
P

Q∗ dt ≤ 〈c, v〉,

and hence P/Q∗ is integrable. By the Dominated Convergence Theorem, Pkj/Qkj

converges to P/Q∗ in L1[a, b]. Moreover, since each α� is continuous, and hence
bounded on [a, b], we have

c� = lim
kj→∞

∫ b

a

α�

Pkj

Qkj

dt =
∫ b

a

α�
P

Q∗ dt.

In particular, P/Q∗ satisfies the moment problem, and hence q∗ is the minimizer
of J. Therefore, the bounded sequence (qk) has a unique cluster point q = q∗. �

Suppose p ∈ ∂P+ � {0} and that (pk) is a sequence in P+ that tends to p.
Moreover, suppose that P satisfies hypotheses H1 and H2. Then, by Theorem 1.5,
there is a sequence (qk) in P+ such that each pair (pk, qk) satisifies the generalized
moment problem with complexity constraint, and, by the Main Lemma, there
exists a unique q so that (p, q) solves the moment problem. Since q is the unique
minimizer of the optimization problem corresponding to p, it follows that q is
independent of the approximating sequence (pk). Therefore, the map gc extends
to a well-defined mapping on P+.

Now, suppose pk → p in P+ � {0}, where (pk) may have infinitely many
terms in ∂P+. We know that to each pk and to p corresponds a qk and a q, which
together form a solution to the moment problem. Therefore, by the Main Lemma,
qk → q so that gc extends to continuous map on P+ � {0}.

The proof of Lemma 2.4 shows that gc extends to an injection on P+ � {0}.
To show that gc is a homeomorphism it remains to prove that it is surjective and
that (gc)−1 is continuous. This will follow if we can establish that gc is proper;
i.e., (gc)−1(K) is compact for all compact K ⊂ Q+.

Lemma 3.2. The map gc : P+ � {0} → Q+ � {0} is proper.

Proof. We first observe that the optimization problem can be rescaled. In fact, the
functional

J
λ(q) = 〈c, λq〉 −

∫ b

a

λP logλQ dt

has the same minimizers as (1.8). Hence we can restrict our attention to p ∈ P+

such that ‖p‖∞ = 1. Let M1 ⊂ P+ be the space of such p. Hence the diagram

P+ � {0} gc

−−−−→ Q+ � {0}
p

‖p‖




 gc(p)

‖p‖

M1
gc

−−−−→ gc(M1)
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commutes. Here the restriction gc : M1 → Q+ is continuous, 1-1 and onto its
image gc(M1). The space M1 is compact, and, since it is the continuous image of a
compact set, so is gc(M1), Hence, gc : M1 → g(M1) is also proper, implying that
it is a homeomorphism.

Let q ∈ Q+ � {0} be arbitrary, and let
(
qn
)

be a sequence in gc(P+ � {0})
that converges to q. It is then bounded. We want to show that the sequence

(
pn

)
,

defined by pn := (gc)−1(qn), cannot tend to infinity. Now, by compactness, the
sequence

(
q̃n
)
, defined by

q̃n :=
qn

‖pn‖∞ ,

tends to a limit q̃. Since
(
qn
)

is bounded, q̃ would be zero, if ‖pn‖∞ → ∞. However,
if q̃ were zero, then so is p̃ := (gc)−1(q̃), which is a contradiction. Hence, gc :
P+ � {0} → Q+ � {0} is proper, as claimed. �

Lemma 3.2 implies that the map gc is surjective. Indeed, if q ∈ Q+�{0}, then
q is the limit of the sequence (qk) in Q+. This sequence is the image of a sequence
(pk) in P+. Moreover, the preimage of (qk) and q is compact and contains (pk),
which therefore has a convergent subsequence (pkj ) → p for some p ∈ P+ � {0}.
This implies

qkj = gc(pkj ) → gc(p) = q

so that gc is surjective and therefore has an inverse (gc)−1. Since gc is proper, it
is a closed mapping, and therefore (gc)−1 is continuous.

We have shown that gc : P+�{0} → Q+�{0} is a homeomorphism. Suppose
(pk, qk) solves the same moment problem. Then pk → 0 if and only if qk → 0.
In particular, with the convention gc(0) = 0, in harmony with the optimization
problem, gc extends to a homeomorhism of P+ with Q+. This concludes the proof
of Theorem 1.10.

Theorem 1.10 can be generalized along the lines of of Remark 1.7 at the price
of giving up well-posedness. In fact, the assumption that p ∈ P+ �{0} is only used
to show injectivity. Therefore we have the following result, which will be used in
Section 5.

Theorem 3.3. Suppose P satisfies hypotheses H1 and H2, and let c ∈ C+. Then,
for all P ∈ L1

+[a, b], the moment problem (1.1) with the complexity constraint (1.6)
has a unique solution q ∈ P+ � {0} with the property that P/Q is integrable. For
all P ∈ L1

+[a, b], the corresponding q is also the unique minimizer of J.

Theorem 3.3 follows, mutatis mutandis, from the first half of the proof of
Theorem 1.10. To see this, first note that the extensions of Theorems 1.3 and
1.5, announced in Remark 1.7, to the case where P ∈ L1

+[a, b] reposes on the
observation that the proof of Proposition 2.1 extends to this case. Then, the Main
Lemma (as well as the subsequent two paragraphs) is modified by considering a
sequence (Pk) in L1

+[a, b] converging to P in L1.
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4. Necessity of hypothesis H1

For simplicity, set [a, b] = [−1, 1]. The heart of the construction is as follows.
Set α0 = 1 (or, more generally, any positive element in the function space P)
and choose α1 to be a nonnegative function that vanishes at zero, but with its
reciprocal being integrable with finite integral value v. By choice, α0 and α1 are
linearly independent. Let P = span

R
{α0, α1}. Of course, α0 ∈ P+ and α1 ∈ ∂P+.

Now choose p = 1 and q = α1. Then define c = (c0, c1) = (v, 2) via (1.7), which,
by construction, is a positive sequence. For this c, however, although p ∈ P+, the
corresponding q ∈ ∂P+. This proves necessity of hypothesis H1.

Example. Consider P = span{1, |t|1/2}. In this case, positive functions correspond
to to values of q0, q1 for which q0 + q1|t|1/2 > 0 for all t ∈ [−1, 1]. That is, P+ is
the open convex set defined by the inequalities q0 > 0 and q1 > −q0. The sequence
c = (4, 2) is positive because 4q0 + 2q1 > 0 on P+. For the choice p = 1 and this
positive sequence, the generalized moment problem with complexity constraint is
solved uniquely by q(t) = |t|1/2, which lies on the boundary of P+.

5. The primal problem

In this section, generalizing the results described in [12], we use Theorem 3.3 to
analyse a primal optimization problem which has as its dual the minimization of
the functional J. It is worth noting that the solution to the primal optimization
problem automatically satisfies the complexity constraint (1.6).

Theorem 5.1. Suppose that c ∈ C+ and that P satisfies hypotheses H1 and H2.
For any P ∈ L1

+[a, b] � {0}, the constrained optimization problem to minimize the
functional

I(Φ) =
∫ b

a

P (t) log
P (t)
Φ(t)

dt, (5.1)

over L1
+[a, b] subject to the constraints∫ b

a

αk(t)Φ(t)dt = ck, k = 0, 1, . . . , n, (5.2)

has a unique solution, and it has the form

Φ =
P

Q
, Q := Re{q},

where q ∈ P+ is the unique minimum of (1.8). If P ∈ L1
+[a, b], hypothesis H2 is

not needed, and the unique minimum of (1.8) lies in P+.

Proof. By Jensen’s inequality, I(Φ) ≥ −‖P‖1 log (‖Φ‖1/‖P‖1), and hence the func-
tional is bounded from below. Form the Lagrangian

L(Φ, q) = −I(Φ) + Re
n∑

k=0

qk

[
ck −

∫ b

a

αkΦdt

]
,
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where (q0, q1, . . . , qn) ∈ R
r × C

n−r+1 are Lagrange multipliers. Then, defining

Q = Re{q}, where q =
n∑

k=0

qkαk,

we obtain

L(Φ, q) =
∫ b

a

P log
Φ
P
dt+ 〈c, q〉 −

∫ b

a

QΦdt.

Clearly, the dual functional

ψ(q) = sup
Φ∈L1

+[a,b]

L(Φ, q)

takes finite values only if q ∈ P+, so we restrict our attention to such Lagrange
multipliers.

First, consider the case that P ∈ L1
+[a, b]. For any q ∈ P+ and any Φ ∈

L1
+[a, b] such that P/Φ is integrable, the directional derivative

d(Φ,q)L(h) =
∫ b

a

[
P

Φ
−Q

]
hdt = 0

for all h ∈ L1[a, b] if and only if

Φ =
P

Q
∈ L1

+[a, b],

which inserted into the dual functional yields

ψ(q) = 〈c, q〉 −
∫ b

a

P logQdt−
∫ b

a

Pdt.

Since the last term is constant, the dual problem to minimize ψ(q) over P+ is
equivalent to the optimization problem

min
q∈P+

J(q),

which, by Theorem 1.5 generalized as in Remark 1.7, has a unique minimizer
q̂ ∈ P+ satisfying the moment conditions (5.2) with Φ given by

Φ̂ :=
P

Q̂
∈ L1

+[a, b]. (5.3)

Since the function Φ 
→ L(Φ, q̂) is strictly concave and

dL(Φ̂,q̂)(h) =
∫ b

a

[
P

Φ̂
− Q̂

]
h dt = 0, (5.4)

for all h ∈ L1[a, b], we have
L(Φ, q̂) ≤ L(Φ̂, q̂) (5.5)

for all Φ ∈ L1
+[a, b], with equality if and only if Φ = Φ̂.
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However, L(Φ, q̂) = −I(Φ) for all Φ satisfying the moment conditions (5.2).
In particular, since (5.2) holds with Φ = Φ̂, L(Φ̂, q̂) = −I(Φ̂). Consequently, (5.5)
implies that, for all Φ ∈ L1

+[a, b] satisfying the moment conditions,

I(Φ) ≥ I(Φ̂), (5.6)

with equality if and only if Φ = Φ̂. Hence, I has a unique minimum in the space
of Φ ∈ L1

+[a, b] satisfying the constraints (5.2), and it is given by (5.3).
Next, consider the case that P ∈ L1

+[a, b] � {0}. By Theorem 3.3, the func-
tional J has a unique minimizer q̂ ∈ P+ � {0} such that

Φ̂ :=
P

Q̂
∈ L1

+[a, b] (5.7)

satisfies the moment condition (5.2), and thus L(Φ̂, q̂) = −I(Φ̂). Then, (5.4) holds
for all h := Φ−Φ̂ such that Φ ∈ L1

+[a, b], and hence (5.5) holds for all Φ ∈ L1
+[a, b],

with equality if and only if Φ = Φ̂. Consequently, (5.6) is satisfied for all for all
Φ ∈ L1

+[a, b] satisfying the moment conditions (5.2), with equality if and only if
Φ = Φ̂. �

6. Examples

We illustrate our results with a number of examples.

Example. The trigonometric moment problem is a basic moment problem that
corresponds to the interval [a, b] = [−π, π] and the choice of basis

αk(θ) = eikθ, k = 0, 1, . . . , n.

It is easy to see that, with this basis, P satisfies H1 and H2. Also the moment
sequence c = (c0, c1, . . . , cn) ∈ C+ if and only if the Toeplitz matrix



c0 c1 · · · cn
c̄1 c0 · · · cn−1

...
...

. . .
...

c̄n c̄n−1 · · · c0




is positive definite [23]. In many applications (see, e.g., [10]), we want to consider
only solutions that are rational functions of degree at most n. In our present
setting, this degree constraint is enforced by imposing the complexity constraint
(1.6) with P ∈ P+.

Example. A Carathéodory function is an analytic function in the open unit disc
that maps points there into the open left half-plane. Given n + 1 distinct points
z0, z1, . . . , zn in the open unit disc, consider the problem to determine the rational
Carathéodory functions f of degree at most n satisfying the interpolation condition

f(zk) = ck, k = 0, 1, . . . , n, (6.1)
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where c0, c1, . . . , cn are prescribed values in the open right half of the complex
plane with c0 real. This Nevanlinna-Pick interpolation problem differs from the
classical one in that a degree constraint on the interpolant f has been introduced,
a restriction motivated by applications [10, 8]. In fact, many problems in systems
and control can be reduced to Nevanlinna-Pick interpolation (see, e.g., [15, 16]),
and, as the interpolant generally can be interpreted as a transfer function, the
bound on the degree is a natural complexity constraint.

To reformulate this interpolation problem as a generalized moment problem,
we note that, by the Herglotz Theorem,

f(z) =
1
2π

∫ π

−π

eiθ + z

eiθ − z
Φ(eiθ)dθ, Φ(eiθ) = Re{f(eiθ)}, (6.2)

and hence [a, b] = [−π, π] and, for k = 0, 1, . . . , n,

αk(θ) =
1
2π

eiθ + zk

eiθ − zk
. (6.3)

The corresponding vector space P satisfies H1 and H2. Moreover, c ∈ C+ if and
only if the Pick matrix [

ck + c̄�
1 − zkz̄�

]n

k,�=0

is positive definite [23]. To consider only solutions satisfying the nonclassical de-
gree constraint deg(f) ≤ n, we impose the complexity constraint (1.6) with the
restriction that p ∈ P+.

If the interpolation points z0, z1, . . . , zn are not distinct, the interpolation
conditions are modified in the following way. If zk = zk+1 = · · · = zk+m−1, the
corresponding interpolation conditions are replaced by

f(zk) = ck, f ′(zk) = ck+1, . . . ,
1

(m− 1)!
f (m−1)(zk) = ck+m−1

Differentiating (6.2), we obtain the corresponding basis functions, namely (6.3)
and

αk+1(θ) =
1
2π

2eiθ

(eiθ − zk)2
, . . . , αk+m−1(θ) =

1
2π

2eiθ

(eiθ − zk)m
.

As before, the degree constraint corresponds to p ∈ P+.

Example. A well-known method in systems identification amounts to estimating
the first n+ 1 coefficients in an orthogonal basis function expansion

G(z) =
1
2
c0f0(z) +

∞∑
k=1

ckfk(z)

of a transfer function G(z) [28], where the functions f0, f1, f2, . . . are orthonormal
on the unit circle. Given the estimated coefficients c0, c1, . . . , cn, the usual prob-
lem considered in the literature [27] is to find a rational function G of smallest
degree which match these coefficients. Here, however, we consider the correspond-
ing problem where G is a Carathéodory function of degree at most n. This problem
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remained open for a long time but has recently been resolved using the methods
that we shall describe next [4, 5].

Defining
αk(θ) = fk(eiθ), k = 0, 1, . . . , n,

this problem can be reformulated as a generalized moment problem with complex-
ity constraint by observing that

ck =
1
2π

∫ π

−π

fk(eiθ)Φ(eiθ) dθ, k = 0, 1, . . . , n,

where Φ(eiθ) = 2Re{G(eiθ)}. As in Example 6, the degree constraint is enforced
by choosing P ∈ P+. The vector space P satisfies H1 and H2 for any of the usual
choices of orthogonal basis.

Example. Finally, consider the power moment problem obtained by choosing

αk(t) = tk, k = 0, 1, . . . , n,

which again defines a space P satisfiying H1 and H2, and let P ∈ L1
+[a, b] be a

probability density. Then, the function

S(Φ, P ) = I(Φ)

is the Kullback-Leibler distance between Φ and P [24]. Then the optimization
problem of Theorem 5.1 is equivalent to minimizing S(Φ, P ) subject to the moment
conditions (1.1). This gives an interesting interpretation to the present problem:
Given an a priori probability density P , we want to find another probability density
Φ that has prescribed moments up to order n and that minimizes the Kullback-
Leibler distance to P , generalizing maximum entropy methods.
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