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Matrix-Valued Nevanlinna—Pick Interpolation With
Complexity Constraint: An Optimization Approach
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Abstract—Over the last several years, a new theory of Nevan- context of duality theory of mathematical programming, pro-
linna—Pick interpolation with complexity constraint has been de-  viding convex optimization problems for determining any inter-
veloped for scalar interpolants. In this paper we generalize this polant belonging to such a class. In this context, new paradigms

theory to the matrix-valued case, also allowing for multiple inter- . . .
polation points. We parameterize a class of interpolants consisting for spectral estimation [9]-[11] and robust controller synthesis

of “most interpolants” of no higher degree than the central solu- [17], [20]-[24] have been developed in the single-input-single-
tion in terms of spectral zeros. This is a complete parameterization, output case.

and for each choice of interpolant we provide a convex optimiza-  However, all these results are for scalar interpolants, while the
tion problem for determining it. This is derived in the context of  ivariable case is clearly more interesting and important in

duality theory of mathematical programming. To solve the convex t of th licati fi d ab = | hil
optimization problem, we employ a homotopy continuation tech- IMOSt Of the applications Mentoned anove. For exaimnpie, wihile

nique previously developed for the scalar case. These results canOUr design procedures in robust control [17], [20]-[24] compare
be applied to many classes of engineering problems, and, to illus- very favorably toH>° control methods in the scalar case, it is
trate this, we provide some examples. In particular, we apply our jn the multivariable case that they have a chance to outperform
method to a benchmark problem in multivariate robust control. classical control methods.

By constructing a controller satisfying all design specifications but . . . .
having only half the McMillan degree of conventional H> con- Motivated by this, in this paper we generalize the theory of

trollers, we demonstrate the advantage of the proposed method.  [17] to the matrix-valued case, also allowing for multiple inter-
. . polation points. This generalization introduces new nontrivial
Index Terms—Complexity constraint, H<> control, ma- S . . .
trix-valued Nevanlinna—Pick interpolation, optimization, spectral and cha]lenglng |ssues,' compelling _us to take.SpeC'al care In
estimation. formulating the appropriate complexity constraint. In fact, we
parameterize a class of interpolants consisting of “most inter-
polants” of no higher degree than the central solution in terms
of spectral zeros. This is a complete parameterization, and for
PPLICATIONS of Nevanlinna—Pick interpolation aboundach choice of interpolant we provide a convex optimization
in robust control [1]-[8], signal processing [9]-[14] anddroblem for determining it. This is derived in the context of a
maximal power transfer [15] in circuit theory, to mention a fewduality theory, generalizing that of [16], [17]; also see the survey
Since the interpolant has a specific interpretation as a transfef12]. To do this, we regard the Nevanlinna—Pick interpolation
function in all these applications, it is important to restrict its de&s a generalized moment problem, to proceed along the lines of
gree, and at the same time satisfy all design specifications. €], [25].
lack of insight provided by the classical techniques of Nevan- The outline of this paper is as follows. In Section Il, we provide
linna—Pick interpolation into questions regarding the degree $#dme motivating examples, introducing the reader to matrix
various interpolants has therefore been a limiting factor in thigterpolation in the context of signal processing and control.
approach. In fact, the designer has generally been confinedSgction Il is a preliminary in which we formulate the matrix-
the so called central solution, or the essentially equivalent sok@lued interpolation problem, first defining a corresponding
tion derived by the Nehari approach, the only type of solutigtlass of rational strictly positive real functions with complexity
for which algorithms have been available. constraint. We reformulate the problem as a generalized moment
Over the last several years, a new theory of analytic interperoblem and provide a necessary and sufficient condition for
lation with complexity constraint has been developed for scalexistence of solutions, which we then interpret as a generalized
interpolants [10], [12], [16]-[19]. The basic idea is to parameRick condition. The main theorems are presented in Section IV
terize complete classes of interpolants of at most a given degéewel proved in Section V. Generalizing results in [12], [16],
in a smooth fashion, providing tuning parameters for modifyind 7], [19], and [25] to matrix-valued analytic interpolation
the design without increasing the complexity. This is done in tiieeory, we present a smooth, complete parameterization of the
set of matrix-valued interpolants with complexity constraint in
the context of duality theory of mathematical programming.

. . . _ Ln fact, to each choice of parameters, there is a pair of dual
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solving the dual problem is provided. Here we generalize whereR(z) is a matrix polynomial of degree at mastwhose

the matrix setting an approach first applied to the covarianceefficients are the unique solution of thermal equations
extension problem in [26] and then extended in [22] and [2Which are linear and can be solved by means of a matrix-ver-
to Nevanlinna—Pick interpolation. Since the dual problem is ilsion of the Levinson algorithm [28]; for some earlier papers,
behaved close to the boundary, we reformulate the optimizatisee [29]-[31]. Clearly, thi¥ has McMillan degree at mos¥.
problem to eliminate this property. This is done at the expenseAs a first step toward generalizing this, one might ask whether
of global convexity, but the new functional is still locally strictlythere is a solution of the form

convex in a neighborhood of a unique minimizing point so that

we can solve the problem by a homotopy continuation method. V(z) = p(2)R(z)"" (1.3)

In Section VI, finally, a numerical example in robust contro| , : .
wherep(z) is an arbitrary scalar polynomial of degree at most

is presented. We pon3|dgr a popular penchma'rlf pr'oblem. %ﬂaving no zeros in the closed unit disc and the property that
show that our design achieves the design specifications with

controller of much lower degree than that of thEe*° design p(%) 7& 0. Thls. 'S & matrix version of a gues'uon answered in
. s : the affirmative in [13], the question of uniqueness left open and
with weighting functions.

finally settled in [32]. In this paper, we shall prove that, for each
p(z), there is one and only on(z) so that® defined by (11.2)
and (11.3) satisfies the moment conditions (11.1), and it is¢he
maximizing the generalized entropy gain

To justify the problem formulation of this paper, we begin by
briefly considering some motivating examples.

Il. MOTIVATING EXAMPLES FROM SIGNAL PROCESSING
AND CONTROL

1 7 ) .
2—/|p(ezg)|210gdet(1>(ew)d9.
A. Multivariate Covariance Extension W_T

~Suppose that we are given a sequefigeCs, . . ., €, of ma-  This generalizes the corresponding scalar resultin [16]. We shall
trix-valued covariance lags also prove that this parameterization is smooth, forming a family
Cp=E {kaytT} : k=0,1,....n of covariance extensions having a complexity no higher than the

maximum entropy solution.
of some reall-dimensional stationary stochastic procegs {  This spectral estimation problem can also be formulated as a
t € Z} with the property that the block Toeplitz matrik with  matrix-valued Nevanlinna—Pick interpolation problem. In fact,
blocksT;; = C;_; is positive definite. Here, of cours€,_» = aswe shall see in Section IIl, a strictly positive réal/ matrix-
C ". Such covariance lags can be determined from observatigasued functionf” satisfies the interpolation condition
of {y:} via an ergodic estimate (see, e.g., [28]). The problem is

to estimate the spectral densibye®®), § € [—, 7], of {y;} by F(0) = 100 lp(k)(o) = Cy, k=1,2,...,n
matching the given covariance sequence 2 k!
17 if and only if the spectral densitp(z) = F(z) + F(z—l)T

e~ 0D (e)dh = Oy, k=0,1,...,n. (I.1) satisfies (I.1).

Example 2.1:Consider a two-dimensional stationary sto-
chastic process generated by passing white noise through a
known shaping filter. Observing a sample sequence of this
process, we want to recover the true shaping filter from a finite
V(z_l)TV(z) =®(z) (1.2)  windowCy, C1, ..., C, of 2 x 2 covariance lags obtained from
this observed data via ergodic estimates, while restricting the
model order. The singular values of the estimated spectral den-
sities for two different solutions are plotted in Fig. 1, together
with those of the true spectral density. The maximum-entropy

solution, i.e., the AR-model determined by the matrix-version

. - - " f the Levinson algorithm is depicted with a dotted line. B
circle and satisfies the finite number of moment conditions (II.]§n g P y

o . . oosing the tuning-parameter polynompét) appropriately,
has infinitely many solution. However, for design purposes, ¥e obtain instead the ARMA model, depic)ted with a dashed

are interested in solutions that are rational of reasonably l(ﬁWe Note that this method also works for generic data. Hence
degree. A favorite solution is the one that maximizes the entrO{:ﬁle éxistence of a “true model" is not required ' '

% PIEE
Often, one is more interested in tbater spectral factor ofb,
i.e., a solutionV of

with no poles and zeros in the closed unit disc. In fact/ ifs
outer,V(z—l)T is minimum-phaseand represents a filter that
shapes white noise into a procggs} with the spectral density
o.

The problem of determining@(z) that is positive on the unit

gain
. w B. Multivariable Sensitivity Shaping
o / log det ®(e")dd. Let P be a linear control system with a vector-valued input
“r u and a vector-valued outpyt having a rational transfer func-

L : . : tion P(s) with unstable poles and nonminimum-phase zeros;
The shaping filtert” corresponding to thisnaximum-entropy these are the poles and zeros, including multiplicities? of)

solutionhas the form that are located in the right half plafe : Re(s) > 0}. We
V(z) = R(z)™" want to design a compensator C of low complexity so that the
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Fig. 2. Feedback system.

: Sk+1 = -+ = Skyw—1, then the equations in (11.7) corre-
20— Truetiter sponding tas;+1 = ... = Sk4,—1 are replaced by
AR-model o .
_go L=—_ARMA-model ‘ ‘ . s S’(J)(sk) = Tl(j)(sk)7 j=1,...,v—1. (11.8)
0 0.5 1 15 2 25 3

F d/ . _ . .
requency (rads) If P(o00) is rank deficient, we also need to add interpolation

Fig. 1. Spectral estimates compared to the true spectral density. conditions at infinity to ensure that the controller is proper. To
see this, recall thaP(co) has the same rank d5(c). There-
closed-loop system depicted in Fig. 2 is internally stable, attefore, if P(co) is rank deficient, them " T (c0) = 0 for somev
uates the effect of the disturbanégracks the reference signaland, hence, in view of (11.6), we have the interpolation condition
r, and reduces the effect of the noise Ta T
This problem is standard in the robust control literature v S5(00) = v Ti(oo). (11.9)
(see, e.g., [2], [3], and [33]). Internal stability is achieved b# 7
requiring that thesensitivity functioni.e., the closed-loop bec20
transfer function

and, thus P, is strictly proper, this interpolation condition
mes

S(s)=[I+ P(s)C(s)] (I1.4) S(00) = Ug = Ty(0). (1.10)

. . . More generally, if in addition the firgt — 1 Markov parameters
from the disturbance to the outputw, is stable (all poles in 9 y. . ! VP

the open left-half plane) and satisfies certain interpolation cops 210 leddy = = Ap—1 = 0in the expansion
ditions, as stated later. Substituting the Youla parameterization To(s™1) = Ays+ Aps® 4+ Azs® + - - (1.11)
into (11.4) yields a model matching form
and Ay 1 is full rank, a similar argument shows that
S(s) =Ti(s) — T2 (s)Q(s)T5(s) (I1.5) . .
whereT}, j = 1,2,3 andQ are stable rational matrices wih @S(s D) . =Uj:= @Tl(s D) .
arbitrary. To avoid some technical complications and simplify = j=1,..., E—1 = (1.12)
notation, let us assume that the plahts square and full rank o
(i.e, det P(s) # 0). Then bothT, and T3 are square and full and
rank. P dk
Now, the (transmission) zeros @f and T3 are located at Q,T_kg(s*l) — UT_kTI(Sfl) (11.13)
the zeros respectively the poles of the pl&ntBy inner—outer ds 5=0 ds 5=0

factorizationsT, = 0,7, andT3 = T303, respectively, the for any v such thaty T Ay, = 0.

non_mlmmum-phase zeros of the plant are thus tr_ansferred Qyve would like to express all these conditions as interpolation
the inner functior®, and the unstable poles to the inner func

. - _ . “conditions involving some analytic function and its derivatives.
tion 9?" Moreover, th_e outer factdf, °°”ta'r?3 relevant in- To this end, introduce the modified sensitivity function
formation about “relative degree” dP. In particular, 7> (o)
has the same rank d¥oc). Then, following the procedure in Z(s) = 5*(5—1) (11.14)
[34], we defineS := ¢0550% andT; := ¢O5T103%, where ~
¢ := det ©, det ©3. Hence, (11.5) can be transformed into ~ which has the same analyticity propertiessgand asS), i.e.,Z
N N N N N is analytic in the right half of the complex plane. Then, to avoid
S(s) = T1(s)=d(s)T2(5)Q(5)T5(s) ISllee = [ISllo (I1.6)  tangential conditions, we replace conditions (11.10), (11.12), and

where¢ is a scalar inner function having zeros at the unstabqlel'n) by
poles and zeros of P. If these poles and zeros, denoted by Z0)(0) = U;, j=0,1,...,k. (1.15)
80,81, - - -, Sn, are distinct and®(co) has full rank, the interpo-
lation conditions required for internal stability become Likewise, (11.7) becomes
S(sp) =Ti(sx), k=0,1,...,n (1.7) Z (s3") = Ti(sk) (1.16)

whereas any multiple point has to be handled in a separate wakiereas (11.8) corresponds to easily computed but somewhat
If s is an interpolation point of multiplicitys so thats, = more complicated expressions féfrf)(sgl),j =1,...,v—1.
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Remark 2.2: These interpolation conditions in terms Bf wheneverz, has multiplicityv andz, = zgy1 = -+ =
are sufficient but may not be necessary. In fact, the tangential,,,_; . It is straight-forward, but tedious in the multlple pomt
conditions (11.9) and (11.13) have been allowed to hold in altase, to determine the interpolation valiigg, W, ..., W,,.
directionsv. The reason for this is that tangential interpolation Example 2.4:To illustrate the design flexibility of our ap-
is not covered by the theory developed in this paper. proach, we consider an example in control, namely the double
Remark 2.3:1n our problem formulation to be given in Sec-inverted pendulum depicted in Fig. 3. The linearized model for
tion Ill, we do not allow for interpolation points on the boundaryr. = 1 (kg) and/ = 1 (m) is given in [36, p. 37] as
of the analyticity region. Therefore, we shall move the interpo-

lation points = 0 in (11.15) slightly into the open right-half 0 1 0 0 0 0
plane. so |9 0 g0 1 -2 [ul}
Next, we turn to disturbance attenuation and reference 0 0 0 1 0 (r) Ug
tracking, which are achieved by bounding tHé° norm of the —9 0 3¢ 0 -2 5
sensitivity function, i.e., v — 1 0 0 O
Y=lo o 1 0
[15lloc = 1 Zloc < - (11.17)

wherez := [0, 01 6, 6,]T is the state. This is our plant P. The
The lowest such bound, i.e., the infimum pZ||., over all goalistodesignastabilizing controller C whichis robust against
stableZ satisfying the interpolation conditions, will be denotedow-frequency disturbancesand high-frequency noisefor a
by 7opt. There are optimal solutions achieving this bound, ar#®ro reference signdl = 0); see Fig. 2. The plant transfer
their largest singular values are uniform over the spectrufiinction has two unstable real poles and is of relative degree
However, in general one would like to shape the sensitivify/0, thus yielding four interpolation conditions.
function to obtain low sensitivity in designated part of the Using the methods of this paper, we can now compute an
spectrum, which, due to the water-bed effect [35], is dor@gbitrary strictly proper controller in a class of controllers of
at the expense of higher sensitivity in some other part of tk€gree at most eight, satisfying the specifications, by choosing
spectrum. To achieve this, it is customary to use weightirije tuning parameters appropriately. Fig. 4 shows the (singular-
functions, which however could increase the degree of thalue) frequency responses of two sensitivity functions in this
sensitivity function considerably and, hence, the compensatdiass. One, plotted with dashed-dotted lines, gives a small band-
However, we prefer sensitivity functions of low complexitVidth but large robustness against measurement noise, whereas
and, therefore, we would like to avoid weighting functions. Tée other, plotted with solid lines, provides a large bandwidth
this end and to allow for greater design flexibility, we consideknd lower peak gain but a small robustness to noise. Therefore,
suboptimal solutions, of which there are infinitely many. GiveHsing the methods of this paper, the controller with the appro-
Somey > 7opt, We consider the whole class of stalfesatis- priate frequency response can be determined by tuning certain
fying the required interpolation conditions and some complexiflesign parameters to satisfy the specifications.
constraint. In this class, we would like to choose the one that best
satisfies the additional specifications of sensitivity shaping. In [ll. | NTERPOLATION PROBLEM

this paper, we shall give a smooth, complete parameterizationrg formulate the interpolation problem, we need first to de-

of such a class. fine a class of positive real functions of low complexity.
To bring this problem in conformity with the problem formu-

lation in Section Ill, we transform first the interpolation points, ClassF(n)
in the right-half plane tay, 21, - . ., z,, in the unit circle, via the
linear fractional transformation= (s — 1)(s+1)~*, and then
the functionZ to

An ¢ x ¢ matrix-valued, proper, real rational functidhthat
is analytic in the closed unit dide := {z € C : |z] < 1} is
calledstrictly positive realf the spectral density function

F(z) = [ﬂ-dii)} [71+Z<1+2>]_1. B(ci?) = R {F ()} (I1.1)

1—=2

For eachZ satisfying (11.17), the new functio#’ is analytic in Is positive definite for alb € [, 7]. Here

the unit disc and has the property tiéte’?) + F(e=) >0 1 . . —
for all 4. Let us call such apfurﬁ)ctioyng?i(ctly)positgve re)al func- R{F(2)} = 2 [F(z) + F(2)], where F*(z) = F(z71)
tion. The problem is then reduced to finding a rational strictl)
positive real functionf” that has low complexity and satisfies
the corresponding interpolation condition

5 the Hermitian generalization of the real partin the scalar case.
SLe et C be the class of all such functions. i belongs toC,,
then so doe# . In particular,F is outer, i.e., all its poles and
(1.1g) Zerosare located ib°, the complement db. . o
Strictly positive real functions abound in control, circuit
theory and signal processing, where they often represent
transfer functions of filters or closed-loop control systems.
Since design limitations require such devises to be of bounded
complexity, the clas§€, needs to be restricted to accommodate

for eachk such that;;, has multiplicity one and

1 _,.
7F<J>(zk):Wk+j, j=0,1,...,v—1  (1.19)
J:
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Let the polynomialp be the least common denominator of
all entries inV —1. Then, there is a matrix polynomi&l of the
same degree assuch that’ =! = R/p, and consequently

V(z) = p(z)R(z) L. (111.6)

In this representation, the degree= deg p is uniquely deter-
mined by F'; to emphasize this we writg F'). Now, define the

class
Fig. 3. Double inverted pendulum. All functions F € F,(n) have McMillan degree at mogt,
but, although this is a nongeneric situation, therelare C,
Sensitivity functions of McMillan degree at mostn that do not belong tér., (n). In

fact, the standard observable (standard reachable) realization of
V~! has dimensio#r (see, e.g., [38, p. 106]), and consequently
V~1, and hencé’, has McMillan degree at moét. Moreover,

the standard observable realization may not be minimal, so there
is a thin set oft’ € C,. of McMillan degree at modt for which

r(F) > n.

B. Problem Formulation

Singular values, dB

Suppose that we are given a set

i Z = {Z(],Zl./...,Zn}CD (”|8)
—-- Low frequency spectral zeros
— High frequency spectral zeros
05 0 10° 10 10° of n + 1 interpolation pointsin the open unit dis®. These
Frequency, rad/s points need not be distinct, but, if a certain number is repeated,
Fig. 4. Frequency responses for various tunings of it occurs in sequence. We say th@thasmulﬂphm_ty vif z, =
Zk+1 = - -+ = Zr4+r—1 @nd no other point takes this value. More-

) ) _ _ ~over, suppose we have a seusf 1 matrix-valuednterpolation
appropriate complexity constraints. Typically, the McMillar,gjyes

degree needs to be bounded.
To this end, first note that, to eaé¢he C., there corresponds W= {Wo, W1,...,W,} c C™*~ (11.9)
an outer/ x ¢ matrix-valued functior/ such that
We assume for convenience thgt= 0 and thati?; is real and
V*(2)V(z2) = ®(2) := R{F(2)} (.2)  symmetric.
Now, consider the problem to find a functiéhe F. (n) that
which is unique modulo an orthogonal transformation. Detegatisfies the interpolation condition
mining V from F is a spectral factorization problem, which can
be solved by determining the stabilizing solution of an algebraic F(zr) = Wy (111.10)
Riccati equation (see, e.g., [37]). Conversely, if
for eachk such that;, has multiplicity one and
V(z)=20(I —2zA)"'B+ D (111.3) 1
T|F<J>(zk) =Wy, §=0,1,...,u—1 (ll.11)
is any minimal realization of/, appealing to the equations of J:
the Kalman—Yakubovich—Popov Lemma, there is a unijue wheneverz, has multiplicity » and z, =
satisfying (111.2), and it is given by Zhtv_1-
This is a matrix-valued Nevanlinna—Pick interpolation
F(z) =22(B*XA+ D*C)(I — zA)"'B+ B*XB+D*D  problem with a nonclassical complexity constraint, namely the
(1.4)  condition that the interpolarff must belong to the sef, (n).
whereX is the unique solution to the Lyapunov equation  |n the scalar casé = 1, this is a degree constraint, and the
problem has been studied in [11], [17]-[19], [39], and [40]. In
X=A"XA+C"C. (I1.5)  the present multivariable setting, this complexity constraint is
not merely a degree constraint, as pointed out beforehand. In
Moreover,V is a proper rational function of the same McMillanfact, although allFF € F, (n) have degree at moét, 7. (n)
degree a¢’, and so is the inversg 1. does not contain all such functions.
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This problem could be reformulated as a generalized momédot all matrix sequencesQ)q, Q1, - -

2177

.,Q, such that the

problem. To see this, note that, by the matrix version of the Hgrseudo-polynomial) defined by (I11.16) belongs t@ (¢, n).

glotz Theorem [41], any’ € F. (n) could be represented as

/

—T

Cif 4,
e? — 2

1

"o

F(z) d(e")db

(I11.12)

where® is given by (Ill.1). Since, therefore

/ ( 26i9

eif — z)itl
—T

1 0 1
_F(J)(Z) S
2

s B (™) ds,
7!

i=1,2,...

the interpolation conditions (I11.10) and (111.11) can be com
bined to

™

1

2
—7

ar(e?)®(e)df = Wy, k=0,1,...,n (11.13)

whereqy, is defined as

2+ 2k
zZ — ZL

ag(z) = (11.14)

whenz, has multiplicity one, and as

ozt 2z _ 2z L
ag(z) = 7 ap4j(z) = Gyt 17 L...,v=1
(I1.15)
whenz, has multiplicityr andz, = zp41 = -+ = Zrpto—1.

In particular, since;y = 0, ag = 1. Consequently, the Nevan-
linna—Pick interpolation problem with complexity constrain
formulated before is equivalent to finding @ € F,(n)
satisfying (111.13).

C. Necessary and Sufficient Condition for Existence of
Solutions

Clearly, the problem posed before does not have a solution (Q, W) = —

for all choices oflW. Next, we shall therefore determine whal
conditions need to be imposed on the interpolation valu

Wo, Wy, ..., W,. To this end, we first introduce the class

9Q(¢,n) of £ x £ matrix-valued generalized pseudopolynomial

Q(z) =R {Z Qkak(z)}
k=0

with coefficientsQ;,, € C*** andQ, real and symmetric, and
then we define the subset

(I11.16)

Qi (t.n) = {Q € Q(£,n)|Q(e") > 0 for all § € [, 7]}
(1.17)
consisting of thos&) € Q(¢,n) that are positive on the unit
circle.
Definition 3.1: Given the interpolation pointsZ, the se-
quenceV of interpolation values ipositiveif

Re {zn:tr(Qka)} >0

(111.18)

Let 20, (¢,n) be the class of all such positive sequences. Here,
tr{ A} denotes the trace of the square mattix

Theorem 3.1:There exists ai” € F_ (n) satisfying the in-
terpolation condition (I11.13) if and only i#V is positive.

The proof that positivity oV is necessary is classical. To see
this, just note that, by the calculation of Proposition 3.2, (111.13)
implies that

T

. 1 i0 i0
Re{kzzotr(Qka)} =5 W tr {Q(e")®(c?)} db
(111.19)
Wwhich is positive wheneve) € Q. (¢,n). In Section V, we
shall prove that this condition is also sufficient.
Now, it will be useful to represent (111.18) in terms of the inner
product

™

(A, B) i % | / trA* (%) B(c®)db

(111.20)

between twd x ! matrix-valued? functionsA andB.
Proposition 3.2: LetW : T — C,, be an arbitrary function
defined on the unit circld and satisfying the moment condition

™

1

— [ ar(e®YW(e®)do = Wy, k=0,1,...,n.
2w
- (11.21)
Then, if Q is given by (111.16)
t
Re {Ztr(Qka)} =(Q,W). (11.22)
k=0

Proof: Given anylW defined as in the proposition

D. Generalized Pick Condition

The positivity condition in Theorem 3.1 is a generalized Pick
condition. To see this, ldt(z) be any outer solution of the spec-
tral factorization problem

™

217r /tr (Q(e")W (™)) db

:Rezn:tr (
k=0

which, in view of (111.21), establishes (111.22).

t
es

™

Qg [ enteWie")ap

—T

S

T(:)I*(2) = Q(2).

Then, introducing the vector of Cauchy type kernels

G(2) :=lg0(2) 91(2) -+ gn(2)]

(111.23)

(I11.24)

where

ag(z)+1
2

gr(2)
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for thosek for which «y, is given by (111.14) and Specializing to the case when all interpolation points have
() multiplicity one, we obtain the classical Pick matrix
= Xk\Z xN
gr(z) = 5 HZE[WH-W]}
2 1—2z; i.j=0

for all otherk, I'(z) has a representation

When there is only one interpolation point with multiplicity-
I'z)=(G(z)®I,)T (I1.25)  1located atthe origin, as in the classical Carathéodory extension

problem, the Pick matrix is the block Toeplitz matrix

for some matri € CY"+1*¢ 'whered ® B is the Kronecker L

product ofA and B. Now, letWW be defined as in Proposition II=_-[W(0,n)+W(0,n)"]

3.2. Then, (I11.23) yields 2
whereW (0, n) is defined by (111.30); see, e.g., [42] and [43].

(Q,W) = (', WI') = tr{I"™ "} (111.26)
IV. MAIN THEOREMS

wherelL is the generalized Pick matrix To motivate the approach taken in this paper, we first consider

) ™ the special casewheg = z; = --- = 2, = 0, i.e,,
— % 16 0 0
H—%/(G (e )®IK)W(6 )(G(e )®Ig)d9 ao(Z):l Oék(Z):QZ_k, ]i}Zl,...,TL
_ (IN.27)  which is of particular interest in signal processing and identi-
Hence, we have the following cor_ollary_(_)f Theorem 3.1 fication. In this case, the generalized Pick condition reduces to
Corollary 3.3: The sequenceV is positive if and only if the - a Toeplitz condition, as previously described. In particular, the
matrix (111.27) is positive definite. interpolant that maximizes the entropy gain
The generalized Pick matrid can be computed in terms of .
interpolation data. In fact, when, has multiplicityr andz;, = 1 0
Zhi1 = - = Zpry_1, We have Py /10gdet D(e)db (IV.2)
1. 1 r ; i . is the maximum entropy solution discussed in Section Il. Like
ity 7€) - (0 i0 i— _
j!F (2) = 27 /g’“”(6 JF()dd, 5 =0,1,...,v =1 W, thecepstral coefficient§44]
for any functionF’ that is analytic in the unit dis®. Using Cr 1= 1 ar(e'?) log det ®(e')df (IV.2)
this Cauchy integral formula, a straight-forward, but tedious, QW_W
calculation yields .
k=0,1,...,n,canbe observed. Inthe scalar case1, itwas
1 noted in [9] and [10] that the entropy gain (IV.1) is precisely the

= 2 WS L)+(SeL)W] (11.28) zeroth cepstral coefficieny and that the cepstral coefficients

(IV.2) together with the covariance dak&l form local coordi-

where$ is the Gramian nates ofF (n). This observation led to maximizing linear com-

n binations of the cepstral coefficients instead.
S = 1 / G*(e")G(e)d (111.29) In this paper we shall apply the same strategy to the multivari-
2m able Nevanlinna—Pick problem when, a1, ..., a, are given

—T

by (111.14) and (l11.15). Accordingly, we consider the problem
andW is a block diagonal matrix consisting of one block ~ of maximizing some linear combination

Wk n
W(k,v) = { : ] (111.30) He {;pkck} (IV.3)
Wi,

Witv—1 of the coefficients (IV.2), which, in this more general setting,

for each distinct point ir€ taken in order. The Gramian (111.29) Will be referred to as thgeneralized cepstral coefficients-
can be determined by solving the Lyapunov equation troducing the generalized pseudopolynomial

S—ASA" =bb' (I1.31) P(z):=R {zn: pkak(z)} (IV.4)
k=0

whereA is a block diagonal matrix formed from thex v blocks
Ay = zI + J, whereJ is the shift matrix with components
Jij = 1if i —j = 1 andJ;; = 0 otherwise, and wherk s 1 7 ' '

a column vector of ones and zeros in which the ones occur for Ip(®) := — / P(e?)1og det ®(e*)df (IV.5)
thosek: for which (111.14) holds. T

(IV.3) can be written as thgeneralized entropy gain



BLOMQVIST et al. MATRIX-VALUED NEVANLINNA-PICK INTERPOLATION 2179

which we want to maximize over the cla§§}l of (not nec- The optimal solutiorQ depends smoothly on the interpolation
essarily rational) bounded, coercive spectral densibiege., data)V. In particular, the ma@ : Q(¢,n) — 20 (£, n) with
bounded® such that®~! is also bounded. Just as in [9] anccomponents

[10], we must requird’(z) to be positive on the unit circle, i.e.,

P € 9.(1,n), in order for a maximum of p(®) to exist. In 1 7 ) ) o
+(Ln) p(®) /ak(ew)P(eZQ)Q(ew) Y46, k=0,1,....n

fact, the following theorem establishes a complete parameteﬁk(Q) = o

zation of all interpolantg” € F. (n) in terms of the generalized

pseudopolynomiaP € Q. (1,n). _ _ _
Theorem 4.1: Suppose that the positivity condition (111.18)iS & diffeomorphism.

holds. Then, givenany € Q. (1, n), the optimization problem  |tiS €asy to see that, modulo sign change, Bny Qi (L,n)
has a unique representation of the form

(IV.12)

i 1p(®) subject o P(z) = LA ) (IV.13)
v 7(2)7*(2)
1

7 /ak(ew)@(ew)(w =Wy, k=0,1,...,n(V.6) where
7r .

—T

7(2) = [J(1 - z2) (IV.14)

has a unique optimal solution, and it takes the form

. belongs to the clas§ ;. of polynominals with all roots i,
®(z) = P(2)Q(2) (IV:7)  and where

whereQ € Q. (l,n). Via (lll.2) this establishes a bijection p(z) = po+p1z+ -+ puz" (IV.15)

between interpolantg € . (n) andP € Q. (1,n). . bi | Al Th
This is a constrained optimization problem over the infi> n arbitrary polynomial IS, . The parameteys, pi, . .., pn

nite-dimensional spacé‘_‘;“, which is hard to solve directly. can serve as “tuning parameters” in robust control and other ap-

In analogy with [17] we observe that the optimization problerﬂlic_ations' In the scalar case, rulezs of tggmb f(;r czhoc;sing the.se
has only finitely many constraints and thus a finite-dimensioni{"Nd parameters are given in [21], [ ].' and [24] for sensi-
dual. In fact, in Section V, we shall demonstrate tdh (IV.7) tivity shaping and in [11] for high-resolution spectral estima-

can be determined by solving the dual optimization problerﬂon' Noting thap is still scalar, _these rules of thumb esseptially
namely the problem to find @ € Q. (£, n) that minimizes the also apply to the present matrix case. In sensitivity shaping, the
functional ' most effective rule is to place a root of (IV.15) close to the unit

circle at a frequency where a peak is desired. The interpolant
n F can be determined from the solution to the dual optimization
1 ; i blem (IV.10) in a fashion to be described in Section VI.
J = (Q,W) — — [ P(¢")logdet Q(e®)df. (IV.8) PO
r(Q)=(Q. W) 27r/ (¢7) log det Q") (V&) Similarly, any@ € Q4 (¢,n) has a representation (111.23),
i.e.,Q(z) = I'(2)T™*(z), unique up to an orthogonal transfor-

L . . mation, where
This will be formalized in the next theorem. We recall from Def-

inition 3.1 and Proposition 3.2 that the sequeWgef interpo- I'(z) = 7(2)"'R(2) (IV.16)
lation values is positive if and only if

—T

and thel x ¢ matrix polynomial
, for all . IV.
(Q, W) >0forallQ € Q4 (f,n) (IvV.9) R(2) = Ro+ Rz + -+ + Rn2" (IV.17)

Theorem 4.2:Suppose that the positivity condition (IV.9)are outer. In Section VI, we assume that the interpolation data
holds. Then, given any’ € Qy(1,n), the minimization z 1) are self-conjugate, and thus the matrix coefficients are

problem real. We also show that the dual optimization problem can be
reformulated in terms oR(z) so that, in particular, the spectral

min  Jp(Q) (IV.10) factorization step and complex number calculations are avoided.

Q€Q+(fm) Consequently, for each choice of tuning parameters
PosP1,- - - Pn, the dual optimization problem provides an

has a unique optimal solution. Given the optimal solutihrthe
unique interpolanf’ € F, (n) corresponding t@’, mentioned

in Theorem 4.1, is given by V(z) := p(2)R(z)" (Iv.18)

essentially unique matrix polynomial (IV.17) so that

1 it T U is an outer spectral factor & = PQ~'. Forming a minimal
F(z)= — , P(e®)Q(e") " de. (IV.11) realization (111.3) of (IV.18), the corresponding interpoldnte
2 ) e — 2z L
F.(n) is given by (111.4).

—T
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V. PROOFS IN THECONTEXT OF DUALITY THEORY

To solve (1V.6), we form the Lagrangian
n 4 B
L(®,Q) :=1p(®) +Re ¢ > > "> qff

X [w,f — % / ak(ew)@ij(ew)dQ] }

Wherewfcj and ®,; are the matrix components &, and ®,
respectively, and then solve the dual problem to minimize

sup L(®,Q)

exL
PeS

with respect to the Lagrange multiplie;‘g, which are complex
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where A1 (e%?), M\y(ei?), ..., Ae(e'?) are the eigenvalues of
(') 160 (), andlog(1l + eX;) = eX; + O(e?), we have

det(® + e6P)

1
lim — log [ Es

e—0 ¢

l
} =D A =t(®718®). (V.2)
j=1

Consequently, in terms of the inner product, the directional
derivative can be written as

SL(®,Q; 6®) = (6@, PO~ — Q) (V.3)
which equals zero for ali® if and only if
¢ =prQL (V.4)

Inserting this into (V.1), we obtain

Jp(Q) + % / P(e”) (log P(e”) — 1) df

numbers except whel = 0 when they are real angj’ = ¢i/. Where

Here,( is the generalized pseudo-polynomial (I11.16) formed 1 W

by takingQy, to be the/ x £ matrix[q,”]{ ;_; fork = 0,1,...,n. Jp(Q) = (Q, W) — — /P(ew) log det Q(e'?)df. (V.5)
Then, using the identity (l11.22), the Lagrangian can be written 2“4

by

™

L(®,Q) = % /P(ew)10g,»detc1>(ei0)d9Jr (Q, W)

—T

—% /tr {Q() ()} db. (V.1)

Clearly, the Lagrangian will be unboundeddf is allowed to
have negative values on the unit circle. Hence, we determine
the supremum for eady € Q. (¢, 7). To this end, we want to

determine a such that the directional derivative

SL(®,Q:60) = lim ~ [L(®+250,Q) — L(®,Q)]

1 i 1o [det(®+e6D)
=5 P(e*) lim log[ ot D do

e—0 &

—T

1 s
-5 /tr{Qécp}de

equals zero in all direction8p such thatb + =6® € S{** for
somee > 0. However, since

log det(® + £69Q)
det @

} = logdet(I + @ 15®)

‘
= log H(l +elj)
j=1

¢
= Z log(1 4+ eX;)
j=1

Hence, modulo an additive constadt, is precisely the dual
function.

We want to show that this functional is strictly convex and
that it has a unique minimum i@ (¢, n). To this end, we form
the directional derivative

$n(Q:50) i tim 2@+ 20Q) = Ip(@)

—0 £
1
= <6Q> W> - %
, d 5
x /P(ew)gg%élog [Gt(?e%;@} d
=(6Q,W — PQ™) (V.6)

where we have performed the same calculation as in (V.2). We
need to determine @ € 9, (¢,n) such that

8Jp(Q;6Q) =0 (V.7)
for all 6Q of the form
6Q(e) = R {Z 5Qkak(ei9)} (V.8)
k=0

whereéQ, k = 0,1,...,n, are arbitrary compleX x £ ma-
trices, except fob Q) that is real and symmetric. Inserting (V.8)
into (V.6), we obtain

(5»"1)(@,(5@) :ReZtr <5Qk / Oék[W — PQ—l]%)
k=0

= Re Z tr (5Qk [Wk - Ik(Q)D
k=0

whereZy(Q),71(Q), . . ., Z,(Q) are defined as in (IV.12).
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Lemma 5.1: The stationarity condition (V.7) holds for &y the boundary o2, (¢, n), it has compact sublevel sets. Conse-
of the form (V.8) if and only ifZ;(Q) = Wi,k =0,1,...,n. quently,Jp has a minimqu, which is unique by strict con-
Proof. For an arbitraryk;, 4, j) with k # 0, take all com- vexity. We need to rule out th&} lies on the boundary. To this
ponents 0bQo, 6Q1, ..., 6Q, equal to zero excepiy; , which  end, note that the boundary &f (¢, n) consists of the) for
we take to be\ + iu with A andy arbitrary. Then, letting;;”  whichdet @ has a zero on the unit circle, and for which the di-
be the real part and’ the imaginary part ofo,’ — 7,”(Q)), we rectional derivativé Jp(Q; 6Q) = —oc for all 6@ pointing into
obtain Q. (L,n); see [12, Sec. 4] for details.
y y y - Therefore, since&., (¢, n) is an open setiJp(Q; §Q) = 0
6Jp(Q;6Q) = Re {(A +ip) (uﬁj + ivfj)} = Au —pv  for all §Q of the form (V.8) and, therefore, (V.9) follows from
Lemma 5.1.
and hencev’’ = 7)7(Q), as claimed. If: = 0, z andv)/ equal ~ Theorem 5.3:Let P € Q. (1,n), and suppose that the
to zero, so the same conclusion follows. The reverse statem@@gitivity condition (111.18) holds. The primal functional

is trivial. m lp: SYY — Ris strictly concave, and there is a unique op-
It remains to show that there is@ € Q. (¢, n) such that timal solution® € S{** to the problem (IV.6). The maximum
(V.7) holds.  takes the form

Theorem 5.2:Let P € Q,(1,n), and suppose that . A4
the positivity condition (111.18) holds. The dual functional ®=rqQ

Jp + Qi(f,n) — R is strictly convex and has a uniquéynere ) ¢ 0, (£,1) is the optimal solution of the dual

minimum ). Moreover, fork = 0,1,...,n problem.

x Proof: To show thatl p is strictly concave, we proceed as

2i /ak(ew)P(e”)Q(e”)_ldH — W, (V.9) above. The calculation leading to (V.3) yields
T,
o Slp(®;60) = (6@, PO~1)
Proof: To prove thatlp is strictly convex we form and, following the lines of the corresponding proof in Theorem
5.2
J . —8J .
$2Ip(Q55Q) = Ly 2IP(QH0Q0Q) = 0Jr(Q:0Q) )
e—0 . € 821p(®;60) <0
— —lim = -1 _ -1
o gl—% € <6Q’ P [(Q +20Q) @ ]> with equality if and only ifé® = 0. Hence|lp is strictly con-

TR B 1o 1] At cave, as claimed.
_(_11_1)1(1)6<6Q7P[I (I+eQ76Q) }Q > LetQbetheoptimalsolutionofthedualproblem.Then,since

I is strictly concave, so i® — L(®, Q). Clearly,® := PQ~!
belongs taS{*“, and, by (V.3), itis a stationary point of the map

(I+cQ 16Q)"" =1—eQ 16Q + O(c?) ® — L(®,Q). Hence
L(®,Q) > L(®,Q), forall & € SL**. (V.10)

However

for sufficiently smalle > 0, and hence

_ _ However, by Theorem 5.2 satisfies the interpolation condi-
2 . _ 1 1
6°Jdp(Q;0Q) = (0Q, PQ™6QQ™"). tion (111.13) and, consequently

Now, since) € Q. (¢, n) is positive definite on the unit circle, L(,0) = 1p(d).
there is a nonsingular matrix functighsuch that) ! = 55*.
Then, using the commuting property of the trace, we have Therefore, it follows from (V.10) that

A

tr(6QQ™16QQ™Y) = tr(5*6QSS*5QS) Ip(®) <1p(®)
and hence for all @ € S that satisfies the interpolation condition
(111.13), establishing optimality o®. [ |
62Jp(Q;6Q) = (S*6QS, P(S*6QS)) > 0 Consequently, we have proved Theorem 4.1. To finish the

proof of Theorem 4.2 it remains to establish that the map

taking the value zero if and only §*§QS = 0 or, equivalently, Z : Q,(¢,n) — 20,(¢,n) is a diffeomorphism. To this
6Q = 0. Consequently, the Hessian &f(Q) is positive defi- end, first note tha®, (¢,n) and 20, (¢, n) are both convex,
nite for all Q@ € Q. (¢,n), implying thatJp is strictly convex, open sets inR2¢*+(1/2¢(+1) and hence diffeomorphic to
as claimed. R2n#*+(1/2)((+1) Moreover, the Jacobian f is the Hessian

The rest of the proof is the samautatis mutandiss the one of Jp, which is positive definite or@ (¢,7n), as shown in the
in [16]. (Also, see [12], [17], and [19].) Since the linear ternproof of Theorem 5.2. Hence, by Hadamard's global inverse
(Q, W) is positive and linear growth is faster than logarithmidunction theorem [45]7 is a diffeomorphism.
the functionJp is proper, i.e., the inverse images of compact Finally, Theorem 3.1 is an immediate consequence of
sets are compact. In particular, if we extend the functipnto Theorem 4.1.
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VI. SOLVING THE DUAL OPTIMIZATION PROBLEM Under this change of coordinates, the Pick matrix becomes
Recall that, by T_heorem. 4.2, for each choige .of K = T*TIT (V1.5)
P € 9Q.(1,n), there is a unique solution to the basic in- . .
terpolation problem of this paper, and this solution is obtaineuhd, sincearg det R(e~*) = — argdet R(e'?), (VI.1) can be
by determining the unique minimizer ovéy, (¢, n) of the dual written as
functional
Jp(Q) = Jp(R) — 2(log T, P) (V1.6)
Jp(Q) = (@, W) — (logdet @, P). (Vi.1) where the new cost functional
This functional has the property that its gradient is infinite on the Jp(R) = trRTKR — 2(log det R, P) (VI.7)

boundary ofQ, (¢,n). This is precisely the property that buys

us properness of the functional (1V.12), and therefore it is essaes-defined on the spacg (¢, n).

tial in the proof of Theorem 4.2. However, from a computational Proposition 6.1: The functionallp : R, (¢{,n) — R has a
point of view, this property is undesirable, especially if the mininique stationary point and is locally strictly convex about this
imum is close to the boundary. In fact, it adversely affects the guaint.

curacy of any Newton-type algorithm. For this reason, following ~ Proof: Sincel'(z) := R(z)/7(z) is a uniquely defined
[22] and [26], we first reformulate the optimization problem tdouter) spectral factor of)(z), the map¥ : Ry(¢,n) —
eliminate this property. This is done at the expense of glob@l, (¢,n) sendingR to Q(z) = ©(z)RR*©*(z), where

convexity, but the new functional is still locally strictly convexin 1
a neighborhood of a unique minimizing point. Thus, if we were O(z):=——[I; zI, --- 2z"I
able to choose the initial point in the convexity region, a Newton 7(2)

method would work well. However, finding such an initial points a bijection with first and second directional derivatives
is a highly nontrivial matter. Therefore, again following [22] and ) . N

[26], we want to design a homotopy continuation method that 0U(R;6R) =06(z) (R(6R)" + (6R)R") ©7(2)
determines a sequence of points converging to the minimizing 6> (R; 6R) =20(z) ((6R)(6R)*) ©*(z).

point. Now, 6R — 6¥(R; 6R) is an injective linear map between Eu-

clidean spaces of the same dimension and, hence, it is bijective.

) ] . _Infact, sincalet R(z) has all its roots in the complement of the
In Section 11I-D, we replaced the first term in (VI.1) with ag|osed unit disc, the homogeneous equation

quadratic form by first defining the spectral facfofz) satis-
fying (111.23). Consequently, for eaol) = I'T**, the right hand R(2)A*(2) + A(2)R*(2) =0 A(2) := O(2)6R
side of (VI.1) can also be written as

A. Reformulating the Optimization Problem

has a unique solutiol\(z) = 0. (See Lemma 1.1 in Ap-
trI™IIT — (log det I'T*, P) pendix I.) Therefore, since

wherell is the generalized Pick matrix defined by (111.27) or, Jp(R) = Jp (¥(R)) + 2log 7, )

alternatively, by (111.28). Let us now assume that the interpQpe directional derivative

lation data €, W) is self-conjugate so that spa&@, (¢,n)

has dimensiorin + (1/2)¢(¢ + 1) and the matrix coefficients 6Jp(R;6R) = 6Jp (V(R); 6V (R;6R))

Bo, B, -, B I is zeroforals Rifand only ifsJp(Q; 6Q) = (6Q, W —-PQ™1)

R(z):=1(2)[(z) = Ry + R1z+ -+ + R, 2" (VI1.2) iszero foralld@. Consequently/ » has a stationary point &

if and only if Jp has a stationary point d@t(R). However,Jp

are real. We also assume thgg is upper triangular. Then, the has exactly one such point, and hence the same holdgfor

spaceR . (£,n) of all Moreover, sincé2Jp(Q; 6Q) = (6Q, PQ™1QQ~!) > 0 for
all6Q # 0 andéJp(Q; 5Q) = 0 atthe minimunt, the second

Ry directional derivative

R = e Rf(n+1)><i

s 820 p(R; 5R) = 62Jp (xp(R); 5U(R; 512))
2. 520 (R
such that (VI.2) is outer an®(e?)R(e*)* > 0 for all § € +odp (\P(R)’ V(R 6R))

[, 7] also has dimensiof’n + (1/2)¢(¢ + 1). In view of 5 oitive for sufficiently smallsR # 0. Therefore,Jp is

(111.25) strictly convex in some neighborhoodﬁf ]
R(z) = 7(2) (G(z) ® [)) T (VI.3)  B. Gradient and Hessian of the New Functional
which defines a nonsingular linear transformati®such that ~ In order to use Newton’s method to solve the new optimiza-

tion problem, we need to determine the gradient and the Hessian
I'=TR. (VI1.4) of Jp. We begin with the gradient.
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Proposition 6.2: Given the real x ¢ matrix-valued Fourier Sincedet R(z) has no zeros in the unit disBy is nonsingular.

coefficients Therefore, setting the gradient$f (R) equal to zero, we obtain
17 . . o KR=ER;" E=[, 0 --- 0] VI.13
Ck — 2_ /e’Lk@P(eZG) (R*(ew)R(ew)) 1 do 0 [ 4 ] ( )
T and, thereforeR, = E'R = E'K~'ER; ", which yields
k=0,1,... V1.8
el (Vi8) RoR] =E'K 'E. (VI.14)

and the modified Pick matri¥, given by (VI.5), the gradient

of Jp is given by First, solving (VI.14) for the unique Cholesky factor and in-

serting into (VI1.13), (VI1.13) reduces to a linear system of equa-

oJ p tions that has a unique solutiddsinceK is positive definite.
ﬁ(R) =2(K-C(R))R (V1.9)

where thgn+1)¢ x (n+1)¢ matrixC(R) is the block Toeplitz
matrix with blocksC(R);; = C;_; given by (VI.8) andC_;, =

D. Continuation Method

Now, we would like to find the minimizer off p for an ar-
T bitrary P € Q+(1,_n). To this end, we construct a homotopy
ko between the gradient of; and the gradient off p along the

The proof of Propos_mon 6.2 IS given in A_ppend|x I, Whl!elines of [22] and [26], allowing us to pass from the central so-
the proof of the following proposition, describing the Hessmmtion to the solution of interest

of Jp, is given in Appendix Ill. :
Proposition 6.3: The Hessian off p is given by Now, for anyX € [0, 1], define

Py(z) =1+ X(P(2) —1).

0? 0?
————Jp(R) =2(I; ® K) — 2————(log det R, P).
(0vec R)? p(R) =21 ) (8vecR)2< & ) Then, sinceQ (1, n) is convex,Py € Q4 (1,n). By Proposi-
(\(I.lO) tion 6.1, the functional

Here, the component of the second term are obtained by re-
arranging the elements in Jp, (R) = tr RTKR — 2(logdet R, P,)
<i ® - 0 ) (logdet R, P) = — 5,417 has a uni_que minimum ait(/\) a_nd is_Ioc_aIIy stricFIy convex_in

OR; ~ ORy some neighborhood d&(\). This point is the unique solution

4 k=0,1,....n (VI.11) in Ry (¢,n) of the nonlinear equation
whereSy, S1, ..., S», are defined via the expansion h(R,)) = oJp, (R) _
T OvecR

P(z) (vec R(z) 1) (vec R(z)’T)T =Y " Sz *. (VI.12) Then, the functio : R (I,n) x [0, 1] — R D¢ is a homo-
—o0 topy from the gradient of ; to the gradient off p. In particular,

Remark 6.4: Since the left hand side of (VI1.12) is the productR(I(r)]) \I/?et/r\]/eo(f:?rr]trasltrsig':ulgggl. convexity off » in a neiahbor-
of three factors, two of which have Laurent expansions with d of R(\). the Jacobi (R )\y_ Py itive d fg ite at
infinitely many terms, one might wonder how to determine thR00 of R(}), the Jaco |an_oL(_ 7 ) IS positive definite a
coefficientsS, 51, .. . , S, in a finite number of operations. As f£(A)- Consequently, by the implicit function theorem, the func-
we shall see in Appendix IlI, this can be achieved by observiﬁg’n A — R() is continuously differentiable on the interval
thatP(z)(R(z)T @ R(z)~1) has the same elements as (v1.12f0:1], and

appropriately rearranged, and can be factored as the product gf R oh -1/ oh
two finite and one infinite Laurent expansion. Ve R(\) = — <8 R( , )) < (R, A))
vec

oA

R=R(})
C. Central Solution ) o _
Th o bl nimizd o | icularl where the inverted matrix is the Hessiank, that can be de-
e optimization problem to minimizd p s particularly o mineq as in Proposition 6.3. We want to follow the trajectory

simple if P = 1. In this case, an_d only in this case, the probl_erﬁ(/\) defined by the solution of this differential equation with
can be reduced to one of solving a system of linear equatiof}s, entral solution as the initial condition

T_his solution is generally cgll_ed theentral solution In fact, To this end, we construct an increasing sequence of numbers
sincedet R(z) has no zeros i, by the mean-value theorem/\m Ao Ay On the interval [0,1] with\o = 0 andAy = 1.

of harmonic functions Then,/forl/s = 1,2,..., N, we solve the nonlinear equation

.7 h(R, \,) = 0 for vec R(\;) by Newton’s method with initial
7 / log |det R(e™)| df = log |det R(0)|. condition
m

vec Ro(Ar) = vec ROp_1) + %Vecé()\k)()\k — Ahe1)-

The numbers\g, A1, ..., An have to be chosen close enough

Ji(R) = trR" KR — 2logdet Ry. so that, for eactk = 1,2,...,N, Ro(\x) lies in the local

Consequently, sincerg det R(e %) = — arg det R(e'?)



2184 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 12, DECEMBER 2003

convexity region ot/ p, , guaranteeing that Newton's method TABLE |
converges t(f%()\k). Strategies for choosingy, A1, ..., Ay are SUMMARY OF THE DESIGNS
given in [22] and [26]. This choice is a tradeoff between con- | Our design | H* design
vergence and staying in the locally convex region. Controller degree ] 17
Remark 6.5: A MATLAB implementation of this algorithm is Peak ||S]|o (dB) 1.3419 1.3582
available [46]. Peak || T (dB) 0.9984 1.2328
Bandwidth S (rad/s) 7.3938 4.6202
VII. APPLICATION TO A BENCHMARK PROBLEM IN Bandwidth T (rad/s) 16.1141 16.4140
RoBuUST CONTROL

During the last two decades, it has been discovered th@nstraints, we shape the sensitivity function to meet the speci-
analytic interpolation theory is closely related to several robugéations, while limiting the degree of the controller.
control problems, for example, the gain-margin maximization First we deal with the pole at origin. By perturbing thema-
problem [5], [7], [8], the robust stabilization problem [6], sentrix we move the pole into the open right-half plane, generating
sitivity shaping in feedback control, simultaneous stabilizatiogn interpolation point as described in Section Il. More precisely,
[4], the robust regulation problem [1], the genefaf® con- we move the pole ta0~% by increasingd;; to 10~6. This will
trol problem [3], and, more generally, the model matchingnsure the sensitivit§ to be zero near zero frequency. In terms
problem. In this section, we apply the theory of this pap&jf the modified sensitivity functio introduced in Section I,
to a benchmark problem in sensitivity shaping for a muthis yields the interpolation conditiaf(10°) = 0.
tiple-input-multiple-output plant from a popular textbook on Since the plant is strictly proper and the first Markov param-
multivariable control by Maciejowski [47]. We refer the readegterC'B is rank deficient, we need to add interpolation condi-
to Section Il for notation. tions for Z and Z’ at zero in accordance with (I1.15). Moving
The control system in [47] describes the vertical-plane dyhe interpolation condition slightly into the open right-half plane
namics of an airplane and can be linearized to yield a lineggemark 2.3), these conditions become
system

0 0 0
P(s) = C(sI — A)"'B+ D Z(107%) =1, 2'(107%) = Uy := 0 -2 -010—6 AL

with three inputs, three outputs, and five states, where .
P P To force the controller to be strictly proper and create a steep

ro 0 1.1320 0 —1.000 “roll-off” of the complementary sensitivity function, we also
0 —0.0538 —0.1712 0 0.0705 add the conditiorZz”(10=8) = 0. Then, the class of bounded
A=10 0 0 1.0000 0 interpolants becomes
0 0.0485 0 —-0.8556 —1.013 -8 1(10-8
- . Z(107%) =1, Z'(107%) = Uh
L0 —0.2909 0 10532 —0.6859 {Z € RH™ : Z(10-%) = 0, Z(105) = 0, || Z||oc < v
r 0 0 0
—0.12  1.0000 0 where~ is a bound to be selected in the design.
B= 0 o 0 By means of a linear fractional transformation and an appro-
4.4190 0 —1.665 priate scaling, we transform the problem to the form considered
1'5750 0 —o 6732 in this paper, yielding the family
1 0 0 0 0 _ F(0) =1.9250I, F'(0) = F"(0) =0
c=10100 0 {Feﬂ(g)' F(0.9997) =T
|00 1 .00 for the particular choice of described next.
[0 0 0 We now tune the design parameters to meet the design specifi-
D=0 0 o cations. First, we pick the upper boutd= 3.16 (10 dB). How-
00 0 ever, the actual maximal norm of the sensitivity will be smaller.

Furthermore, we want to peak the sensitivity function some-
This system is not asymptotically stable due to the pole at tihat above 10 rad/s. We can achieve this by choosing spectral
origin. Itis strictly proper(D = 0) and the first Markov coeffi- zeros close to the imaginary axis in the corresponding region.
cientC'B is rank deficient. Here, we first pick the point§60, £40i} and transform them

To compare our result with that of [47], we want to desigep the unit disc by the same linear fractional transformation as
a one-degree-of-freedom controller C as in Fig. 2 in Sectionfr the interpolation points. By rescaling each resulting root to
that renders the closed-loop system robust against various ¢igve absolute value less than 0.95, if necessary, we avoid numer-

turbances. More precisely, the specifications are ical difficulties and prevent the peak tf| from becoming too
« bandwidth about 10 rad/s; high. In this way, we obtain the spectral zef0s3969, 0.4936 +
* zero sensitivity at zero frequenc§{0) = 0; 0.4998:}, which we use in the algorithm of Section VI to deter-
» well-damped step responses. mine the corresponding unique interpoldnt Then we trans-

By exploiting the design freedom offered by choosing thierm back toS and calculate”(s) = P(s)~*(S(s)~! - I).
design parametermnamely an upper limity of the gain, the  In Table | we compare our control design with tH&® design
tuning parametergg, p1, - - -, pn, and additional interpolation using the weighting functions of [47, pp. 306-315]. In Fig. 5,
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Singular values (dB)

—25) ___ Ourdesign | —40|| — Our design \\_
— — H” design — — H” design \
=30 L -45 |
10° 10' 10° 10° 10' 107
Frequency (rad/s) Frequency (rad/s)
Fig. 5. Singular value plots of andT.
M TABLE Il
12k o OUR DESIGN COMPARED WITH MODEL-REDUCED H > DESIGN
P TtIaai__ H> design,
M y 7 Our design | model reduced
0 5[ 7/ Controller degree 8 11
2l I Peak || 5]/ (dB) 1.3419 1.3593
[ —ourdesign Peak || T (dB) 0.9984 1.2327
 oaf | Bandwidth S (rad/s) 7.3938 4.6202
I Bandwidth T (rad/s) | 16.1141 16.4140
0.2‘[1/1
o= TABLE Il
T COMPARISON BETWEEN MODEL-REDUCED CONTROLLERS
-02 : s ;
% ime (s) ! 8 Our design H® design
model reduced | model reduced
Fig. 6. Step responses for thE>-design and our design. Controller degree 6 11
Peak ||S||oo (dB) 1.3419 1.3593
the (singular-value) frequency responses of the sensitivity an Peak HT”‘X’ (dB) 0.9984 1.2327
P ; Bandwidth S (rad/s) 7.3938 4.6202
the complementary sensitivity of both designs are plotted, ant Bandwidth T (rad /s) 16.1141 16.4140
in Fig. 6 the step responses are depicted. Clearly, both desigr. =™ rac/s : ‘

meet the design specifications. We emphasize that although our
design meets the specifications at least as well as dodgthe states in thel/>° design, we found that the controller can be
design, the McMillan degree of our controller is only half of thateduced to degree eleven without loss of internal stability and
of the H*° controller. without undue degradation in performance, whereas reduction
H*° control design often leads to controllers of high degret ten leads to an unacceptable design. The results, given in
and it is therefore customary to apply some method of modEdble Il, still demonstrate the advantages of our new design.
reduction. This is typically done by balanced truncation [48], Of course, model reduction could also be applied to our de-
where states that correspond to relatively small entries on tign. In fact, the degree of our controller can be reduced to six
diagonals of the balanced observability/controllability Gramianithout unacceptable degradation in performance, restoring the
are removed. Although such procedures are qadtBoc a cer- ratio in the controller degree between the two methods. The re-
tain reduction in degree can often be done without unacceptabldts are displayed in Table IlI.
degradation in performance. The corresponding (singular-value) frequency responses of
An interesting question is now whether tHe° design in the the sensitivity and the complementary sensitivity are displayed
present example can be reduced to the same degree as oumdBig. 7, and the step responses are depicted in Fig. 8. Our
sign, namely eight, without unacceptable degradation. The aesign still is of considerably smaller McMillan degree while
swer is “No.” To see this we have used the DC gain matchimgeeting the design specifications at least as well asHbPe
function in MATLAB's Control Toolbox. Successively removingdesign.
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Singular values (dB)
Singular values (dB)
n
o

]
[
o

|
[
(3]

___ Reduced-order, our design ] a0 — Reduced-order, our design
— — Reduced-order H” design — — Reduced-order H” design \
-30 : -45 :

10° 10’ 10° 10° 10’ 10°
Frequency (rad/s) Frequency (rad/s)

Fig. 7. Singular value plots & andT corresponding to the model reduced controllers.

A a numerically stable algorithm based on homotopy continuation

12} - to compute any such interpolants. The potential advantage of

7 SIzoo the theory and the algorithm was illustrated by a benchmark
17 multivariable control example.
08l The standardi >° control problem can be reduced to not only

/ matrix-valued interpolation but also tangential interpolation. As

o8 /) —Reduced=order Gur deSigh pointed out in Remark 7.1, we expect that the reduction to the
04l ! - — Reduced-order H” design tangential Nevanlinna—Pick interpolation problem will be more
natural in the sense that the degree bound can be much lower
than the one in this paper (also, see [49], [50]). Therefore, it

Amplitude

0.21/14;

YA will be important to modify our theory to tangential Nevan-
R linna—Pick interpolation. This is the subject of future study.
0.2 o5 1 15 As pointed out before, and as discussed in detail in [19] and
Time (s) [25] in the scalar setting, the Nevanlinna—Pick interpolation

problem of this paper can be regarded as a generalized moment
problem with complexity constraint. In a different context,
Lasserre [51] has recently developed an approach that connects
Remark 7.1:In interpreting these model-reduction resultgertain moment problems to optimization. An optimization
we need to observe that the interpolation conditions used in gfoblem of type (1V.10) was first introduced in [16] in the
procedure to ensure internal stability are in fact only sufficie@bntext of the covariance extension problem. This approach
(Remark 2.2). Modifying our procedure to handle tangentigjas originally motivated by the effectiveness of interior point
interpolation would allow us to use necessary and sufficieffethods; indeed, the logarithmic term in (IV.10) was formed in
interpolation conditions. This would reduce the total numbehalogy with a barrier term. Therefore, it is interesting to note
of interpolation conditions imposed on the sensitivity functionpat similar paradigms appear in recent work on positive poly-
thus very likely leading to a lower degree controller. In fachomials and convex optimization over linear matrix inequalities
modifying our approach in this way, itis quite possible that thg \js): see, in particular, [52] and [53]. There are also efficient
sixth-degre_e controller obtained gbove.after moplel reductigfuthods off7° control based on LMI techniques [54]-[56].
of our design could then be obtained directly (without modg{ ,,1q be interesting topics of future study to investigate

reduction) using appropriate tuning. possible connections between our work and that of [51]—[55].

Fig. 8. Step responses for the reduced-order designs.

VIII. CONCLUSION
NONSINGULARITY OF THE JACOBIAN MATRIX §WU

In this paper, we have developed a theory for matrix-valued
Nevanlinna—Pick interpolation with complexity constraint. We
have shown that the spectral zeros characterize completely @o show that the Jacobian matrix @fin Proposition 6.1 is
class of interpolants of a bounded complexity. We have deviskijective, we prove a somewhat more general statement.

APPENDIX |
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Lemma 1.1:Let V(¢,n) be the class of real x ¢ matrix which, in particular, contains th& —1) x (k—1) matrix relation

polynomials RV* + VR* = 0 of type (1.1). Consequently, by the induction
" assumption)/ = 0, so, to prove that/ = 0, it just remain
V(2) =Vo+Vizt--+ Viz to show that the border elements , v1o, . . . , Vik, Va1, . . . , V1

such that is upper triangular, and lék € V(/,n) have the are all zero. To this end, let us begin with the corner elements
properties that the constant terf, is nonsingular and that v1ix andvg:. From the(1, k) and(k,1) elements in (1.2), we
det R anddet R* have no roots in common. Then, the lineaPave
map.S(R) sendingV” € V(¢{,n) to

S(R)V := R(2)V*(2) + V(2)R*(2)

T11V + V1T =0 (1.3)

Vi ek + vp1riy =0. (1.4)

is nonsingular. In the same wa : N .
. . . y as in the cage= 1, (1.3) implies thatvy, =
In tre protof fOIhProlpos'gon ?'?et RAhas a}!l |tstroots mlthle Mixr11 for some real polynomial;, and (1.4) implies that
complement of the closed unit disc. A proof of Lemma 1.1re. =~y ' "t some real polynomiak,,, which, when in-

stricted to this case can be found in [57]. (See also [58, Th. 3. . .
which refersto [57].) Nevertheless, we shall provide an indepen-rte(j into (1.3), yields
dent proof of the more general statement of Lemma 1.1. Indeed, (Ak1 + Alg) r11rh, = 0.
our proof is short and straight-forward. Moreover, the general
statement given here was left as an open problem in [57, p. Z8his implies that\;; and )y, are real numbers such theg, =

Proof: Since S(R) is a linear map between Euclidean-)\;;. However, by assumptiort/(0) is upper triangular, and
spaces of the same dimension, it suffices to prove ${d&t) R(0) is upper triangular and nonsingular. Heneg, (0) = 0
is injective. Without restriction we may assume th@atz) andr.(0) # 0, implying thatA; = v51(0)/r%(0) = 0 and,
is upper triangular. In fact, 1eT’(z) be a unimodular matrix consequently);;, = 0. Since, thereforey;;, = 0 andvg; = 0,
polynomial with7'(0) upper triangular such th&t(z)R(z) is (I.2) now takes the form
upper triangular. Such & indeed exists due to the procedure . . . .
deriving the Smith form [59]. Then [R | *} {V* | 0} N [V | 0} [R* | 0] —0

0[x|| 0710 00|l * T*
TS(R)VT* =(TR)(TV)*+ (TV)(TR)* =0 o

which only yields th€k — 1) x (k — 1) matrix relationRV* +
VR* = 0 of type (I.1). However, by the induction assumption,
V = 0. Therefore,V = 0 in the case/ = k also, so, by

if and only if S(R)V = 0. Moreover, the newly, i.e.,
T(0)V (0), is still upper triangular. In this formulation

det R(2) = r11(2)r22(2) . . . 100(2) induction,V = 0 for all k. [ |
whereryq,rq9, -+, 14 are the diagonal elements i In par- APPENDIX |l
ticular, by assumption, ng;; can have zeros in common with COMPUTING THE GRADIENT

anyr*.. It then remains to prove that . . .
YTis I prov To establish the expression (V1.9) for the gradient

RV* +VR* =0 (1.1)

impliesV = 0. OR

The proof is by induction. The statement clearly holds for )
¢ = 1.Infact, if R(z;) = 0, then, by assumptio?*(z,) # 0, ©f (VI.7), we need to determine
and hence, by (1.1)V(z;) = 0. Consequently, we must have g

V(z) = A(z)R(z) for some real polynomial, which inserted m(log det R, P)

ZP(R) =2 (KR - %(mgdet R, P)) (I1.1)

into (1.1) yields . x
- =T P
(A+ A*)RR* = 0. =5 / e MR () P(e)db
This implies that\ = 0 and hence that’ = 0, as claimed. £
Now, suppose that (I1.1) implids = 0 for £ = k — 1. Then, = 1 /p(ew) (R*(ew)R(ei@))_T RT(ew)e—ikGdg
for ¢ = k, (1.1) can be written 2 J
711 | r12 - Tik ’UTI | v;l T U;:'l — [CkT - OO - Cn—kj| R
0 V7g
: R ‘ i+ where C}, is defined by (VI.8). This completes the proof of
0 v; Proposition 6.2.
k1 To actually comput&y, C1, . .., C,, we identify matrix co-
v [ vz - oy {r| 0 -0 00 efficients of equal powers ia in
V21 719
+ A . R :0 (IZ) [e'e)
14 : R PR R)™ = Co+ Y (Gt + i T27F)).
Vk1 *

1k k=1
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To this end, first observe that, in view of (1V.13)

P(R*R) ' = u[(vR)"(+R)] "
where
W) = 2o+ g b ) = o). (12)
Then
Oy = i“i (Croi+Chrs),  E=01,...m
j=0
whereOO 01 ..... Czn andC_;, = CT can be determined by

identifying coefficients in

-t :Co+012+01TZ_1
+...+Cn2”+CnTZ*"+..._

u (TR (rR)]

APPENDIX Il
COMPUTING THE HESSIAN

We begin by proving Proposition 6.3. Since

9*(trR"KR)

ovecR® 2o K)

it remains to establish (VI.11). Since

0 19}
ﬁ ® ﬁ(logdet R./P}

™

1 .
- aimz*( NP

)e="*0dp

—T

(VI1.11) would follow if we could show that

9 ® R*(2)" T = —2Fvec(R*)” ' (vecR™*) . (lll.1)
OR;
Denoting the §, t) element ofR; by Rjt we obtain
9 - _rO(R")" -T
R* ” T — R* R*
= — 2R Tese (R
and, therefore
O R O
J Lol * Lol * -T
aR“R ()" orr It (2)

=— 2 Ivec(R*)” " (vecR~ )T

establishing (111.1) and, hence, proving Proposition 6.3.
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Next, we answer the question in Remark 6.4. To compute
S0, S51,...,59, in (VL.12), we first expand

()@ R7(2))
..+§2nz—2n+

P(z) (R~

o+ Sz 4+ So 4

and then determiné, from S;, by comparing the matrix coeffi-
cients of(vecR*})(vecl’%*T)T with those ofR~ " ® R~1. The
computation ofS; can be done by observing that

R T®@R '=(R)"(R'R)”

_ ((R*)T®R*

Te (R*(RR*)—I)
R*R)_T®(RR*)_1)
R*R)T®(RR*))_

RT®R) ((R*)T®R*))

(¢
(o om)( |
= (T er)(( 7
= ((r") ®R*) ((RToR) (R eR)")

where we have used properties of the Kronecker product that
may be found in, e.g., [60]. Multiplying this b§ then yields

(o)
X ((TRT ® R)(rRT ® R)*)_l

P(RFT@R™) =

from which S;, can be computed, singe given by (11.2), and
(R*)T ® R* have finite Laurent expansions.
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