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Abstract—Over the last several years, a new theory of Nevan-
linna–Pick interpolation with complexity constraint has been de-
veloped for scalar interpolants. In this paper we generalize this
theory to the matrix-valued case, also allowing for multiple inter-
polation points. We parameterize a class of interpolants consisting
of “most interpolants” of no higher degree than the central solu-
tion in terms of spectral zeros. This is a complete parameterization,
and for each choice of interpolant we provide a convex optimiza-
tion problem for determining it. This is derived in the context of
duality theory of mathematical programming. To solve the convex
optimization problem, we employ a homotopy continuation tech-
nique previously developed for the scalar case. These results can
be applied to many classes of engineering problems, and, to illus-
trate this, we provide some examples. In particular, we apply our
method to a benchmark problem in multivariate robust control.
By constructing a controller satisfying all design specifications but
having only half the McMillan degree of conventional con-
trollers, we demonstrate the advantage of the proposed method.

Index Terms—Complexity constraint, control, ma-
trix-valued Nevanlinna–Pick interpolation, optimization, spectral
estimation.

I. INTRODUCTION

A PPLICATIONS of Nevanlinna–Pick interpolation abound
in robust control [1]–[8], signal processing [9]–[14] and

maximal power transfer [15] in circuit theory, to mention a few.
Since the interpolant has a specific interpretation as a transfer
function in all these applications, it is important to restrict its de-
gree, and at the same time satisfy all design specifications. The
lack of insight provided by the classical techniques of Nevan-
linna–Pick interpolation into questions regarding the degree of
various interpolants has therefore been a limiting factor in this
approach. In fact, the designer has generally been confined to
the so called central solution, or the essentially equivalent solu-
tion derived by the Nehari approach, the only type of solution
for which algorithms have been available.

Over the last several years, a new theory of analytic interpo-
lation with complexity constraint has been developed for scalar
interpolants [10], [12], [16]–[19]. The basic idea is to parame-
terize complete classes of interpolants of at most a given degree
in a smooth fashion, providing tuning parameters for modifying
the design without increasing the complexity. This is done in the
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context of duality theory of mathematical programming, pro-
viding convex optimization problems for determining any inter-
polant belonging to such a class. In this context, new paradigms
for spectral estimation [9]–[11] and robust controller synthesis
[17], [20]–[24] have been developed in the single-input–single-
output case.

However, all these results are for scalar interpolants, while the
multivariable case is clearly more interesting and important in
most of the applications mentioned above. For example, while
our design procedures in robust control [17], [20]–[24] compare
very favorably to control methods in the scalar case, it is
in the multivariable case that they have a chance to outperform
classical control methods.

Motivated by this, in this paper we generalize the theory of
[17] to the matrix-valued case, also allowing for multiple inter-
polation points. This generalization introduces new nontrivial
and challenging issues, compelling us to take special care in
formulating the appropriate complexity constraint. In fact, we
parameterize a class of interpolants consisting of “most inter-
polants” of no higher degree than the central solution in terms
of spectral zeros. This is a complete parameterization, and for
each choice of interpolant we provide a convex optimization
problem for determining it. This is derived in the context of a
duality theory, generalizing that of [16], [17]; also see the survey
in [12]. To do this, we regard the Nevanlinna–Pick interpolation
as a generalized moment problem, to proceed along the lines of
[19], [25].

Theoutline of this paper is as follows. InSection II,we provide
some motivating examples, introducing the reader to matrix
interpolation in the context of signal processing and control.
Section III is a preliminary in which we formulate the matrix-
valued interpolation problem, first defining a corresponding
class of rational strictly positive real functions with complexity
constraint. We reformulate the problem as a generalized moment
problem and provide a necessary and sufficient condition for
existence of solutions, which we then interpret as a generalized
Pick condition. The main theorems are presented in Section IV
and proved in Section V. Generalizing results in [12], [16],
[17], [19], and [25] to matrix-valued analytic interpolation
theory, we present a smooth, complete parameterization of the
set of matrix-valued interpolants with complexity constraint in
the context of duality theory of mathematical programming.
In fact, to each choice of parameters, there is a pair of dual
optimization problems, the optima of which uniquely determine
the interpolant. The primal problem amounts to maximizing a
generalized entropy gain subject to the interpolation conditions,
while the dual problem is a convex optimization problem
with a unique minimum. In Section VI, an algorithm for
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solving the dual problem is provided. Here we generalize to
the matrix setting an approach first applied to the covariance
extension problem in [26] and then extended in [22] and [27]
to Nevanlinna–Pick interpolation. Since the dual problem is ill-
behaved close to the boundary, we reformulate the optimization
problem to eliminate this property. This is done at the expense
of global convexity, but the new functional is still locally strictly
convex in a neighborhood of a unique minimizing point so that
we can solve the problem by a homotopy continuation method.
In Section VII, finally, a numerical example in robust control
is presented. We consider a popular benchmark problem and
show that our design achieves the design specifications with a
controller of much lower degree than that of the design
with weighting functions.

II. M OTIVATING EXAMPLES FROM SIGNAL PROCESSING

AND CONTROL

To justify the problem formulation of this paper, we begin by
briefly considering some motivating examples.

A. Multivariate Covariance Extension

Suppose that we are given a sequence of ma-
trix-valued covariance lags

of some real -dimensional stationary stochastic process {;
} with the property that the block Toeplitz matrix with

blocks is positive definite. Here, of course,
. Such covariance lags can be determined from observations

of via an ergodic estimate (see, e.g., [28]). The problem is
to estimate the spectral density , , of by
matching the given covariance sequence

(II.1)

Often, one is more interested in theouterspectral factor of ,
i.e., a solution of

(II.2)

with no poles and zeros in the closed unit disc. In fact, ifis
outer, is minimum-phaseand represents a filter that
shapes white noise into a process with the spectral density

.
The problem of determining a that is positive on the unit

circle and satisfies the finite number of moment conditions (II.1)
has infinitely many solution. However, for design purposes, we
are interested in solutions that are rational of reasonably low
degree. A favorite solution is the one that maximizes the entropy
gain

The shaping filter corresponding to thismaximum-entropy
solutionhas the form

where is a matrix polynomial of degree at mostwhose
coefficients are the unique solution of thenormal equations,
which are linear and can be solved by means of a matrix-ver-
sion of the Levinson algorithm [28]; for some earlier papers,
see [29]–[31]. Clearly, this has McMillan degree at most .

As a first step toward generalizing this, one might ask whether
there is a solution of the form

(II.3)

where is an arbitrary scalar polynomial of degree at most
having no zeros in the closed unit disc and the property that

. This is a matrix version of a question answered in
the affirmative in [13], the question of uniqueness left open and
finally settled in [32]. In this paper, we shall prove that, for each

, there is one and only one so that defined by (II.2)
and (II.3) satisfies the moment conditions (II.1), and it is the
maximizing the generalized entropy gain

This generalizes the corresponding scalar result in [16]. We shall
also prove that this parameterization is smooth, forming a family
of covariance extensions having a complexity no higher than the
maximum entropy solution.

This spectral estimation problem can also be formulated as a
matrix-valued Nevanlinna–Pick interpolation problem. In fact,
as we shall see in Section III, a strictly positive real matrix-
valued function satisfies the interpolation condition

if and only if the spectral density
satisfies (II.1).

Example 2.1:Consider a two-dimensional stationary sto-
chastic process generated by passing white noise through a
known shaping filter. Observing a sample sequence of this
process, we want to recover the true shaping filter from a finite
window of 2 2 covariance lags obtained from
this observed data via ergodic estimates, while restricting the
model order. The singular values of the estimated spectral den-
sities for two different solutions are plotted in Fig. 1, together
with those of the true spectral density. The maximum-entropy
solution, i.e., the AR-model determined by the matrix-version
of the Levinson algorithm is depicted with a dotted line. By
choosing the tuning-parameter polynomial appropriately,
we obtain instead the ARMA model, depicted with a dashed
line. Note that this method also works for generic data. Hence,
the existence of a “true model” is not required.

B. Multivariable Sensitivity Shaping

Let be a linear control system with a vector-valued input
and a vector-valued output, having a rational transfer func-

tion with unstable poles and nonminimum-phase zeros;
these are the poles and zeros, including multiplicities, of
that are located in the right half plane . We
want to design a compensator C of low complexity so that the
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Fig. 1. Spectral estimates compared to the true spectral density.

closed-loop system depicted in Fig. 2 is internally stable, atten-
uates the effect of the disturbance, tracks the reference signal
, and reduces the effect of the noise.
This problem is standard in the robust control literature

(see, e.g., [2], [3], and [33]). Internal stability is achieved by
requiring that thesensitivity function, i.e., the closed-loop
transfer function

(II.4)

from the disturbance to the output , is stable (all poles in
the open left-half plane) and satisfies certain interpolation con-
ditions, as stated later. Substituting the Youla parameterization
into (II.4) yields a model matching form

(II.5)

where , and are stable rational matrices with
arbitrary. To avoid some technical complications and simplify
notation, let us assume that the plantis square and full rank
(i.e, ). Then both and are square and full
rank.

Now, the (transmission) zeros of and are located at
the zeros respectively the poles of the plant. By inner–outer
factorizations and , respectively, the
nonminimum-phase zeros of the plant are thus transferred to
the inner function and the unstable poles to the inner func-
tion . Moreover, the outer factor contains relevant in-
formation about “relative degree” of . In particular,
has the same rank as . Then, following the procedure in
[34], we define and , where

. Hence, (II.5) can be transformed into

(II.6)

where is a scalar inner function having zeros at the unstable
poles and zeros of P. If these poles and zeros, denoted by

, are distinct and has full rank, the interpo-
lation conditions required for internal stability become

(II.7)

whereas any multiple point has to be handled in a separate way.
If is an interpolation point of multiplicity so that

Fig. 2. Feedback system.

, then the equations in (II.7) corre-
sponding to are replaced by

(II.8)

If is rank deficient, we also need to add interpolation
conditions at infinity to ensure that the controller is proper. To
see this, recall that has the same rank as . There-
fore, if is rank deficient, then for some
and, hence, in view of (II.6), we have the interpolation condition

(II.9)

If and, thus, , is strictly proper, this interpolation condition
becomes

(II.10)

More generally, if in addition the first Markov parameters
are zero, i.e., in the expansion

(II.11)

and is full rank, a similar argument shows that

(II.12)

and

(II.13)

for any such that .
We would like to express all these conditions as interpolation

conditions involving some analytic function and its derivatives.
To this end, introduce the modified sensitivity function

(II.14)

which has the same analyticity properties as(and as ), i.e.,
is analytic in the right half of the complex plane. Then, to avoid
tangential conditions, we replace conditions (II.10), (II.12), and
(II.13) by

(II.15)

Likewise, (II.7) becomes

(II.16)

whereas (II.8) corresponds to easily computed but somewhat
more complicated expressions for , .
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Remark 2.2:These interpolation conditions in terms of
are sufficient but may not be necessary. In fact, the tangential
conditions (II.9) and (II.13) have been allowed to hold in all
directions . The reason for this is that tangential interpolation
is not covered by the theory developed in this paper.

Remark 2.3: In our problem formulation to be given in Sec-
tion III, we do not allow for interpolation points on the boundary
of the analyticity region. Therefore, we shall move the interpo-
lation point in (II.15) slightly into the open right-half
plane.

Next, we turn to disturbance attenuation and reference
tracking, which are achieved by bounding the norm of the
sensitivity function, i.e.,

(II.17)

The lowest such bound, i.e., the infimum of over all
stable satisfying the interpolation conditions, will be denoted
by . There are optimal solutions achieving this bound, and
their largest singular values are uniform over the spectrum.
However, in general one would like to shape the sensitivity
function to obtain low sensitivity in designated part of the
spectrum, which, due to the water-bed effect [35], is done
at the expense of higher sensitivity in some other part of the
spectrum. To achieve this, it is customary to use weighting
functions, which however could increase the degree of the
sensitivity function considerably and, hence, the compensator.

However, we prefer sensitivity functions of low complexity
and, therefore, we would like to avoid weighting functions. To
this end and to allow for greater design flexibility, we consider
suboptimal solutions, of which there are infinitely many. Given
some , we consider the whole class of stablesatis-
fying the required interpolation conditions and some complexity
constraint. In this class, we would like to choose the one that best
satisfies the additional specifications of sensitivity shaping. In
this paper, we shall give a smooth, complete parameterization
of such a class.

To bring this problem in conformity with the problem formu-
lation in Section III, we transform first the interpolation points
in the right-half plane to in the unit circle, via the
linear fractional transformation , and then
the function to

For each satisfying (II.17), the new function is analytic in
the unit disc and has the property that
for all . Let us call such a function astrictly positive real func-
tion. The problem is then reduced to finding a rational strictly
positive real function that has low complexity and satisfies
the corresponding interpolation condition

(II.18)

for each such that has multiplicity one and

(II.19)

whenever has multiplicity and
. It is straight-forward, but tedious in the multiple-point

case, to determine the interpolation values .
Example 2.4:To illustrate the design flexibility of our ap-

proach, we consider an example in control, namely the double
inverted pendulum depicted in Fig. 3. The linearized model for

and is given in [36, p. 37] as

where is the state. This is our plant P. The
goal is to design a stabilizing controller C which is robust against
low-frequency disturbancesand high-frequency noisefor a
zero reference signal ; see Fig. 2. The plant transfer
function has two unstable real poles and is of relative degree
two, thus yielding four interpolation conditions.

Using the methods of this paper, we can now compute an
arbitrary strictly proper controller in a class of controllers of
degree at most eight, satisfying the specifications, by choosing
the tuning parameters appropriately. Fig. 4 shows the (singular-
value) frequency responses of two sensitivity functions in this
class. One, plotted with dashed-dotted lines, gives a small band-
width but large robustness against measurement noise, whereas
the other, plotted with solid lines, provides a large bandwidth
and lower peak gain but a small robustness to noise. Therefore,
using the methods of this paper, the controller with the appro-
priate frequency response can be determined by tuning certain
design parameters to satisfy the specifications.

III. I NTERPOLATION PROBLEM

To formulate the interpolation problem, we need first to de-
fine a class of positive real functions of low complexity.

A. Class

An matrix-valued, proper, real rational functionthat
is analytic in the closed unit disc is
calledstrictly positive realif the spectral density function

(III.1)

is positive definite for all . Here

is the Hermitian generalization of the real part in the scalar case.
Let be the class of all such functions. If belongs to ,
then so does . In particular, is outer, i.e., all its poles and
zeros are located in , the complement of .

Strictly positive real functions abound in control, circuit
theory and signal processing, where they often represent
transfer functions of filters or closed-loop control systems.
Since design limitations require such devises to be of bounded
complexity, the class needs to be restricted to accommodate



2176 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 12, DECEMBER 2003

Fig. 3. Double inverted pendulum.

Fig. 4. Frequency responses for various tunings ofS.

appropriate complexity constraints. Typically, the McMillan
degree needs to be bounded.

To this end, first note that, to each , there corresponds
an outer matrix-valued function such that

(III.2)

which is unique modulo an orthogonal transformation. Deter-
mining from is a spectral factorization problem, which can
be solved by determining the stabilizing solution of an algebraic
Riccati equation (see, e.g., [37]). Conversely, if

(III.3)

is any minimal realization of , appealing to the equations of
the Kalman–Yakubovich–Popov Lemma, there is a unique
satisfying (III.2), and it is given by

(III.4)
where is the unique solution to the Lyapunov equation

(III.5)

Moreover, is a proper rational function of the same McMillan
degree as , and so is the inverse .

Let the polynomial be the least common denominator of
all entries in . Then, there is a matrix polynomial of the
same degree assuch that , and consequently

(III.6)

In this representation, the degree is uniquely deter-
mined by ; to emphasize this we write . Now, define the
class

(III.7)

All functions have McMillan degree at most ,
but, although this is a nongeneric situation, there are
of McMillan degree at most that do not belong to . In
fact, the standard observable (standard reachable) realization of

has dimension (see, e.g., [38, p. 106]), and consequently
, and hence , has McMillan degree at most. Moreover,

the standard observable realization may not be minimal, so there
is a thin set of of McMillan degree at most for which

.

B. Problem Formulation

Suppose that we are given a set

(III.8)

of interpolation pointsin the open unit disc . These
points need not be distinct, but, if a certain number is repeated,
it occurs in sequence. We say thathasmultiplicity if

and no other point takes this value. More-
over, suppose we have a set of matrix-valuedinterpolation
values

(III.9)

We assume for convenience that and that is real and
symmetric.

Now, consider the problem to find a function that
satisfies the interpolation condition

(III.10)

for each such that has multiplicity one and

(III.11)

whenever has multiplicity and
.

This is a matrix-valued Nevanlinna–Pick interpolation
problem with a nonclassical complexity constraint, namely the
condition that the interpolant must belong to the set .
In the scalar case , this is a degree constraint, and the
problem has been studied in [11], [17]–[19], [39], and [40]. In
the present multivariable setting, this complexity constraint is
not merely a degree constraint, as pointed out beforehand. In
fact, although all have degree at most ,
does not contain all such functions.



BLOMQVIST et al.: MATRIX-VALUED NEVANLINNA–PICK INTERPOLATION 2177

This problem could be reformulated as a generalized moment
problem. To see this, note that, by the matrix version of the Her-
glotz Theorem [41], any could be represented as

(III.12)

where is given by (III.1). Since, therefore

the interpolation conditions (III.10) and (III.11) can be com-
bined to

(III.13)

where is defined as

(III.14)

when has multiplicity one, and as

(III.15)
when has multiplicity and .
In particular, since , . Consequently, the Nevan-
linna–Pick interpolation problem with complexity constraint
formulated before is equivalent to finding an
satisfying (III.13).

C. Necessary and Sufficient Condition for Existence of
Solutions

Clearly, the problem posed before does not have a solution
for all choices of . Next, we shall therefore determine what
conditions need to be imposed on the interpolation values

. To this end, we first introduce the class
of matrix-valued generalized pseudopolynomials

(III.16)

with coefficients and real and symmetric, and
then we define the subset

(III.17)
consisting of those that are positive on the unit
circle.

Definition 3.1: Given the interpolation points , the se-
quence of interpolation values ispositiveif

(III.18)

for all matrix sequences such that the
pseudo-polynomial defined by (III.16) belongs to .
Let be the class of all such positive sequences. Here,

denotes the trace of the square matrix.
Theorem 3.1:There exists an satisfying the in-

terpolation condition (III.13) if and only if is positive.
The proof that positivity of is necessary is classical. To see

this, just note that, by the calculation of Proposition 3.2, (III.13)
implies that

(III.19)
which is positive whenever . In Section V, we
shall prove that this condition is also sufficient.

Now, it will be useful to represent (III.18) in terms of the inner
product

(III.20)

between two matrix-valued functions and .
Proposition 3.2: Let be an arbitrary function

defined on the unit circle and satisfying the moment condition

(III.21)
Then, if is given by (III.16)

(III.22)

Proof: Given any defined as in the proposition

which, in view of (III.21), establishes (III.22).

D. Generalized Pick Condition

The positivity condition in Theorem 3.1 is a generalized Pick
condition. To see this, let be any outer solution of the spec-
tral factorization problem

(III.23)

Then, introducing the vector of Cauchy type kernels

(III.24)

where
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for those for which is given by (III.14) and

for all other , has a representation

(III.25)

for some matrix , where is the Kronecker
product of and . Now, let be defined as in Proposition
3.2. Then, (III.23) yields

(III.26)

where is the generalized Pick matrix

(III.27)
Hence, we have the following corollary of Theorem 3.1.

Corollary 3.3: The sequence is positive if and only if the
matrix (III.27) is positive definite.

The generalized Pick matrix can be computed in terms of
interpolation data. In fact, when has multiplicity and

, we have

for any function that is analytic in the unit disc . Using
this Cauchy integral formula, a straight-forward, but tedious,
calculation yields

(III.28)

where is the Gramian

(III.29)

and is a block diagonal matrix consisting of one block

...
... (III.30)

for each distinct point in taken in order. The Gramian (III.29)
can be determined by solving the Lyapunov equation

(III.31)

where is a block diagonal matrix formed from the blocks
, where is the shift matrix with components

if and otherwise, and where is
a column vector of ones and zeros in which the ones occur for
those for which (III.14) holds.

Specializing to the case when all interpolation points have
multiplicity one, we obtain the classical Pick matrix

When there is only one interpolation point with multiplicity
located at the origin, as in the classical Carathéodory extension

problem, the Pick matrix is the block Toeplitz matrix

where is defined by (III.30); see, e.g., [42] and [43].

IV. M AIN THEOREMS

To motivate the approach taken in this paper, we first consider
the special case when , i.e.,

which is of particular interest in signal processing and identi-
fication. In this case, the generalized Pick condition reduces to
a Toeplitz condition, as previously described. In particular, the
interpolant that maximizes the entropy gain

(IV.1)

is the maximum entropy solution discussed in Section II. Like
, thecepstral coefficients[44]

(IV.2)

, can be observed. In the scalar case , it was
noted in [9] and [10] that the entropy gain (IV.1) is precisely the
zeroth cepstral coefficient and that the cepstral coefficients
(IV.2) together with the covariance data form local coordi-
nates of . This observation led to maximizing linear com-
binations of the cepstral coefficients instead.

In this paper we shall apply the same strategy to the multivari-
able Nevanlinna–Pick problem when are given
by (III.14) and (III.15). Accordingly, we consider the problem
of maximizing some linear combination

(IV.3)

of the coefficients (IV.2), which, in this more general setting,
will be referred to as thegeneralized cepstral coefficients. In-
troducing the generalized pseudopolynomial

(IV.4)

(IV.3) can be written as thegeneralized entropy gain

(IV.5)
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which we want to maximize over the class of (not nec-
essarily rational) bounded, coercive spectral densities, i.e.,
bounded such that is also bounded. Just as in [9] and
[10], we must require to be positive on the unit circle, i.e.,

, in order for a maximum of to exist. In
fact, the following theorem establishes a complete parameteri-
zation of all interpolants in terms of the generalized
pseudopolynomial .

Theorem 4.1:Suppose that the positivity condition (III.18)
holds. Then, given any , the optimization problem

subject to

(IV.6)

has a unique optimal solution, and it takes the form

(IV.7)

where . Via (III.2) this establishes a bijection
between interpolants and .

This is a constrained optimization problem over the infi-
nite-dimensional space , which is hard to solve directly.
In analogy with [17] we observe that the optimization problem
has only finitely many constraints and thus a finite-dimensional
dual. In fact, in Section V, we shall demonstrate thatin (IV.7)
can be determined by solving the dual optimization problem,
namely the problem to find a that minimizes the
functional

(IV.8)

This will be formalized in the next theorem. We recall from Def-
inition 3.1 and Proposition 3.2 that the sequenceof interpo-
lation values is positive if and only if

(IV.9)

Theorem 4.2:Suppose that the positivity condition (IV.9)
holds. Then, given any , the minimization
problem

(IV.10)

has a unique optimal solution. Given the optimal solution, the
unique interpolant corresponding to , mentioned
in Theorem 4.1, is given by

(IV.11)

The optimal solution depends smoothly on the interpolation
data . In particular, the map with
components

(IV.12)
is a diffeomorphism.

It is easy to see that, modulo sign change, any
has a unique representation of the form

(IV.13)

where

(IV.14)

belongs to the class of polynominals with all roots in ,
and where

(IV.15)

is an arbitrary polynomial in . The parameters
can serve as “tuning parameters” in robust control and other ap-
plications. In the scalar case, rules of thumb for choosing these
tuning parameters are given in [21], [23], and [24] for sensi-
tivity shaping and in [11] for high-resolution spectral estima-
tion. Noting that is still scalar, these rules of thumb essentially
also apply to the present matrix case. In sensitivity shaping, the
most effective rule is to place a root of (IV.15) close to the unit
circle at a frequency where a peak is desired. The interpolant

can be determined from the solution to the dual optimization
problem (IV.10) in a fashion to be described in Section VI.

Similarly, any has a representation (III.23),
i.e., , unique up to an orthogonal transfor-
mation, where

(IV.16)

and the matrix polynomial

(IV.17)

are outer. In Section VI, we assume that the interpolation data
, are self-conjugate, and thus the matrix coefficients are

real. We also show that the dual optimization problem can be
reformulated in terms of so that, in particular, the spectral
factorization step and complex number calculations are avoided.

Consequently, for each choice of tuning parameters
, the dual optimization problem provides an

essentially unique matrix polynomial (IV.17) so that

(IV.18)

is an outer spectral factor of . Forming a minimal
realization (III.3) of (IV.18), the corresponding interpolant

is given by (III.4).
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V. PROOFS IN THECONTEXT OF DUALITY THEORY

To solve (IV.6), we form the Lagrangian

where and are the matrix components of and ,
respectively, and then solve the dual problem to minimize

with respect to the Lagrange multipliers , which are complex
numbers except when when they are real and .
Here, is the generalized pseudo-polynomial (III.16) formed
by taking to be the matrix for .
Then, using the identity (III.22), the Lagrangian can be written
by

(V.1)

Clearly, the Lagrangian will be unbounded if is allowed to
have negative values on the unit circle. Hence, we determine
the supremum for each . To this end, we want to
determine a such that the directional derivative

equals zero in all directions such that for
some . However, since

where are the eigenvalues of
, and , we have

(V.2)

Consequently, in terms of the inner product, the directional
derivative can be written as

(V.3)

which equals zero for all if and only if

(V.4)

Inserting this into (V.1), we obtain

where

(V.5)

Hence, modulo an additive constant, is precisely the dual
function.

We want to show that this functional is strictly convex and
that it has a unique minimum in . To this end, we form
the directional derivative

(V.6)

where we have performed the same calculation as in (V.2). We
need to determine a such that

(V.7)

for all of the form

(V.8)

where , , are arbitrary complex ma-
trices, except for that is real and symmetric. Inserting (V.8)
into (V.6), we obtain

where are defined as in (IV.12).
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Lemma 5.1:The stationarity condition (V.7) holds for all
of the form (V.8) if and only if , .

Proof: For an arbitrary (, , ) with , take all com-
ponents of equal to zero except , which
we take to be with and arbitrary. Then, letting
be the real part and the imaginary part of , we
obtain

and hence , as claimed. If , and equal
to zero, so the same conclusion follows. The reverse statement
is trivial.

It remains to show that there is a such that
(V.7) holds.

Theorem 5.2:Let , and suppose that
the positivity condition (III.18) holds. The dual functional

is strictly convex and has a unique
minimum . Moreover, for

(V.9)

Proof: To prove that is strictly convex we form

However

for sufficiently small , and hence

Now, since is positive definite on the unit circle,
there is a nonsingular matrix functionsuch that .
Then, using the commuting property of the trace, we have

and hence

taking the value zero if and only if or, equivalently,
. Consequently, the Hessian of is positive defi-

nite for all , implying that is strictly convex,
as claimed.

The rest of the proof is the samemutatis mutandisas the one
in [16]. (Also, see [12], [17], and [19].) Since the linear term

is positive and linear growth is faster than logarithmic,
the function is proper, i.e., the inverse images of compact
sets are compact. In particular, if we extend the functionto

the boundary of , it has compact sublevel sets. Conse-
quently, has a minimum, , which is unique by strict con-
vexity. We need to rule out that lies on the boundary. To this
end, note that the boundary of consists of the for
which has a zero on the unit circle, and for which the di-
rectional derivative for all pointing into

; see [12, Sec. 4] for details.
Therefore, since is an open set,

for all of the form (V.8) and, therefore, (V.9) follows from
Lemma 5.1.

Theorem 5.3:Let , and suppose that the
positivity condition (III.18) holds. The primal functional

is strictly concave, and there is a unique op-
timal solution to the problem (IV.6). The maximum

takes the form

where is the optimal solution of the dual
problem.

Proof: To show that is strictly concave, we proceed as
above. The calculation leading to (V.3) yields

and, following the lines of the corresponding proof in Theorem
5.2

with equality if and only if . Hence, is strictly con-
cave, as claimed.

Let be the optimal solution of the dual problem. Then, since
is strictly concave, so is . Clearly,

belongs to , and, by (V.3), it is a stationary point of the map
. Hence

(V.10)

However, by Theorem 5.2, satisfies the interpolation condi-
tion (III.13) and, consequently

Therefore, it follows from (V.10) that

for all that satisfies the interpolation condition
(III.13), establishing optimality of .

Consequently, we have proved Theorem 4.1. To finish the
proof of Theorem 4.2 it remains to establish that the map

is a diffeomorphism. To this
end, first note that and are both convex,
open sets in and hence diffeomorphic to

. Moreover, the Jacobian of is the Hessian
of , which is positive definite on , as shown in the
proof of Theorem 5.2. Hence, by Hadamard’s global inverse
function theorem [45], is a diffeomorphism.

Finally, Theorem 3.1 is an immediate consequence of
Theorem 4.1.
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VI. SOLVING THE DUAL OPTIMIZATION PROBLEM

Recall that, by Theorem 4.2, for each choice of
, there is a unique solution to the basic in-

terpolation problem of this paper, and this solution is obtained
by determining the unique minimizer over of the dual
functional

(VI.1)

This functional has the property that its gradient is infinite on the
boundary of . This is precisely the property that buys
us properness of the functional (IV.12), and therefore it is essen-
tial in the proof of Theorem 4.2. However, from a computational
point of view, this property is undesirable, especially if the min-
imum is close to the boundary. In fact, it adversely affects the ac-
curacy of any Newton-type algorithm. For this reason, following
[22] and [26], we first reformulate the optimization problem to
eliminate this property. This is done at the expense of global
convexity, but the new functional is still locally strictly convex in
a neighborhood of a unique minimizing point. Thus, if we were
able to choose the initial point in the convexity region, a Newton
method would work well. However, finding such an initial point
is a highly nontrivial matter. Therefore, again following [22] and
[26], we want to design a homotopy continuation method that
determines a sequence of points converging to the minimizing
point.

A. Reformulating the Optimization Problem

In Section III-D, we replaced the first term in (VI.1) with a
quadratic form by first defining the spectral factor satis-
fying (III.23). Consequently, for each , the right hand
side of (VI.1) can also be written as

where is the generalized Pick matrix defined by (III.27) or,
alternatively, by (III.28). Let us now assume that the interpo-
lation data ( , ) is self-conjugate so that space
has dimension and the matrix coefficients

in

(VI.2)

are real. We also assume that is upper triangular. Then, the
space of all

...

such that (VI.2) is outer and for all
also has dimension . In view of

(III.25)

(VI.3)

which defines a nonsingular linear transformationsuch that

(VI.4)

Under this change of coordinates, the Pick matrix becomes

(VI.5)

and, since , (VI.1) can be
written as

(VI.6)

where the new cost functional

(VI.7)

is defined on the space .
Proposition 6.1: The functional has a

unique stationary point and is locally strictly convex about this
point.

Proof: Since is a uniquely defined
(outer) spectral factor of , the map

sending to , where

is a bijection with first and second directional derivatives

Now, is an injective linear map between Eu-
clidean spaces of the same dimension and, hence, it is bijective.
In fact, since has all its roots in the complement of the
closed unit disc, the homogeneous equation

has a unique solution . (See Lemma 1.1 in Ap-
pendix I.) Therefore, since

the directional derivative

is zero for all if and only if
is zero for all . Consequently, has a stationary point at
if and only if has a stationary point at . However,
has exactly one such point, and hence the same holds for.
Moreover, since for
all and at the minimum , the second
directional derivative

is positive for sufficiently small . Therefore, is
strictly convex in some neighborhood of.

B. Gradient and Hessian of the New Functional

In order to use Newton’s method to solve the new optimiza-
tion problem, we need to determine the gradient and the Hessian
of . We begin with the gradient.
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Proposition 6.2: Given the real matrix-valued Fourier
coefficients

(VI.8)

and the modified Pick matrix , given by (VI.5), the gradient
of is given by

(VI.9)

where the matrix is the block Toeplitz
matrix with blocks given by (VI.8) and

.
The proof of Proposition 6.2 is given in Appendix II, while

the proof of the following proposition, describing the Hessian
of , is given in Appendix III.

Proposition 6.3: The Hessian of is given by

(VI.10)
Here, the component of the second term are obtained by re-

arranging the elements in

(VI.11)

where are defined via the expansion

(VI.12)

Remark 6.4:Since the left hand side of (VI.12) is the product
of three factors, two of which have Laurent expansions with
infinitely many terms, one might wonder how to determine the
coefficients in a finite number of operations. As
we shall see in Appendix III, this can be achieved by observing
that has the same elements as (VI.12),
appropriately rearranged, and can be factored as the product of
two finite and one infinite Laurent expansion.

C. Central Solution

The optimization problem to minimize is particularly
simple if . In this case, and only in this case, the problem
can be reduced to one of solving a system of linear equations.
This solution is generally called thecentral solution. In fact,
since has no zeros in , by the mean-value theorem
of harmonic functions

Consequently, since

Since has no zeros in the unit disc, is nonsingular.
Therefore, setting the gradient of equal to zero, we obtain

(VI.13)

and, therefore, , which yields

(VI.14)

First, solving (VI.14) for the unique Cholesky factor and in-
serting into (VI.13), (VI.13) reduces to a linear system of equa-
tions that has a unique solutionsince is positive definite.

D. Continuation Method

Now, we would like to find the minimizer of for an ar-
bitrary . To this end, we construct a homotopy
between the gradient of and the gradient of along the
lines of [22] and [26], allowing us to pass from the central so-
lution to the solution of interest.

Now, for any , define

Then, since is convex, . By Proposi-
tion 6.1, the functional

has a unique minimum at and is locally strictly convex in
some neighborhood of . This point is the unique solution
in of the nonlinear equation

Then, the function is a homo-
topy from the gradient of to the gradient of . In particular,

is the central solution.
In view of the strict local convexity of in a neighbor-

hood of , the Jacobian of is positive definite at
. Consequently, by the implicit function theorem, the func-

tion is continuously differentiable on the interval
[0,1], and

where the inverted matrix is the Hessian of that can be de-
termined as in Proposition 6.3. We want to follow the trajectory

defined by the solution of this differential equation with
the central solution as the initial condition.

To this end, we construct an increasing sequence of numbers
on the interval [0,1] with and .

Then, for , we solve the nonlinear equation
for by Newton’s method with initial

condition

The numbers have to be chosen close enough
so that, for each , lies in the local
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convexity region of , guaranteeing that Newton’s method

converges to . Strategies for choosing are
given in [22] and [26]. This choice is a tradeoff between con-
vergence and staying in the locally convex region.

Remark 6.5:A MATLAB implementation of this algorithm is
available [46].

VII. A PPLICATION TO A BENCHMARK PROBLEM IN

ROBUST CONTROL

During the last two decades, it has been discovered that
analytic interpolation theory is closely related to several robust
control problems, for example, the gain-margin maximization
problem [5], [7], [8], the robust stabilization problem [6], sen-
sitivity shaping in feedback control, simultaneous stabilization
[4], the robust regulation problem [1], the general con-
trol problem [3], and, more generally, the model matching
problem. In this section, we apply the theory of this paper
to a benchmark problem in sensitivity shaping for a mul-
tiple-input–multiple-output plant from a popular textbook on
multivariable control by Maciejowski [47]. We refer the reader
to Section II for notation.

The control system in [47] describes the vertical-plane dy-
namics of an airplane and can be linearized to yield a linear
system

with three inputs, three outputs, and five states, where

This system is not asymptotically stable due to the pole at the
origin. It is strictly proper and the first Markov coeffi-
cient is rank deficient.

To compare our result with that of [47], we want to design
a one-degree-of-freedom controller C as in Fig. 2 in Section II
that renders the closed-loop system robust against various dis-
turbances. More precisely, the specifications are

• bandwidth about 10 rad/s;
• zero sensitivity at zero frequency; ;
• well-damped step responses.

By exploiting the design freedom offered by choosing the
design parameters, namely an upper limit of the gain, the
tuning parameters , and additional interpolation

TABLE I
SUMMARY OF THE DESIGNS

constraints, we shape the sensitivity function to meet the speci-
fications, while limiting the degree of the controller.

First we deal with the pole at origin. By perturbing thema-
trix we move the pole into the open right-half plane, generating
an interpolation point as described in Section II. More precisely,
we move the pole to by increasing to . This will
ensure the sensitivity to be zero near zero frequency. In terms
of the modified sensitivity function introduced in Section II,
this yields the interpolation condition .

Since the plant is strictly proper and the first Markov param-
eter is rank deficient, we need to add interpolation condi-
tions for and at zero in accordance with (II.15). Moving
the interpolation condition slightly into the open right-half plane
(Remark 2.3), these conditions become

To force the controller to be strictly proper and create a steep
“roll-off” of the complementary sensitivity function, we also
add the condition . Then, the class of bounded
interpolants becomes

where is a bound to be selected in the design.
By means of a linear fractional transformation and an appro-

priate scaling, we transform the problem to the form considered
in this paper, yielding the family

for the particular choice of described next.
We now tune the design parameters to meet the design specifi-

cations. First, we pick the upper bound (10 dB). How-
ever, the actual maximal norm of the sensitivity will be smaller.
Furthermore, we want to peak the sensitivity function some-
what above 10 rad/s. We can achieve this by choosing spectral
zeros close to the imaginary axis in the corresponding region.
Here, we first pick the points and transform them
to the unit disc by the same linear fractional transformation as
for the interpolation points. By rescaling each resulting root to
have absolute value less than 0.95, if necessary, we avoid numer-
ical difficulties and prevent the peak of from becoming too
high. In this way, we obtain the spectral zeros

, which we use in the algorithm of Section VI to deter-
mine the corresponding unique interpolant. Then we trans-
form back to and calculate .

In Table I we compare our control design with the design
using the weighting functions of [47, pp. 306–315]. In Fig. 5,
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Fig. 5. Singular value plots ofS andT .

Fig. 6. Step responses for theH -design and our design.

the (singular-value) frequency responses of the sensitivity and
the complementary sensitivity of both designs are plotted, and
in Fig. 6 the step responses are depicted. Clearly, both designs
meet the design specifications. We emphasize that although our
design meets the specifications at least as well as does the
design, the McMillan degree of our controller is only half of that
of the controller.

control design often leads to controllers of high degree,
and it is therefore customary to apply some method of model
reduction. This is typically done by balanced truncation [48],
where states that correspond to relatively small entries on the
diagonals of the balanced observability/controllability Gramian
are removed. Although such procedures are quitead hoc, a cer-
tain reduction in degree can often be done without unacceptable
degradation in performance.

An interesting question is now whether the design in the
present example can be reduced to the same degree as our de-
sign, namely eight, without unacceptable degradation. The an-
swer is “No.” To see this we have used the DC gain matching
function in MATLAB ’s Control Toolbox. Successively removing

TABLE II
OUR DESIGN COMPARED WITH MODEL-REDUCEDH DESIGN

TABLE III
COMPARISONBETWEEN MODEL-REDUCED CONTROLLERS

states in the design, we found that the controller can be
reduced to degree eleven without loss of internal stability and
without undue degradation in performance, whereas reduction
to ten leads to an unacceptable design. The results, given in
Table II, still demonstrate the advantages of our new design.

Of course, model reduction could also be applied to our de-
sign. In fact, the degree of our controller can be reduced to six
without unacceptable degradation in performance, restoring the
ratio in the controller degree between the two methods. The re-
sults are displayed in Table III.

The corresponding (singular-value) frequency responses of
the sensitivity and the complementary sensitivity are displayed
in Fig. 7, and the step responses are depicted in Fig. 8. Our
design still is of considerably smaller McMillan degree while
meeting the design specifications at least as well as the
design.
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Fig. 7. Singular value plots ofS andT corresponding to the model reduced controllers.

Fig. 8. Step responses for the reduced-order designs.

Remark 7.1: In interpreting these model-reduction results
we need to observe that the interpolation conditions used in our
procedure to ensure internal stability are in fact only sufficient
(Remark 2.2). Modifying our procedure to handle tangential
interpolation would allow us to use necessary and sufficient
interpolation conditions. This would reduce the total number
of interpolation conditions imposed on the sensitivity function,
thus very likely leading to a lower degree controller. In fact,
modifying our approach in this way, it is quite possible that the
sixth-degree controller obtained above after model reduction
of our design could then be obtained directly (without model
reduction) using appropriate tuning.

VIII. C ONCLUSION

In this paper, we have developed a theory for matrix-valued
Nevanlinna–Pick interpolation with complexity constraint. We
have shown that the spectral zeros characterize completely a
class of interpolants of a bounded complexity. We have devised

a numerically stable algorithm based on homotopy continuation
to compute any such interpolants. The potential advantage of
the theory and the algorithm was illustrated by a benchmark
multivariable control example.

The standard control problem can be reduced to not only
matrix-valued interpolation but also tangential interpolation. As
pointed out in Remark 7.1, we expect that the reduction to the
tangential Nevanlinna–Pick interpolation problem will be more
natural in the sense that the degree bound can be much lower
than the one in this paper (also, see [49], [50]). Therefore, it
will be important to modify our theory to tangential Nevan-
linna–Pick interpolation. This is the subject of future study.

As pointed out before, and as discussed in detail in [19] and
[25] in the scalar setting, the Nevanlinna–Pick interpolation
problem of this paper can be regarded as a generalized moment
problem with complexity constraint. In a different context,
Lasserre [51] has recently developed an approach that connects
certain moment problems to optimization. An optimization
problem of type (IV.10) was first introduced in [16] in the
context of the covariance extension problem. This approach
was originally motivated by the effectiveness of interior point
methods; indeed, the logarithmic term in (IV.10) was formed in
analogy with a barrier term. Therefore, it is interesting to note
that similar paradigms appear in recent work on positive poly-
nomials and convex optimization over linear matrix inequalities
(LMIs); see, in particular, [52] and [53]. There are also efficient
methods of control based on LMI techniques [54]–[56].
It would be interesting topics of future study to investigate
possible connections between our work and that of [51]–[55].

NONSINGULARITY OF THE JACOBIAN MATRIX

APPENDIX I

To show that the Jacobian matrix of in Proposition 6.1 is
bijective, we prove a somewhat more general statement.



BLOMQVIST et al.: MATRIX-VALUED NEVANLINNA–PICK INTERPOLATION 2187

Lemma 1.1:Let be the class of real matrix
polynomials

such that is upper triangular, and let have the
properties that the constant term is nonsingular and that

and have no roots in common. Then, the linear
map sending to

is nonsingular.
In the proof of Proposition 6.2, has all its roots in the

complement of the closed unit disc. A proof of Lemma 1.1 re-
stricted to this case can be found in [57]. (See also [58, Th. 3.1],
which refers to [57].) Nevertheless, we shall provide an indepen-
dent proof of the more general statement of Lemma 1.1. Indeed,
our proof is short and straight-forward. Moreover, the general
statement given here was left as an open problem in [57, p. 28].

Proof: Since is a linear map between Euclidean
spaces of the same dimension, it suffices to prove that
is injective. Without restriction we may assume that
is upper triangular. In fact, let be a unimodular matrix
polynomial with upper triangular such that is
upper triangular. Such a indeed exists due to the procedure
deriving the Smith form [59]. Then

if and only if . Moreover, the new , i.e.,
, is still upper triangular. In this formulation

where are the diagonal elements in. In par-
ticular, by assumption, no can have zeros in common with
any . It then remains to prove that

(I.1)

implies .
The proof is by induction. The statement clearly holds for

. In fact, if , then, by assumption, ,
and hence, by (I.1), . Consequently, we must have

for some real polynomial , which inserted
into (I.1) yields

This implies that and hence that , as claimed.
Now, suppose that (I.1) implies for . Then,

for , (I.1) can be written

...
...

...
...

(I.2)

which, in particular, contains the matrix relation
of type (I.1). Consequently, by the induction

assumption, , so, to prove that , it just remain
to show that the border elements
are all zero. To this end, let us begin with the corner elements

and . From the and elements in (I.2), we
have

(I.3)

(I.4)

In the same way as in the case , (I.3) implies that
for some real polynomial , and (I.4) implies that

for some real polynomial , which, when in-
serted into (I.3), yields

This implies that and are real numbers such that
. However, by assumption, is upper triangular, and
is upper triangular and nonsingular. Hence,

and , implying that and,
consequently, . Since, therefore, and ,
(I.2) now takes the form

which only yields the matrix relation
of type (I.1). However, by the induction assumption,

. Therefore, in the case also, so, by
induction, for all .

APPENDIX II
COMPUTING THE GRADIENT

To establish the expression (VI.9) for the gradient

(II.1)

of (VI.7), we need to determine

where is defined by (VI.8). This completes the proof of
Proposition 6.2.

To actually compute , we identify matrix co-
efficients of equal powers in in
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To this end, first observe that, in view of (IV.13)

where

(II.2)

Then

where and can be determined by
identifying coefficients in

APPENDIX III
COMPUTING THE HESSIAN

We begin by proving Proposition 6.3. Since

it remains to establish (VI.11). Since

(VI.11) would follow if we could show that

(III.1)

Denoting the (, ) element of by we obtain

and, therefore

...
...

...

establishing (III.1) and, hence, proving Proposition 6.3.

Next, we answer the question in Remark 6.4. To compute
in (VI.12), we first expand

and then determine from by comparing the matrix coeffi-
cients of with those of . The
computation of can be done by observing that

where we have used properties of the Kronecker product that
may be found in, e.g., [60]. Multiplying this by then yields

from which can be computed, since, given by (II.2), and
have finite Laurent expansions.
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[57] J. Jězek, “Symmetric matrix polynomial equations,”Kybenetika
(Prague), vol. 22, no. 1, pp. 19–30, 1986.

[58] D. Henrion and M.̌Sebek, “An efficient numerical method for the dis-
crete-time symmetric matrix polynomial equation,”IEE Proc. Control
Theory Appl., vol. 145, no. 5, pp. 443–447, 1998.

[59] F. R. Gantmacher,The Theory of Matrices. New York: Chelsea, 1959.
[60] A. Graham,Kronecker Products and Matrix Calculus With Applications:

Wiley, 1981.

Anders Blomqvist (S’01) received the M.S. degree
in engineering physics from the Royal Institute of
Technology (KTH), Stockholm, Sweden, in 2001.

He spent the academic year 1999–2000 as an Ex-
change Student at Washington University, St. Louis,
MO. Since the spring of 2001, he has been a Grad-
uate Student with the Division of Optimization and
Systems Theory, KTH. His research involves analytic
interpolation theory with a complexity constraint and
its applications in control and system identification.



2190 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 12, DECEMBER 2003

Anders Lindquist (M’77–SM’86–F’89) received
the Ph.D. degree from the Royal Institute of
Technology (KTH), Stockholm, Sweden in 1972.

From 1972 to 1974, he held visiting positions at
the University of Florida, Gainesville; Brown Uni-
versity, Providence, RI; and the State University of
New York at Albany. In 1974, he became an Asso-
ciate Professor, and in 1980, a Professor at the Uni-
versity of Kentucky, Lexington, where he remained
until 1983. He is now a Professor at KTH, where, in
1982, he was appointed to the Chair of Optimization

and Systems Theory. Currently, he is the Head of the Mathematics Department
at KTH. Since 1989, he has also been an Affiliate Professor of Optimization and
Systems Theory, Washington University, St Louis, MO.

Dr. Lindquist is a Member of the Royal Swedish Academy of Engineering
Sciences, a Foreign Member of the Russian Academy of Natural Sciences,
and an Honorary Member the Hungarian Operations Research Society. He
has served on many editorial boards of journals and book series, and is also
the recipient (together with C. I. Byrnes and T. T. Georgiou) of the George S.
Axelby Outstanding Paper Award of the IEEE Control Systems Society (CSS)
for the year 2003.

Ryozo Nagamune(S’97–M’03) received the B.S.
and M.S. degrees in control engineering from Osaka
University, Osaka, Japan, in 1995 and 1997, re-
spectively, and the Ph.D. degree in optimization and
systems theory from Royal Institute of Technology
(KTH), Stockholm, Sweden, in 2002.

In the first half of 2003, he was a Postdoctoral Re-
searcher at the Mittag–Leffler Institute, Djursholm,
Sweden. Since September 2003, he has been a Post-
doctoral Researcher at the University of California at
Berkeley. His research interest is robust control based

on analytic interpolation involving complexity constraints.
Dr. Nagamune received the Best Student Paper Award at the 40th IEEE Con-

ference on Decision and Control (CDC2001).


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


