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Abstract. The moment problem as formulated by Krein and Nudel’man is a
beautiful generalization of several important classical moment problems, in-
cluding the power moment problem, the trigonometric moment problem and
the moment problem arising in Nevanlinna-Pick interpolation. Motivated by
classical applications and examples, in both finite and infinite dimensions, we
recently formulated a new version of this problem that we call the moment
problem for positive rational measures. The formulation reflects the impor-
tance of rational functions in signals, systems and control. While this version
of the problem is decidedly nonlinear, the basic tools still rely on convexity.
In particular, we present a solution to this problem in terms of a nonlinear
convex optimization problem that generalizes the maximum entropy approach
used in several classical special cases.
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1. Introduction

The moment problem for positive measures is the synthesis, over the course of
more than 70 years by Krein and his collaborators (see [1, 15] and references
therein), of many important classical problems in pure and applied mathematics.
This paper is devoted to the study of a class of moment problems, which we refer to
as the moment problem for positive rational measures, whose formulation reflects
the importance of rational functions in signals, systems and control. This class of
problems abstracts the recent work of a number of authors [3, 4, 5, 6, 8, 9, 11, 12,
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2 C. I. Byrnes and A. Lindquist

13] who incorporated various complexity constraints into the refinements of the
moment problem for arbitrary positive measures [15].

We refer to this problem as the moment problem for positive rational mea-
sures. In this paper we develop some basic results for this problem, closely following
the approach outlined in [15]. Indeed, in Section 2 we recall the fundamental result
on the generalized moment problem as derived in [15] using convex cones in finite
dimensional function spaces and properties of positive measures. In Section 3 we
derive similar basic results for the moment problem for positive rational measures
using a topological proof that mirrors the steps in the convexity proof in [15].

While this version of the problem is decidedly nonlinear, one can still develop
an approach based entirely on convexity. In particular, in Section 4 we present a
synthesis of our topological approach with a nonlinear convex optimization prob-
lem that we discovered in the context of interpolation problems [4, 5] and gener-
alized to the case of moment problems with complexity constraints [6, 8, 9, 13].
In fact, the topological approach developed in Section 3 allows us to significantly
streamline our previous proofs concerning the convex functional and its extema.
Naturally, the optimization problem itself generalizes the maximum entropy ap-
proach. Indeed, for cases where the space of test functions lie in the Hardy space
on the unit circle, we provide in Section 5 a succinct closed form for the maximum
entropy solution. In Section 6 we describe some amplifications of our basic results
using differentiable maps and manifolds, a methodology upon which we based an
alternative approach to this problem in [8, 9] and which is also streamlined by our
topological arguments.

2. The moment problem following Krein and Nudel’man

The fundamental result on the generalized moment problem derived in [15] is based
on two results, one about properties of convex cones in finite dimensional spaces
of continuous functions and the other about properties of postive measures.

The first result concerns a subspace P of the Banach space C[a, b] of complex-
valued continuous functions defined on the real interval [a, b] and a choice of basis
(u0, u1, · · · , un) of P. If p ∈ P we denote by P its real part P := Re(p). Following
[15], we define the subset P+ of those elements p ∈ P such that P ≥ 0. The
space P+ ⊂ P is a closed, convex cone. In terms of the basis (ui), every φ ∈ P∗

corresponds to a complex sequence c = (c0, c1, · · · , cn) ∈ Cn+1. Since every φ is
determined by its real part as a linear functional on P as a real vector space, we
can characterize elements of the dual cone PT

+ as those sequences c satisfying

〈c, p〉 := Re

{
n∑

k=0

pkck

}
≥ 0 (2.1)

for all p ∈ P+. Such a sequence is classically called positive, and the space of
positive sequences is denoted by C+. In particular, C+ is a closed, convex cone
with CT

+ = P+.
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Following [15], consider the curve

U(t) =




u0(t)
u1(t)

...
un(t)


 , a ≤ t ≤ b.

We then define the subset U = {U(t) : t ∈ [a, b]} ⊂ Cn+1, and let K(U) denote its
convex conic hull. Clearly, K(U)T = P+, from which follows:

Theorem 2.1 ([15]). K(U) = C+.

We now turn to some results concerning positive measures. Given c ∈ Cn+1,
the generalized moment problem (see [15]) is to find a positive measure dµ such
that ∫ b

a

uk(t)dµ(t) = ck, k = 0, 1, · · · , n. (2.2)

For the sake of brevity, from now on we shall refer to this problem as simply the
moment problem, omitting the adjective “generalized”. More generally, let

M : C[a, b]∗ → C
n+1 (2.3)

be the continuous mapping defined via (2.2) for an arbitrary bounded measure
dµ ∈ C[a, b]∗ and consider the subset M+ ⊂ C[a, b]∗ of positive measures.

Lemma 2.2 ([15]). M(M+) ⊂ C+.

Proof. If p ∈ P+ = CT

+, then

〈c, p〉 := Re

{
n∑

k=0

pkck

}
=

∫ b

a

P dµ ≥ 0, (2.4)

so that c ∈ C+. �

By Theorem 2.1 and Lemma 2.2, we have that M(M+) is a convex subset
of K(U). On the other hand, by choosing dµ = δt0 for each t0 ∈ [a, b], it follows
that U ⊂ M(M+). In particular, to say that M(M+) is closed is to say that
K(U) ⊂ M(M+).

In [15], the Helly Selection Theorem is used to show that M(M+) is closed
in C+ under the following hypothesis.

Hypothesis 2.3. There exists p ∈ P+ such that P > 0 on [a, b].

Theorem 2.4 ([15]). Whenever Hypothesis 2.3 holds, K(U) = M(M+). In partic-

ular,

C+ = M(M+). (2.5)

Of course, in order for the moment equations to hold it is necessary that ck
be real whenever uk is real. Moreover, a purely imaginary moment condition can
always be reduced to a real one.
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Convention 2.5. Henceforth we shall assume that u0, . . . , ur−1 are real functions
and ur, . . . , un are complex-valued functions whose real and imaginary parts, tak-
ing together with u0, . . . , ur−1, are linearly independent over R.

In particular, we may regard P as the real vector space R2n−r+2 and C+ ⊂
R2n−r+2. Therefore, it follows [15] that C+ is a closed convex cone of dimension

2n − r + 2, with interior C+

◦

consisting of strictly positive sequences c; i.e., those
sequences c satisfying

〈c, p〉 := Re

{
n∑

k=0

pkck

}
> 0 (2.6)

for all p ∈ P+ r {0}. Assuming Hypothesis 2.3, it then follows that P+ is also a

closed convex cone of dimension 2n−r+2, with a nonempty interior P+

◦

consisting
of those p ∈ P+ for which Re(p) > 0.

3. The Main Results

In the power and the trigonometric moment problems, the elements of the sub-
space P are polynomials and trigonometric polynomials, respectively. In part for
this reason, the elements of the subspace P in an arbitrary moment problem are
referred to as “polynomials in P”. Following this precedent, we shall refer to the
ratio p/q with p, q ∈ P as a “rational function”. For the classical Nevanlinna-
Pick interpolation problem, it turns out that P is a coinvariant subspace of H2 so
that the “polynomials” are rational functions σ/τ , where τ is fixed. This of course
implies that the rational functions in P are rational in the usual sense.

Definition 3.1. The functions P := Re(p), for p ∈ P in the moment problem are
referred to as real polynomials for P. We shall refer to the ratio P/Q with p, q ∈ P

as a real rational functions for P.

Remark 3.2. Under Convention 2.5,

p :=

n∑

k=0

pkuk ∈ P (3.1)

corresponds to an (n+1)-tuple of points (p0.p1, . . . , pn), where p0, p1, . . . , pr−1 are
real and pr, pr+1, . . . , pn are complex. Moreover, p is determined by P [8, p. 165].

The moment problem is about measures and combining these two concepts
leads us to following definition.

Definition 3.3. Any measure of the form

dµ =
P (t)

Q(t)
dt, (3.2)

where P,Q are positive real polynomials for P, is a rational positive measure. Let
R+ ⊂ M+ denote the subset of rational positive measures.
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Problem 3.4. Given a sequence of complex numbers c0, c1, · · · , cn and a subspace
P = span(u0, . . . un) ⊂ C[a, b], the moment problem for rational measures is to

parameterize all positive rational measures P (t)
Q(t)dt such that

∫ b

a

uk(t)
P (t)

Q(t)
dt = ck, k = 0, 1, · · · , n. (3.3)

We shall need an additional hypothesis to accomodate the restriction to ra-
tional positive measures.

Hypothesis 3.5. The space P consists of Lipschitz continuous functions.

Remark 3.6. To the best of our knowledge, all instances of the generalized moment
problem that arise in systems and control involve subspaces of C[a, b] consisting of
Lipschitz continuous functions. Moreover, we recall the classical result that, if P is
spanned by a Chebyshev system (or T-system) and contains a constant function,
then after a reparameterization P consists of Lipschitz continuous functions [15,
p. 37].

In the setting of Section 2, our first result is the following.

Theorem 3.7. If Hypotheses 2.3 and 3.5 hold, then

M(R+) = C+

◦

.

In other words, the moment problem for rational measures is solvable if, and only

if, the sequence c is strictly positive.

For any dµ ∈ R+, consider the sequence c defined by (2.2) and any p =∑n
k=0 pkuk ∈ P+ r {0}. Then

〈c, p〉 := Re

{
n∑

k=0

pkck

}
=

∫ b

a

P (t)dµ > 0, (3.4)

so that c ∈ C+

◦

. This observation yields the rational analogue of Lemma 2.2.

Lemma 3.8. If Hypothesis 2.3 holds, then M(R+) ⊂ C+

◦

.

The following result implies the reverse inclusion.

Theorem 3.9. If Hypotheses 2.3 and 3.5 hold, then M(R+) contains a set which is

both open and closed in the convex set C+

◦

.

Remark 3.10. The assertions in Theorem 3.9 are the topological analogue, for the
case of rational measures, of the convexity assertions used in the proof of Theorem
2.4 for the generalized moment problem, where it was shown that the convex subset
M(M+) ⊂ C+ = K(U) both contains U and is closed. In light of Lemma 3.8, a
point mass δt0 cannot be realized on P by a positive rational measure so that
U 6⊂ M(R+). Nonetheless, there exists P+ ⊂ R+ such that M(P+) is both open

and closed in C+

◦

.
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Indeed, for a fixed P ∈ P+

◦

consider the set

P+ = {dµ ∈ R+ : dµ =
P

Q
dt, Q ∈ P+

◦

} (3.5)

and the restriction of the moment mapping M|P+
: P+ → C+

◦

.

Proposition 3.11. If Hypothesis 2.3 holds, then M(P+) ⊂ C+

◦

is open.

Proof. For simplicity, we view P and C as real vector spaces, so that P is spanned
by the real basis (ui), where we have replaced a complex-valued (uk) by its real and

imaginary parts. We shall also parameterize dµ ∈ P+ by q ∈ P+

◦

. The Jacobian,

Jac(M|P+
)q0

, of M|P+
at a point q0 ∈ P+

◦

is a square matrix Mq whose (i, j)-th
entry is

(Mq)(i,j) = −

∫ b

a

ui(t)uj(t)
P (t)

Q2(t)
dt (3.6)

evaluated at the point q0. Thus, −Mq is the gramian matrix of the real basis (ui)
with respect to the positive definite inner product defined by P (t)/Q2(t)dt on

C[a, b]. Therefore, Jac(M|P+
)q has rank 2n− r + 2 at each point q ∈ P+

◦

so that,
by the Implicit Function Theorem, M(P+) is open. �

Proposition 3.12. If Hypotheses 2.3 and 3.5 hold, then M(P+) ⊂ C+

◦

is closed.

Proof. Suppose

M(
P

Qj

dt) = cj ∈ C+

◦

(3.7)

and limj→∞c
j = c0 ∈ C+

◦

. We claim that there exists an M > 0 such that
‖Qj‖∞ ≤M. To see this note that

limj→∞

∫ b

a

P 2(t)

Qj(t)
dt = limj→∞〈cj , p〉 = 〈c, p〉 > 0. (3.8)

Setting Q̃j = Qj/‖Qj‖∞, we have

limj→∞‖Qj‖∞

∫ b

a

P 2(t)

Q̃j(t)
dt = 〈c, p〉 > 0. (3.9)

Since
∫ b

a
P 2(t)/Q̃j(t) dt ≥ ǫ for some ǫ > 0, we must have ‖Qj‖∞ ≤ M < ∞ for

some M > 0. Therefore, there is a convergent subsequence in P ∩ C[a, b],

limk→∞qk = q0, with q0 ∈ P+ (3.10)

for which

0 <

∫ b

a

P 2(t)

Q0(t)
dt = 〈c, p〉 <∞

We claim that q0 ∈ P+

◦

.
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Suppose, on the contrary, that Q0(t0) = 0 for some t0 ∈ [a, b], Then, since
Q0 is Lipschitz continuous at t0, there exists an ε > 0 and an L > 0 such that
Q0(t) ≤ L|t− t0| whenever |t− t0| < ε and t ∈ [a, b]. In particular, if t0 ∈ (a, b),

∫ b

a

P 2

Q0
dt ≥

1

L

∫ t0+ε

t0−ε

P 2

|t− t0|
dt = +∞,

contrary to assumption. If t0 = a or t0 = b, a similar estimate holds. Hence,

q0 ∈ P+

◦

, as claimed. �

Corollary 3.13. If Hypotheses 2.3 and 3.5 hold, the moment mapping M|P+
: P+ →

C+

◦

is surjective.

4. A Dirichlet Principle for the moment problem with rational
positive measures

In the course of proving Theorem 3.7 we showed that, for any c ∈ C+

◦

and any

choice of P ∈ P+

◦

, the moment problem for rational positive measures always has
a solution in the set

P+ = {dµ ∈ R+ : dµ =
P

Q
dt, Q ∈ P+

◦

}. (4.1)

In this section, using a convex optimization argument, we show that the surjection
M|P+

is injective, and we characterize the unique rational measure as the solution
of a variational problem. In fact, we derive both a primal optimization problem and
its dual. Remarkably, the moment problem for rational positive measures is the set
of critical point equations for the dual variational problem. In this classical sense,
a nonlinear convex optimization provides an illustration of the Dirchlet Principle
for this class of moment problems.

Let Ip : C+[a, b] → R ∪ {−∞} be the relative entropy functional

Ip(Φ) =

∫ b

a

P (t) log Φ(t)dt, (4.2)

which is a generalization of the entropy functional obtained by setting P = 1.

From Jensen’s inequality we see that Ip(Φ) ≤ log
(∫ b

a
PΦdt

)
≤

∫ b

a
PΦdt <∞.

Theorem 4.1. Assume that Hypotheses 2.3 and 3.5 hold, and let c ∈ C+

◦

. Then, for

any P ∈ P+

◦

, the constrained optimization problem to maximize (4.2) over C+[a, b]
subject to the moment constraints

∫ b

a

uk(t)Φ(t)dt = ck, k = 0, 1, . . . , n, (4.3)

has a unique solution, and it has the form

Φ =
P

Q
, Q := Re{q}, (4.4)
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where q ∈ P+

◦

.

The optimization problem of Theorem 4.1, to which we shall refer as the pri-

mal problem, can be solved by Lagrange relaxation. In fact, we have the Lagragian

L(Φ, q) = I(Φ) + Re

n∑

k=0

qk

[
ck −

∫ b

a

ukΦdt

]
,

where (q0, q1, . . . , qn) ∈ Rr × Cn−r+1 are Lagrange multipliers. Then,

L(Φ, q) =

∫ b

a

P log Φ dt+ 〈c, q〉 −

∫ b

a

QΦdt,

where Q = Re{q} with q :=
∑n

k=0 qkuk ∈ P. Clearly, comparing linear and
logarithmic growth, we see that the dual functional

ψ(q) = sup
Φ∈C+[a,b]

L(Φ, q)

takes finite values only if q ∈ P+, so we may restrict our attention to such Lagrange
multipliers. For any q ∈ P+ and any Φ ∈ C+[a, b] such that P/Φ is integrable, the
directional derivative

d(Φ,q)L(h) =

∫ b

a

[
P

Φ
−Q

]
h dt = 0

for all h ∈ C[a, b] if and only if Φ = P
Q

∈ C+[a, b], which inserted into the dual

functional yields

ψ(q) = Jp(q) +

∫ b

a

P (logP − 1)dt, (4.5)

where Jp : P+ → R ∪ {∞} is the strictly convex functional

Jp(q) = 〈c, q〉 −

∫ b

a

P logQdt. (4.6)

As the last term in (4.5) is constant, the dual problem to minimize ψ(q) over
P+ is equivalent to the convex optimization problem

min
q∈P+

J(q). (4.7)

Since
∂Jp

∂qk
= ck −

∫ b

a

uk

P

Q
dt, k = 0, 1, . . . , n,

it follows from Corollary 3.13 that the optimization problem (4.7) has an optimal

solution q̂ ∈ P+

◦

satisfying the moment equations (3.3). Moreover, since the
functional (4.6) is strictly convex, this optimum is unique.

Consequently,

Φ̂ :=
P

Q̂
∈ C+[a, b] (4.8)
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is the unique optimal solution of the primal problem. To see this, observe that
Φ 7→ L(Φ, q̂) is strictly concave and that dL(Φ̂,q̂)(h) = 0 for all h ∈ C+[a, b].

Therefore,

L(Φ, q̂) ≤ L(Φ̂, q̂), for all Φ ∈ C+[a, b] (4.9)

with equality if and only if Φ = Φ̂. However, L(Φ, q̂) = Ip(Φ) for all Φ satisfying

the moment conditions (4.3). In particular, since (4.3) holds with Φ = Φ̂, L(Φ̂, q̂) =

Ip(Φ̂). Consequently, (4.9) implies that Ip(Φ) ≤ Ip(Φ̂) for all Φ ∈ C+[a, b] satisfying

the moment conditions, with equality if and only if Φ = Φ̂. Hence, Ip has a unique
maximum in the space of all Φ ∈ C+[a, b] satisfying the constraints (4.3), and it is
given by (4.8).

This concludes the proof of Theorem 4.1, but we have also proven the follow-
ing theorem.

Theorem 4.2. Assume that Hypotheses 2.3 and 3.5 hold. Let (c, p) ∈ C+

◦

×P+

◦

, and

set P := Re{p}. Then the functional (4.6) has a unique minimizer q̂ ∈ P+

◦

, and

Q̂ := Re{q̂} is the unique solution to the moment equations
∫ b

a

uk

P

Q
dt = ck, k = 0, 1, . . . , n. (4.10)

Corollary 4.3. If Hypotheses 2.3 and 3.5 hold, the moment mapping M|P+
: P+ →

C+

◦

is a bijection.

5. Moment problems in a Hardy space setting

Some important special cases of the moment problem is when

uk(t) = gk(eit) where gk ∈ H2(D), k = 0, 1, . . . , n, (5.1)

and [a, b] = [−π, π]. A case in point is the trigonometric moment problem when
gk(z) = 1

2π
zk; another is Nevanlinna-Pick interpolaton when gk(z) = 1

2π
z+zk

z−zk

,

where z0, z1, . . . , zn are the (distinct) interpolation points. In both of these cases,
g := (g0, g1, . . . , gn)T can be represented as

g(z) = (I − zA)−1B, (5.2)

where A is a n × n stability matrix and B an n-vector such that (A,B) is a
reachable pair; i.e.,

G =

∫ π

−π

g(eit)g(eit)∗dt > 0. (5.3)

Indeed, positive definiteness of G follows readily from the fact that the basis func-
tions are linearly independent. This condition also insures that there is a unique
function of the form

w(z) =

n∑

k=0

wkgk(eit)∗
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that satisfies ∫ π

−π

gk(eit)w(eit)dt = ck, k = 0, 1, . . . , n,

namely the one provided by the unique solution of the system of linear equations

n∑

k=0

Gkjwj = ck, k = 0, 1, . . . , n.

Consequently, for any q ∈ P,

〈c, q〉 =

∫ π

−π

Q(t)w(eit)dt. (5.4)

It can be shown that g0, g1, . . . , gn span the coinvariant subspace K := H2 ⊖
φH2, where φ is the inner function

φ(z) =
det(zI −A∗)

det(I − zA)
.

In view of (5.1), K is a Hardy space model of P. Moreover, for any ψ ∈ K, there
is a v ∈ K such that Ψ := Re{ψ} = vv∗ [7, Proposition 9]. Therefore, for any
q ∈ P+, there is an a ∈ Cn such that Q(t) = a(eit)∗a(eit) where a(z) := g(z)∗a.
Then, by (5.4),

〈c, q〉 = a
∗

∫ π

−π

w(eit)g(eit)g(eit)∗dt a = a
∗
Pa, (5.5)

where

P :=
1

2

∫ π

−π

g(eit)[w(eit) + w(eit)∗]g(eit)∗dt. (5.6)

Consequently, c ∈ C+ if and only if P ≥ 0, and c ∈ C+

◦

if and only if P > 0. In the
trigonometric moment problem P is the Toeplitz matrix, and in the Nevanlinna-
Pick case P is the the Pick matrix.

If P contains constants, then we may determine the maximum-entropy solu-
tion, corresponding to setting P = 1 in (4.2), in closed form.

Proposition 5.1. Suppose that the basis functions in P satisfy (5.1) and P contains

constants. Then the maximum-entropy solution is

Φ̂(t) =
g(0)∗P−1g(0)

|g(eit)∗P−1g(0)|2
, (5.7)

where P is given by (5.6).

Proof. We proceed as in [14, 16]. Since, by Jensen’s formula [2, p.184], the last
term in the dual functional (4.6) (with P = 1) can be written 2 log |a(0)|, (4.6)
becomes

J(a) := Jp(a
∗a) = a

∗
Pa − 2 log |a∗g(0)|.
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Setting the gradient of J(a) equal to zero, we obtain a = P
−1g(0)/|a(0)| and

hence a(z) = g(z)∗P−1g(0)/|a(0)|. Then |a(0)|2 = g(0)∗P−1g(0), and therefore
the optimal a becomes

a(z) =
g(z)∗P−1g(0)√
g(0)∗P−1g(0)

. (5.8)

Moreover, in view of Theorems 4.1 and 4.2,

Φ̂(t) =
1

Q(t)
=

1

|a(eit)|2
,

and therefore (5.7) follows from (5.8). �

In the trigonometric moment problem, modulo normalization,

ϕn(z) := g(z)∗P−1g(0)

reduces to the Szegö polynomial orthogonal on the unit circle of degree n (cf [10]).

6. Amplifications and conclusions

In this paper we showed that the moment problem for rational positive measures
is solvable for all strictly positve sequences, provide Hypotheses 2.3 and 3.5 hold
for P. In the language of functions and spaces, we showed that the moment map
M defined by (2.3) restricts to a surjection

M|R+
: R+ → C+

◦

(6.1)

by proving that the restriction

M|P+
: P+ → C+

◦

(6.2)

is surjective. Indeed, using the strict convexity of the dual functional, we were able
to conclude in Corollary 4.3 that (6.2) is a bijection.

In this section we briefly discuss these maps in more detail. Following Hada-

mard, the problem of solving, for c ∈ C+

◦

, the equations

M|P+
(dµ(q)) = c, for q ∈ P+

◦

, (6.3)

is well-posed provided a solution q exists, is unique and varies continuously with
c (in some reasonable topology). As elements of open convex subsets of Euclidean
space, the choice of topology is clear. Existence and uniqueness is the essence of
Corollary 4.3. Moreover, our proof of Proposition 3.11 reposed on the observation

that Jac(M|P+
)q is nonsingular at each q ∈ P+

◦

so that, by the Inverse Function

Theorem, M|P+
is a smooth bijection with a smooth inverse. Since M|−1

P+
is differ-

entiable, it is continuous, so that q is a continuous function of c and this restricted
moment problem is well-posed.
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Our second amplification concerns the map (6.1). Here, M|R+
is not injec-

tive and one would instead like a continuous or smooth parameterization of the

solutions, for c ∈ C+

◦

, to the equations

M|R+
(dµ) = c, for dµ ∈ R+. (6.4)

As before, one can compute the Jacobian Jac(M|R+
)dµ and show [9] that

rank Jac(M|R+
)dµ = 2n− r + 2,

for all dµ ∈ R+. In fact, in [9] we prove that the solution space M|−1
R+

(c) is a

smooth manifold, smoothly parameterized by p ∈ P+

◦

as described in Theorem
4.1.
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