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This paper3 is dedicated to Arthur Krener – a great researcher, a great teacher
and a great friend – on the occasion of his 60th birthday. In this work we study
the generalized moment problem with complexity constraints in the case where
the actual values of the moments are uncertain. For example, in spectral es-
timation the moments correspond to estimates of covariance lags computed
from a finite observation record, which inevitably leads to statistical errors, a
problem studied earlier by Shankwitz and Georgiou. Our approach is a com-
bination of methods drawn from optimization and the differentiable approach
to geometry and topology. In particular, we give an intrinsic geometric deriva-
tion of the Legendre transform and use it to describe convexity properties of
the solution to the generalized moment problems as the moments vary over
an arbitrary compact convex set of possible values. This is also interpreted
in terms of minimizing the Kullback-Leibler divergence for the generalized
moment problem.

1 Introduction

Let α0, α1, · · · , αn be a sequence of C2 functions defined on some interval I
of the real line. Given a suitable sequence of complex numbers, c0, c1, · · · , cn,
we are interested in moment problems of the form

∫

I

αk(t)Φ(t)dt = ck, k = 0, 1, · · · , n, (1)

for functions Φ ∈ L1
+(I), where L1

+(I) is the space of positive functions in
L1(I).

In fact, suppose that α0, . . . , αr−1 are real functions and αr, . . . , αn are
complex-valued functions whose real and imaginary parts, taken together with

3 This research was supported in part by grants from AFOSR, VR, Institut Mittag-
Leffler, and SBC.
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α0, . . . , αr−1 are linearly independent over R. This is no restriction since a
purely imaginary moment condition can always be reduced to a real one. For
simplicity of exposition, we also assume that α0 = 1. Let P be the real vector
space that is the sum of the real span of α0, . . . , αr−1 and the complex span
of αr, . . . , αn. Hence, the real dimension of P is 2n− r + 2. If P+ denotes the
subset of all functions in P that have a positive real part on I, then P+ is a
nonempty, open, convex subset of dimension 2n − r + 2.

For this moment problem to have a solution it is clearly necessary that
the sequence c0, c1, · · · , cn is positive in the sense that

〈c, q〉 := Re

n
∑

k=0

qkck > 0 (2)

for all (q0, q1, · · · , qn) ∈ Rr × Cn−r+1 such that

q :=

n
∑

k=0

qkαk ∈ P+ r {0}, (3)

where P+ is the closure of P+. Indeed,

〈c, q〉 =

∫

I

[

Re

n
∑

k=0

qkαk

]

Φdt > 0,

whenever (3) holds. If C+ denotes the space of positive sequences, then C+ is
a nonempty, open, convex subset of dimension 2n − r + 2.

In [3] we considered the problem to find, for each Ψ in some class G+, the
particular solution Φ to the moment problem (1) minimizing the Kullback-
Leibler divergence

IΨ (Φ) =

∫

I

Ψ(t) log
Ψ(t)

Φ(t)
dt. (4)

Here G+ is the class of functions in L1
+(I) satisfying the normalization condi-

tion
∫

I

Ψ(t)dt = 1 (5)

and the integrability conditions

∣

∣

∣

∣

∫

I

αk

Ψ

Re{q}
dt

∣

∣

∣

∣

< ∞, k = 0, 1, . . . , n, (6)

for all q ∈ P+. If I is a finite interval, (6) of course holds for all Ψ ∈ L1
+(I).

In fact, Ψ could be regarded as some a priori estimate, and, as was done in
[10] for spectral densities, we want to find the function Φ that is “closest” to Ψ

in the Kullback-Leibler distance and also satisfies the moment conditions (1).
This notion of distance arises in many applications, e.g., in coding theory [8]
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and probability and statistics [13, 11, 9]. Note, however, that Kullback-Leibler
divergence is not really a metric, but, if we normalize by taking c0, c1, · · · , cn

in
C+ := {c ∈ C+ | c0 = 1} (7)

so that Φ satisfies (5), the Kullback-Leibler divergence (4) is nonnegative, and
it is zero if and only if Φ = Ψ .

In [3] we proved that the problem to minimize (4), subject to the moment
conditions (1), has a unique solution for each Ψ ∈ G+ and c ∈ C+ and that
this solution has the form

Φ(t) =
Ψ(t)

Re{q(t)}
(8)

for some q ∈ P+, which can be determined as the unique minimum in P+ of
the strictly convex functional

JΨ (q) = 〈c, q〉 −

∫

I

Ψ log (Re{q(t)}) dt. (9)

This ties up to a large body of literature [4, 7, 5, 6, 2, 3, 10] dealing with
interpolation problems with complexity constraints.

In this paper we consider a modified optimization problem in which c

is allowed to vary in some compact, convex subset C0 of C+, where C+ ⊂
C+ is given by (7). In fact, the moments c1, c2, · · · , cn may not be precisely
determined, but only known up to membership in C0. The problem at hand
is then

Problem 1. Find a pair (Φ, c) ∈ L1
+(I) × C0 that minimizes the Kullback-

Leibler divergence (4) subject to the moment conditions (1).

We will show that this problem has a unique minimum and that the corre-
sponding c lies in the interior of C0 only if Ψ satisfies the moment conditions,
in which case the optimal Φ equals Ψ .

An important special case of Problem 1 was solved in [15]. In [15] the uncer-
tain covariance extension problem, as a tool for spectral estimation, is noted to
have two fundamentally different kinds of uncertainty. It is now known [3, 10]
that the rational covariance extension problem can be solved by minimizing
the Kullback-Leibler divergence (4), where Ψ is an arbitrary positive trigono-
metric polynomial of degree at most n, and where the functions α0, α1, . . . , αn

are the trigonometric monomials, i.e, αk(t) = eikt, k = 0, 1, . . . , n. The corre-
sponding moments are then the covariance lags of an underlying process.

The uncertainty involving the choice of Ψ is resolved in [15] by choos-
ing Ψ = 1. Then minimizing the Kullback-Leibler divergence is equivalent to
finding the maximum-entropy solution, corresponding to having no a priori

information about the estimated process, namely the solution to the trigono-
metric moment problem maximizing the entropy gain
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∫

I

log Φ(t)dt. (10)

The other fundamental uncertainty in this problem arises from the statistical
errors introduced in estimating the covariance lags from a given finite obser-
vation record. This was modeled in [15] by assuming that the true covariance
lags are constrained to lie in the polyhedral set

ck ∈ [c−k , c+
k ], k = 0, 1, . . . , n. (11)

In this setting, it is shown that the maximal value of (10) subject to the
moment conditions is a strictly convex function on the polytope C0 defined
by (11) and hence that there is a unique choice of c ∈ C0 maximizing the
entropy gain. As will be shown in this paper, this is a special case of our
general solution to Problem 1.

2 Background

The problem described above is related to a moment problem with a certain
complexity constraint: In [2, 3] we proved that the moment problem (1) with
the complexity constraint (8) has a unique solution. More precisely, we proved

Theorem 1. For any Ψ ∈ G+ and c ∈ C+, the function F : P+ → C+,

defined componentwise by

Fk(q) =

∫

I

αk(t)
Ψ(t)

Re{q(t)}
dt, k = 0, 1, . . . , n, (12)

is a diffeomorphism. In fact, the moment problem (1) with the complexity

constraint (8) has a unique solution q̂ ∈ P+, which is determined by c and Ψ

as the unique minimum in P+ of the strictly convex functional (9).

Note that JΨ (q) is finite for all q ∈ P+. In fact, by Jensen’s inequality,

− log

∫

I

Ψ

Re{q(t)}
dt ≤

∫

I

Ψ log (Re{q(t)}) dt ≤ log

∫

I

Re{q(t)}Ψdt,

where both bounds are finite by (6). (To see this, for the lower bound take k =
0; for the upper bound first take q = 1 in (6), and then form the appropriate
linear combination.) In this paper we shall give a new proof of Theorem 1 by
using methods from convex analysis.

As proved in [3], following the same pattern as in [4, 5, 6], the optimization
problem of Theorem 1 is the dual problem in the sense of mathematical pro-
gramming of the constrained optimization problem in the following theorem.
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Theorem 2. For any choice of Ψ ∈ G+, the constrained optimization problem

to minimize the Kullback-Leibler divergence (4) over all Φ ∈ L1
+(I) subject to

the constraints (1) has unique solution Φ̂, and it has the form

Φ̂ =
Ψ

Re{q̂}
,

where q̂ ∈ P+ is the unique minimizer of (9). Moreover, for all Φ ∈ L1
+(I)

and q ∈ P+,

−IΨ (Φ) ≤ JΨ (q) − 1 (13)

with equality if and only if q = q̂ and Φ = Φ̂.

3 The uncertain moment problem

We are now a position to solve Problem 1. We shall need the following defini-
tion [14, p. 251].

Definition 1. A function f is essentially smooth if

1. int(domf) is nonempty;
2. f is differentiable throughout int(domf);
3. limk→∞ |∇f(x(k))| = +∞ whenever {x(k)} is a sequence in int(domf)

converging to the boundary of int(domf).

An essentially smooth function such that int(domf) is convex and f is a
strictly convex function on int(domf) is is called a convex function of Legendre

type.

The optimal point IΨ (Φ̂) of Theorem 2 clearly depends on c, and hence we
may define a function

ϕ : C+ → R

which sends c to IΨ (Φ̂), i.e.,

c 7→

∫

I

Ψ(t) log
Ψ(t)

Φ̂(t)
dt. (14)

We also write q̂(c) to emphasize that the unique minimizer q̂ in P+ of the
functional (9) depends on c. Similarly, we write Φ̂(c) for the unique minimizer
of Theorem 2. Then, by Theorem 2,

Φ̂(c) =
Ψ

Re{q̂}(c)
, for all c ∈ C+.
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Theorem 3. The function ϕ is a convex function of Legendre type. In par-

ticular, ϕ is strictly convex, and the problem to minimize ϕ over the compact,

convex subset C0 of C+ has a unique solution. The minimizing point ĉ belongs

to the interior of C0 only if Ψ satisfies the moment conditions (1), in which

case

q̂(ĉ) = 1.

The gradient of ϕ is given by

∇ϕ(c) = −q̂(c), (15)

and the Hessian is the inverse of the matrix

H(c) :=

[

∫

I

αj(t)
Ψ(t)

(

Re{q̂(c)(t)}
)2 αk(t)dt

]n

j,k=0

. (16)

The proof of this theorem will be given in Section 5.
As an illustration, we can use Newton’s method to solve Problem 1. In fact,

suppose that C0 has an nonempty interior. Then, for any c(0) in the interior
of C0, the recursion

c(ν+1) = c(ν) + λν

[

0 0
0 I

]

H(c(ν))q̂(c(ν)), ν = 0, 1, 2, . . . (17)

will converge to ĉ for a suitable choice of {λν} keeping the sequence inside C0.
This algorithm can be implemented in the following way. For ν = 0, 1, 2, . . . ,
the gradient q̂(c(ν)) is determined as the unique minimum in P+ of the strictly
convex functional

J
(ν)
Ψ (q) = 〈c(ν), q〉 −

∫

I

Ψ log (Re{q(t)}) dt, (18)

and then c(ν+1) is obtained from (17).
As an example, consider the special, but important, case that C0 is defined

as the polyhedral set of all c = (c0, c1, · · · , cn) ∈ C+ satisfying (11). The
Lagrange relaxed problem is then to minimize

L(c, λ−, λ+) = ϕ(c) +

n
∑

k=0

λ−(ck − c−k ) +

n
∑

k=0

λ+(c+
k − ck), (19)

where λ−

k ≥ 0 and λ+
k ≥ 0, k = 0, 1, . . . , n, are Lagrange multipliers. By

Theorem 3, the Lagrangian has a unique stationary point that satisfies

q̂(c) = λ+ − λ−. (20)

By the principle of complementary slackness, a Lagrange multiplier can be
positive only when the corresponding constraint is satisfied with equality at
the optimum. In particular, if all components of q̂(ĉ) are nonzero, ĉ must be
a corner point of the polyhedral set C0.
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4 A derivation of the Legendre transform from a

differentiable viewpoint

Suppose U is an open subset of RN , which is diffeomorphic to RN , and that
F is a C1 map

F : U → R
N

with a Jacobian, Jacq(F ), which is invertible for each q ∈ U . A useful formu-
lation of the Poincaré Lemma is that Jacq(F ) is symmetric for each q ∈ U if
and only if F is the gradient vector, ∇f , for some C2 function

f : U → R,

which is unique up to a constant of integration.

Remark 1. Here, we mean symmetric when represented as a matrix in the
standard basis of RN , i.e., symmetric as an operator with respect to the stan-
dard inner product. We interpret the gradient as a column vector using this
inner product as well.

Alternatively, consider the 1-form

ω =

N
∑

k=1

Fkdqk,

where Fk and qk denote the kth component of F and q, respectively. To say
that Jacq(F ) is symmetric for all q ∈ U is to say that dω = 0 on U , and
therefore ω = df for an f as above.

More generally,

N
∑

k=1

(

Fkdqk − q∗kdqk

)

= df(q) −

N
∑

k=1

q∗kdqk

so that

df(q) =

N
∑

k=1

q∗kdqk ⇔ F (q) = q∗ ⇔ ∇f(q) = q∗. (21)

We now specialize to the strictly convex case, i.e., we suppose that U is
convex and that Jacq(F ) is positive definite for all q ∈ U . Alternatively, we
could begin our construction with a strictly convex C2 function f . In this
case, we note that (21) is equivalent to

inf
p
{f(p) − 〈p, q∗〉} = f(q) − 〈q, q∗〉 ⇔ ∇f(q) = q∗. (22)

The left hand side of the equivalence (22) defines a function of q∗, which we
denote by g(q∗), and which we will soon construct in an intrinsic, geomet-
ric fashion. For now, it suffices to note that, in light of (21), we obtain the
following expression for g:
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g(q∗) = f((∇f)−1(q∗)) − 〈q∗, (∇f)−1(q∗)〉. (23)

In fact, since f is strictly convex, the map F is injective. Since F has an
everywhere nonvanishing Jacobian, by the inverse function theorem, F is a
diffeomorpism between U and V := F (U), where V is an open subset of RN .
Since the inverse of a positive definite matrix is positive definite, F−1 has
an everywhere nonsingular symmetric Jacobian, Jacq∗(F−1). Therefore, we
may apply our general construction to find, up to a constant of integration, a
unique C2 function

f∗ : V → R

satisfying
N

∑

k=1

[F−1]kdq∗k = df∗(q∗k)

and, more generally,

N
∑

k=1

(

[F−1]kdq∗k − qkdq∗k
)

= df∗(q∗k) −

N
∑

k=1

qkdq∗k

and consequently

df∗(q∗) =

N
∑

k=1

qkdq∗k ⇔ F−1(q∗) = q ⇔ ∇f∗(q∗) = q. (24)

Of course, this geometric duality has several corollaries. Fix q0 ∈ U and
q∗0 := F (q0) ∈ V . Let q̂ be an arbitrary point in U and denote its image, F (q̂),
by q̂∗. Let γ be any smooth oriented curve starting at q0 and ending at q̂, and
consider γ∗ := F (γ). We may then compute the following path integral as a
function of the upper limit,

f∗(q̂∗) − f∗(q∗0) =

∫

γ∗

df∗(q∗) =

∫

γ∗

N
∑

k=1

[F−1]k(q∗)dq∗k =

∫

γ

N
∑

k=1

qkdFk. (25)

Then, integrating by parts, we obtain

f∗(q̂∗) = f∗(q∗0) +

N
∑

k=1

qkFk

∣

∣

∣

q̂

q0

−

N
∑

k=1

∫

γ

Fkdqk

= f∗(q∗0) + 〈q,∇f〉
∣

∣

∣

q̂

q0

−

∫

γ

df

= 〈q̂,∇f(q̂)〉 − f(q̂) + κ,

where
κ := f∗(q0) − 〈q0,∇f(q0)〉 + f(q0)
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is a constant of integration for f∗, which we may set equal to zero. Therefore,
since q̂ = (∇f)−1(q̂∗) and q̂∗ = ∇f(q̂),

f∗(q̂∗) = 〈(∇f)−1(q̂∗), q̂∗〉 − f
(

(∇f)−1(q̂∗)
)

,

or, recalling that q̂ is arbitrary,

f∗(q∗) = 〈(∇f)−1(q∗), q∗〉 − f
(

(∇f)−1(q∗)
)

= −g(q∗).

Remark 2. Since our fundamental starting point assumes that F has a sym-
metric everywhere nonsingular Jacobian, the above analysis extends to strictly
concave functions, the only change being that the infima be replaced by
suprema. Furthermore, since the Hessian of f ∗ is the inverse of the Hessian of
f , it follows that, on any open convex subset of V , f ∗ will be strictly convex
(strictly concave) whenever f is strictly convex (strictly concave).

Remark 3. These expressions are well-known in convex optimization theory.
(See, e.g., [12, 14].) Indeed, since f∗ = −g, (22) yields

f∗(q∗) = sup
q∈U

{〈q∗, q〉 − f(q)} , (26)

which is referred to as the conjugate function of f . Then, (23) yields

f∗(q∗) = 〈q∗, (∇f)−1(q∗)〉 − f((∇f)−1(q∗)), (27)

which is the Legendre transform of f [12, p. 35].

Remark 4. We have derived the Legendre transform and certain of its prop-
erties from a differentiable viewpoint, because the corresponding functions
defined by the moment problem are in fact infinitely differentiable. In con-
trast, the trend in modern optimization theory is to assume as little differen-
tiability as possible. For example, if f is a strictly convex C1 function, then
F is a continuous injection defined on U and is therefore an open mapping
by Brouwer’s Theorem on Invariance of Domain. Thus it is a homeomorphm

between U and V . Following [14], one can define the conjugate function via
(26) and verify that (27) holds. In particular, the inverse of F is given by a
gradient. Far deeper is the situation when f maps U to an open convex set
W , and one also wants to show the V = W . Such a global inverse function
theorem for strictly convex C1 functions f is given in the beautiful Theorem
26.5 in [14], under the additional assumption that f is a convex function of
Legendre type. Returning to the case of smooth F , a global inverse function
theorem can be proved under the condition that F is proper, in which case F

is a diffeomorphism.

5 The main theorem

Applying the path integration methods of the previous section to the function
F in Theorem 1, we obtain the strictly concave C∞ function f : P+ → R

taking the values
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f(q) =

∫

I

Ψ(t) log Re{q(t)}dt. (28)

The function f can be extended to the closure of P+ as an extended real-
valued function. In particular, F is a diffeomorphism between P+ and its
open image in C+.

In this setting,
JΨ (q̂(c)) = f∗(c), (29)

where q̂(c) is the minimizer of (9) expressed as a function of c. According
to Remark 2, f∗ is strictly concave on any convex subset of F (P+), since f

is. (See also [14, page 308] for a discussion about properties of the conjugate
function f∗ in the concave setting.) We also note that

IΨ (Φ̂(c)) = 1 − JΨ (q̂(c)), for all c ∈ C+ (30)

by Theorem 2, and hence, in view of (29), the function ϕ : C+ → R, defined
in (14), is given by

ϕ(c) = 1 − f∗(c), (31)

and consequently ϕ is a strictly convex function on any convex subset of
F (P+). We are now prepared to prove our main result.

Theorem 4. The function F defined in Theorem 1 is a diffeomorphism be-

tween P+ and C+. Moreover, the value function ϕ is a convex function of

Legendre type on C+.

Proof. Since the image of F is an open subset in the convex set C+, it suffices
to prove that it is also closed. To show this, we show that F is proper, i.e.
that for any compact subset K of C+, the inverse image F−1(K) is compact
in P+. This will follow from the fact that F is infinite on the boundary of
P+, which in turn follows from the following calculation:

∂f

∂qk

=

∫

I

αk(t)
Ψ(t)

Re{q(t)}
dt, k = 0, 1, . . . , n. (32)

Now, t 7→ Re{q(t)} is a smooth, nonnegative function on I. As q tends to the
boundary of P+, this function attains a zero on the interval, and hence, since
α0 = 1 and q is C2, the integral (32) is divergent at least for k = 0. Therefore,
F is a diffeomorphism between P+ and C+.

We have already seen that ϕ is a strictly convex function. Therefore it
just remains to show that f is essentially smooth. Clearly, P+ is nonempty
and f is differentiable throughout P+, so conditions 1 and 2 in Definition 1
are satisfied. On the other hand, condition 3 is equivalent to properness of F ,
which we have already established above.

All that remains to be proven are the identities in Theorem 3. Recalling
that the function F : P+ → C+ in Theorem 1 is given by
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F (q) = ∇f(q), (33)

the map ∇ϕ : C+ → P+ is the inverse of the diffeomorphism −F , i.e.,

∇ϕ = −F−1. (34)

Therefore, ∇ϕ sends c to −q̂(c), which establishes (15). To prove (16), observe
that the Hessian

∂2ϕ

∂c2
= −

∂q̂

∂c

but, since F (q̂) = c, this is the inverse of

−
∂F

∂q

∣

∣

∣

∣

q=q̂

,

which, in view of (12), is precisely (16). Clearly, the strictly convex function ϕ

has a unique minimum in the compact set C0. The minimizing point ĉ belongs
to the interior of C0 only if 〈∇ϕ(ĉ), h〉 = 0 for all h ∈ TĉC+, in which case we
must have q̂(ĉ) = q0 = 1 by (15). This concludes the proof of Theorem 3.

Remark 5. As discussed in Remark 4, one can also deduce this theorem from
Theorem 26.5 in Rockafeller [14], which would imply that F is a homeomor-
phism for a C1 strictly convex function f . That F is a diffeomorphism for a C2

function f would then follow from the Inverse Function Theorem. An alter-
native route, as indicated in Remark 4 could be based on Brouwer’s Theorem
on Invariance of Domain to prove that F is a homeomorphism. Either proof
would of course entail the use of substantial additional machinery not needed
in the smooth case. Indeed, this motivated us to develop the self-contained
derivation of the Legendre transform and the subsequent proof presented here.
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