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In this note the theory of Hamiltonian systems and an idea due to L.E. Zachrisson is used 
to obtain the factorizations of the matrix Riccati difference equation on which the derivations 
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ested in discrete-time Riccati equations, for comparison, the corresponding continuous-time 
result is briefly discussed. 
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1. Introduction 

Cons ider  the n x n matr ix  difference equa t ion  

P ( t  + 1 ) -  P( t )  = A(P( t ) ) ;  P(0)  = P0 (1.1) 

t = 0, l, 2 . . . . .  where  

A ( P )  = F P F ' -  P - ( F P H ' +  G ) ( H P H ' +  S) -~(FPH'+ G) '+ Q. (1.2) 

Here  F, G, H, S and  Q are c o n s t a n t  mat r ices  of d imens ions  n x n, n x m, m x n, 

m • m and n x n, respec t ive ly ;  S, Q and  P0 are symmet r ic .  (Pr ime deno tes  

t ranspose . )  Al thou th  it is actual ly  sufficient to assume that  S is inver t ible ,  for 

s implici ty we shall here take S to be ei ther  posi t ive  or negat ive  definite. 

Moreover  we a s sume  that,  for some in teger  tl > 0, 

R ( t )  = H P ( t ) H '  + S (1.3) 
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is nonsingular for  all t = 0, l, 2 . . . . .  tl. We impose no positivity assumptions on Q 
and P0. 

Such matrix Riccati difference equations play an important role in systems 
theory,  and they arise in a certain class of variational problems. During the last 
decade there has been a considerable interest in so-called fast  algorithms to 
replace the Riccati equation when n is large and when only a few linear 

combinations of the columns of the solution matrices {P(t);  t = 0, 1,2 .... } are 
required [8, 9, 11, 12, 13, 15]. It is not hard to see that, if A(P0) has rank r, there is 
a factorization 

P(t + 1) - P ( t )  -- V(t)Z(t)V(t) ' ,  (1.4) 

where V is an n • r and Z an r x r matrix sequence. It can be shown that these 
sequences satisfy simple difference equations, and when r is small there are 
potentially some computational advantages with such a procedure.  This al- 
gorithm was first presented in [9] for  the special type of Riccati equation 
occurring in Kalman filtering of stationary stochastic processes. The generalized 
version considered here appeared in [8, 13]. 

The primary purpose of this note is to at tempt to place this factorization result 
in a natural theoretical framework. The approaches of [9, 11, 12] proceed from 
basic principles in stochastic processes,  but, by their very nature, these methods 
are limited to the situation which corresponds to stationary processes. The 
derivation of [8, 13] does cover the general situation described above, but it is 
based on ad hoc matrix manipulations which give very little insight into what is 
going on. 

In this note we derive these results in terms of the Hamiltonian equations of 

the variational problem corresponding to the Riccati equation (1.1). The basic 
idea  of this approach was suggested to us by L.E. Zachrisson. We begin by 

deriving the continuous-time version of the factorization result (this is the 
f ramework in which Zachrisson's idea [16] was formulated), since this problem 
is considerably simpler. We hope that this detour will help the reader to 
understand the basic idea of the approach and to see what to look for in the 
discrete-time setting. 

A first version of this result appeared in [1]. 

2. A preliminary study: The continuous-time case 

For the sake of comparison we shall first consider the matrix Riccati differen- 
tial equation 

lh(t) = A(P(t ) ) ;  P(0) = P0 (2.1) 

where 

A(P)  = FP + P F ' -  ( P H ' +  G)S-~(PH' + G) + Q (2.2) 
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and F, G, H, S, Q and P0 are constant  matrices defined as in Section 1. This is 
the continuous-time counterpart  of (1.1). It can be shown [2] that there is a t~ > 0 
such that (2.1) has a unique solution P on [0, t~]. 

To obtain the required factorization we shall proceed as in [16]. Consider the 
control problem to find a square-integrable m-dimensional vector  function u so 
as to minimize (if S is positive definite) 

t! 

,f �89 + ~ [x(t) 'Qx(t) + 2x(t) 'Gu(t) + u(t)'Su(t)] dt, (2.3) 
o 

where the n-dimensional vector function x is the solution of 

- 2  = F 'x  + H'u;  x( tO= a. (2.4) 

By a standard completion-of-squares argument it is easy to see that there really 
exists a (unique) optimal control; we shall call it u*. Let  the corresponding 
solution of (2.4) be denoted x*. 

Next  define the Hamiltonian function corresponding to this control problem: 

~( t ,  x, u, y) = y'(F'x + H'u)  + ~(x'Qx + 2x'Gu + u'Su). 

(See e.g. [6].) Then the corresponding canonical equations are 

Yc*(t) = -~-y (t, x*(t), u*(t), y(t)); x*(tO = (2.5a) tl, 

0 f  
~(t) = ~ (t, x*(t), u*(t), y(t)); y(0) = P0x*(0). (2.5b) 

Here (2.5a) is merely (2.4) rewritten, while (2.5b) defines the adjoint function y; 
(2.5b) can be written 

2r = Fy + Qx* + Gu*; y(0) = Pox*(0). (2.6) 

Now, the Pontryagin Maximum Principle [6] states that 

0 f  O---u (t, x*(t),  u*(t), y ( t ) )  = 0,  

i .e. ,  

u*(t) = - s - l [ H y ( t )  + G'x*(t)], (2.7) 

which inserted into (2.4) and (2.6) yields the following form of the canonical 
equations 

f ~* = - A ' x *  + H'S-1Hy; x*(tl) = a, (2.8a) 

= [ Q -  GS-1G']x * + Ay; y(0) = P0x*(0) (2.8b) 

where A := F -  GS-1H. Therefore  
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x*(t) = X(t)Xo (2.9a) 

y(t) = Y(t)Xo (2.9a) 

where x0 := x*(0) and X and Y are n • n-matrix functions satisfying 

t X = - A ' X  + H ' S - ~ H Y ;  X(0) = I, (2.10a) 

~" = [Q - GS- lG ' ]X  + A Y ;  Y(O) = Po. (2.10b) 

It is well known [2, 6] and easy to check that 

P(t )  = Y ( t ) X ( t )  -~ (2.11) 

is the unique solution of the Riccati equation (2.1) on [0, td. Consequently 

y(t) = P( t )x*( t )  (2.12) 

for all t E [0, tl]. 
Using (2.7) and (2.12) it can now be seen that 

~(t ,  x*(t) ,  u*(t), y(t))= 

= �89 + P ( t ) F ' -  ( P ( t ) H ' +  G ) S - I ( p ( t ) H ' +  G) '+ Q]x*(t) 

and consequently, in view of (2.1) and (2.9), 

~( t ,  x*(t), u*(t), y(t)) = �89 (2.13) 

where the n x n-matrix function M is defined by 

M(t )  = X ( t ) ' P ( t ) X ( t )  (2.14) 

But, for each a ER" ,  (2.13) is constant [6]; this is the energy conservation 
condition. Hence, since xo=X-~(tOa,  (2.13) is constant for all xoER",  i.e., 
M ( t ) - - A ( P 0 )  is constant. Therefore, 

P(t )  = f ( ( t )A(Po)X( t ) '  (2.15) 

where X ( t ) : =  [X(t)'] -~. Now, if rank A(P0)--r,  there exist two constant 
matrices N and ~ of dimensions n x r and r x r, respectively, such that A(Po) = 
N~,N' ;  for example, ~ may be chosen as the signature matrix. Then (2.15) is the 
required factorization, In fact, 

~ ( t )  = [F - ( P ( t ) H ' +  G)S-~H]~I; X(O) = I. (2.16) 

To see this, use (2.11) and the fact that (d/dt)[X -I] = - X - ~ I X  -~. Hence, defining 
the n x r-matrix function Q :-- .~N, we obtain 

I I b = Q~Q' ;  P(0) = Po, (2.17a) 

O = [F - ( P H ' +  G)S-~H]Q; Q(0) = N. (2.17b) 
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This result was first presented in this form in [7], where (2.17) was derived by 
differentiating the matrix Riccati equation. For  Riccati equations corresponding 
to Kalman filtering of stationary processes, an independent proof based on 
backward innovations was given in [10] (also see [11]). It should however  be 
noted that the factorization (2.15) appeared already in [3], even though its 
possible use for deriving fast algorithms was not observed;  another procedure 
based on the Hamiltonian formulations was used there. 

3. The discrete-time control problem 

We now return to the problem stated in the introduction. In analogy with 
Section 2 we consider the following control problem. Find a sequence 
{u(1), u(2) . . . . .  u(tt)} of m-dimensional vectors minimizing (if S is positive 
definite) or maximizing (if S is negative definite) the functional 

t 
1 t 1 
~x(O) Pox(O) + ~ 2., [ x ( t ) 'Qx ( t )  + 2x ( t ) 'Gu( t )  + u( t ) 'Su( t ) ]  (3.1) 

t = l  

subject to 
x ( t )  = F ' x ( t  + 1) + H ' u ( t  + 1); x( tO = a (3.2) 

for t = 0, 1, 2 . . . . .  t~ -  1. As described in Section 2 we can show that there indeed 
exists a unique optimal control sequence {u*(1), u*(2) . . . . .  u*(t0}; let 
{x*(0), x*(1) . . . . .  x*(t0} be the corresponding solution of (3.2). 

The Hamiltonian function is defined as 

~((t, x, u, y) = y ' ( F ' x  + H ' u  - x)  + ~(x'Qx + 2 x ' G u  + u ' S u )  

and the canonical equations read 

0 f  
x*( t )  - x*( t  + 1) = -~y (t, x*( t  + 1), u*(t + 1), y(t)); 

y(t  + 1) - y(t) = ~ff:-~_.(t, x* ( t  + 1), u*(t  + 1), y(t)); 
O X  

x*(tO = a, 
(3.3a) 

y(0) = Pox*(O). 

(3.3b) 

Here (3.3a) is the optimal version of (3.2); and (3.3b), which can be written 

y(t  + 1) = Fy( t )  + Qx*(t + 1) + Gu*( t  + 1); y(0) = P0x*(0) (3.4) 

defines the adjoint sequence {y(0), y(1) . . . . .  y(t0}. Then the Maximum Principle 
[4] requires that 

O f  "t, ~-ff ( x* ( t  + I), u*(t  + 1), y(t)) = O, 

i.e., 
u*(t  + 1) = - S - l [ H y ( t )  + G ' x* ( t  + 1)]. (3.5) 
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Inser t ing  this into (3.3) yields 

x*( t )  = A ' x * ( t  + 1) - H ' S  1Hy(t);  x*(tO = a, 

y(t  + 1) = Ay( t )  + [Q - G S  IG']x*(t  + l); y(0) = Pox*(O). 

where  
A = F - GS-1H.  (3.7) 

N o w ,  fo l lowing the p rocedure  of  Sec t ion  2, we would like to cons ider  the 
sys tem of  n x n -ma t r i x  di f ference equa t ions  

A ' X ( t  + 1) = X ( t )  + H ' S  ~HY( t ) ;  X(O) = I, (3.8a) 

Y ( t  + 1) = [Q - G S - t G ' I X ( t  + l) + A Y ( t ) ;  Y(0) = P0, (3.8b) 

(t = 0, 1, 2 . . . . .  tO. H o w e v e r ,  as seen f r o m  the fo l lowing propos i t ion ,  in general  
(3.8) will have  no solut ion.  

Proposi t ion 3.1. The sys tem (3.8) has a solution {(X(t) ,  Y(t)) ;  t = 0, l . . . . .  t~} if 

and only if the matr ix  A is nonsingular. 

The p roof  is based  on the fol lowing l emma.  

L e m m a  3.1. Let  P be any symmetr ic  n x n matrix and let R :=  H P H '  + S be 

nonsingular. Then the matrix [ I+ H ' S  1HP] is full rank, and its inverse is 
[ I  - H ' R - I H p ] .  

Proof.  It  is easy  to check  that  

[I + H ' S - 1 H ' P ] [ I  - H ' R - ~ H P ]  = I. 

H e n c e  the two ma t r i ces  on the left  side are full rank.  

Proof  of Proposi t ion 3.1. Assume  tha t  (3.8) has a solution. Then ,  in view of 
condi t ion (1.3) and L e m m a  3.1, 

A ' X ( 1 )  = I + H'S-~HPo,  (3.9) 

is full rank.  But  this can  happen  only if A is nonsingular .  This  t akes  care  of  the 
'only  if '  part .  The  ' i f '  par t  is trivial. 

The  fol lowing l emma ,  which will also be  needed  in Sect ion  4, will help us 
under s t and  the signif icance of  the condi t ion that  A be nonsingular .  

L e m m a  3.2. The matrix  Riccati  equation (1.1) can be written 

P ( t  + 1) - A [ P ( t )  - P ( t ) H ' R ( t ) - x H P ( t ) ] A  '=  Q - GS-~G ' (3.10) 

where A := F - G S  IH and R is defined by (1.3). 

(3.6a) 

(3.6b) 
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Proof. Since R = H P H '  + S, it is not hard to see that 

R -1 = S - l -  R - I H P H ' S  -1. (3.11) 

Now expand (1.1) and use (3.11) in the terms F P H ' R - I G  ' and GR-IG  ' (twice in 
the latter) to obtain (3.10). 

From (3.10) we can see that, if a E k e r A '  (the null space of A'), P( t )a  is 
constant for  t = 1,2 . . . . .  t~, i.e., a is an invariant direction of the Riccati 

equation. Consequently,  if A is singular, (1.1) has nontrivial invariant directions, 
and hence the dimension n of the Riccati equation can be reduced to eliminate 
these [5, 14]. It is no major restriction in generality to assume that this reduction 
has already been performed and that therefore A is nonsingular. This will be 
done in the rest of this paper. However ,  it should be pointed out that by 
adjusting the initial conditions of (3.8) so that they have the same rank as A and 
using pseudo-inverses in the sequel, we can dispense with this assumption, but 
such a strategy would only obscure the basic ideas of this paper. 

Subject to the assumption that A is nonsingular, the system (3.6) has the 

solution 
x*(t)  = X(t)Xo, (3.12a) 

y(t)  = Y(t)Xo, (3.12b) 

where x0 := x*(0). The following proposition describes the connection between 
the matrix Riccati equation and the canonical equations. 

Proposition 3.2. Let  A be nonsingular and let {(X(t), Y(t)); t = 0, 1 . . . . .  tl} be the 

unique solution of  (3.8). Then X ( t )  is nonsingular for  all t = O, 1 . . . . .  ti, and the 
solution of  the matrix Riccati equation (1.1) is given by P ( t ) =  Y ( t ) X ( t )  -1. 

Proof. We first show that (3.8) is still satisfied with Y exchanged for PX,  where 
P is the solution of the Riccati equation. Inserting Y = P X  into (3.8a) yields 

A ' X ( t  + 1) = [I + H ' S - I H P ( t ) ] X ( t ) ,  (3.13) 

which, in view of Lemma 3.1 and condition (1.3), may be written 

X ( t )  = [I - H ' R ( t ) - x H P ( t ) ] A ' X ( t  + l). (3.14) 

Next insert Y = P X  and (3.14) into (3.8b) to obtain 

{P(t  + 1) - A[P( t )  - P ( t ) H ' R ( t ) - I H P ( t ) ] A  ' -  Q + GS- IG ' } X  (t + 1) = 0, 

which is the identity (Lemma 3.2). Hence,  by uniqueness, Y = PX. Next,  note 
that, if X ( t )  is nonsingular, by (3.13) and Lemma 3.1, so is X ( t  + 1). Hence, since 
X(O) = I, X ( t )  is nonsingular for t = 0, 1 . . . . .  tl. 

Corollary 3.1. Let  A be nonsingular. For t = 0, 1 . . . . .  tr, let S ( ( t ) := [X(t)'] -l. 
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Then X satisfies the recursion 

X ( t  + 1) = [F  - ( F P ( t ) H ' +  G)R( t ) -~H]X( t ) ;  

Proof. This fo l lows immedia te ly  f rom (3.14) and (3.11). 
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2 ( 0 )  = L (3.15) 

4. Factorization of the matrix Riccati difference equation 

In order  to obtain a fac tor iza t ion  of  type  (1.4), we shall take a c loser  look at 
the Hamil tonian  func t ion  ~.  A discre te- t ime coun te rpa r t  of (2.13) reads  

gf(t, x*(t  + 1), u*(t + 1), y(t)) 

l p 
= ~xoM(t)xo + �89 + 1) - x*(t )] 'P( t )[x*( t  + 1) - x*(t)] .  (4.1) 

where  the n x n matr ix  sequence  M is def ined by  

M ( t )  = X ( t  + 1)'[P(t + 1) - P ( t ) ] X ( t  + 1). (4.2) 

To  see this we need  the fol lowing lemma.  

L e m m a  4.1. Let z ~ R" be arbitrary. Then 

~((t, x*(t + 1), u*(t + 1), z) 

= z'[x*(t)  - x*(t  + 1)] + ~y(t + 1) 'x*(t + 1) - �89 (4.3) 

Proof. Using the express ion  (3.5) for  u(t + 1) we obtain 

~ ( t ,  x*(t  + 1), u*(t + 1), z) 

= z'[x*(t)  - x*(t  + 1)] + � 89  

+ �89 + 1)'(Q - GS-IG' )x*( t  + 1) (4.4) 

which together  with the canonical  equa t ions  (3.6) yields (4.3). 

Remember ing  that  

y(t)  = P(t )x*( t ) ,  (4.5) 

(4.1) is an immedia te  consequence  of  this lemma.  H o w e v e r ,  unlike its con- 
t inuous- t ime coun te rpar t ,  (4.1) is not  cons tan t ,  nor  is M. On the o the r  hand 

~((t, x*(t  + 1), u*(t + 1), �89 + 1) + y(t)])  = constant .  (4.6) 

In fact ,  f rom L e m m a  4.1 it fo l lows that  
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~(t, x*(t + 1), u*(t + 1), ~[y(t + 1) + y(t)]) 

= ~y(t + 1)'x*(t) - ~y(t)'x*(t + 1). (4.7) 

Then, using the canonical equations (3.6), it is not hard to check that the 
constancy holds for each x0 E R. Therefore, again taking (4.5) into account, 

X ( t  + 1)'[P(t + l) - P( t ) ]X ( t )  -- constant, 

i.e., 

P( t  + 1) - P(t)  = f( ( t  + 1)X(1)'A(Po)X(t) ' ,  (4.8) 

where )~ is defined as in Corollary 3.1. If rank A(P0) is small, this does lead to a 
fast procedure, but, as we shall see in the end of this section, the corresponding 
algorithm will be more complicated. This is the algorithm obtained from the 
nonsymmetric factorization mentioned in [13, p. 320]; also cf. [8, 13]. 

To retain symmetry we shall discard the energy constancy and instead derive 
a recursion for the M-sequence (4.2). As in [8, 9, 11, 12, 13] the basic idea here is 
the shift-invariance caused by the constant coefficients of (1.1). If we use the 
reformulated Riccati equation (3.10) to eliminate [ Q - G S - I G  '] in (4.4), we 
merely obtain (4.3) again. However, if we first shift (3.10) one step backward in 
time we get the following recursion for M. 

Proposition 4.1. Let  A be nonsingular. Then the solution of the matrix Riccati 

equation (1.1) is given by 

P(t  + 1 ) -  P( t )  = .~(t + 1)M(t + 1)M( t )X ( t  + 1)'; P(0) = Po, (4.9) 

where X is given by (3.15) and M satisfies the recursion 

M ( t  + 1) = M(t )  + M ( t ) X ( t  + 1 ) ' n 'R ( t ) - lH f ( ( t  + 1)M(t), 
(4. 10) 

M(0) = X(1) 'A(Po)X(1).  

Proof. Exchange [ Q - G S - ~ G  '] in (4.4) by the left member of (3.10) with t 
exchanged for  t - 1 .  In the term corresponding to the second term in (3.10) 
express x*(t + 1) in terms of x*(t) by using (3.6a) and (4.5). Then, by replacing 
H ' P ( t ) H  by R ( t ) -  S in the resulting expression and again using (4.5), we obtain 

~(t ,  x*(t + 1), u*(t + 1), 0)= 

= �89 + 1)'P(t)x*(t + 1) - �89  - 1)x*(t) 

+ �89 - P ( t  - 1)]H'R(t  - 1)- lH[P(t)  - P ( t  - 1)]x*(t), 

which compared with (4.3) yields (4.10), since these relations hold for all Xo E R". 
To see this use (3.12), (4.2) and (4.5). Relation (4.9) follows directly from (4.2). 
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Another symmetr ic  factorization is obtained by considering 

1Vl(t) = X(t) '[P(t  + l) - P(t)]X(t)  (4.11) 

instead of M. By instead shifting (3.10) one step forward in t ime we obtain 

Proposition 4.2. 
equation (1.1) is 

P( t  + 1 ) -  P(t) = )((t)]Ql(t)X(t)'; P(0) = P0 

where X is given by (3.15) and 1V1 satisfies the recursion 

]V/(t + l) =/V/(t)  - 1Ql(t)f((t)H'R(t)-'Hf~(t)'iQl(t), 
(4.13) 

1V/(0) = A (P0). 

Proof. Proceed precisely as in the proof  of Proposi t ion 4.1 except  that t should 

be exchanged for  t + 1 in applying (3.10) to (4.4). 

These factorizat ions can now be used to derive the non-Riccati  algorithms of 
[8, 9, 11, 12, 13]. Analogously to the cont inuous-t ime case, let r : - - r ank  A(P0); 

hence rank M ( 0 ) =  r, and there is a (nonunique) factorization M ( 0 ) - - N ' Z N ' ,  

where N is n x r and E is r • r. Then Proposi t ion 4.1 yields the algorithm 

P(t + 1)= P(t)+ V(t)Z(t)V(t) ';  P ( 0 ) =  P0 (4.14) 

where V is determined by 

U(t + 1) = U(t)+ FV(t)Z(t)V(t) 'H';  U(0) = FPoH'+ G, 

V(t + 1) = [F  - U(t + 1)R(t + 1)-~H]V(t); V(0) = X(1)N,  

Z(t + 1) = Z(t) + Z( t )V( t ) 'H'R(t ) - 'HV(t)Z( t ) ;  Z(0) = E, 

Let A be nonsingular. Then the solution of the matrix Riccati 
given by 

To see this define U(t):= FP( t )H'+ G and V(t):= X( t  + 1)N, and note that 
M(t)  = NX( t )N ' .  Then (4.15) follows f rom (4.9), (4.10), (3.15) and (1.3). 

Likewise,  setting A(Po)= NEN' ,  Proposi t ion 4.2 yields the algorithm 

P(t + l) = P(t )+  V(t)Z(t)Z(t)V(t)'; P(O)= Po (4.16) 

where V, now defined by V(t) := ) ( ( t )N,  is determined via 

U(t + 1) = U(t) + FV(t)Z(t)V(t) 'H';  U(O) = FPoH' + G, (4.17a) 

V(t + 1) = I F -  U(t)R(t)-IH]V(t); V(O) = N, (4.17b) 

Z(t + 1) -- Z ( t ) -  Z( t )V( t ) 'H'R(t ) - 'HV(t)Z( t ) ;  Z(0) = ~, (7.17c) 

R(t + 1) = R(t) + HV(t)Z(t )V(t) 'H';  R(O) = HPoH' + S. (4.17d) 

(4.15a) 

(4.15b) 

(4.15c) 

(4.15d) R(t + 1) = R(t) + HV(t)Z(t )V(t) 'H';  R(O) = HPoH'+ S. 
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Here  the definit ions of  V and Z have  changed  [M(t )  = N Z ( t ) N ' ]  while U and R 

remain the same.  

Here  the a lgor i thms have been derived under  the a s sumpt ion  that  A, as 

defined by (3.7), is nonsingular ,  a condi t ion which is satisfied if the Riccati  

equat ion (1.1) has no invariant  direct ions.  This assumpt ion  is for  conven ience  

only, and the a lgori thms (4.14)-(4.17) hold wi thout  this condi t ion.  The der ivat ion 

above  can be modif ied so that .~ is exchanged  for  the M o o r e - P e n r o s e  pseudo-  

inverse X ~. 

It can now be seen that the u n s y m m e t r i c  fac tor iza t ion  (4.8) leads to an 

algorithm with two V-recurs ions  and no M-recurs ion .  For  the interest ing case 

where r is small such an algori thm will have  more  equa t ions  than (4.15) and 

(4.17). 

In the presen t  fo rm the a lgori thms (4.15) and (4.17) first appeared  in [8], 

a l though the basic  s t ructure  of  the a lgor i thms had al ready been  presented  in [9], 

where the Riccat i  equat ion co r re spond ing  to Kalman-fi l ter ing of  s ta t ionary 

processes  was  cons idered .  With respec t  to (4.15) this s i tuat ion cor responds  to 

P0 = Q = 0 and with respec t  to (4.17) to P0 sat isfying a L i a p u n o v  equation.  It 

could be argued that  these are the only na tura l  cases  for  which  the algori thms 

may  be fast.  Final ly,  Propos i t ions  4.1 and 4.2 should be c o m p a r e d  with the two 

fac tor iza t ions  in the main l emma of  [13]. 
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